• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

青藏高原大陆动力学研究若干进展

许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣

许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 1-42.
引用本文: 许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 1-42.
XU Zhi-qin, YANG Jing-sui, HOU Zeng-qian, ZHANG Ze-ming, ZENG ling-sen, LI Hai-bing, ZHANG Jian-xin, LI Zhong-hai, MAXu-xuan. The progress in the study of continental dynamics of the Tibetan Plateau[J]. GEOLOGY IN CHINA, 2016, 43(1): 1-42.
Citation: XU Zhi-qin, YANG Jing-sui, HOU Zeng-qian, ZHANG Ze-ming, ZENG ling-sen, LI Hai-bing, ZHANG Jian-xin, LI Zhong-hai, MAXu-xuan. The progress in the study of continental dynamics of the Tibetan Plateau[J]. GEOLOGY IN CHINA, 2016, 43(1): 1-42.

青藏高原大陆动力学研究若干进展

基金项目: 

国家自然科学基金项目(40921001,41430212,41202153,41472198)

中国地质调查局项目(1212010818094,12120115026861)和国土资源部行业专项基金项目(20511022,201211093)联合资助。

详细信息
    作者简介:

    许志琴,女,1941年生,研究员,中科院院士,长期从事青藏高原大陆动力学研究;E-mail:xzq@ccsd.cn。

  • 中图分类号: P541

The progress in the study of continental dynamics of the Tibetan Plateau

Funds: 

Supported by National Natural Science Foundation of China (No. 40921001, 41430212, 41202153, 41472198), Programs from China Geological Survey (No. 1212010818094, 12120115026861) and Industrial Foundation of Ministry of Land and Resouces (No. 20511022, 201211093).

undefined

  • 摘要: 近10年来,"大陆构造与动力学实验室"在青藏高原大陆动力学研究,尤其在特提斯演化和青藏高原生长方面取得若干进展,包括(1)"青藏高原——造山的高原"理念的提出;(2)青藏高原特提斯体制和构造格架的再造;(3)新特提斯蛇绿岩中原位金刚石和深地幔矿物群的重大发现;(4)新特提斯洋盆俯冲新机制的揭示;(5)印度/亚洲碰撞的早期岩浆和喜马拉雅折返中的作用;(6)喜马拉雅三维碰撞造山机制和折返全过程的初步建立;(7)青藏高原东南缘物质逃逸的新机制——"弯曲与地壳解耦"的提出;(8)青藏高原俯冲型、碰撞型及陆内型片麻岩穹窿;(9)青藏高原东缘汶川强震的构造背景和强震机制;(10)青藏高原碰撞造山成矿模式;(11)印度/亚洲碰撞过程的数值模拟。综述和集成上述成果是为了与同行们交流磋商,进一步共同发展青藏高原大陆动力学理论,向国际地学前沿的冲刺。
    Abstract: Based on the previously research, the research group of Key Laboratory of Continental Tectonics and Dynamics has achieved lots of great progress in the study of the continental dynamics of the Tibetan Plateau, especially in the evolution of Tethys and the growth of the Tibetan Plateau during the past decade. These achievements can be summarized as follows:(1) The Hypothesis on Tibetan Plateau as a orogenic plateau was proposed; (2) the reconstruction of the tectonic framework and the Tibetan-Tethys system; (3) the discovery of in situ diamond and deep mantle-derived mineral group in the ophiolites distributed along the Neotethyan suture zone; (4) the understanding of the subduction mechanism of the Neotethy oceanic basins; (5) the role of magmatism formed in the early stage of the Indo-Asian collision for the exhumation of Himalaya; (6) the establishment of the 3D models of the collisional orogeny and exhumation of the Himalaya; (7) the new proposal on the extrusion of the SE Tibetan Plateau:‘crustal bending and decouple’; (8) the subduction-related, collision-related and continental gneiss domes with Tibetan Plateau; (9) the tectonic setting and the Wenchuan Earthquake mechanism on the eastern margin of the Tibetan Plateau; (10) Numerical modeling of the Indo-Asian collisional process. This paper aims to communicate with and stimulate interest among global geologists to make further development in the continental dynamics of the Tibetan Plateau.
  • 蛇绿岩是分布在板块缝合带的一套特殊类型的镁铁质-超镁铁质岩石组合,被认为是仰冲就位于陆地的大洋岩石圈板块残片,是板块汇聚最重要的标志之一。由于蛇绿岩的岩石单元可以和现代大洋岩石圈对比,记录了大洋的形成、扩张、消减到碰撞等一系列过程,因此蛇绿岩被认为蕴含了地球内部动力学和板块运动过程的丰富信息,是研究大洋岩石圈演化的最佳载体(Dilek and Furnes, 2011Rampone and Hofmann, 2012)。

    西藏雅鲁藏布构造带是印度板块和欧亚板块的分界线。狭窄的缝合带不连续分布有一系列蛇绿岩体,西段以大规模出露新鲜地幔橄榄岩和非常少的镁铁质岩石为特征,中段以普遍蛇纹石化的地幔橄榄岩伴生相对完整的镁铁质岩石单元为特征,东段以较少出露镁铁质岩石且地幔橄榄岩中赋存大规模铬铁矿床为特征。然而,雅鲁藏布构造带蛇绿岩体的形成环境目前仍然存在较大的争议(Bao et al., 2013)。一些学者认为雅鲁藏布蛇绿岩形于洋中脊慢速扩张中心(Nicolas et al., 1981Allegre et al., 1984Girardeau and Mercier, 1988吴福元等,2014Liu et al., 2014Zhang et al., 2016Zhang et al., 2016, 2017Liu et al., 2016)。然而,很多学者认为雅鲁藏布蛇绿岩形成于俯冲带环境(张旗等2003Dubois-Cote et al., 2005钟立峰等,2006Bedard et al., 2009Hebert et al., 2012Dai et al., 2012, 2013李文霞等,2012)。本研究展示新的地质和地球化学证据进一步探讨雅鲁藏布构造带中段日喀则蛇绿岩的形成构造环境。

    青藏高原由不同的地体拼接而成,由南向北包括拉萨地体、羌唐地体、松潘—甘孜地体、昆仑—祁连地体(Yin and Harrison, 2000)。雅鲁藏布构造带位于拉萨地体和印度大陆之间,一系列断续出露的蛇绿岩体东西向展布超过2500 km(图 1a)(Gansser, 1980)。前人对这些蛇绿岩体中镁铁质岩石开展了大量高精度U-Pb锆石年代学工作,定年结果表明这些镁铁质岩石形成时代在118~149 Ma范围内(图 1a)。根据地理分布和岩体特征,雅鲁藏布蛇绿岩带从西向东可以分为3段:西段、中段和东段(图 1a)。

    图  1  雅鲁藏布构造带及蛇绿岩简图
    a—雅鲁藏布蛇绿岩分布及镁铁质岩石锆石U-Pb年龄(修改自An et al., 2014吴福元等, 2014);b—日喀则蛇绿岩分布及这次研究的采样点位置(修改自王希斌等,1987
    Figure  1.  Simplified geological map of Yarlung -Zangbo suture zone and ophiolitic massifs
    a-Distribution of the Yarlung Zangbo ophiolites and their zircon U-Pb ages from mafic rocks (modified from An et al., 2014; Wu Fuyuan et al., 2014); b-Distribution of the Xigaze ophiolitic massifs and sampling locations of this study (modified from Wang Xibin et al., 1987)

    雅鲁藏布西段蛇绿岩主要以东波、普兰、休古嘎布、仲巴、萨嘎、桑桑等岩体为代表,以出露大量地幔橄榄岩及少量镁铁质岩石为特征(徐德明等,2007Bedard et al., 2009刘钊等,2011;Bezard et al., 熊发挥等,2011刘飞等,2013;2011; Liu et al., 2014; Liu et al., 2015)。东波、普兰、休古嘎布、仲巴岩体的地幔橄榄岩主要以新鲜的方辉橄榄岩为主,含少量二辉橄榄岩和纯橄岩,局部出露小规模豆荚状铬铁矿化。而萨嘎和桑桑岩体的地幔橄榄岩强烈蛇纹石化(Bedard et al., 2009)。这些岩体的地幔橄榄岩中普遍被不同规模的辉长岩和辉绿岩脉侵入,局部出露少量玄武岩。

    雅鲁藏布中段蛇绿岩分布于昂仁到仁布地区,从西向东包括昂仁、吉定、路曲、下鲁、冲堆、群让、得几、白朗、大竹曲和仁布等岩体,统称为日喀则蛇绿岩(图 1a)。日喀则蛇绿岩发育最为典型,研究程度也最高(吴福元等,2014)。日喀则蛇绿岩体以广泛出露地幔橄榄岩和相对完整的镁铁质岩石层序为特征(Nicolas et al., 1981; 王希斌等,1987)。蛇绿岩层序从南向北,大致以地幔橄榄岩-辉长岩-辉绿岩-玄武岩-硅质岩的岩性变化。新鲜的地幔橄榄岩主要分布在路曲和大竹曲岩体,主要由方辉橄榄岩和少量二辉橄榄岩和纯橄岩组成,部分橄榄岩中含豆荚状铬铁矿化,而其他岩体的地幔橄榄岩多已不同程度的蛇纹石化。日喀则蛇绿岩的吉定、白朗、大竹曲等岩体发育洋壳,主要有层状辉长岩、块状辉长岩、辉绿岩席、枕状熔岩组成。而昂仁、路曲、下鲁、冲堆、群让、得几、仁布等岩体则缺失辉长岩,仅仅包含相对较薄的辉绿岩席和枕状熔岩。在壳幔过渡带可见一定规模的辉绿岩和辉长岩脉侵入到下覆的地幔橄榄岩中(陈根文等, 2003, 2015牛晓露等,2006李文霞等,2012Liu et al., 2016Zhang et al., 2016Zhang et al., 2017)。

    雅鲁藏布东段蛇绿岩主要包括泽当、罗布莎等岩体,以大量地幔橄榄岩和发育纯橄岩和铬铁矿床为特征。泽当岩体由地幔橄榄岩及一套镁铁质杂岩组成,但是与日喀则蛇绿岩不同的是,泽当岩体的地幔橄榄岩部分位于北侧,南侧出现少量辉绿岩及硅质岩。罗布莎岩体主要由地幔橄榄岩、辉长岩-辉绿岩、玄武岩组成。辉绿岩和辉长岩规模延伸较大,位于地幔橄榄岩体的北侧,玄武岩不发育,少量玄武岩位于地幔橄榄岩体的北侧(韦栋梁等,2004钟立峰等,2006Zhang et al., 2016;Xiong et al., 2016;刘良志等,2018)。

