• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

山西榆社地区新近纪地层时代讨论

朱大岗, 孟宪刚, 邵兆刚, 雷伟志, 王津, 韩建恩, 余佳, 吕荣平, 王艳

朱大岗, 孟宪刚, 邵兆刚, 雷伟志, 王津, 韩建恩, 余佳, 吕荣平, 王艳. 山西榆社地区新近纪地层时代讨论[J]. 中国地质, 2009, 36(2): 300-313.
引用本文: 朱大岗, 孟宪刚, 邵兆刚, 雷伟志, 王津, 韩建恩, 余佳, 吕荣平, 王艳. 山西榆社地区新近纪地层时代讨论[J]. 中国地质, 2009, 36(2): 300-313.
ZHU Da-gang, MENG Xian-gang, SHAO Zhao-gang, LEI Wei-zhi, WANG Jin, HAN Jian-en, YU Jia, LV Rong-ping, WANG Yan. A discussion on the age of the Neogene strata in Yushe area, Shanxi Province[J]. GEOLOGY IN CHINA, 2009, 36(2): 300-313.
Citation: ZHU Da-gang, MENG Xian-gang, SHAO Zhao-gang, LEI Wei-zhi, WANG Jin, HAN Jian-en, YU Jia, LV Rong-ping, WANG Yan. A discussion on the age of the Neogene strata in Yushe area, Shanxi Province[J]. GEOLOGY IN CHINA, 2009, 36(2): 300-313.

山西榆社地区新近纪地层时代讨论

基金项目: 中国地质调查局地质大调查项目(1212010611703)资助。

A discussion on the age of the Neogene strata in Yushe area, Shanxi Province

  • 摘要: 提要: 通过对山西榆社地区新近纪地层的野外地质调查和实测剖面,对分布于该区的新近纪地层进行了详细的研究和划分,提供了新的ESR测年数据,并结合古地磁年龄、生物地层序列确定了该区新近纪地层顺序为:新近系上新统上部麻则沟组(N22m)、新近系上新统下部高庄组(N12g)和中新统马会组(N1m)。根据实测剖面,可将这3个组的河湖相地层划分为37层,总厚度达446.5 m。ESR测年结果表明,麻则沟组的形成时间为2.50~3.04 Ma,属新近纪上新世晚期;高庄组形成时间为3.25~5.25 Ma,属新近纪上新世早期;马会组形成时间为5.30~13.10 Ma,属新近纪中新世晚期。
    Abstract: Abstract:Based on geological survey and measured profiles, the authors carried out a detailed study and classification of the Neogene strata distributed in the Yushe area of Shanxi Province. ESR dating combined with biostratigraphic and Paleomagnetic dating of the Neogene strata in the study area revealed the stratigraphic sequence as follows (in descending order): Upper Pliocene Mazegou Formation, Lower Pliocene Gaozhuang Formation and Miocene Mahui Formation. Based on the measured section, the authors divided the fluvio-lacustrine facies sediments of the three formations into 37 layers, with the total thickness being 446.5m. It is obvious from the ESR dating that the Mazegou Formation (2.50~3.04Ma), the Gaozhuang Formation (3.25~5.25Ma) and the Mahui Formation (5.30~13.10Ma) should belong respectively to Late Pliocene, Early Pliocene and Late Miocene.
  • 扬子地块西缘地区新元古代构造-岩浆活动较强烈,形成大量以中酸性火成岩为主的侵入岩浆岩群。这些构造-岩浆岩体的形成时代主要集中在740~830 Ma,主要侵位于中新元古界扬子型变质基底岩系中,并多被南华系或震旦系及少量被中生代地层不整合覆盖。由于其形成构造环境对研究扬子地块大地构造格局和形成演化以及Rodinia超大陆的恢复重建具有重要意义而受到广泛关注;大量对新元古代岩浆岩成因及热源研究认为,扬子板块周缘经历了早期大洋板片俯冲作用930~1160 Ma和晚期大规模陆缘裂解635~830 Ma(李献华等,2001凌文黎等,2006李献华等,2008裴先治等,2009刘树文等,2009夏林圻等,2016刘军平等,2017)。深入了解这些新元古代岩浆岩的成因和形成的构造环境对研究扬子地块大地构造格架和形成演化及其在Rodinia超大陆的聚合-裂解演化中的作用具有重要的科学意义(李献华等,2008)。

