• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

浙江南部丽水盆地地层时代及构造演化

马之力, 李建华, 张岳桥, 董树文, 宋传中, 李勇

马之力, 李建华, 张岳桥, 董树文, 宋传中, 李勇. 浙江南部丽水盆地地层时代及构造演化[J]. 中国地质, 2016, 43(1): 56-71.
引用本文: 马之力, 李建华, 张岳桥, 董树文, 宋传中, 李勇. 浙江南部丽水盆地地层时代及构造演化[J]. 中国地质, 2016, 43(1): 56-71.
MAZhi-li, LI Jian-hua, ZHANG Yue-qiao, DONG Shu-wen, SONG Chuan-zhong, LI Yong. Geochronological and structural constraints on the litho-stratigraphic units of the Lishui Basin, southeastern China[J]. GEOLOGY IN CHINA, 2016, 43(1): 56-71.
Citation: MAZhi-li, LI Jian-hua, ZHANG Yue-qiao, DONG Shu-wen, SONG Chuan-zhong, LI Yong. Geochronological and structural constraints on the litho-stratigraphic units of the Lishui Basin, southeastern China[J]. GEOLOGY IN CHINA, 2016, 43(1): 56-71.

浙江南部丽水盆地地层时代及构造演化

基金项目: 

中国地质调查局地质调查项目(12120115069501)

国家自然科学基金项目(41502197)

中国地质科学院地质力学研究所基本科研业务项目(DZLXJK201403)和国家专项"深部探测与实验研究"(SinoProbe-08-01)联合资助。

详细信息
    作者简介:

    马之力,男,1989年生,硕士生,矿物学、岩石学、矿床学专业;E-mail:mzl7777@163.com。

    通讯作者:

    张岳桥,男,1963年生,研究员,博士生导师,从事构造地质、盆地分析和活动构造研究工作

  • 中图分类号: P597.3;P553;P534.53

Geochronological and structural constraints on the litho-stratigraphic units of the Lishui Basin, southeastern China

Funds: 

Supported by China Geological Survy Program(No. 12120115069501), National Natural Science Foundation of China (No. 41502197), Institute of Geomechanics, Chinese Academy of Geological Sciences Basic Scientific Research Program (No. DZLXJK201403) and National Science and Technology Major Project "Deep Exploration and Research"(No. SinoProbe-08-01).

undefined

undefined

  • 摘要: 位于浙江南部的丽水盆地是华南东部典型的白垩纪火山岩盆地。对盆地中5个凝灰岩夹层样品进行了锆石LA-MC-ICPMS U-Pb同位素年代学分析,结果给出了(114±1) Ma, (114±2) Ma,(118±1) Ma, (122±1) Ma和(112±1)Ma的主体谐和年龄。结合区域沉积-构造接触关系,本文将盆地内火山-沉积序列分为上、下2个组合:下火山-沉积组合包括馆头组和朝川组,其形成时代在124~112 Ma;上火山-沉积组合以方岩组为代表,其时代在104~91 Ma。这两套岩石组合的形成记录了盆地两期伸展断陷事件。结合区域构造变形和古构造应力场反演结果,本文认为丽水盆地早白垩世经历了两个伸展-挤压旋回的构造演化过程,每一旋回的古构造应力场均以NW-SE伸展和NWSE挤压应力场的交替演化为特征。NW-SE伸展事件控制了盆地的初始张开、断陷和沉积物充填作用,其产生的动力背景与古太平洋板块俯冲过程中因俯冲板片后撤(roll-back)诱发的弧后扩张作用有关。NW-SE挤压事件导致盆地的构造反转,下白垩统普遍褶皱,并形成区域角度不整合面,其形成与俯冲板片的深部几何学变化或大陆碰撞的远程效应有关。丽水盆地伸展-挤压事件的幕式交替反映了弧后扩张过程中复杂的深部动力学背景。
    Abstract: The Lishui Basin is a typical Cretaceous volcanic basin developed in Zhejiang Province of southeastern China. Five rock samples collected from interbedded volcanic tuffs of this basin were analyzed by using LA-MC-ICPMS zircon U-Pb method, which yielded weighted mean 206Pb/238U ages of (114±1) Ma, (114±2) Ma, (118±1) Ma, (122±1) Ma and (112±1) Ma, respectively.These dating results, in conjunction with regional sedimentary and structural contact relationships, led the authors to divide the volcano-sedimentary sequences into two rock suites:the lower rock suite, consisting of Guantou and Chaochuan Formations, was deposited in 124-112 Ma, whereas the upper rock suite, corresponding to Chaochuan Formation, was deposited in 104-91 Ma. Their generations resulted from two stages of crustal extensional events during the Early Cretaceous. These sedimentary data, coupled with structural analysis and tectonic stress field inversion, support the argument that the Lishui basin underwent two cycles of tectonic evolution, and each was dominated by alternate stress episodes of NW-SE extension and NW-SE compression. The NW-SE extension accommodated the initial opening and sediment infilling of the basin, which might have originated from the back-arc extension induced by the rollback of the subducted Paleo-Pacific slab during the Early Cretaceous. The NW-SE compression led to tectonic inversion, and was responsible for the unconformity between the Upper and Lower Cretaceous strata, which was probably associated with the variations of the subducted slab dynamics or the collision between the eastern Asian margin and the West Philippine Block. The alternate extensional and compressional episodes reflect variation of geometries and dynamics of subducted slab in a back-arc extensional setting.
  • 图  1   华南大陆白垩纪盆地、岩浆岩和断裂分布简图