    路曲岩体位于日喀则市区向南10 km左右(图 1b)。岩体北侧与古近—新近纪日喀则组磨拉石建造和第四纪堆积物呈构造接触,岩体南侧与厚层的三叠纪嘎学群复理石建造呈断层接触。路曲岩体最底部为蛇绿混杂岩,主要为强烈蛇纹石化的地幔橄榄岩和少量异剥钙榴岩脉组成(图 2a)。新鲜的橄榄岩主要位于地幔橄榄岩段中部,岩性为方辉橄榄岩和少量二辉橄榄岩。壳幔过渡带橄榄岩强烈蛇纹石化,其中被少量不同规模的辉绿岩脉侵入(图 2b)。路曲岩体镁铁质岩石主要为辉绿岩和少量枕状玄武岩(图 2f),缺失辉长岩。辉绿岩位于地幔橄榄岩和玄武岩之间,与上覆玄武岩过渡接触,与下覆地幔橄榄岩呈侵入接触关系。玄武岩呈枕状和气孔-杏仁状构造,主要位于岩体北侧,与顶部硅质岩整合接触。

    图  2  日喀则蛇绿岩野外照片
    a—路曲岩体蛇绿混杂岩;b—路曲岩体辉绿岩脉侵入地幔橄榄岩(蛇纹岩);c—大竹曲岩体层状辉长岩;d—大竹曲岩体块状辉长岩和辉绿岩;e—大竹曲岩体含斜长石斑晶的辉绿岩;f—路曲岩体枕状玄武岩
    Figure  2.  Field photos of the Xigaze ophiolite
    a-Ophiolitic mélange of the Luqu massif; b-Diabase dike that intruded into mantle peridotite (serpentinite) of the Luqu massif; c-Layered gabbro of the Dazhuqu massif; d-Massive gabbro and diabase of the Dazhuqu massif; e-Plagioclase phenocrysts in diabase of the Dazhuqu massif; f-Pillow basalts of the Luqu massif

    大竹曲岩体位于日喀则蛇绿岩东部,紧邻仁布岩体,距日喀则市区80 km左右(图 1b)。岩体北侧为古近—新近纪日喀则组,南侧为侏罗—白垩系深海沉积物,为断层接触关系。大竹曲岩体的地幔橄榄岩部分主要由方辉橄榄岩和和少量纯橄岩组成。壳幔过渡带的地幔橄榄岩强烈蛇纹石化且被辉绿岩和辉长岩脉侵入。而洋壳序列底部为镁铁质-超镁铁质堆积杂岩,包括橄长岩、辉石岩、层状辉长岩、块状辉长岩,但是难以观察到这些岩石的界限和接触关系(王希斌等,1987)。层状辉长岩具典型的暗示辉长岩和浅色辉长岩交替韵律层结构(图 2c)。暗色辉长岩一般含有60%~70%单斜辉石和30%~40%斜长石,而浅色辉长岩含50%~60%斜长石和40%~50%单斜辉石。斜长石多呈自形—半自形晶,中-粗粒结构,多已蚀变,单斜辉石多呈半自形粒状,并与斜长石组成典型的辉长结构(图 3a)。

    图  3  日喀则蛇绿岩镁铁质岩石显微照片
    a—辉长岩中半自形单斜辉石和自形-半自形斜长石构成辉长结构;b—辉长岩中粗粒单斜辉石中包裹自形—半自形的斜长石晶体;c—辉绿岩中细粒辉石和自形斜长石组成典型的辉绿结构;d—辉绿岩中自形斜长石斑晶;e—玄武岩中自形斜长石和他形单斜辉石;f—玄武岩中自形斜长石和他形单斜辉石斑晶
    Figure  3.  Petrographic microphotos of the mafic rocks from the Xigaze ophiolite
    a-Gabbro texture consisting of subhedral clinopyroxene and subhedral to euhedral plagioclase in gabbro; b-Subhedral-euhedral plagioclase enclosed by coarse-grain clinopyroxene in gabbro; c-Diabasic texture consisting of fine grained clinopyroxene and euhedral plagioclase in diabase; d-Euhedral plagioclase phenocrysts in diabase; e-Fine grained plagioclase and clinopyroxene in basalt; f-Euhedral plagioclase and anhedral clinopyroxene phenocrysts in basalt

    常见粗大的单斜辉石晶体包裹自形—半自形的斜长石晶体(图 3b)。块状辉长岩常显示块状构造,中粒结构,岩石常被辉绿岩顺层侵入切割(图 2d)。块状辉长岩主要组成为半自形的单斜辉石和已蚀变的自形-半自形的斜长石。大竹曲辉绿岩多为顺层侵入的辉绿岩席,且这些辉绿岩席也普遍侵入到下部的地幔橄榄岩中。部分侵入地幔橄榄岩的辉绿岩发生了异剥钙榴岩化。这些辉绿岩一般粒度较细,呈典型的辉绿结构(图 3c),辉绿岩中常出现自形—半自形的斜长石斑晶(图 2e图 3d)。在辉绿岩席的上部为一定厚度的玄武岩,这些玄武质喷出岩粒度变化较大(图 3e~f),部分玄武岩出现斑晶,以自形—半自形斜长石为主,单斜辉石较少且自形程度较低(图 3f)。

    全岩主量元素分析在澳实分析检测(广州)有限公司完成,分析仪器为荷兰帕纳科公司生产的X荧光光谱仪,型号为PANalytical MagXFast。通过XRF射线光谱仪对制成四硼酸锂玻璃进行分析,分析精度优于5%。分析方法为:首先将已扣除烧失量的准确称量的粉末样品和Li2B4O7-LiBO2助熔剂,混合均匀,转移至铂金坩埚中,在1200℃下使样品完全熔融,再将熔体倒入铂金模具,冷却后制成玻璃再上机测试。全岩氧化亚铁(FeO)含量分析在澳实分析检测(广州)有限公司完成,根据强酸消解、重铬酸钾滴定测定样品中Fe2+含量。

    全岩微量元素测试分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,测试仪器为Perkin-Elmer Sciex ELAN DRC-e电感耦合等离子体质谱仪(ICP-MS),分析精度优于10%。准确称取50 mg粉末(200目)样品放入Teflon杯中,加入1 mL亚沸HF,并在电热板上蒸干以去除大部分SiO2,再加入1 mL亚沸HF和0.5 mL亚沸HNO3,然后用不锈钢钢套密封后放入烘箱中,温度185℃加热36 h。冷却至室温后在电热板上150℃蒸干去除HF,然后再加入1 mL亚沸HNO3再次蒸干,并重复一次全部除去HF。最后加入2 mL HNO3、5 mL去离子水和500 ng Rh内标溶液,重新放入不锈钢钢套密封放入烘箱,温度140℃加热8 h,冷却至室温后吸取其中400 μL溶液移到10 mL离心管,加入去离子水定容至10 mL,最后上机测试。

    Pb同位素分析在中国地质科学院地质研究所国土资源部同位素地质研究重点实验室完成。化学流程如下:吸取样品溶液0.2 mL转移至AG1-X8阴离子交换树脂,并用1 mol/L HBr溶液淋洗5次,每次1 mL,然后用2mol/L HCl溶液0.5 mL淋洗1次,然后再用6 mol/L HCl溶液1 mL淋洗1次并接Pb,最后继续用6 mol/L HCl溶液0.5 mL淋洗1次并接Pb。Pb同位素比值用多接收器等离子体质谱法(MC-ICPMS)测定,所用仪器为英国Nu Plasma HR,仪器的质量分馏以Tl同位素外标校正。样品中Tl的加入量约为铅含量的1/2。国际标样NBS 981长期测定的统计结果:208Pb/206Pb =2.16736 ± 0.00066 (± 2σ),207Pb/206Pb =0.91488 ± 0.00028 (± 2σ),206Pb/204Pb=16.9386 ± 0.0131 (± 2σ),207Pb/204Pb=15.4968±0.0107 (±2σ),208Pb/204Pb= 36.7119±0.0331 (± 2σ)。详细的化学分离方法和质谱测定方法见何学贤等(2007)

    日喀则蛇绿岩路曲和大竹曲岩石样品主微量元素分析结果见表 1。路曲和大竹曲岩体的玄武岩、辉绿岩、辉长岩均有一定程度的蚀变,烧失量分别为2.28%~3.20%、2.32%~3.42 %、3.06%~3.24%。路曲镁铁质岩石的SiO2含量在49.38%~50.62%,Na2O含量为2.73% ~4.35%,K2O含量为0.25% ~1.14%。TAS投图显示路曲样品均落在玄武岩/辉长岩区域(图 4)。大竹曲岩体镁铁质岩石的SiO2含量为48.89%~51.17%,Na2O含量为2.38%~4.71%,K2O含量为0.07%~1.32 %。TAS投图显示大竹曲样品也全部落在玄武岩/辉长岩范围之内(图 4)。

    表  1  日喀则蛇绿岩路曲和大竹曲岩体镁铁质岩石全岩主量元素(%)和微量元素(10-6)成分
    Table  1.  The compositions of whole-rock major (%) and trace (10-6) elements of the mafic rocks from the Luqu and Dazhuqu massifs of the Xigaze ophiolite
    下载: 导出CSV 
    | 显示表格
    图  4  日喀则蛇绿岩路曲和大竹曲镁铁质岩石全岩TAS图解
    Figure  4.  Diagram of TAS for whole rock composition of the mafic rocks of the Luqu and Dazhuqu massifs from the Xigaze ophiolite

    路曲和大竹曲岩石样品的球粒陨石标准化REE配分模式整体上显示LREE轻微亏损和HREE相对平坦,其特征与N-MORB非常相似(图 5a5c)。在球粒陨石标准化REE配分模式中,路曲所有样品均无明显的Eu异常(图 5a),大竹曲岩体除了辉长岩样品显示轻微Eu正异常外,玄武岩和辉绿岩样品均没有明显的Eu异常(图 5c)。由于Rb、Ba、Cs、U、K、Sr、P等元素容易受到后期海水和热液的影响发生迁移,而高场强元素Nb、Ta、Zr、Hf、Ti和REE元素在后期热液活动过程中相对不容易发生迁移,它们主要受地幔源区和岩浆演化过程控制(Pearce et al., 2014)。因此,本次研究不选取这些容易受后期影响的元素进行标准化作图。在NMORB标准化微量元素配分模式中,所有路曲样品具有相似的微量元素特征且均显示弱Nb-Ta负异常,而Th、Zr、Hf、Ti、REE等元素特征与N-MORB一致(图 5b)。在大竹曲岩体中,大部分样品的微量元素特征保持一致,均显示弱Nb-Ta负异常(图 5d)。大竹曲玄武岩和辉绿岩的配分模式总体上相似于N-MORB,辉长岩相对于N-MORB显示略低的微量元素含量,但配分图形状接近于N-MORB。