    目前学术界对这些岩浆岩的成因和形成的构造背景存在3种不同的认识(李献华等,2008张沛等,2008谢士稳等,2009):一种观点认为与地幔柱有关,这些岩浆岩是与Rodinia超大陆裂解有关的地幔柱活动引发岩石圈地幔和下地壳熔融的产物;另一种观点认为与岛弧有关,早期(830~820 Ma)岩浆岩为弧-陆碰撞造山带拉张垮塌熔融产物,而晚期740~780 Ma为Rodinia超大陆裂解过程中裂谷岩浆活动产物;第三种观点介于上述两种观点之间,认为扬子地块周缘新元古代岩浆活动是早期弧-陆碰撞、晚期伸展垮塌和大陆裂谷再造产物(颜丹平等,2002凌文黎等,2006),认为扬子和华夏地块的造山运动持续到约820 Ma,大规模的820~830 Ma花岗岩形成于造山带垮塌阶段,而随后的岩浆活动形成于岩石圈伸展—裂谷阶段(Zheng et al., 2006;Wu et al., 2006)。

    王梦玺等(2006)对扬子北缘随枣盆地中周庵超镁铁质岩体(637±4) Ma进行了锆石Hf-O同位素分析,认为Rodinia超大陆在扬子板块北缘的最终裂解时限为约635 Ma,扬子北缘俯冲-伸展的转换时间可能在635~740 Ma的观点(颜丹平等,2002;王梦玺等,2006)。本文对扬子地块西缘云南安宁地区出露的石虎山花岗岩进行了锆石U-Pb年代学、岩石地球化学和Hf同位素分析,并探讨其侵位时代、岩石成因、物质来源和构造背景,为Rodinia超大陆裂解时限提供新证据,为扬子地块西缘新元古代的构造-岩浆活动提供新的约束。

    研究区位于滇中安宁地区,属扬子陆块区之上扬子古陆块的康滇基底断隆带,地层区划隶属华南地层大区扬子地层区康滇地层分区之昆明地层小区(图 1)。研究区出露地层有中元古界昆阳群黑山头组、中元古界昆阳群大龙口组、中元古界昆阳群美党组、新元古界灯影组、三叠系舍资组及侏罗系禄丰群(图 1)。中元古界昆阳群为一套浅变质的陆源碎屑-碳酸盐岩及少量火山岩,新元古界灯影组为一套含磷矿层的碳酸盐岩建造,三叠系舍资组为一套湖泊砂岩-粉砂岩组合,侏罗系禄丰群为一套潮湿-干旱气候环境的红色碎屑岩建造;区内早期断裂为北西-南东向,晚期断裂为北北东向及近南北向,岩浆活动主要以石虎山花岗岩为主,少量晚期辉长-辉绿岩脉发育。

    图  1  研究区大地构造位置(a)及样品采集位置图(b)
    Figure  1.  Geotectonic location in study area(a)and sampling location diagram(b)

    本次研究的样品采自易门—罗茨断裂以东,地点在安宁市八街镇德滋村(图 1),地理坐标为:102° 20′02″E,24°35′15″N。在八街镇德滋村地区,石虎山花岗岩岩体呈岩株状产出,出露面积约5 km2,岩性以碱长花岗岩为主,少量粗中粒似斑状黑云二长花岗岩,岩石结构上由细粒向粗粒含斑演化,变化的有序性和单向性明显,且在空间上紧密共生,形成时间、成分及结构变化上表现出清楚的亲缘和演化关系,说明它们是同一岩浆热事件的产物。野外两者为渐变过渡接触,整个岩体由中心至边部矿物颗粒由中粗粒变为中细粒;岩体侵入于昆阳群大龙口组碳酸盐岩及美党组碎屑岩中,围岩普遍角岩化,南、南东面被三叠系舍资组(T3s)角度不整合覆盖(图 1);岩石受后期构造影响仅发生碎裂岩化。因黑云二长花岗岩风化较强并未采集相应地化样品,仅为薄片样;本次采集较新鲜的碱长花岗岩(D0120)为主要的研究对象,岩石主要由钾长石(65%~70%)、钠长石(2%~3%)和石英(30%~35%)组成,少量黑云母(0~2%)。钾长石呈半自形—他形粒状,条纹发育,部分颗粒可见裂纹,粒径一般为0.56~1.4 mm,均匀分布。石英呈他形粒状,干净透亮,具波状消光,粒径一般为0.4~1.4 mm,与钾长石镶嵌分布。岩石受构造作用,裂隙发育,裂隙内充填绢-白云母、铁质物,穿插分布。此外,岩石中还可见磁铁矿、锆石、钠闪石,零星分布;本次对岩石后期的碎裂岩化、波状消光及充填的铁质物进行了相关处理,对本文获得的岩石地球化学数据准确性并无影响。样品镜下特征见图 2