    Figure  1.   Simplified geological map showing the distribution of Cretaceous basins, magmatic rocks and faults of South China

    图  2   华南东部浙江省白垩纪火山岩盆地、岩浆和断裂分布简图

    Figure  2.   Simplified structural map showing the distribution of volcanic basins, magmatic rocks and faults in Zhejiang Province of southeast China

    图  3   丽水盆地构造刚要图和古构造应力场反演结果(A)、横穿丽水盆地构造剖面(B)及四期构造应力场主应力轴极密值统计图(C)

    Figure  3.   (A) Simplified geological map of the Lishui basin, and computed stress axes from fault slip analyses showing alternate extensional and compressional regimes prevailing during basin formation and development; (B) Cross section based on field observations and measurements showing structural styles of the Lishui basin; (C) Stereonet showing statistical analyses of three principal stress axes and yielding four stages of tectonic stress field.σ1,σ2, and σ3 represent maximum, intermediate and minimum compressive stress, respectively

    图  4   丽水盆地野外地层岩性组成及构造变形照片

    A—老竹地堑馆头组砂泥岩;B—老竹地堑朝川组流纹岩;C—老竹地堑朝川组球泡流纹岩;D—老竹地堑方岩组砾岩;E—岩寨地堑地层陡立

    Figure  4.   Field views showing lithological compositions and structures of the strata in the Lishui Basin

    A-Guantou sandstone and mudstone, Laozhu graben; B-Chaochuan rhyolite, Laozhu graben; C-Chaochuan globular rhyolite, Laozhu graben; D-Fangyan conglomerate, Laozhu graben; E-Steep-dipping volcano-sedimentary strata, Yanzhai graben

    图  5   老竹、碧湖和岩寨地堑地层柱状对比分析图

    Figure  5.   Representative stratigraphic columns showing the petrology, thickness and geochronology of major rock series in the Laozhu, Bihu and Yanzhai grabens

    图  6   丽水盆地夹层凝灰岩锆石阴极发光图像和LA-MC-ICPMS锆石U-Pb年龄谐和图

    Figure  6.   Cathodoluminescence (CL) images and zircon U-Pb concordia diagrams of the volcanic rocks within Lishui basin. MSWD, mean square of weighted deviates

    图  7   华南东部白垩纪火山岩盆地地层柱状对比图

    Figure  7.   Regional comparisons between stratigraphic columns of the Lishui, Yongkang, Shengzhou, Tiantai and Qinqu basins in eastern South China

    图  8   丽水盆地野外构造变形照片

    A—盆地内正断层(F1,F2)产状与地层(S0)产状; B,C,D—断层面上发育的擦痕(箭头指向代表对盘运动方向)

    Figure  8.   Field views showing structure styles of the Lishui Basin

    A-Field view of the NE-trending normal faults (F1,F2) and the attitude of strata (S0) in the Lishui basin; B,C,D-Field view of the striations on faults (the arrows point to the direction of the other side of the fault)

    表  1   丽水盆地火山岩锆石LA-MC-ICPMS分析数据

    Table  1   LA-MC-ICPMS zircon U-Pb isotopic data of zircons form the volcanic rocks within the Lishui basin