    图  5  日喀则蛇绿岩路曲和大竹曲岩石球粒陨石标准化REE配分模式(a,c)及N-MORB标准化微量元素配分模式(b,d)
    (球粒陨石和N-MORB标准化值据Sun and McDonough, 1989; 用于对比的OIB、E-MORB、N-MORB数值据Sun and McDonough, 1989
    Figure  5.  Chlondrite-normalized REE patterns (a, c) and N-MORB normalized trace elements patterns (b, d)of Xigaze ophiolite
    Normalized values, and N-MORB, OIB, E-MORB values after Sun and McDonough (1989)

    路曲和大竹曲样品全岩Pb同位素比值结果见表 2。路曲和大竹曲岩体样品的Pb同位素比值变化范围相对较小,其206Pb/204Pb的变化范围为17.54~18.05,207Pb/204Pb变化范围为15.42~15.56,208Pb/204Pb变化范围为37.67~38.17。根据样品中Th、U、Pb含量对Pb同位素比值的时间校正计算(t=140 Ma),校正结果显示(206Pb/204Pb)t的变化范围为17.46~17.94,(207Pb/204Pb)t变化范围为15.42~15.56,(208Pb/204Pb)t变化范围为37.35~38.13。在(208Pb/204Pb)t-(206Pb/204Pb)t和(207Pb/204Pb)t-(206Pb/204Pb)t图解上(图 6a6b),路曲和大竹曲样品Pb同位素比值接近于雅鲁藏布蛇绿岩带其他岩体镁铁质岩石,且完全落入印度洋MORB区域。这些特征表明这些镁铁质岩石的地幔源区具有印度洋MORB型同位素组成特征。而雅鲁藏布蛇绿岩镁铁质岩石的Pb同位素比值则明显区别于现代大洋沉积物(Ben Othman et al., 1989)。

    表  2  日喀则蛇绿岩路曲和大竹曲镁铁质岩石Pb同位素成分
    Table  2.  The compositions of Pb isotope of mafic rocks from the Luqu and Dazhuqu massifs of the Xigaze ophiolite
    下载: 导出CSV 
    | 显示表格
    图  6  全岩Pb同位素比值图解
    a-(208Pb/204Pb)t-(206Pb/204Pb)t; b-(207Pb/204Pb)t-(206Pb/204Pb)t;矫正年龄为t=140 Ma。太平洋和北大西洋MORB和印度洋MORB范围据Mahoney et al.1998Zhang et al. 2005。现代大洋沉积物(GLOSS, 据Ben Othman et al., 1989, 北半球参考线(NHRL)据Hart, 1984。用于对比的雅鲁藏布蛇绿岩的Pb同位素数据源自文献(牛晓露等, 2006; 钟立峰等, 2006; 徐德明等, 2007; 刘飞等, 2013; Liu et al., 2015
    Figure  6.  Plots of Pb isotope ratios
    a-(208Pb/204Pb)tversus (206Pb/204Pb)t; b-(207Pb/204Pb)t versus (206Pb/204Pb)t at 140 Ma. Fields of Pacific and North Atlantic MORB, and India MORB after Mahoney et al. (1998) and Zhang et al. (2005). Field of GLOSS after Ben Othman et al., 1898 and NHRL after Hart (1984). The data of Pb isotope of the Yarlung-Zangbo ophiolite after Niu et al. (2006), Zhong et al. (2006), Xu et al. (2007), Liu et al.(2013, 2015)

    由于单斜辉石相对富集HREE,因此单斜辉石分离结晶将会导致残余岩浆亏损HREE而相对富集LREE(Hauri et al., 1994)。然而,路曲和大竹曲岩石样品的球粒陨石标准化REE配分模式均显示轻微LREE亏损(图 5a5c),说明岩浆就位之前在深部没有经历重要的单斜辉石分离结晶。此外,路曲和大竹曲镁铁质岩石的球粒陨石标准化REE配分模式没有明显Eu负异常,而Eu相容于斜长石(Aigner-Torres et al., 2007),这说明形成这些镁铁质岩石的岩浆在深部没有经历重要的斜长石分离结晶(5a,5c)。这些特征说明经地幔部分熔融产生而聚集的岩浆在上升过程中没有经历明显的结晶分异作用,因此它们的微量元素能够反演地幔源区性质和部分熔融程度。

    路曲和大竹曲岩体的玄武岩、辉绿岩、辉长岩均显示相似的球粒陨石标准化REE配分模式和NMORB标准化微量元素配分模式(图 5),说明形成这些岩石的岩浆来自同一地幔源区。此外,这些岩石的REE与N-MORB的REE配分模式非常接近(图 5a5c),且N-MORB标准化微量元素配分模式也非常平坦且接近于1(图 5b5d),表明形成这些岩石的岩浆来自亏损地幔源区。路曲和大竹曲岩石样品的Pb同位素均落在印度洋MORB范围之内(图 6),一方面说明这些岩石起源于亏损地幔,另一方面暗示新特提斯地幔源区与印度洋地幔域有相似的地球化学特征(Mahoney et al., 1998Xu and Castillo, 2004Zhang et al., 2005牛晓露等,2006)。尖晶石二辉橄榄岩部分熔融过程中熔融残留物和熔体之间不会发生中稀土(如Sm)和重稀土(如Yb)分异,但轻稀土(如La)和中稀土(如Sm)之间会随着地幔部分熔融程度的增高而发生明显分异(Aldanmaz et al., 2000)。据图 7所示,大竹曲和路曲岩体样品均落在尖晶石二辉橄榄岩熔融趋势线上,其部分熔融程度约在10%。

    图  7  全岩La/Sm-Sm/Yb图解(据Aldanmaz et al., 2000
    PM、N-MORB、E-MORB数据源自Sun and McDonough (1989)
    Figure  7.  Diagram of La/Sm versus Sm/Yb (after Aldanmaz et al., 2000)
    PM, N-MORB, E-MORB data after Sun and McDonough (1989)

    作为雅鲁藏布蛇绿岩带上重要的组成部分,日喀则蛇绿岩的形成环境一直是众多学者关注的焦点(吴福元等,2014)。从野外地质关系来看,路曲岩体洋壳部分缺失堆晶岩,表明路曲岩体洋壳形成过程中可能不存在岩浆房。而路曲辉绿岩大多以岩席的形式顺层侵入,甚至少量辉绿岩脉侵入到下部的地幔橄榄岩中(图 2b)。这些特征与慢速扩张脊特征一致(Purdy and Detrick, 1986)。大竹曲岩体的辉绿岩和玄武岩野外特征与路曲岩体类似,但是发育规模较小的层状辉长岩和块状辉长岩(图 2c2d),表明大竹曲岩体洋壳形成过程中存在一定规模的岩浆房。层状辉长岩显示浅色辉长岩层和暗色辉长岩层的韵律交替结构(图 2c),表明岩浆房发生一定程度的分异。辉长岩中常见粗粒单斜辉石包裹自形斜长石晶体(图 3b),说明斜长石结晶明显早于单斜辉石。此外,大竹曲辉绿岩和玄武岩中常出现自形—半自形的斜长石斑晶(图 2d2f),这些特征都说明斜长石较早结晶并被上升岩浆捕获到浅部。实验岩石学研究表明玄武质岩浆中水增加将降低斜长石结晶温度,从而推迟斜长石结晶时间,然而在无水环境下,斜长石则较早从玄武质岩浆中结晶(Sisson and Grove, 1993; Botcharnikov et al., 2008)。因此,可以推断形成大竹曲镁铁质岩石的岩浆是一种起源于大洋中脊扩张中心的无水玄武质岩浆。

    传统上判断蛇绿岩形成于俯冲带(SSZ)环境主要是根据蛇绿岩石序列中镁铁质岩石地球化学特征而没有其他直接地质证据(Miyashiro et al., 1973; Pearce et al., 1984, 2014)。然而,从Zr-Zr/Y图解来看(图 8a),日喀则蛇绿岩路曲和大竹曲岩体大部分岩石覆盖于洋中脊玄武岩范围,明显区别于弧前玄武岩,但是不能与弧后盆地玄武岩区别。在(Nb/Yb)N-(Th/Yb)N相关图中(图 8b),路曲和大竹曲岩体岩石分布范围和趋势与洋中脊玄武岩一致,而弧后盆地玄武岩则显示明显更高(Nb/Yb)N和(Th/Yb)N比值。在(Nb/Th)N-(Th/La)N相关图中(图 8c),路曲和大竹曲样品明显区别于弧前和弧后盆地玄武岩,完全落入洋中脊玄武岩区域。这些特征再次表明路曲和大竹曲镁铁质岩体岩石形成于洋中脊环境。此外,路曲和大竹曲岩体岩石的球粒陨石标准化REE配分模式与N-MORB配分模式完全一致(图 5a5c),也暗示这些岩石形成于洋中脊环境。在NMORB标准化微量元素配分模式图中(图 5b5d),路曲和大竹曲镁铁质岩石微量元素特征除了相对于Th和LREE显示轻微Nb-Ta负异常,而Th、LREE、Zr、Hf、Ti总体上与N-MORB保持一致。

    图  8  微量元素构造环境判别图
    a-Zr/Y-Zr(据Pearce, 2000);b-Nb/Yb-Th/Yb(据Pearce, 2008);c-Nb/Th-Th/La(据Godard et al., 2006);弧后盆地、洋中脊扩张中心、弧前玄武岩数据源自于PETDB数据库(http://www.petdb.org
    Figure  8.  Discriminant diagrams of tectonic setting
    a-Zr/Y versus Zr (after Pearce, 2000), b-Nb/Yb versus Th/Yb(after Pearce, 2008); c-Nb/Th versus Th/La(after Godard et al., 2006). The data of back-arc basalt, mid-oceanic ridge basalt, fore-arc basalt after PETDB database