    图  2  碱长花岗岩野外(a、b)及典型结构显微(c,正交偏光;d,单偏光)照片
    Kfs—钾长石;Qtz—石英;Ms—白云母
    Figure  2.  Outcrop photos(a, b)and micrographs showing typical textures(c, crossed nicols; d, plainlight)of the alkali-feldspar granite
    Kfs-K-Feldspar; Qtz-Quartz; Ms-Muscovite

    粗中粒似斑状黑云二长花岗岩:肉红色,风化后呈浅灰-灰白色,粗中粒似斑状花岗结构,块状构造,岩石由钾长石(20% ~40%)、斜长石(20% ~35%)、石英(20%~40%)组成,含少量黑云母(5%~15%)、白云母(≤1);副矿物为锆石、磷灰石、金红石。似斑晶主要为微斜微纹长石(10%~15%),粒径一般在7~15 mm,最大可达3.5 cm, 分布稀疏不均,半自形板状;基质以中粒(d >2~4.5 mm)花岗结构为主。斜长石多为更长石(An20±),自形、半自形板柱状;钾长石的自形程度相对较差,多为他形、半自形板状。中粒钾长石常有细粒半自形斜长石等包晶,包晶多具净边结构。黑云母Ng褐黑,Np黄白。蚀变特征:多数片状黑云母已绿泥石化,长石具轻微黏土化、绢云母化。

    样品D0121新鲜色为浅灰-浅肉红色,岩性为碱长花岗岩,块状构造;锆石分选在南京宏创地矿完成,将样品先经手工粉碎,后按常规重力及电磁法浮选出锆石颗粒,最后在实体镜下挑选出纯正锆石约250余粒。锆石多为无色透明,个别呈浅黄色,粒状、短柱状、碎粒状,金刚光泽,透明,表面多具磨蚀特征,锆石长度一般为70~150 µm,少数达180 µm。

    选择晶型较好,无裂隙的锆石颗粒黏贴在环氧树脂表面制成锆石样品靶,打磨样品靶,使锆石的中心部位暴露出来,然后进行抛光。对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,最后根据反射光、透射光及锆石CL图像选择代表性的锆石颗粒和区域进行U-Pb测年。

    U-Pb同位素定年在湖北省地质实验室测试中心岩石矿物研究室利用LA-ICP-MS分析完成。测试仪器采用的是由美国Coherent Inc公司生产的GeoLasPro全自动版193 nm ArF准分子激光剥蚀系统(LA)和美国Agilent公司生产的7700X型电感耦合等离子质谱仪(ICP-MS)联用构成的激光剥蚀电感耦合等离子体质谱分析系统(LA-ICP-MS)。另外激光剥蚀系统配置了由澳大利亚国立大学开发研制的匀化器,由10根长度不同的细PV管组成,激光剥蚀产生的细小粉末样品通过匀化器装置后,因通过长短不同的管道所需的时间略有不同而使样品脉冲信号得到平滑,从而能有效降低激光脉冲剥蚀样品而产生的信号波动(Hoskin et al., 2003)。锆石微量元素含量利用NIST610作为外标,Si作为内标进行定量计算。锆石U-Pb定年分析采用锆石标准年龄物质91500作为外标进行同位素分馏校正,每分析6~8个样品点分析2次91500。样品测试时,背景信号采集10 s,样品剥蚀40 s,管路吹扫10 s,信号采集时间总共为60 s。样品的同位素比值和元素含量采用ICPMSDataCal 9.0进行处理分析,加权平均年龄的计算及锆石年龄谐和图的绘制采用Isoplot3.0(Ludwing,2003)来完成。采用年龄为206Pb/238U年龄,其加权平均值的误差为2σ206Pb/238U(和207Pb/206Pb)平均年龄误差为95%置信度。