    点号 Th/10-6 U/10-6 Pb*/10-6 Th/U 207Pb*/206Pb* 1σ 207Pb*/235U 1σ 206Pb*/238U 1σ 206Pb/238U年龄/Ma
    WYS08-1    岩寨地堑凝灰岩
    wys08.1 403 211 4.2 1.909 0.0508 0.0383 0.1235 0.0764 0.0176 0.0002 113±1.3
    wys08.2 126 151 2.4 0.835 0.0593 0.0042 0.1442 0.0104 0.0176 0.0002 113±1.5
    wys08.3 102 130 2.3 0.787 0.0488 0.0040 0.1251 0.0103 0.0186 0.0003 119±1.8
    wys08.4 159 142 2.5 1.120 0.0485 0.0045 0.1202 0.0113 0.0180 0.0003 115±1.7
    wys08.5 225 174 2.9 1.287 0.0497 0.0024 0.1225 0.0061 0.0179 0.0002 114±1.5
    wys08.6 235 170 2.9 1.382 0.0516 0.0036 0.1273 0.0088 0.0179 0.0002 114±1.5
    wys08.7 162 144 2.4 1.130 0.0647 0.0037 0.1643 0.0095 0.0184 0.0002 118±1.6
    wys08.8 83 104 1.8 0.793 0.0545 0.0068 0.1354 0.0168 0.0180 0.0003 115±1.7
    wys08.9 190 149 2.4 1.272 0.0566 0.0034 0.1379 0.0085 0.0177 0.0002 113±1.5
    wys08.10 244 199 3.2 1.222 0.0575 0.0033 0.1362 0.0079 0.0172 0.0002 110±1.4
    wys08.ll 172 178 3.0 0.969 0.0525 0.0045 0.1246 0.0105 0.0172 0.0002 110±1.4
    wys08.12 212 188 3.0 1.127 0.0623 0.0029 0.1493 0.0075 0.0174 0.0002 111±1.5
    wys08.13 129 135 2.2 0.953 0.0629 0.0042 0.1559 0.0106 0.0180 0.0003 115±1.8
    wys08.14 133 125 2.1 1.067 0.0675 0.0047 0.1704 0.0126 0.0183 0.0003 117±2.1
    wys08.15 189 181 3.1 1.047 0.0509 0.0038 0.1243 0.0094 0.0177 0.0002 113±1.5
    wys08.16 127 126 2.2 1.009 0.0682 0.0044 0.1739 0.0118 0.0185 0.0003 118±2.0
    wys08.17 193 159 2.7 1.216 0.0696 0.0074 0.1789 0.0192 0.0186 0.0004 119±2.5
    wys08.18 410 383 6.2 1.069 0.0500 0.0019 0.1222 0.0048 0.0177 0.0002 113±1.3
    WYS 09-1    岩寨地堑凝灰岩
    wys09.1 102 132 2.2 0.775 0.0689 0.0033 0.1715 0.0086 0.0180 0.0002 115±1.6
    wys09.2 85 110 1.8 0.771 0.0616 0.0052 0.1528 0.0127 0.0180 0.0003 115±1.8
    wys09.3 329 265 4.5 1.243 0.0495 0.0022 0.1201 0.0056 0.0176 0.0002 112±1.3
    wys09.4 136 157 2.7 0.866 0.0842 0.0036 0.2125 0.0095 0.0183 0.0002 117±1.5
    wys09.5 114 132 2.1 0.863 0.0522 0.0035 0.1265 0.0087 0.0176 0.0002 112±1.5
    wys09.6 119 141 2.5 0.842 0.1093 0.0050 0.2738 0.0121 0.0182 0.0003 116±1.7
    wys09.7 129 146 2.4 0.886 0.0689 0.0030 0.1693 0.0077 0.0178 0.0003 114±1.6
    wys09.8 104 126 2.1 0.826 0.0491 0.0042 0.1222 0.0105 0.0181 0.0003 115±1.6
    wys09.9 164 144 2.4 1.139 0.0716 0.0042 0.1768 0.0109 0.0179 0.0002 114±1.5
    wys09.10 126 124 2.2 1.013 0.0728 0.0047 0.1890 0.0127 0.0188 0.0003 120±1.7
    wys09.ll 171 151 2.4 1.134 0.0503 0.0028 0.1228 0.0069 0.0177 0.0002 113±1.5
    wys09.12 207 166 2.7 1.243 0.0653 0.0029 0.1566 0.0073 0.0174 0.0002 111±1.3
    ZJ66    老竹地堑凝灰岩
    zj66.1 57 66 1.2 0.859 0.0490 0.0029 0.1215 0.0073 0.0180 0.0003 115±1.7
    zj66.2 51 73 1.5 0.697 0.0485 0.0069 0.1263 0.0158 0.0189 0.0003 120±1.8