    虽然路曲和大竹曲样品普遍存在轻微Nb-Ta负异常,而Nb-Ta负异常也被众多学者认为是SSZ成因的主要印记(Hebert et al., 2012李文霞等,2012)。然而,值得注意的是路曲和大竹曲岩石的Pb同位素结果均落入印度洋MORB地幔域,而这些岩石的Nb-Ta负异常可能与印度洋MORB地幔域的地球化学不均一性有关(Moores et al., 2000)。先前的研究表明,青藏高原晚震旦世以来的蛇绿岩镁铁质岩石的同位素特征与现代印度洋MORB的同位素地球化学特征一致,明显区别于太平洋和北大西洋洋中脊玄武岩,表明现代印度洋MORB地幔域继承了特提斯洋地幔原来的空间位置和地球化学特征(Mahoney et al., 1998; Xu and Castillo, 2004; Zhang et al., 2005)。然而,在地质演化期间,特提斯洋岩石圈地幔域曾发生过大陆地壳、古老俯冲带物质混入(Castillo, 1988Klein et al., 1988Le Roex et al., 1989Storey et al., 1989Rehkamper and Hofmann, 1997)。由于在俯冲过程中Th容易迁移而Nb-Ta相对不易迁移,因此大多数与岛弧有关的岩石显示较高的Th/Nb和Th/Ta比值。此外,大陆地壳也显示较高的Th/Nb比值(Pearce et al., 2008),因此若地幔源区交代古老俯冲带物质或大陆地壳物质,则交代地幔形成的岩浆可能显示Nb-Ta负异常。而路曲和大竹曲镁铁质岩石的Pb同位素结果均落入印度洋MORB范围之内,暗示这些镁铁质岩石的地幔源区可能属于与现代印度洋MORB地幔域相似的异常地幔。因此,路曲和大竹曲镁铁质岩石中轻微的Nb-Ta负异常可能是继承而来。

    (1)日喀则蛇绿岩路曲和大竹曲岩体镁铁质岩石的母岩浆起源亏损地幔源区,其地幔源区部分熔融程度在10%左右。这些镁铁质岩石的地幔源区的地球化学特征与印度洋MORB地幔域相似。

    (2)路曲和大竹曲岩体镁铁质岩石的野外地质特征、岩相学特征和地球化学特征均支持这些岩石起源于大洋中脊扩张中心。微量元素比值也接近洋中脊玄武岩且明显区别于弧后盆地玄武岩和弧前玄武岩。N-MORB标准化微量元素配分模式显示弱Nb-Ta负异常可能是由于其地幔源区交代了古老俯冲物质。

  • 图  1   青藏高原构造构架图(据许志琴[4]修改)

    QL—祁连地体;EKL—东昆仑地体;ALT—阿尔金地体;NSG—北松潘—甘孜地体;SSG—南松潘—甘孜地体;NQT—北羌塘地体;SQT—南羌塘地体;WKL—西昆仑地体;TSH—甜水海地体;LS—拉萨地体;TC—腾冲地体;BS—保山地体;SM—思茅地体;IDC—印度支那地体;HM—喜马拉雅地体;AFH—阿富汗地体;GDS—冈底斯地体;ANMQS—阿尼马卿缝合带;JSJS—金沙江缝合带;LSS—龙木错—双湖缝合带;BG—NJ—班公湖—怒江缝合带;IYS—印度—雅鲁藏布江缝合带;ALTF—阿尔金断裂;XSHF—鲜水河断裂;ALS—RRF —哀牢山—红河断裂;LCJF—澜沧江断裂;GLGF—高黎贡断裂;JLF—嘉黎断裂;SGF—实皆断裂;MBT—主边界冲断裂;MFT—主前锋逆冲断裂;KKF—喀喇昆仑断裂;CMF—恰曼断裂

    Figure  1.   Tectonic framework of the Tibetan Plateau and surrounding regions(modified after Xu [4])

    QL-Qilian terrane;EKL-East Kunlun terrane;ALT-Altin terrane;NSG-North Songpan-Ganze terrane;SSG-South Songpan-Ganze terrane;NQT-North Qiangtang terrane;SQT-South Qiangtang terrane;WKL-West Kunlun terrane;TSH-Tianshuihan terrane;LS-Lhasa terrane;TC-Tengchong terrane;BS-Baoshan terrane;SM-Simao terrane;IDC-Indochine terrane;HM-Himalaya terrane;AFH-Afghanistan terrane;GDS-Gangdese terrane;ANMQS-Anyemaqen suture zone;JSJS-Jingshajiang suture zone;LSS-Lonhmucuo-Shuanghu suture zone;BG-NJ-Banggonghu-Nujiang suture zone;IYS-Indus-Yaluzangbujiang sutire zone;ALTF-Altyn-Tagh Fault;XSHF-Xiangshuihe Fault;ALS-RRF-Alaoshan-Red River Fault;LCJF-Langcangjiang Fault;GLGF-Gaoligong Fault;JLF-Jiali Fault;SGF-Sagaing Fault;MBT-Main Bounded Thrust;MFT-Main Frontal Fault;KKF-Karakunrun Fault;CMF-Chaman Fault

    图  2   横穿青藏高原地震层析剖面图[7]

    Qingtang Block—羌塘块体;Lhasa Block—拉萨块体;Himalaya—喜马拉雅;Nepal—尼泊尔;BNS—Banggonghu—班公湖—怒江缝合带;STD—藏南拆离系;MCT—主中冲断裂;MBT—主边冲断裂;MFT—主前锋冲断裂

    Figure  2.   Seismic topography profile across the Tibetan Plateau[7]

    图  3   祁连—阿尔金早古生代变质作用年代格架图

    NQL—北祁连地体;QLB—祁连地块;NQD—北柴达木地体;NAT—北阿尔金缝合带;SAT—南阿尔金缝合带;CAB—中阿尔金地块

    Figure  3.   Schematic tectonic map of the Qilian-Altun Early Paleozoic orogen showing metamorphism age

    NQL-North Qilian terrane;QLB-Qilian block;NQD-North Qaidam terrane;NAT-North Altin suture zone;SAT-South Altun suture zone;CAB-Central Altin terrane

    图  4   青藏高原古特提斯构造格架图[28]

    显示青藏高原古特提斯体系由东基墨里(淡绿色)和西华夏陆块组成(深绿色)EKL—ANMQS—东昆仑—阿尼玛卿缝合带;WKLS—西昆仑缝合带;LTS—理塘复合带;JSJ—ALS—SMS—金沙江—哀牢山—松马缝合带;LS —CM—龙木措/双湖—沧宁/孟良缝合带;JH—NU—SKS—景洪—Nan Uttaradit —Sra Kaeo缝合带;BNS—班公湖—怒江缝合带;SQH—JLS—狮泉河—嘉里缝合带;SDS—松多缝合带;ITS—印度斯—雅鲁藏布缝合带;WQL—西秦岭缝合带;BHDA—布尔汗布达弧地体;YDA—义敦岛弧;LC—ST—CBA—临沧—Sukhothai—Chanthaburi弧地体;KHA—科希斯坦弧地体;LDA—拉达克弧地体;WQL—西秦岭地体;ALTF:阿尔金断裂;NQLT—北祁连逆冲断裂;LMST—龙门山逆冲断裂;RRF—红河断裂;KKF—喀喇昆仑断裂;MFT—主前锋逆冲断裂;SGF—实皆断裂;GLGF—高黎贡断裂

    Figure  4.   Schematic tectonic map showing the Palaeo-Tethys system and geochrological data of the East Cimmerides and West Cathaysides in Tibet[28]

    EKL-ANMQS-East Kunlun suture zone;WKLS-West Kunlun suture zone;LTS-Litang suture zone;JSJ-ALS-SMS-Jingshajiang—Ailaoshan-Songma suture zone;LS -CM-Lingmucuo-Shuanghu-Channing-Mengliang suture zone;JH-NU-SKS-Jinghong-Nan Uttaradit-Sra Kaeo suture zone;BNS-banggonghu-Nujiang sutire zone;SQH-JLS-Shiquanghe-Jiali suture zone;SDS-Songduo suture zone;ITS-Indus-Yaluzangbujiang suture zone;WQL-West Qiling suture zone;BHDA-Bulhanbuda arc terrane;YDA-Yidun arc;LC-ST-CBA-Lingcang-Sukhothai-Chanthaburi terrane);KHA-Kohistan arc terrane;LDA-Ladakh arc terrane;WQL-West Kunlun terrane;ALTF-Altyn Tagh Fault;NQLT-North Qilian Thrust;LMST-Longmenshan Thrust;RRF-Red River Fault;KKF-Karakunrun Fault;MFT-Main Frontal Fault;SGF-Sigaing Fault;GLGF-Gaoligong Fault

    图  5   横穿青藏高原东南缘E-W向古特提斯碰撞造山系的构造演化示意图(据Xu[28])

    Figure  5.   Schematic tectonic model for Paleo-Tethys evolution along EW-trending profile of southeastern Tibet(after Xu[28])

    图  6   俄罗斯极乌拉尔的Ray-Iz早古生代蛇绿岩铬铁矿中发现的原位金刚石(05B-16-2)(据Yang[50])

    Figure  6.   In-situ diamonds hosted in irregular(sample Y5B-16-2)patches of amorphous carbon within chromitite of the Ray-Iz ophiolite(after Yang[50])

    图  7   西藏罗布莎铬铁矿中发现纳米级青松矿(BN)(据Dobrzhinetskaya[53]修改)

    Figure  7.   Qingsongite(BN)included in the chromitite of the Luobusa ophiolite,Tibet(modified after Dobrzhinetskaya[53])

    图  8   发现金刚石等深部矿物的蛇绿岩分布图[49]

    Figure  8.   Locations of ophiolite-type diamonds discovered in the Earth[49]

    图  9   西藏和俄罗斯乌拉尔的金刚石碳同位素SIM分析结果(红色为本研究成果,据Yang[49])

    Figure  9.   Histograms of δ 13C values for diamonds from the Tibet and Ray-Iz ophiolite and from other occurrences in the world for comparisons(after Yang[49])

    图  10   地幔中的超高压矿物和铬铁矿的深部成因模式(据Yang[49])

    Figure  10.   A conceptual model for the formation and occurrence of diamonds and associated ultrahigh-pressure minerals in the oceanic mantle(after Yang[49])

    图  12   新特提斯洋洋中脊俯冲构造模式图(据Zhang[60])

    Figure  12.   Tectonic model for the origin of the Gangdise charnockites(modified after Zhang[60])

    图  11   温度-压力图解,表示出纯的CO2流体包裹体的等值线和本文估算出的捕获温压条件(灰色区域)(据Zhang[60])

    Figure  11.   P-T diagram showing the isochore ranges(the blue region)of primary CO2 fluid inclusions and inferred trapping conditions(the pink box)(after Zhang[60])

    图  13   东喜马拉雅构造结地质简图(据Zhang[60])

    Figure  13.   Schematic geological map of the Eastern Himalayan Syntaxis(After Zhang[60])

    图  14   冈底斯岩浆弧东南部古新世构造模式图(据Zhang[82])

    Figure  14.   Paleocene tectonic model for the southeastern Gangdise arc(after Zhang[82])