    锆石Hf同位素分析在武汉上谱分析科技有限责任公司完成。锆石原位Hf同位素测定由激光剥蚀多接收器电感耦合等离子体质谱仪完成,激光进样系统为NWR213nm固体激光器,分析系统为多接收等离子体质谱仪(NEPTUNE plus),激光剥蚀的斑束直径一般为55 μm,能量密度为7~8 J/cm2,频率为10 Hz,176Lu和176Yb对176Hf的同质异位素干扰通过监测175Lu和172Yb信号强度,采用175Lu/176Lu=0.02655和176Yb /172Yb=0.5886进行校正,以标准锆石91500、GJ-1与样品锆石交叉分析对仪器漂移进行外部监控。分析结果所获得标准样品91500和GJ-1的176Hf/177Hf值分别为0.282283 ± 0.000041(n=4,2σ)和0.282019±0.000029(n4,2σ),在误差范围内与参考值吻合(吴福元,2007)。计算εHf(t)时,球粒陨石的176Hf/177Hf值为0.282772,176Lu/ 177Hf值为0.0332,单阶段Hf模式年龄(TDM1)计算时,亏损地幔的值采用176Hf/177Hf=0.28325,176Lu/177Hf=0.0384,两阶段Hf模式年龄(TDM2)计算时,平均地壳的176Lu/177Hf值为0.015(吴福元,2007谢士稳,2009)。

    选择11件岩石样品分别进行主量元素和微量元素分析(表 1)。样品磨碎至200目后,在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室进行主量和微量元素分析测试。主量元素使用X-射线荧光光谱仪(XRF-1500)法测试。用0.6 g样品和6 g四硼酸锂制成的玻璃片在ShimadzuXRF-1500上测定氧化物的质量分数值,精度优于2%~3%。微量元素及稀土元素利用酸溶法制备样品,使用ICP-MS(ElementⅡ)测试,分析精度(按照GSR-1和GSR-2国家标准):当元素质量分数值大于10×10-6时,精度优于5%,当质量分数值小于10×10-6时,精度优于10%。

    表  1  石虎山岩体碱长花岗岩的主量元素(%)和微量元素(10-6)分析结果
    Table  1.  Major (%) and trace element (10-6) compositions of the Shihushan granite
    下载: 导出CSV 
    | 显示表格

    石虎山岩体主体岩性为碱长花岗岩,岩石主量元素含量见表 1

    碱长花岗岩样品SiO2含量70.22%~75.09%,平均73.58%,高于中国花岗岩平均含量71.63%(黎彤等,1998);Al2O3含量为12.36% ~14.45%,平均13.41%;MgO=0.20%~0.68%,平均0.41%,Mg#=21~49,平均36;K2O=5.35%~7.32%,平均6.29%;铝饱和指数A/CNK=1.04~1.57,平均1.24,大于1.1,属强过铝花岗岩;K2O/Na2O=1.64~7.81,平均3.45,具有富钾特征;全碱含量alk=7.76% ~9.02%,平均8.54%;在ANOR-Q'分类图解(图 3)中11件样品点落入碱长花岗岩区域,岩体中黑云母二长花岗岩因风化强未采集样品分析,11件样品定名与镜下鉴定成果无差别;在A/CNK-A/NK图解(图 4a)中,样品点均落入过铝质区;在C.I.P.W.标准矿物组合中普遍存在刚玉分子;在SiO2-K2O图解中(图 4b),由于样品点SiO2含量偏高,样品点投到钾玄岩系列区域。总体上,石虎山岩体主体岩性显示出相对富钾的特征。

    图  3  石虎山花岗岩类Q′-ANOR图解(据Streckeisen and Le Maitre,1979)
    2—碱长花岗岩;3a—正长花岗岩;3b—二长花岗岩;4—花岗闪长岩;5-英云闪长岩;6'-石英碱长正长岩;7'-石英正长岩;8'-石英二长岩;9'-石英二长闪长岩、石英二长辉长岩;10'—石英闪长岩、石英辉长岩、石英斜长岩;6—碱长正长岩;7—正长岩;8—二长岩;9—二长闪长岩、二长辉长岩;10—闪长岩、辉长岩、斜长岩
    Figure  3.  Q′-ANOR diagram of the Shihushan granite(after Streckeisen and Le Maitre, 1979)
    2-Alkali-feldspar granite; 3a-Syen granite; 3b-Monzonitic granite; 4-Granodiorite; 5-Yingyun diorite; 6'-Quartz alkali long syenite 7'-Quartz syenite; 8'-Quartz monzonite; 9'-Quartz diorite Quartz two long gabbro; 10'-Quartz diorite, quartz gabbro, quartz plagioclase; 6-alkali syenite; 7-Syenite; 8-Monnicite; 9-Two long Diorite, Erchang gabbro; 10-Diorite, gabbro, plagioclase
    图  4  石虎山岩体A/CNK-A/NK及SiO2-K2O图解(据Rickwood,1989
    Figure  4.  A/CNK-A/NK(a)and SiO2-K2O(b)diagram of the Shihushan granite(after Rickwood, 1989)