    zj66.3 44 65 1.4 0.675 0.0502 0.0064 0.1313 0.0164 0.0190 0.0003 121±1.9
    zj66.4 46 84 1.6 0.543 0.0491 0.0046 0.1227 0.0115 0.0181 0.0002 116±1.5
    zj66.5 46 58 1.2 0.795 0.0509 0.0044 0.1322 0.0112 0.0188 0.0003 120±2.2
    zj66.6 65 81 1.5 0.797 0.0492 0.0018 0.1248 0.0046 0.0184 0.0002 117±1.5
    zj66.7 40 63 1.2 0.633 0.0503 0.0048 0.1286 0.0117 0.0186 0.0003 119±1.8
    zj66.8 37 62 1.1 0.588 0.0517 0.0069 0.1292 0.0171 0.0181 0.0003 116±2.0
    zj66.9 62 84 1.6 0.734 0.0484 0.0057 0.1216 0.0141 0.0182 0.0003 116±1.6
    zj66.10 44 78 1.5 0.567 0.0498 0.0059 0.1267 0.0147 0.0185 0.0002 118±1.6
    zj66.ll 76 91 1.8 0.834 0.0492 0.0040 0.1268 0.0102 0.0187 0.0002 119±1.5
    zj66.12 28 52 0.9 0.540 0.0493 0.0030 0.1265 0.0075 0.0186 0.0003 119±2.1
    zj66.13 31 61 1.2 0.514 0.0488 0.0053 0.1298 0.0136 0.0193 0.0003 123±2.0
    zj66.14 37 63 1.2 0.596 0.0491 0.0080 0.1288 0.0204 0.0190 0.0003 122±1.9
    zj66.15 47 67 1.1 0.704 0.0484 0.0037 0.1216 0.0096 0.0182 0.0003 116±2.2
    zj66.16 50 66 1.2 0.768 0.0494 0.0055 0.1272 0.0141 0.0187 0.0003 119±2.0
    zj66.17 69 80 1.4 0.862 0.0486 0.0043 0.1212 0.0106 0.0181 0.0003 115±1.9
    zj66.18 62 73 1.4 0.851 0.0494 0.0055 0.1251 0.0135 0.0183 0.0003 117±1.6
    zj66.19 42 60 1.0 0.706 0.0622 0.0055 0.1564 0.0140 0.0182 0.0004 117±2.2
    zj66.20 51 64 1.1 0.791 0.0487 0.0053 0.1192 0.0128 0.0177 0.0003 113±1.7
    zj66.21 82 95 1.9 0.866 0.0499 0.0114 0.1290 0.0283 0.0187 0.0002 120±1.5
    zj66.22 61 64 1.2 0.942 0.0497 0.0068 0.1261 0.0167 0.0184 0.0004 118±2.5
    ZJ90    岩寨地堑凝灰岩
    zj90.1 51 46 1.3 1.1154 0.0541 0.0075 0.1462 0.0240 0.0196 0.0007 125±4.2
    zj90.2 173 190 4.5 0.9059 0.0530 0.0036 0.1373 0.0098 0.0188 0.0003 120±1.7
    zj90.3 158 142 3.6 1.1122 0.0489 0.0026 0.1285 0.0080 0.0191 0.0003 122±1.9
    zj90.4 146 148 4.1 0.9827 0.0488 0.0023 0.1337 0.0077 0.0199 0.0003 127±2.0
    zj90.5 181 162 3.9 1.1185 0.0554 0.0019 0.1427 0.0056 0.0187 0.0002 119±1.2
    zj90.6 208 223 5.2 0.9330 0.0527 0.0013 0.1340 0.0038 0.0184 0.0002 118±1.5
    zj90.7 196 238 5.5 0.8244 0.0537 0.0015 0.1381 0.0045 0.0186 0.0002 119±1.2
    zj90.8 144 118 3.5 1.2283 0.0503 0.0038 0.1410 0.0132 0.0203 0.0003 130±1.9
    zj90.9 165 161 4.2 1.0248 0.0510 0.0017 0.1347 0.0050 0.0191 0.0003 122±1.8
    zj90.10 340 150 4.7 2.2688 0.0564 0.0033 0.1450 0.0095 0.0187 0.0003 119±1.8
    zj90.ll 239 237 6.7 1.0063 0.0441 0.0014 0.1221 0.0055 0.0201 0.0003 128±1.9
    zj90.12 244 191 4.9 1.2776 0.0500 0.0026 0.1284 0.0076 0.0186 0.0002 119±1.5
    zj90.13 329 132 3.9 2.4927 0.0487 0.0023 0.1277 0.0069 0.0190 0.0002 121±1.6
    zj90.14 111 69 2.1 1.6055 0.0538 0.0044 0.1413 0.0130 0.0190 0.0004 122±2.6