    图  15   喜马拉雅造山带雅拉香波穹窿地区地质简图(据Zeng[97])

    Figure  15.   (a)Simplified geological map of the Himalayan orogenic belt,southern Tibet;(b)simplified geological map of the Yardoi area(after Zeng[97])

    图  16   雅拉香波—隆子地区二云母花岗岩(A)和淡色花岗玢岩(B)锆石U-Pb定年结果(据Zeng[97])

    Figure  16.   U-Pb concordia diagram for two-mica granite T0391(A)and porphyritic leucograniteT0684(B)in the Yardoi-Longzi area(after Zeng[97])

    图  17   特提斯喜马拉雅带淡色花岗岩元素地球化学特征(据Gao[98])

    Figure  17.   Trace element geochemistry of the leucogranites in the Tethyan Himalaya belt(after Gao[98])

    图  18   雅拉香波地区淡色花岗岩元素地球化学特征(据Zeng[97])

    Figure  18.   Trace element characteristics of leucogranite,two-mica granite and porphyritic leucogranite fromtheYardoi area(after Zeng[97])

    图  19   喜马拉雅造山带地质简图(改自[117, 104, 118])

    GHC—高喜马拉雅结晶岩系;LH—低喜马拉雅;SH—次喜马拉雅;TH—特提斯喜马拉雅;LHCN—低喜马拉雅结晶岩片;ITSZ—印度—雅鲁藏布缝合带;GCT—大反冲断裂;KF—喀喇昆仑断裂;MBT—主边界断裂;MCT—主中央冲断裂;MFT—主前缘冲断裂;MKT—喀喇昆仑主冲带;STD-藏南拆离系;References for the STD: Khula Kangri[85, 86],Wagye La [93],Dinggye [94],Rongbuk,Nyalam [89, 94],Everest [91],Shisha-Pangma[90],Manaslu [87],Annapurna Range [88],and Gurla Mandhata [92]; References for the MCT from east to west: Arunachal Himalaya [6],Bhutan [103],Sikkim [119],Kathmandu nappe [120, 121],Annapurna Range[88]

    Figure  19.   Simplified geological map of the Himalayan orogen(modified after references [117, 104, 118])

    GHC-Great Himalaya Complex;LH-Lesser Himalaya;SH-Subhimalaya;TH-Tethys-Himalaya;LHCN-Lesser Himalaya Complex;ITSZ-Indus-Yaluzangbu suture zone;GCT-Great Couter Thrust;KF-Karakunlun Fault;MBT-Main Bonded Thrust;MCT-Main Central Thrust;MFT-Main Frontal Thrust;MKT-Main Karakunlun Thrust;STD-South Tibet Detachment;References for the STD: Khula Kangri[85, 86],Wagye La [93],Dinggye [94],Rongbuk,Nyalam [89, 94],Everest [91],Shisha-Pangma[90],Manaslu [87],Annapurna Range [88],and Gurla Mandhata [92].References for the MCT from east to west: Arunachal Himalaya [6],Bhutan [103],Sikkim [119],Kathmandu nappe [120, 121],Annapurna Range[88]

    图  20   高喜马拉雅三维挤出模式

    TH—特提斯—喜马拉雅地体;GHC—高喜马拉雅地体;LH—低喜马拉雅地体;STD—藏南拆离系;MCT—主中逆冲断裂;GHD—高喜马拉雅拆离系;GHT-高喜马拉雅逆冲系;Indian middle-lower crust -印度中下地壳;Indian lithospheric mantle-印度岩石圈地幔

    Figure  20.   Three dimensional extrusion model for Great Himalaya

    TH-Himalaya terrane; GHC- Great Himalaya terrane; LH-Lesser Himalaya terrane; STD-South Tibet Detachment; MCT-Main Central Thrust GHD-Great Himalaya Detachment;GHT-Great Himalaya Thrust

    图  21   青藏高原东南缘构造示意图

    Figure  21.   Schematic tectonic map of southeast Tibet

    图  22   青藏高原三江地区腾冲地体的构造图(a)及剖面图(e,f)(据Xu[28])

    a据云南省地质局1: 250,000潞西地区地质图(2008)修正;b、cd为东河拆离剪切带中的面理和拉伸线理投影图。YJSZ—盈江走滑剪切带;LHSZ—梁河走滑剪切带;GLGSZ—高黎贡走滑剪切带;SDSZ—苏典走滑剪切带;NBSZ-拉邦走滑剪切带。①—苏典(Sudian)花岗岩体;②—盈江(Yingjiang)花岗岩体;③—古永(Guyong)花岗岩体;④—东河(Donghe)花岗岩体。构造图显示来自前人和笔者的U-Pb年龄。东河拆离剪切带的面理和线理下半球投影:b—北龙陵地区;c—西芒市地区;d—北瑞丽地区;e—NW向剖面AA’;f—NE向剖面BB;①—苏典片麻岩穹隆;②—盈江片麻岩穹隆;③—贵永片麻岩穹隆;④—东河片麻岩穹隆

    Figure  22.   Simplified geological map(a)and geological section(e,f)of the Tengchong Terrane in western Yunnan Province with geochronological dataa

    a Simplified geological map modified after the 1: 250,000 Geological Map of Luxi Region by Geological Survey of Yunnan Province (2008); b,c,d Lower hemisphere projection of the foliation and stretching lineation of the Donghe Detachment; YJSZ-Yingjiang strike-slip shear zone; LHSZLianghe strike-slip shear zone; GLGSZ-Gaoligong strike-slip shear zone; SDSZ-Sudian strike-slip shear zone; NBSZ-Naban strike-slip shear zone; ①-Sudian granite pluton;②-Yingjiang granite pluton; ③-Guyong granite pluton;④-Donghe granite pluton. Sample locations are labeled by the first two numbers in a sample number. U-Pb zircon ages from previous studies and this study. Lower hemisphere projection of the foliation and stretching lineation of the Donghe Detachment from: b-the northern Longling area, (c-the western Mangshi area, and d-the northern Ruili area, e-NW-trending cross-section AA′ and f-NE-trending cross-section BB′ in the southern Tengchong Terrane. ①-Sudian gneiss dome; ②-Yingjiang gneiss dome; ③-Guyong gneiss dome; ④-Donghe gneiss dome

    图  23   腾冲地体的弯曲模式(据Xu[28])

    五角星表示东构造结在41 Ma的位置,腾冲地体围绕原东构造结沿着右行走滑断裂顺时针旋转,这些走滑断裂将腾冲地体分割成若干的平行板片,并围绕原始东构造结形成垂直倾伏的褶皱,形成腾冲地体的弯曲模式

    Figure  23.   A bending model of the Tengchong Terrane(after Xu[28])

    A star indicates the position of the proto-eastern Himalayan syntaxis at 41 Ma. Clockwise rotation of the Tengchong Terrane around protoeastern Himalayan syntaxis was achieved by the dextral movement along strike-slip shear zones, which separated the Tengchong Terrane into several parallel crustal slices and formed vertically plunging folds around the proto-eastern Himalayan syntaxis

    图  24   松潘—甘孜造山带西南部雅江地区三叠纪西康群中的片麻岩穹隆分布图(据许志琴[133])

    1—夕线石带;2—十字石带;3—红柱石带4—石榴石带;5—黑云母带;6—绢云母-绿泥石带

    Figure  24.   The distribution of the gneiss domes of the Xikang Group in the Yajiang region(after Xu[133])

    1-Sillimalite zone;2-Granatite zone;3-Andalusite zone;4-Garnet zone;5-Biotite zone;6-Sericite-Chlorite zone

    图  25   雅江地区长征片麻岩穹隆的构造剖面图(据许志琴[133])

    Figure  25.   The cross-section of the Changzheng gneiss dome in the Yajiang region(after Xu[133])

    图  26   帕米尔片麻岩穹隆群分布图(据文献[139-143])

    位于中帕米尔的穹隆:①Yazgulom穹隆,②Sarez穹隆,③Muskol穹隆,④Shortpat穹隆;位于南帕米尔的穹隆:⑤Sarez穹隆;位于北帕米尔的穹隆:⑥空喀山(Kongur)穹隆⑦Kurgovat穹隆MPT—主帕米尔逆冲断裂;KDS—库地缝合带;KLS—昆仑缝合带;JSS—金沙江缝合带;IYS—印度斯—雅江缝合带;BGS—班公湖—怒江缝合带;KKF—喀喇昆仑断裂;MKT—主喀喇昆仑逆冲断裂;CMT—恰曼断裂;STD—藏南拆离系;MCT—主中冲断裂;MBT—主边冲断裂

    Figure  26.   Tectonic map of the western end of the Himalayan—Tibetan orogen showing distribution of gneiss domes(modified after references [139-143])

    MPT-Main Pamir Thrust; KDS-Kudi suture zone; KLS-Kunlun suture zone; JSS-Jingshajiang suture zone;IYS-Indus-Yaluzangbujian suture zone; BGS-Banggonghu-Nujiang suture zone; KKF-Karakurun Fault; MKT-Main Karakunrun Thrust; CMT-Chaman Fault; STD-South Tibet Detachment; MCT-Main Central Thrust; MBT-Main Bounded Thrust

    图  27   空喀山片麻岩穹隆剖面图

    KP—空喀山花岗岩体;KG—空喀山花岗片麻岩;KM—空喀山变质岩;KDS—库地始特提斯缝合带;EKT—东空喀山逆冲断裂;WKD-西空喀山拆离断裂

    Figure  27.   Cross-section of the Kongur gneiss dome(after 1: 250,000 Geological Map ofWest Kunlun)

    KP-Kongur granite;KG-Kongur granitic gneiss; KM-Kongur metamorphic rocks;KDS-Kudi Proto-Tethys suture zone; EKT-East Kongur Thrust; WKD-West Kongur Detachment

    图  28   汶川地震断裂科学钻探(WFSD-1)岩心剖面以及地震主滑移带特征(据Li[145])

    a—WFSD-1剖面图,汶川地震同震破裂带中的主滑移带(红线,在岩心589.2 m深处)斜切映秀—北川断裂带;b—岩心589.2 m深处发育汶川地震擦痕的断层泥表面,反光度较高;c—主滑移带局部扫描电镜背散射图像,显示其厚度约为200 μm,局部富含石墨;d—透射电镜图像显示纳米级石墨颗粒

    Figure  28.   Petrological profile of the Scientific Drilling on theWenchuan Earthquake Fault(WFSD-1)and characteristics of seismic principal slip zone (modified after Li[145])

    a-Sketch profile of the WFSD-1,theWenchuan earthquake PSZ cuts across the Yingxiu—Beichuan fault obliquely;b-Drilling core from 589.2 m-depth shows slickensides with high reflection;c-SEM-BSE image shows thatWenchuan earthquake PSZ is about 200 μm-thick and is locally rich in graphite; d TEM image shows nanometer graphite particles