    石虎山岩体样品稀土元素含量如表 1所示。

    石虎山岩体岩石样品稀土元素总量为148.8×10-6~387.3×10-6,含量较高且差异较大。配分曲线呈右倾的“L”型(图 5a)展布。LREE/HREE=0.85~6.17,平均4.08,富集轻稀土元素;(La/Yb)N=3.95~13.63,平均9.06;(La/Sm)N=2.32~4.97,平均3.55,(Gd/Yb)N=1.00~1.90,平均1.53,轻稀土元素分馏较重稀土元素略明显;δEu=0.32~0.65,平均0.50,具有明显的Eu负异常,说明岩浆在演化过程中发生了较明显的斜长石分离结晶作用,δCe=0.89~0.94,平均0.93,说明岩石受后期低温蚀变作用较弱。

    图  5  石虎山岩体稀土元素配分样式图及微量元素原始地幔标准化蜘蛛网图
    (原始地幔数据引自Sun and McDonough, 1989
    Figure  5.  Chondrite-normalized REE patterns(a)and normalized diagram for trace elements(b)of Shihushan granite
    (Chondrite values are from Sun and McDonough, 1989)

    石虎山岩体岩石样品微量元素含量如表 1所示。

    石虎山岩体岩石样品微量元素比值蛛网图(图 5b)表现为K、Rb、Th明显富集的大隆起形式,Ce、Sm选择性富集,Ba的负异常,说明斜长石作为熔融残留相或结晶分离相存在,Nb、Hf、Zr等元素明显亏损,与板内花岗岩、火山弧花岗岩均有一些相似之处,形成于拉张环境。样品曲线形态趋势相近,它们应该具有相似的源区。

    本次工作用于锆石U-Pb年龄测试的样品采位置见图 1,样品分析数据见表 2

    表  2  碱长花岗岩(D0120)锆石LA-ICP-MS U-Th-Pb同位素分析结果
    Table  2.  LA-ICP-MS zircon U-Pb age data of alkali-feldspar granite (D0120)
    下载: 导出CSV 
    | 显示表格

    样品锆石颗粒为无色透明或浅黄色,半自形-自形,形态有长柱状、短柱状、粒状和不规则状,粒径大小为110~180 μm,颗粒长宽比为1~4。在阴极发光图像上(图 6),锆石结构比较复杂,一类锆石具核-边结构,核、边部具有环带结构(点27、28、29、33等),为岩浆成因锆石特征;另一类锆石核部具扇形结构或椭圆状结构,没有环带结构、呈暗色区或少量环带(点8、10、17、20),为继承性锆石特征。选择33颗锆石进行定年分析。33个分析点获得4组相对集中年龄(图 7),其中A组打在锆石核部,有10颗锆石数据较为集中,无振荡环带,且获得了较为一致的206Pb/238U年龄(839 ± 17) Ma(MSWD=2.3,n10);该年龄代表了石虎山岩体早期继承性年龄或捕获围岩年龄,与区域上新元古界澄江组年龄相当。B组有10颗锆石,数据也较为集中,获得了较为一致的206Pb/238U年龄(767±15) Ma(MSWD=2.9,n10),与区域上新元古界牛头山组年龄相当。C组有6颗锆石数据较为集中,获得了206Pb/238U年龄(705.5±9.4) Ma(MSWD=0.44,n6),与区域上新元古界南坨组年龄相当;年龄均代表了石虎山岩体捕获围岩年龄。D组有7颗锆石数据集中,锆石微区Th/U比值0.4~1.0,具有典型的振荡环带,为岩浆成因,获得206Pb/238U年龄(616±20) Ma(MSWD=2.1,n7),该年龄代表了石虎山岩体岩浆结晶年龄,也代表了岩体侵位地表时间,与区域上新元古界观音崖组、陡山坨组时代相当;综合年龄分析结果、岩石地化及岩相学特征,616~839 Ma年代记录,与Rodinia超大陆裂解事件有关。