    zj90.15 287 248 6.9 1.1551 0.0448 0.0030 0.1229 0.0104 0.0199 0.0004 127±2.6
    zj90.16 52 110 2.6 0.4710 0.0481 0.0031 0.1336 0.0097 0.0202 0.0004 129±2.7
    zj90.17 207 197 4.8 1.0509 0.0564 0.0015 0.1457 0.0044 0.0187 0.0002 120±1.1
    zj90.18 234 203 5.2 1.1555 0.0462 0.0018 0.1207 0.0054 0.0189 0.0002 121±1.2
    zj90.19 139 130 3.2 1.0691 0.0483 0.0031 0.1258 0.0091 0.0189 0.0003 121±1.7
    zi90.20 107 128 2.9 0.8395 0.0518 0.0023 0.1357 0.0065 0.0190 0.0002 121±1.6
    zj90.21 658 255 8.0 2.5841 0.0527 0.0015 0.1356 0.0045 0.0187 0.0002 119±1.2
    zj90.22 261 224 6.4 1.1667 0.0511 0.0026 0.1409 0.0121 0.0200 0.0004 128±2.5
    zj90.23 178 194 4.8 0.9183 0.0513 0.0020 0.1339 0.0061 0.0189 0.0002 121±1.2
    zj90.24 171 145 4.2 1.1803 0.0472 0.0022 0.1305 0.0071 0.0200 0.0002 128±1.3
    zj90.25 256 229 5.3 1.1179 0.0501 0.0014 0.1310 0.0040 0.0190 0.0002 121±1.5
    zj90.26 91 66 2.5 1.3748 0.0506 0.0049 0.1408 0.0199 0.0202 0.0006 129±3.5
    zj90.27 101 101 2.9 0.9952 0.0499 0.0033 0.1382 0.0117 0.0201 0.0004 128±2.7
    zj90.28 241 99 3.3 2.4450 0.0452 0.0036 0.1251 0.0116 0.0201 0.0004 128±2.3
    zj90.29 323 226 6.7 1.4320 0.0483 0.0013 0.1343 0.0050 0.0202 0.0003 129±1.7
    zj90.30 131 132 3.7 0.9927 0.0447 0.0024 0.1244 0.0081 0.0202 0.0003 129±1.9
    ZJ93    岩寨地堑凝灰岩
    ZJ93.1 1093 506 8.9 2.162 0.0496 0.0011 0.1175 0.0028 0.0172 0.0002 110±1.1
    ZJ93.2 443 376 6.6 1.179 0.0498 0.0020 0.1214 0.0051 0.0177 0.0002 113±1.1
    ZJ93.3 791 426 7.8 1.857 0.0489 0.0015 0.1158 0.0036 0.0172 0.0002 110±1.1
    zj93.4 560 360 6.2 1.556 0.0497 0.0017 0.1176 0.0043 0.0172 0.0002 110±1.1
    zj93.5 503 424 7.5 1.184 0.0485 0.0020 0.1156 0.0052 0.0173 0.0002 110±1.1
    ZJ93.6 430 310 5.7 1.386 0.0493 0.0026 0.1190 0.0065 0.0175 0.0002 112±1.1
    zj93.7 383 333 6.2 1.150 0.0489 0.0033 0.1199 0.0080 0.0178 0.0002 114±1.1
    zj93.8 536 523 9.4 1.025 0.0498 0.0016 0.1213 0.0041 0.0177 0.0002 113±1.1
    zj93.9 470 415 7.1 1.132 0.0486 0.0017 0.1187 0.0044 0.0177 0.0002 113±1.1
    zj93.10 517 440 7.4 1.177 0.0495 0.0016 0.1197 0.0043 0.0175 0.0002 112±1.1
    zj93.ll 469 395 7.1 1.189 0.0494 0.0020 0.1207 0.0050 0.0177 0.0002 113±1.1
    zj93.12 410 356 5.7 1.151 0.0532 0.0018 0.1283 0.0050 0.0175 0.0002 112±1.2
    zj93.13 287 336 6.2 0.855 0.0494 0.0039 0.1219 0.0097 0.0179 0.0002 114±1.2
    zj93.14 555 467 8.8 1.188 0.0491 0.0019 0.1189 0.0047 0.0176 0.0002 112±1.1
    zj93.15 1133 552 11.0 2.054 0.0509 0.0017 0.1209 0.0041 0.0172 0.0002 110±1.1
    zj93.16 313 203 3.9 1.540 0.0494 0.0031 0.1222 0.0076 0.0179 0.0002 115±1.4
    zi93.17 323 292 4.9 1.107 0.0495 0.0015 0.1189 0.0038 0.0174 0.0002 111±1.1
    注:Pb*表示放射性铅;普通铅校正采用208Pb校正法。
    下载: 导出CSV