    图  29   摩擦实验中变形断层泥的显微构造特征和断裂主滑移带(PSZ)的矿物特征(据Kuo[146])

    A—汶川地震断裂主滑移带高反光度表面发育擦痕,其方向与旋转运动方向相同;B— SEM-BSE图片中细粒化主滑移带(PSZ)厚度25~125μm,右下插图显示细小石墨颗粒;C—原位同步辐射XRD谱图显示主滑移带矿物变化

    Figure  29.   Microstructural characteristics of experimentally deformed black gouges and mineral characteristics of the principal slip zone(PSZ)(after Kuo[146])

    A-Photograph of highly reflective surface of the principal slip zone(PSZ)lined by slickenlines and grooves that trackthe rotary motion of the gouge holder;B-SEM-BSE images show fine-grained PSZ of 25-125 μm thick.Inset backscattered SEM image shows detail of small graphite particles;C-Mineralogical changes within the experimental PSZ determined by in situ synchrotron X-ray analyses

    图  30   汶川地震断裂科学钻探WFSD-1钻孔内长期温度测温数据(据Li[145])

    A-汶川地震断裂科学钻探WFSD-1钻孔及长期测温设备;B-21条长期测温剖面(已扣除地温梯度0.02℃/m);C-0.02 ℃的残余热;D-WFSD-1钻孔中跨断层温度异常的最大振幅估算的断裂有效同震摩擦系数(μ=0.02)

    Figure  30.   Long-time temperature measurement in the Scientific Drilling on theWenchuan Earthquake Fault(WFSD-1)(modifield after Li[145])

    A-WFSD-1 drill hole and long-term temperature measurement device;B-Complete data set focused on 350-800 m-depth;C-Close-up of the 589 m zone from the high-precision stop-go logs with arbitrary zeros;(d)-Predicted maximum amplitude of the temperature anomaly for the fault in the WFSD-1 drill hole with representative effective coseismic coefficients of friction

    图  31   汶川地震断裂科学钻探WFSD-1水文地质参数随时间变化图(据Xue[147])

    A-渗透率和导水系数;B-储水系数;黑色的小圆点代表没有约束的换算值,红色的点代表将S值固定在平均值后换算的结果,图A中黑色点完全覆盖了红点;垂向虚线代表选区的地震事件,造成渗透率的快速上升

    Figure  31.   Hydrogeologic properties of the well-aquifer system over time from the Scientific Drilling on theWenchuan Earthquake Fault(WFSD-1)(After Xue[147])

    A-Permeability and transmissivity;B-Storage coefficient.The black dots denote an unconstrained inversion;the red dots are the results of inversion with the storage coefficient fixed to a single value.Because the two separate inversions have identical results for transmissivity,the red dots cover the black dots in A.The vertical dashed lines show the time of the selected teleseismic events,which correspond to sudden increases in permeability

    图  32   冈底斯碰撞型斑岩铜矿床成矿模型

    Figure  32.   The metallogenic model of the collisional related porphyry deposits from the Gandise belt

    图  33   拉萨冈底斯地体中新世花岗岩Nd和Hf同位素初始值在不同经度上的分布特征,由图可见含矿岩体具有高Nd和Hf同位素初始值(据Hou[151])

    Figure  33.   The єNd and єHf isotopic characteristics in difference longitudes of the Miocene granite from the Gandise belt,Lhasa terrane.The ore bearing granites have high єNd and єHf isotopic data,which are shown in the figure(modified after Hou[151])

    图  34   拉萨地体中新生代岩浆岩Hf同位素特征及矿床分布(据Hou[151])

    BNSZ—班公湖—怒江缝合带;IYZSZ—雅鲁藏布江缝合带;NLS—北拉萨;CLS—中拉萨;SLS—南拉萨;Inferred basement fault —推测基底断裂

    Figure  34.   the єHf isotopic data of the Mesozoic and Cenozoic magmatic rocks and related deposit distribution in the Lhasa terrane (modified after Hou[151])

    BNSZ-Bangong Co-Nujiang River Suture Zone;IYZSZ-Indus Yarlung Zangbo Suture Zone;NLS-North Lhasa;CLS-Central Lhasa;SLS-South Lhasa

    图  35   青藏高原主要成矿系统与岩石圈三维架构的对应关系(据Hou[151])

    Figure  35.   The relationship between the main metallogenic system and three-dimensional structure of the lithosphere in the Tibetan Plateau (modified after Hou[151])

    图  36   大陆板块俯冲角度对高压-超高压变质岩石形成和折返的控制作用

    a—高角度大陆板块深俯冲伴随着超高压变质岩石的形成和折返;b—低角度大陆板块平俯冲模型中超高压岩石无法折返,只有高压岩石折返至地表

    Figure  36.   Constraints of continental subduction angle on the formation and exhumation of HP-UHP metamorphic rocks

    a-he formation and exhumation of UHP rocks in the steep continental subduction channel;b-n the flat continental subduction model,only HP rocks can exhume to the surface;while UHP rocks are absent

    图  37   大洋俯冲和大陆碰撞沿走向转换的三维数值模型(据Li[154])

    a~b—大洋俯冲一侧的演化特征;c—大陆碰撞一侧的演化特征;d—等效粘滞系数面揭示洋-陆转换会聚深部结构的差异性及地幔流动

    Figure  37.   Three-dimensional numerical model of the along-strike transition between oceanic subduction and continental collision(after Li[154])

    a-b-Model evolution viewed from the oceanic subduction side;c-Model evolution viewed from the continental collision side;d- Iso-viscosity surface reveals the contrasting deep structures between the oceanic subduction and continental collision,as well as the characteristics of deep mantle flow

    表  1   蛇绿岩型金刚石与其他类型金刚石的对比

    Table  1   Comparison between ophiolite-type diamonds and other type diamonds

    类型 蛇绿岩型金刚石 金伯利岩型金刚石 超高压变质型金刚石
    赋存岩石 蛇绿岩中的地幔橄榄岩和铬铁矿 来自地幔的金伯利岩 榴辉岩和片麻岩等地壳岩石中
    粒径大小 0.2~0.4 mm 宝石级(多为mm级以上) < 0.01 mm
    包裹体类型 Ni—Mn—Co合金,Mn撤榄石, Mn石權石,Mn尖晶石 Mg石權石,Mg橄榄石,硫化物, 铬尖晶石等 与金刚石相伴的矿物有镁方解石, 黑云母等壳源矿物
    C同位素δ13C) -18~-28 -5~-10 -7~-15
    产出构造背景 大洋岩石圈 大陆内部 板块俯冲带
    下载: 导出CSV
  • [1] 许志琴, 杨经绥, 李海兵, 等. 造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制[M]. 北京:地质出版社, 2007:1-458. Xu Zhiqin, Yang Jingsui, Li Haibing, et al. Orogenic Plateau-terrane Ammalgatation, Collisional Orogeny and Uplifting of the Qinghai-Tibet Plateau[M]. Beijing:Geological Publishing House, 2007:1-458(in Chinese with English abstract).
    [2]

    Tapponnier P G, Peltzer, Armijo R. On the mechanics of the collision between India and Asia[C]//Coward M P,Riess A C. Collision Tectonics. Geo. Soc. Spec. Publ. London, 1986, 19:115-157.

    [3]

    Molnar P. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications[J]. Phil. Trans. R. Soc. Lond, 1988, A326:33-88.

    [4] 许志琴, 李海兵, 唐哲民,等. 大型走滑断裂对青藏高原地体构架的改造[J].岩石学报,2011, 27(11):3157-3170. Xu Zhiqin, Li Haibing, Tang Zhemin, et al. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J]. Acta Petrologica Sinica,2011, 27(11):3157-3170(in Chinese with English abstract).
    [5]

    Molnar P, Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision[J]. Science, 1975, 189:419-426.

    [6]

    Yin A. Cenozoic tectonic evolution of Asia:A preliminary synthesis. Tectonophysics[J]. 2010, 488:293-325.

    [7]

    Nabelek J, Hetenyi G, Vergne J, et al. Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment[J]. Science, 2009, 325:1371-1374.

    [8]

    Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia[J]. Geophys, Res. Lett., 1993,20:895-898.

    [9]

    Sengör A M C,Natal'in B A. Paleotectonic of Asia:Fragments of a synthesis[C]//Yin A, Harrison M (eds.). The Tectonic Evolution of Asia. Cambridge:Cambridge University Press, 1996:486-640.

    [10]

    Gehrels G E, Yin A, Wang X F. Detrital-zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 2003,115(7):881-896.

    [11]

    Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4):323-333.

    [12]

    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.

    [13]

    Sengör A M C. The Palaeo-Tethyan suture:A line of demarcation between two fundamentally different architectural styles in the structure of Asia[J]. Island Arc, 1992, 1(1):78-91.

    [14]

    Sengör A M C, Natal'in B A, Burtman U S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307.

    [15]

    Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164(10):31-47.

    [16]

    Sengör A M C. East Asian tectonic collage[J]. Nature, 1987, 318(6041):16-17.

    [17]

    Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):379-413.

    [18]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.

    [19]

    Wan Y S, Zhang J X, Yang J S, et al. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance[J]. Journal of Asian Earth Sciences, 2006, 28(2/3):174-184.

    [20]

    Tung K A, Yang H J, Yang H Y, et al. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 2007, 52(11):2687-2701.

    [21]

    Tung K A, Yang H Y, Liu D Y, et al. The Neoproterozoic granitoids from the Qilian block, NW China:Evidence for a link between the Qilian and South China blocks[J]. Precambrian Research, 2013, 235:163-189.

    [22]

    Yu S Y, Zhang J X, Li H K, et al. Geochemistry, zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their host gneisses in the Dulan area, North Qaidam UHP terrane:New evidence for deep continental subduction[J]. Gondwana Research, 2013, 23(3):901-919.

    [23]

    Wang C, Liu L, Yang WQ, et al. Provenance and ages of the Altyn Complex in Altyn Tagh:Implications for the early Neoproterozoic evolution of northwestern China[J]. Precambrian Research, 2013, 230:193-208

    [24]

    Gehrels G E, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011,30(5):TC5016.

    [25]

    Metcalfe I. Gondwana dispersion and Asian accretion:tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:133.

    [26]

    Yan Z, Aitchson J, Fu C L, et al. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic microcontinental fragments accreted to the northern Proto-Tethyan margin[J]. Precambrian Research, 2015, 266:65-85.