    图  6  石虎山岩体代表性锆石阴极发光(CL)图像
    Figure  6.  The CL images of zircons from Shihushan granite
    图  7  碱长花岗岩(样品D0120)锆石U-Pb年龄谐和线图
    Figure  7.  Concordia plot of the zircon U-Pb age data for alkali-feldspar granite(Sample D0120)

    对锆石进行了33组Hf同位素测试,点位与UPb定年点位相同,Hf同位素分析数据表明,不同年龄锆石具有不同的εHf(t)值和两阶段模式年龄TDM2值(表 3)。其中表面年龄约839 Ma的锆石εHf(t)为-1.07~-6.32,TDM2为介于1733~2074 Ma;约767 Ma锆石的εHf(t)值介于-2.71~-7.70,TDM2介于1851~2131 Ma;约705.5 Ma锆石的εHf(t)值介于-6.0~-7.51,TDM2介于1977~2104 Ma;约616 Ma锆石的εHf(t)值介于-6.78~-8.96,TDM2介于1991~2117 Ma;样品锆石εHf(t)值均小于0,在t-t(Ma)和t-(176Hf/177Hf)图上,所有样品点均落在上地壳演化线之上(图 8),二阶段模式年龄变化范围为1.73~2.31 Ga;表明成岩物质主要来源于古元古代古老下地壳物质的部分熔融。

    表  3  碱长花岗岩(D0120)Hf同位素组成
    Table  3.  Analytical data of zircon Hf isotope composition of alkali-feldspar granite (D0120)
    下载: 导出CSV 
    | 显示表格
    图  8  石虎山花岗岩Hf同位素t-t(Ma)和t-(176Hf/177Hf)图解
    Figure  8.  t-t(Ma)和t-(176Hf/177Hf)diagram of the Hf isotope of Shihushan granite

    近年来对过铝质花岗岩的研究中,普遍接受的观点是它们的源区虽具有多样性,但变质沉积岩(如泥质岩、砂屑岩或杂砂岩等)是主要的源区(Chappell et al., 1992Harris et al., 1992)。石虎山岩体花岗岩具有较高的SiO(2 70.22%~75.09%)含量及低的TiO2(0.09% ~0.28%)含量,A/CNK=1.04~1.57,A/NK=1.08~1.61,表现出过铝质的特征,在(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(图 9a)上,所有样品均位于A型花岗岩区域内,结合石虎山花岗岩其他主量元素和微量元素特征,认为石虎山岩体花岗岩为铝质A型花岗岩。花岗岩类岩石Rb/YNb/Y(图 9b)、Al2O3/TiO2-CaO/Na2O(图 10a)、Rb/Sr-Rb/Ba(图 10b)源区判别图解及Sr-Yb图解(图 11a),结合锆石Hf同位素特征,表明石虎山岩体花岗岩原始岩浆形成于古元古代古老下地壳贫黏土源区的页岩60%左右的部分熔融,残留相为麻粒岩,主要组成矿物斜长石+角闪石(张旗,2006),其物源可能为滇中地区新近发现的古元古界易门群(刘军平等, 2018, 2020a, b, c)。

    图  9  石虎山岩体花岗岩类岩石(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(a,据Whalen et al., 1987)及Nb/Y-Rb/Y图解(b,据Jahn et al., 1999)
    Figure  9.  (Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO diagram (a, after Whalen et al., 1987) and Nb/Y-Rb/Y of the Shihushan granite (b, after Jahn et al., 1999)
    图  10  石虎山岩体花岗岩类岩石Al2O3/TiO2-CaO/Na2O(a)及Rb/Sr-Rb/Ba(b)源区判别图解(据Sylvester,1998)
    Figure  10.  Al2O3/TiO2-CaO/Na2O(a)and Rb/Sr-Rb/Ba(b)of the Shihushan granite(after Sylvester, 1998)