    表  2   丽水盆地断层滑动矢量与构造应力场反演结果

    Table  2   Results of fault-slip analysis and calculated stress fields dominating the formation and development of the Lishui Basin

    位置 岩性 擦痕数 σ1(az/pl) σ2(az/pl) σ3(az/pl) R=(σ2-σ1)/(σ3-σ1) 构造应力场
    Zj89b2 砂岩(永康群) 5 255745° 105740° 2715° 0.87 NE-SW挤压
    Zj99c 火山岩(早白垩世) 19 82728° 227756° 343716° 0.655
    ZjlOlb 砾岩(永康群) 11 259714° 358732° 148753° 0.873
    Zjl02b2 火山岩(早白垩世) 5 264°2° 5778° 174710° 0.383
    Zj91b 砂岩(永康群) 8 51784° 28273° 19274° 0.83 N-S伸展
    Zj94 火山岩(早白垩世) 16 355778° 9672° 186711° 0.496
    Zj95b 砂岩(永康群) 5 46751° 31471° 222738° 0.455
    Zj97b 火山岩(早白垩世) 6 157777° 26874° 359711° 0.496
    Zj99b 火山岩(早白垩世) 5 8777° 25774° 166711° 0.141
    ZjlOO 粉砂岩(永康群) 5 169777° 27072° 1712° 0.558
    ZjlOla 砾岩(永康群) 7 184773° 8872° 357716° 0.676
    Zj90 火山岩(早白垩世) 6 14379° 27769° 236718° 0.823 MW—SE挤压
    Zj95a 砂岩(永康群) 6 141719° 349768° 23479° 0.968
    Zj97a 火山岩(早白垩世) 9 31370° 44714° 220775° 0.716
    Zj99a 火山岩(早白垩世) 15 12072° 215761° 28728° 0.725
    Zjl02a 火山岩(早白垩世) 6 134742° 340744° 237713° 0.875
    Zj4 砾岩(永康群) 4 62759° 262728° 16778° 0.622 NW-SE伸展
    Zj89a 砂岩(永康群) 5 91769° 19775° 289719° 0.388
    Zj91a 砂岩(永康群) 6 85762° 292724° 191711° 0.847
    Zj92 火山岩(早白垩世) 5 114771° 22276° 314717° 0.525
    Zj96 泥岩(永康群) 7 81764° 226721° 322713° 0.683
    注:σ1、σ2、σ3分别表示最大、中间和最小主应力轴方位;az、pl分别表示倾伏向、倾伏角。
    下载: 导出CSV
  • [1]

    McKenzie D. Active tectonics of Mediterranean region[J]. Geophysical Journal of the Royal Astronomical Society, 1972, 30:109-185.

    [2]

    Molnar P, Tapponnier P. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science, 1975, 189:419-426.

    [3]

    Ren J, Kensaku T, Lim S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344:175-205.

    [4]

    Li Jianhua, Zhang Yueqiao, Dong Shuwen, et al. Late Mesozoic-Early Cenozoic deformation history of the Yuanma Basin, central South China[J]. Tectonophysics, 2012, 570-571:163-183.

    [5] 吴根耀. 白垩纪:中国及邻区板块构造演化的一个重要变换期[J]. 中国地质, 2006, 33(1):64-77. Wu Genyao. Cretaceous:A key transition period of the plate tectonic evolution in China and its adjacent areas[J]. Geology in China, 2006, 33(1):64-77(in Chinese with English abstract).
    [6]

    Zhou Xinmin, Sun Tao, Shen Weizhou, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 2006, 29:26-33.

    [7]

    Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China Block:New insights from basin analysis[J]. Journal of Asian Earth Sciences, 2009, 34:376-391.

    [8]

    Gilder S A, Keller G R, Luo M, et al. Eastern Asia and the western pacific timing and spatial distribution of rifting in China[J]. Tectonophysics, 1991, 197:225-243.

    [9]

    Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research, 1996, 101:16137-16154.

    [10]

    Li Zhengxiang, Li, Xianhua. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model[J]. Geology, 2007, 35:179-182.

    [11]

    Jahn B M, Chen P Y, Yen T P. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance[J]. Geological Society of America Bulletin, 1976, 87(5):763-776.

    [12]

    Chen J F, Jahn B M. Crustal evolution of southeastern China:Nd and Sr isotopic evidence[J]. Tectonophysics, 1998, 284(1/2):101-133.

    [13]

    Zhou Xinmin, Li Wuxian. Origin of Late Mesozoic igneous rocks in southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326:269-287.

    [14]

    Li Xianhua. Cretaceous magmatism and lithosphere extension in southeast China[J]. Journal of Asian Earth Sciences, 2000, 18:293-305.