    [27]

    Ueno K, Wang Y, Wang X. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China:An overview[J]. The Island Arc, 2003, 12:145-161.

    [28]

    Xu Z Q, Wang Q, Cai Z H, et al. Kinematics of the Tengchong Terrane in SE Tibet from the late Eocene to early Miocene:Insights from coeval mid-crustal detachments and strike-slip shear zones[J]. Tectonophysics, 2015,665:127-148.

    [29]

    Cawood P A, Kröner A. Earth Accretionary Systems in Space and Time[M]. Geological Society of London Special Publication, 2009, 318:1-36.

    [30]

    Cawood P A, Kröner A, Collins, et al. Accretionary orogens through Earth history[M]. Geological Society of London, 2009.

    [31]

    Miyashiro A. The Troodos ophiolitic complex was probably formed in an island arc[J]. Earth Planet Science Letters, 1973, 19:218-224.

    [32]

    Ernst W G. Alpine and Pacific styles of Phanerozoic mountain building:Subduction-zone petrogenesis of continental crust[J]. Terra Nova, 2005, 17:165-188.

    [33]

    Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J]. Geology, 2006, 34:961-964.

    [34]

    Brown M. Metamorphic patterns in orogenic systems and the geological record[C]//Cawood P A, Kröner A (eds.). Earth Accretionary Systems in Space and Time. Geological Society, London Special Publications, 2009,318:37-74.

    [35]

    Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia:significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam[J]. Geology, 2001, 29:211-214.

    [36]

    Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 2002, 20:551-566.

    [37]

    Metcalfe I. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19:3-21.

    [38]

    Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:the Korean Peninsula in context[J]. Gondwana Research, 2006, 9:24-46.

    [39]

    Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33.

    [40]

    Lepvrier C, Maluski H. L'orogenese Trisique Indosinienne en Asia de l'Est[J]. Editorial Comptes Rendu Geoscience, 2008, 340:75-82.

    [41]

    Feng Q, Liu B. A new Early Devonian radiolarian genus from western Yunnan[J]. Science in China (Series B), 1993, 36:242-248.

    [42]

    Feng Q L, Ye M. Permian radiolarian sedimentary assemblage and paleoecology in south and southwest China[C]//Long Xiangfu (ed.). Devonian to Triassic Tethys in Western Yunnan, China. China University of Geosciences Press,Wuhan, 1996, 106-112.

    [43]

    Feng Q, Zhang Z. Early Carboniferous radiolarians from West Yunnan[J]. Acta Micropalaeontologica Sinica, 1997, 14:79-92.

    [44]

    Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia:new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340:166-179.

    [45]

    Kapp P, Yin A, Craig E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28:19-22.

    [46]

    Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet:Lateral variation and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123:585-600.

    [47]

    Zhai Q G, Zhang, R Y, Jahn, B M,et al. Triassic eclogites from central Qiangtang, northern Tibet, China:Petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125:173-189.

    [48]

    Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences 2009, 34:76-89.

    [49]

    Yang J S, Robinson P T, Dilek Y. Diamonds in ophiolites[J]. Elements, 2014, 10:127-130.

    [50]

    Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromiites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015, 27:459-485.

    [51]

    Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015,27:686-700.

    [52]

    Yang J S, Dobrzhinetskaya L, Bai W J, et al. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 2007,35(10):875-878.

    [53]

    Dobrzhinetskaya L F,Yang J S, Green H W, et al. Qingsongite, natural cubic boron nitride:The first boron mineral from the Earth's mantle[J]. American Mineralogist, 2014, 99:764-772.

    [54]

    Yamamoto S, Komiya T, Hirose K, et al. Coesite and clinopyroxene exsolution lamellae in chromites:In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 2009, 109(3):314-322.

    [55]

    Liou J G, Tsujimori T, Yang J, et al. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths:A review[J]. Journal of Asian Earth Sciences, 2014, 96:386-420.

    [56]

    Coleman R G. The ophiolite concept evolves[J]. Element, 2014, 10(2):82-84.

    [57]

    Howell D, GriffinW L, Yang J, et al. Diamonds in ophiolites:Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 2015, 430:284-295.

    [58]

    Zhang Z M, Zhao G C, Santosh M, et al. Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 2010, 28:719-733

    [59]

    Dong X, Zhang Z M, Santosh M. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism[J]. Journal of Geology, 2010, 118:677-690.

    [60]

    Zhang Z M, Zhao G C, Santosh M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17:615-631.

    [61]

    Sisson V B, Hollister L S, Onstott T C. Petrologic and age constraints on the origin of a low-pressure/high-temperature metamorphic complex, southern Alaska[J]. Journal of Geophysical Research, 1989, 94:4392-4410.

    [62]

    Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction:examples from southern Alaska and western California[J]. Tectonophysics, 2009, 464:118-136.

    [63]

    Santosh M, Kusky T, Wang L. Supercontinent cycles, extreme metamorphic processes and changing fluid regimes[J]. International Geology Review, 2011, 53:1403-1423.

    [64]

    Santosh M, Maruyama S, Sato K. Anatomy of a Cambrian suture in Gondwana:pacific type orogeny in southern India?[J] Gondwana Research, 2009, 16:321-341.

    [65]

    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68:173-196.

    [66]

    Mo X X, Dong G C, Zhao Z D, et al. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution[J]. Geological Journal of China University, 2005, 11:281-290(in Chinese with English abstract).

    [67]

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011,301:241-255.

    [68]

    Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications[J]. Lithos, 2008,105:1-11.

    [69]

    Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252:191-201.

    [70]

    Bourgois J, Martin H, Lagabrielle Y, et al. Subduction-erosion related to ridge-trench collision:Taitao Peninsula, Chile margin triple junction area[J]. Geology, 1996, 24:723-726.

    [71]

    Guivel C, Lagabrielle Y, Bourgois J, et al. New geochemical constraints for the origin of ridge subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao Peninsula and Site 862, LEG ODP141 on the Taitao Ridge)[J]. Tectonophysics, 1999, 311:83-111.

    [72]

    Thorkelson D J, Breitsprecher K. Partial melting of slab window margins:genesis of adakitic and non-adakitic magmas[J]. Lithos, 2005, 79:25-41.

    [73]

    Sakaguchi A. High paleo-geothermal gradient with ridge subduction beneath Cretaceous Shimanto accretionary prism, southwest Japan[J]. Geology, 1996,24:795-798.

    [74]

    Ujiie K. Off-scraping accretionary process under the subduction of young oceanic crust:the Shimanto belt of Okinawa Island, Ryukyu Arc[J]. Tectonics, 1997, 16:305-322.

    [75]

    Osozawa S, Takeuchi H, Koitabashi T. Formation of the Yakuno ophiolite:accretionary subduction under medium-pressure-type metamorphic conditions[J]. Tectonophysics, 2004,393:197-219.

    [76]

    Zhang Z M, Shen K, Santosh M, et al. High density carbonic fluids in a slab window:Evidence from the Gangdese charnockite, Lhasa terrane, southern Tibet[J]. Journal of Asian Earth Sciences, 2011,42:515-524.

    [77]

    Matthews K J, Seton M, Muller R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth and Planetary Science Letters, 2012,355:283-298.

    [78]

    Coulon C, Maluski H, Bollinger C et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986,79:281-302.

    [79]

    Lee H Y, Chung S L, Lo C H, et al. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 2009, 477:20-35.

    [80]

    Guo L, Zhang H F, Harris N, et al. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis:Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex[J]. Gondwana Research, 2012, 21:100-111.

    [81]

    Chung S L, Liu DY, Ji J Q, et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31:1021-1024.

    [82]

    Zhang Z M, Dong X, Xiang H, et al. Building of the Deep Gangdese Arc, South Tibet:Paleocene Plutonism and Granulite-Facies Metamorphism[J]. Journal of Petrology, 2013, 54:2547-2580.

    [83]

    Zhang Z M, Dong X, Xiang H, et al. Metagabbros of the Gangdese arc root, south Tibet:Implications for the growth of continental crust[J]. Geochimica et Cosmochimica Acta, 2014, 143:268-284.

    [84]

    Searle M P, Elliott J R, Phillips R J, et al. Crustal-lithospheric structure and continental extrusion of Tibet[J]. Journal of the Geological Society, 2011, 168(3):633-672.

    [85]

    Edwards M A, Kidd W S F, Li J X, et al. Multi-stage development of the southern Tibet detachment system near Khula Kangri——New data from Gonto La[J]. Tectonophysics, 1996, 260:1-19.

    [86]

    Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the High Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J]. Geology, 1997, 25:543-546.

    [87]

    Harrison T M, Grove M, McKeegan K D, et al. Origin and episodic emplacement of the Manaslu Intrusive Complex, Central Himalaya[J]. J. Petrol, 1999, 40:3-19.

    [88]

    Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas[J]. Tectonics, 1996, 15:1264-1291.

    [89]

    Schärer U, Xu R, Allegre C. U-(Th)-Pb systematics and ages of Himalayan leucogranites, south Tibet[J]. Earth and Planetary Science Letters, 1986, 77:35-48.

    [90]

    Searle M P, Whitehouse M J. Shisha Pangma leucogranite, South Tibetan Himalaya; field relations, geochemistry, age, origin, and emplacement[J]. Journal of Geology, 1997, 105(3):295-317.

    [91]

    Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28:403-406.

    [92]

    Wang Y C, Bin, X Zhang Y Q, et al. U-Pb SHRIMP zircon ages of the GUohuonongba tourmaline two-mica granite in Pulan, southwest Tibet[J]. Geotectonia et Metallogenia, 2005, 29:517-521.

    [93]

    Wu C K D, Nelson G, Wortman S, et al. Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89-90°E)[J]. Tectonics, 1998, 17:28-45.

    [94]

    Xu R H. Age and geochemistry of granites and metamorphic rocks in south-central Xizang (Tibet)[M]//Igneous and Metamorphic Rocks of the Tibetan Plateau. Chinese Academy of Geological Sciences. Science Press, 1990, 287-302.

    [95]

    Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes:melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303:251-266.

    [96]

    Zeng, L S, Chen Z Y, Chen J. Metamorphic solid salt (KCl-NaCl) in quartzo-feldspathic polyphase inclusions in the Sulu ultrahighpressure eclogite[J]. Chinese Science Bulletin, 2013, 58(8):931-937.

    [97]

    Zeng L S, Gao L E, Tang S H, et al. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 2014, 412:SP412-8.

    [98]

    Gao L E, Zeng L S. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimica et Cosmochimica Acta, 2014, 130:136-155.

    [99]

    Burchfiel B C, Royden L H. North-south extension within the convergent Himalayan region[J]. Geology, 1985, 13:679-682.