    过铝质花岗岩可形成于多种构造环境,如陆-陆碰撞过程中早期挤压环境下的地壳加厚环境(Harris et al., 1986),也可形成于碰撞高峰期后的岩石圈伸展环境(Kalsbeek et al., 2001)。石虎山岩体样品微量元素比值蛛网图(图 5b)表现为K、Rb、Th明显富集的大隆起形式,Ce、Sm选择性富集,Nb、Hf、Zr等元素明显亏损,与板内花岗岩较为相似,形成于拉张环境。在(Y+Nb)-Rb图解(Pearce,1996)上,样品点均落入板内花岗岩区(WPG)(图 11b);其主量、微量元素特征显示为高K2O+Na2O,且K2O/Na2O=1.64~7.81,平均3.45,高含铁指数,强烈亏损Eu、Ba、P、Ti,类似于A型花岗岩的地球化学特征(Collins et al., 1982;Whalen et al., 1987),且在(Zr+ Nb+Ce+Y)-(K2O+Na2O)/CaO图解(图 9a)上,所有样品均位于A型花岗岩区域内;结合岩体主要岩性为碱长花岗岩,见钠长石,表明其形成环境为伸展环境。李献华等(2012)认为750~830 Ma是Rodinia超级地幔柱与超大陆裂解的时期,其中795~830 Ma和745~780 Ma分别是Rodinia超大陆开始张裂和最终裂解两个阶段(Li et al., 2003)。王梦玺等(2012)认为Rodinia超大陆在扬子板块北缘的最终裂解时限为约635 Ma。综上所述,石虎山花岗岩岩体形成于拉张伸展构造背景,与华南新元古代裂谷盆地发育时限高度一致,是与Rodinia超大陆裂谷化-裂解事件有关的新元古代中晚期全球性大陆裂谷事件群的组成单元(刘军平等,2019)。

    图  11  石虎山岩体岩石Yb-Sr(a,据Zhang Qi,2006)及(Y+Rb)-Rb(b,据Pearce,1996)图解
    Ⅰ—高Sr低Yb花岗岩;Ⅱ—低Sr低Yb花岗岩;Ⅲ—高Sr高Yb花岗岩;Ⅳ—低Sr高Yb花岗岩;Ⅴ—极低Sr高Yb花岗岩VAG—火山弧花岗岩;Syn-COLG —同碰撞花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩
    Figure  11.  Yb-Sr diagram of the(a, after Zhang Qi, 2006)and(Y+Rb)-Rb of the Shihushan granite(b, after Pearce, 1996)
    Ⅰ-granite with high Sr and low Yb; Ⅱ-granite with low Sr and low Yb; Ⅲ-granite with high Sr and high Yb; Ⅳ-granite with low Sr and high Yb; Ⅴ-granite with overly low Sr and high Yb; VAG-Volcanic arc granites; Syn-COLG-syn-collision granites; WPG-within plate granites; ORG-ocean ridge granites

    前寒武纪地质体的形成、增生与再造历史对超大陆的重建具有重要意义。大量对新元古代岩浆岩成因及热源研究认为,扬子板块周缘经历了早期大洋板片俯冲作用(930~1160 Ma)和晚期大规模陆缘裂解(700~830 Ma),然而,俯冲-伸展的转换时间和机制仍然存在争论。扬子地块周缘地区新元古代构造-岩浆活动非常强烈,形成大量以中酸性火成岩为主的侵入岩浆岩群。这些构造-岩浆岩体的形成时代主要集中在740~830 Ma,主要侵位于中新元古界扬子型变质基底岩系中,并多被南华系或震旦系不整合覆盖(李献华等,2008裴先治等,2009鄢圣武等,2017)。王梦玺等(2006)对扬子北缘随枣盆地中周庵超镁铁质岩体(637±4) Ma进行了锆石Hf-O同位素分析,认为Rodinia超大陆在扬子板块北缘的最终裂解时限应该是约635 Ma;扬子北缘俯冲-伸展的转换时间可能在635~740 Ma的观点;结合区域相关研究资料,认为扬子西缘存在一个自约800 Ma持续至725 Ma的幕式双峰式岩浆岩带,澄江组底部玄武岩和苏雄组火山岩均为约800 Ma双峰式岩浆活动的产物,且双峰式岩浆岩带形成于大陆裂谷环境(崔晓庄等, 2013, 2015刘军平等,2019)。Li et al.(2010)研究发现侵入至盐边同德杂岩中的苦橄质岩墙来源于比同期周边洋中脊玄武岩源地幔高200℃的异常高温地幔,该地幔温度与现代地幔柱相当,从而认为同德苦橄质岩墙应该是800 Ma左右地幔柱岩浆作用的可靠证据。值得注意的是,云南东川下田坝黑云母二长花岗岩的成岩年龄为(769±4.4) Ma,属于典型的A型花岗岩,形成于板内伸展环境(程佳孝等,2014);这些证据均表明扬子西缘康滇裂谷应为与地幔柱活动有关的大陆裂谷;云南宾川地区响水花岗质岩体锆石U-Pb同位素测年显示,响水花岗质岩体侵位与冷凝时期为(761.9±4.1) Ma,与扬子地台周缘Rodinia超大陆裂解时期形成的花岗岩年龄峰值相对应;汪正江等(2011)报道了川西南峨边县牛郎坝A型花岗岩,该花岗岩具有高硅、低钙、贫镁、铝质的特征,其SHRIMP锆石U-Pb测年结果为(826±21.4) Ma,认为牛郎坝A型花岗岩是新元古代中期在Rodinia超大陆裂解背景下与地幔柱构造相关的壳幔相互作用的产物。