    [15]

    Li Jianhua, Zhang Yueqiao, Dong Shuwen, et al. Cretaceous tectonic evolution of South China:A preliminary synthesis[J]. Earth-Science Reviews, 2014, 134:98-136.

    [16]

    Li Jianhua, Ma Zhili, Zhang Yueqiao, et al. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China:Structural and geochronological constraints[J]. International Geology Review, 2014, 56(13):1602-1629.

    [17]

    Liu Q, Yu J H, Wang Q, et al. Ages and geochemistry of granites in the Pingtan-Dongshan Metamorphic Belt, Coastal South China:New constraints on late Mesozoic magmatic evolution[J]. Lithos, 2012, 150:268-286.

    [18] 汪建国, 余盛强, 胡艳华, 等. 江山-绍兴结合带榴闪岩的发现及岩石学、年代学特征[J]. 中国地质, 2014, 41(4):1356-1363. Wang Jianguo, Yu Shengqiang, Hu Yanhua, et al. The discovery, petrology and geochronology of the retrograde eclogite in Jiangshan-Shaoxing suture zone[J]. Geology in China, 2014, 41(4):1356-1363(in Chinese with English abstract).
    [19]

    Jiang Y H, Zhao P, Zhou Q, et al. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 2011, 121:55-73.

    [20] 罗来, 向芳, 田馨, 等. 浙江丽水老竹盆地白垩系沉积特征及沉积环境[J]. 沉积与特提斯地质, 2010, 30(2):19-25. Luo Lai, Xiang Fang, Tian Xin, et al. Sedimentary characteristics and environments of the Cretaceous deposits from the Laozhu Basin, Lishui Zhejiang[J]. Sedimentary Geology and Tethyan Geology, 2010, 30(2):19-25(in Chinese with English abstract).
    [21] 马武平. 论浙江中生代晚期地层划分[J]. 地层学杂志, 1994, 18(2):91-101. Ma Wuping. Divion of the Late Mesozoic strata in Zhejiang[J]. Journal of Stratigraphy, 1994, 18(2):91-101(in Chinese with English abstract).
    [22] 马武平. 浙江省中生代晚期地层多重划分对比新认识[J]. 中国区域地质, 1997, 16(2):12-18. Ma Wuping. New ideas about the stratigraphic division of the late Mesozoic in Zhejiang[J]. Regional Geology of China, 1997, 16(2):12-18(in Chinese with English abstract).
    [23] 蔡正全, 俞云文. 浙江白垩系上部地层的划分与对比[J]. 地层学杂志, 2001, 25(4):259-266. Cai Zhengquan, Yu Yunwen. Subdivision and correlation of the upper beds of the Cretaceous system in Zhejiang[J]. Journal of Stratigraphy, 2001, 25(4):259-266(in Chinese with English abstract).
    [24]

    He H Y, Wang X L, Wang Q, et al. SIMS zircon U-Pb dating of the Late Cretaceous dinosaur egg-bearing red deposits in the Tiantai Basin, southeastern China[J]. Journal of Asian Earth Sciences, 2013, 62:654-661.

    [25] 俞云文, 金幸生, 邬祥林, 等. 浙江恐龙和蛋化石的时代[J]. 中国地质, 2010, 37(1):94-100. Yu Yunwen, Jin Xingsheng, Wu Xianglin, et al. The epochs of dinosaurs and fossil eggs from Zhejiang Province[J]. Geology in China, 2010, 37(1):94-100(in Chinese with English abstract).
    [26] 李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP-MS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报,2009, (增刊):600-601. Li Huaikun, Geng Jianzhen, Hao Shuang, et al. A new study on using LA-MC-ICP-MS method to date zircon U-Pb isotopic age[J]. Acta Minalogica Sinica, 2009, (supp):600-601(in Chinese with English abstract).
    [27]

    Liu Yongsheng, Gao Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1&2):537-571.

    [28]

    Ludwig K R. ISOPLOT 3.00:A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromology Center Special Publication, 2003.