    [100]

    Grujic D, Casey M, Davidson C, et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan:evidence from quartz micro-fabrics[J]. Tectonophysics, 1996, 260:21-43.

    [101]

    Beaumont C, Jamieson G A, Nguy M H, et al. Himalaya tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414:738-742.

    [102]

    Hodges K V, Hurtado J M, Whipple K X, et al. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J], Tectonics, 2001, 20:799-809.

    [103]

    Grujic D, Hollister L S, Parrish R R. Himalayan metamorphic sequence as an orogenic channel:insight from Bhutan[J]. Earth Planetary Science Letters, 2002, 198(s 1-2):177-191.

    [104]

    Yin A, Dubey C S, Kelty T K, et al. Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen[J]. Current Science, 2006, 90:195-206.

    [105]

    Webb AA G, Yin A, Harrison T M, et al. The leading edge of the Greater Himalayan Crystallines revealed in the NW Indian Himalaya:Implications for the evolution of the Himalayan Orogen[J]. Geology, 2007, 35:955-958.

    [106]

    Webb A A G, Yin A, Harrison T M, et al. Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen[J]. Geosphere, 2011, 7:1013-1061.

    [107] 许志琴,王勤,曾令森,等. 高喜马拉雅的三维挤出模式[J]. 中国地质,2013, 40(3):671-68. Xu Zhiqin, Wang Qin, Zeng Lingsen, et al. Three-dimensional extrusion model of the Great Himalaya slice[J]. Geology in China, 2013, 40(3):671-68(in Chinese with English abstract).
    [108]

    Xu Z Q, Wang Q, Arnaud P, et al. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 2013, 32(2):191-215.

    [109]

    Brun J P, Burg J P, Ming C C, et al. Strain trajectories above the Main Central Thrust (Himalaya) in southern Tibet[J]. Nature, 1985, 313:388-390.

    [110] 许志琴, 杨经绥, 李化启,等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(6):1697-1709. Xu Zhiqin,Yang Jingsui,Li Huaqi,et al. Indosinian collisionorogenic system of Chinese continent and its orogenic mechanism[J]. Acta Petrologica Sinica,28(6):1697-1709(in Chinese with English abstract).
    [111]

    Pêcher A. The contact between the Higher Himalaya crystallines and the Tibetan sedimentary series:Miocene large scale dextral shearing[J]. Tectonics, 1991,10:587-598.

    [112]

    Coleman M E. Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas[J]. Geological Society of America Bulletin, 1996, 108(12):1594-1607.

    [113]

    Pêcher A, Scaillet B. La structure du haut Himalaya au Garhwal[J]. Eclogae Geologicae Helvetiae, 1989, 82(2):655-668.

    [114]

    Murphy M A, Yin A, Kapp P, et al. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet:Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 2002, 114(4):428-447.

    [115]

    Wang Y, Li Q, Qu G S. 40Ar/39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan Detachment System, Nyalam area, southern Tibet[C]//Law R D, et al(eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geol. Soc., London, Spec. Pub., 2006, 268:327-354.

    [116]

    Aikman A B, Harrison T M, Ding L. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet[J]. Earth Planetary Science Letters, 2008, 274:14-23.

    [117]

    Dipietro J A, Pogue K R. Tectonostratigraphic subdivisions of the Himalaya:A view from the west[J]. Tectonics, 2004, 23(5):271-297.

    [118]

    Pêcher A, Seeber L, Guillot S, et al. Stress field evolution in the northwest Himalayan syntaxis, northern Pakistan[J]. Tectonics, 2008, 27(6):178-196.

    [119]

    Harris N B W, Caddick M, Kosler J, et al. The pressuretemperature-time path of migmatites from the Sikkim Himalaya[J]. Journal of Metamorphic Geology, 2004, 22(3):249-264.

    [120]

    Metcalfe R P, Metcalfe R P. Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya[J]. Geological Society of London Special Publications, 1993, 74(1):485-509.

    [121]

    Stephenson B J, Searle M P, Waters D J, et al. Structure of the Main Central Thrust Zone and Extrusion of the High Himalayan Deep Crustal Wedge, Kishtwar-Zanskar Himalaya[J]. Journal of the Geological Society, 2001, 158(4):637-652.

    [122]

    Zeng L S, Liu J, Gao L E, et al. Early Oligocene crustal anatexis in the Yardoi gneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 2009, 54, 104-112.

    [123]

    Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, and basins during the India——Asia collision-An experimental approach[J]. Journal of Geophysical Research Atmospheres, 1988, 931(B12):15085-15117.

    [124]

    Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau.[J]. Science, 2008, 321(5892):1054-1058.

    [125]

    Zhang P Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9):809-812.

    [126]

    Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia[J]. Journal of Geophysical Research Solid Earth, 2001, 106(B4):6683-6732.

    [127]

    Clark M K, Royden L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703.

    [128]

    Allen C R, Gillespie A R, Han Y, et al. Red River and associated faults, Yunnan Province, China:Quaternary geology, slip rates, and seismic hazard[J]. Geological Society of America Bulletin, 1984, 95(6):686-700.

    [129]

    Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251(s 1-4):3-10.

    [130]

    Chung S L, Lee T Y, Lo C H, et al. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone.[J]. Geology, 1997, 25(4):311-314.

    [131]

    Ratschbacher L, Frisch W, Chen C, et al. Cenozoic deformation, rotation, and stress patterns in eastern Tibet and western Sichuan, China[C]//Yin A, Harrison T M (eds.). The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 1996:227-249.

    [132]

    Wang E, Wang E. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[M]. Geological Society of America, 1998.

    [133] 许志琴,侯立伟,王宗秀, 等. 中国松潘-甘孜造山带的造山过程[M]. 北京:地质出版社, 1992. Xu Zhiqin, Hou Liwei, Wang Zhongxiu, et al. Orogenic Processes of the Songpan GarZi Orogenic Belt, China[M]. Beijing:Geological Publishing House, 1992(in Chinese).
    [134]

    Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and Large-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters, 1981, 52(2):355-371.

    [135]

    Burtman V S, Molnar P. Geological and Geophysical Evidence for Deep Subduction of Continental Crust Beneath the Pamir[J]. Special Paper of the Geological Society of America, 1993, 281.

    [136]

    Treloar P J, Izatt C N, Izatt C N. Tectonics of the Himalayan collision between the Indian Plate and the Afghan Block:a synthesis[J]. Geological Society of London Special Publications, 1993, 74(1):69-87.

    [137]

    Brunel M, Arnaud N, Tapponnier P, et al. Kongur Shan normal fault:Type example of mountain building assisted by extension (Karakoram fault, eastern Pamir)[J]. Geology, 1994, 22(8):707-710.

    [138]

    Strecker M R, Frisch W, Hamburger M W, et al. Quaternary Deformation in the Eastern Pamirs, Tajikistan and Kyrgyzstan[J]. Tectonics, 1995, 14(5):1061-1079.

    [139]

    Rumelhart P E, An Y, Cowgill E, et al. Cenozoic vertical-axis rotation of the Altyn Tagh fault system[J]. Geology, 1999, 27(9):480.

    [140]

    Schneider D A, Edwards M A, Kidd W S F, et al. Tectonics of Nanga Parbat, western Himalaya:Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure[J]. Geology, 1999, 27(11):999-1002.

    [141]

    Schmidt J, Hacker B R, Ratschbacher L, et al. Cenozoic deep crust in the Pamir[J]. Earth and Planetary Science Letters, 2011, 312:411-421.

    [142]

    Robinson A C, Ducea M, Lapen T J. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir[J]. Tectonics, 2012, 31(2):531-535.

    [143]

    Zhang Z M, Zhao G C, Santosh M, et al. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 2010, 28(7):719-733.

    [144]

    Zhang Z, Dong X, Xiang H, et al. Building of the Deep Gangdese Arc, South Tibet:Paleocene Plutonism and Granulite-Facies Metamorphism[J]. Journal of Petrology, 2013, 54(12):2547-2580.

    [145]

    Li H, Xue L, Brodsky E E, et al. Long-term temperature records following the Mw 7.9 Wenchuan (China) earthquake are consistent with low friction[J]. Geology, 2015, 43(2):163-166.

    [146]

    Kuo L W, Li H, Smith S A F, et al. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake[J]. Geology, 2014, 42(1):47-50.

    [147]

    Xue L, Li H B, Brodsky E E, et al. Continuous Permeability Measurements Record Healing inside the Wenchuan Earthquake Fault Zone[J]. Science, 2013, 340:1555-1559.

    [148]

    Hou Z, Yang Z, Qu X, et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 2009, 36(s 1-3):25-51.

    [149]

    Hou Z, Zheng Y, Yang Z, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2012, 48(2):173-192.

    [150]

    Hou Z, Yang Z, Lu Y, et al. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3):247-250.

    [151]

    Hou Z, Liu Y, Tian S, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5.

    [152]

    Hou Z, Zhang H, Pan X, et al. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust:examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39(1):21-45.

    [153]

    Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction:Contrasting modes for the formation and exhumation of high-to ultrahigh-pressure rocks in continental collision zones[J]. Earth & Planetary Science Letters, 2011, 301(s 1-2):65-77.

    [154]

    Li Z H, Xu Z, Gerya T, et al. Collision of continental corner from 3-D numerical modeling[J]. Earth & Planetary Science Letters, 2013, 380:98-111.

    [155]

    Li Z H, Liu M Q, Gerya T. Material transportation and fluidmelt activity in the subduction channel:Numerical modeling[J]. Science China (Earth Science), 2015, 58(08):1-18.

    [156]

    Li Z H. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation[J]. Science China Earth Sciences, 2014, 57(1):47-69.

    [157]

    Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath southern Tibet:Synthesis of project INDEPTH results[J]. Science, 1996, 274(5293):1684-1688.

    [158]

    Thomas J. Owens, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 1997, 387(6628).

    [159]

    Roecker S W. Velocity structure of the Pamir-Hindu Kush Region:Possible evidence of subducted crust[J]. Journal of Geophysical Research Atmospheres, 1982, 87(B2):945-959.

    [160]

    Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth & Planetary Science Letters, 2007, 259(1/2):212-225.

    [161]

    Mukherjee B K, Sachan H K, Ogasawara Y, et al. Carbonate-Bearing UHPM Rocks from the Tso-Morari Region, Ladakh, India:Petrological Implications[J]. International Geology Review, 2003, 2003(1):49-69.

图(37)  /  表(1)
计量
  • 文章访问数:  9617
  • HTML全文浏览量:  506
  • PDF下载量:  18652
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-24
  • 修回日期:  2016-01-06
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-02-24

目录

/

返回文章
返回
x 关闭 永久关闭