    大量资料表明扬子板块西缘存在约830 Ma、800 Ma、760 Ma、700 Ma及635 Ma构造热事件,这些构造热事件与Rodinia超大陆裂解的幕式地幔柱活动有关(Li et al., 2002a;江新胜,2012崔晓庄等,2015)。本文对石虎山岩体进行锆石U-Pb及Hf同位素分析,获得的岩浆结晶年龄为616 Ma,其锆石所有分析点Th/U比值均较高,在0.4~1.0,显示出岩浆锆石的高Th/U比值特征,由于这些分析点的年龄均是从具有岩浆结晶环带的锆石微区所获得,且其形成于拉张伸展环境,可以说明该期岩浆组合应是Rodinia超大陆裂解的响应,616 Ma可能是Rodinia超大陆在扬子板块西缘最终裂解时限,与王梦玺等(2012)认识一致;而(839 ± 17) Ma、(766 ± 15) Ma、(705.5 ± 9.4) Ma的构造热事件年龄组合可能是Rodinia超大陆裂解构造过程在扬子西缘的记录,该期岩浆组合可能与导致Rodinia超大陆裂解的幕式地幔柱活动有关(Li et al., 2002a;崔晓庄等,2015毕政家等,2016刘军平等,2019)。

    通过对扬子地块西缘后石虎山花岗岩的锆石U-Pb年代学和岩石地球化学研究,得到如下结论:

    (1)锆石LA-ICP-MS U-Pb法测得石虎山碱长花岗岩样品(D0120)的锆石206Pb/238U年龄加权平均值为(839±17) Ma、(767±15) Ma、(705.5±9.4) Ma及(616±20) Ma四组年龄值;其中616 Ma代表了该花岗岩岩体的侵位时代;(839±17) Ma、(766± 15) Ma、(705.5±9.4) Ma为继承性年龄或捕获年龄。石虎山花岗岩岩浆形成于板内伸展环境,说明该期岩浆应是Rodinia超大陆裂解构造过程的响应,616 Ma可能是Rodinia超大陆在扬子板块西缘最终裂解时限;而(839 ± 17) Ma、(766 ± 15) Ma、(705.5 ± 9.4) Ma的构造热事件年龄组合可能是Rodinia超大陆裂解构造过程在扬子西缘的记录,该期岩浆组合可能与导致Rodinia超大陆裂解的幕式地幔柱活动有关。

    (2)石虎山花岗岩的岩石地球化学化学特征及Hf同位素反映出该岩体具有板内-裂谷型的地球化学特征;其原始岩浆为古元古代下地壳页岩60%部分熔融的同源岩浆产物,其物源可能为古元古界易门群。

  • 期刊类型引用(2)

    1. 焦守涛,张旗,汤军,原杰,王振,陈万峰,蔡宏明,王跃. 量子科学与大数据科学:推动地质学跨越式发展的两大利器. 地学前缘. 2023(03): 294-307 . 百度学术
    2. XU Xiangzhen,YANG Jingsui,XIONG Fahui,GUO Guolin. Petrology and Geochemistry of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet, China. Acta Geologica Sinica(English Edition). 2019(02): 344-361 . 必应学术

    其他类型引用(7)

计量
  • 文章访问数:  2609
  • HTML全文浏览量:  63
  • PDF下载量:  2715
  • 被引次数: 9
出版历程
  • 刊出日期:  2009-04-24

目录

/

返回文章
返回
x 关闭 永久关闭