    [29]

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    [30] 浙江省地质矿产局. 浙江省区域地质志[M]. 北京:地质出版社, 1989:166-188. Zhejiang Bureau of Geology and Mineral Resources. Regional Geology of the Zhejiang Province[M]. Beijing:Geological Publishing House, 1989:166-188(in Chinese).
    [31] 汪庆华. 试论浙江建德群和磨石山群时代[J]. 火山地质与矿产, 2001, 22(3):163-169. Wang Qinghua. Discussion of ages of the Jiande Group and the Moshishan Group in Zhejiang[J]. Volcanology & Mineral Resources, 2001, 22(3):163-169(in Chinese with English abstract).
    [32] 刘季辰, 赵亚曾. 浙江西部之地质[R]. 地质汇报, 1927:9. Liu Jichen, Zhao Yazeng. Geology of Western Zhejiang[R]. Geological Report, 1927:9(in Chinese).
    [33] 顾知微. 中国侏罗纪地层对比表及说明书[M]. 北京:科学出版社, 1982:223-240. Gu Zhiwei. Stratigraphic Correlation and Description of the Jurassic Strata in China[M]. Beijing:Science Press,1982:223-240(in Chinese).
    [34] 罗以达, 俞云文. 试论永康群时代及区域地层对比[J]. 中国地质, 2004, 31(4):395-399. Luo Yida, Yu Yunwen. Age of the Yongkang Group and regional stratigraphic correlation[J]. Geology in China, 2004, 31(4):395-399(in Chinese with English abstract).
    [35] 俞云文, 徐步台. 浙江中生代晚期火山-沉积岩系层序和时代[J]. 地层学杂志, 1999, 23(2):58-67. Yu Yunwen, Xu Butai. Stratigraphical sequence and geochronology of the upper Mesozoic volcano-sedimentary rock series in Zhejiang[J]. Journal of Stratigraphy, 1999, 23(2):58-67(in Chinese with English abstract).
    [36] 崔玉荣, 谢智, 陈江峰, 等. 浙东晚中生代玄武岩的锆石SHRIMP U-Pb年代学及其地质意义[J]. 高校地质学报, 2010, 16(2):198-212. Cui Yurong, Xie Zhi, Chen Jiangfeng, et al. SHRIMP U-Pb dating of zircons from the Late Mesozoic basalts in eastern Zhejiang Province and its geological significance[J]. Geological Journal of China Universities, 2010, 16(2), 198-212(in Chinese with English abstract).
    [37]

    Mercier J L, Armijo R, Tapponnier P, et al. Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia collision[J]. Tectonics, 1987, 6(3):275-304.

    [38]

    Mercier J L, Sorel D, Simeakis K. Changes of the state of stress in the overriding plate of a subduction zone:The Aegean arc from the Pliocene to the Present[J]. Ann. Tecton., 1987, 1(1):20-39.

    [39]

    Carey E. Recherche des directions principales de contraintes associées au jeu d'une population de failles[J]. Revue de géologie dynamique et de Géographie Physique, 1979, 21:57-66.

    [40]

    Angelier J. Tectonic analysis of fault slip data sets[J]. Journal of Geophysical Research, 1984, 89:5835-5848.

    [41]

    Gapais D, Cobbodl P R, Bourgeois O, et al. Tectonic significance of fault-slip data[J]. Journal of Structural Geology, 2000, 22:881-888.

    [42]

    Sperner B, Zweigel P. A plea for more caution in fault-slip analysis[J]. Tectonophysics, 2010, 482:29-41.

    [43]

    Li Jianhua, Zhang Yueqiao, Dong Shuwen, et al. The Hengshan low angle normal fault zone:structural and geochronological constraints on the Late Mesozoiccrustal extension in South China[J]. Tectonophysics, 2013, 606:97-115.

    [44]

    Engebretson D, Cox A, Gordon R G. Relative plate motions between ocean and continental plates in the Pacific basin[J]. Geological Society of America Special Paper, 1985, 206:1-59.

    [45]

    Maruyama S, Seno T. Orogeny and relative plate motions:example of the Japanese Islands[J]. Tectonophysics, 1986, 127:305-329.

    [46]

    Charvet J, Faure M, Xu J W, et al. La zone tectonique de Changle-Nanao, Chine du sud-est[J]. C.R. Acad. Sci. Paris, 1990, 310(2):1271-1278.

    [47] 崔建军, 张岳桥, 董树文, 等. 华南陆缘晚中生代造山及其地质意义[J]. 中国地质, 2013, 40(1):86-105. Cui Jianjun, Zhang Yueqiao, Dong Shuwen, et al. Late Mesozoic orogenesis along the coast of Southeast China and its geological significance[J]. Geology in China, 2013, 40(1):86-105(in Chinese with English abstract).
    [48]

    Charvet J, Lapierre H, Yu Yunwen. Geodynamic significance of the Mesozoic volcanism of southeastern China[J]. Journal of Southeast Asian Earth Sciences[J], 1994, 9(4):387-396.

图(8)  /  表(2)
计量
  • 文章访问数:  3846
  • HTML全文浏览量:  546
  • PDF下载量:  4867
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-05
  • 修回日期:  2015-03-08
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