• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究

国显正, 贾群子, 李金超, 孔会磊, 栗亚芝, 许荣科, 南卡俄吾

国显正, 贾群子, 李金超, 孔会磊, 栗亚芝, 许荣科, 南卡俄吾. 东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究[J]. 中国地质, 2016, 43(4): 1165-1177. DOI: 10.12029/gc20160404
引用本文: 国显正, 贾群子, 李金超, 孔会磊, 栗亚芝, 许荣科, 南卡俄吾. 东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究[J]. 中国地质, 2016, 43(4): 1165-1177. DOI: 10.12029/gc20160404
GUO Xian-zheng, JIA Qun-zi, LI Jin-chao, KONG Hui-lei, LI Ya-zhi, XU Rong-ke, Namhka Norbu. Geochemical characteristics and geochronology of porphyroid biotite monzogranite from the Reshui Mo polymetallic deposit, East Kunlun Mountains[J]. GEOLOGY IN CHINA, 2016, 43(4): 1165-1177. DOI: 10.12029/gc20160404
Citation: GUO Xian-zheng, JIA Qun-zi, LI Jin-chao, KONG Hui-lei, LI Ya-zhi, XU Rong-ke, Namhka Norbu. Geochemical characteristics and geochronology of porphyroid biotite monzogranite from the Reshui Mo polymetallic deposit, East Kunlun Mountains[J]. GEOLOGY IN CHINA, 2016, 43(4): 1165-1177. DOI: 10.12029/gc20160404

东昆仑热水钼矿区似斑状黑云母二长花岗岩元素地球化学及年代学研究

基金项目: 

中国地质调查局地质调查项目 12120113029000

中国地质调查局地质调查项目 12120115021501

中国地质调查局地质调查项目 DD20160013

详细信息
    作者简介:

    国显正, 男, 1990年生, 硕士生, 矿产普查与勘探专业, 从事成矿规律研究; E-mail:cuggxz@126.com

    通讯作者:

    贾群子, 男, 1962年生, 研究员, 从事矿床学和区域成矿规律研究; E-mail:xajqunzi@126.com

  • 中图分类号: P588.12+1;P597

Geochemical characteristics and geochronology of porphyroid biotite monzogranite from the Reshui Mo polymetallic deposit, East Kunlun Mountains

Funds: 

Supported by China Geological Survey programs 12120113029000

Supported by China Geological Survey programs 12120115021501

Supported by China Geological Survey programs DD20160013

More Information
    Author Bio:

    GUO Xian-zheng: GUO Xian-zhneg, male, born in 1990, master, engages in the study of metallogenic regularity; E-mail:cuggxz@126.com

    Corresponding author:

    JIA Qun-zi, male, born in 1962, professor, engages in the study of ore deposits and metallogenic regularity; E-mail:xajqunzi@126.com

  • 摘要:

    热水钼矿区处于东昆仑造山带东段,大地构造位置位于北昆仑岩浆弧,区内侵入岩较发育,其中与热水钼多金属矿密切相关的矿化似斑状黑云母二长花岗岩岩相学及地球化学数据显示,SiO2含量在67.64%~71.09%,铝饱和指数(A/CNK)为0.86~1.11,为准铝质到过铝质,K2O/Na2O值1.35~2.32,里特曼指数为1.73~1.99,属于高钾钙碱性I型花岗岩。岩石总体上富集大离子亲石元素Rb、Th、U、K、Pb等,明显亏损高场强元素Ta、Nb、Ce等,贫P、Ti。稀土元素总量(ΣREE)为94.27×10-6~127.44×10-6,平均为110.92×10-6,稀土元素配分曲线呈右倾型,具有较明显的轻稀土富集、重稀土亏损的特征,弱到中等程度的负铕异常。LA-ICP-MS锆石U-Pb年龄为(230.9±1.4)Ma,形成于印支期,钼多金属矿与这一时期岩浆活动密切相关。综合分析表明,似斑状黑云母二长花岗岩形成构造体制转换阶段,在热水地区具有寻找斑岩型矿床潜力。

    Abstract:

    The Reshui Mo polymetallic deposit is located at the North Kunlun magmatic arc, where lots of intrusive rocks occur. Geochemical data reveal that the porphyroid biotite monzogranite from East Kunlun is rich in silicon (67.64%-71.09%), Al2O3 (13.8%-14.57%), Na2O(2.23%-3.02%), and K2O(3.95%-5.18%), with ratios of K2O/Na2O being 1.35-2.32 and A/CNK being 0.86-1.11, 1.01 on average, suggesting that the granite should belong to high potassic calc-alkaline and I type granite. The porphyroid biotite monzogranite is intensively depleted in HFSE (Ta, Nb, mCe), enriched in LILE (Rb, Th, U, K, Pb), and poor in P, Ti. The total rare earth elements (ΣREE) are 94.27×10-6-127.44×10-6, with an average of 110.92×10-6. The rare earth element distribution curve shows the right-inclined type, and has characteristics of obvious enrichment of light rare earth and depletion of heavy rare earth elements. LA-ICP-MS zircon U-Pb dating shows that the formation age of the rock is (230.9±1.4) Ma, belonging to Indosinian stage. The molybdenum polymetallic deposit is closely related to the magmatic activity during this period. Based on tectonic history and the structure environment in combination with the geochemical characteristics, the authors hold that the porphyritic biotite monzonitic granite of the Reshui deposit was formed at the structural transformation stage, and Rershui area has potential for finding porphyry deposits.

  • 稀土(Rare earth)是元素周期表中镧系元素和钪、钇共17种金属元素的总称。稀土是重要的自然资源,更是宝贵且关键的战略资源,在民用和军事方面用途十分广泛,同时也是先进装备制造业、新能源、新兴产业等高新技术产业不可或缺的原材料。在全球范围内,稀土资源分布不均,其主要分布于美国、俄罗斯、中国、印度、巴西等国家。中国稀土储量约占世界总储量的23%,却承担了世界90%以上的市场供应(中华人民共和国国务院新闻办公室, 2012)。经半个多世纪的过度开采,中国稀土资源保有储量及保障年限不断下降,鉴于此,发现和利用新类型稀土矿,可有效提高中国稀土资源储量,有力保障国家稀土资源供给安全。

    稀土矿床按成因分类主要有碱性岩—碱性超基性岩型、碳酸岩型、花岗岩型、砂矿型以及风化壳型(徐光宪, 1995);按工业类型分类主要有稀土-磁铁矿矿床、含稀土碳酸岩矿床、花岗岩风化壳型稀土矿床、含稀土伟晶岩矿床、含稀土磷块岩矿床以及独居石砂矿床(矿产资源工业要求手册, 2014)。近年来,多位学者报道在贵州威宁地区二叠系宣威组一段黏土岩中富含稀土元素,但是由于该稀土资源的综合利用技术多年来未取得突破(黄训华, 1997; 张震和戴朝辉, 2010; 周灵洁, 2012),稀土元素的赋存状态、富集机理以及稀土矿床成因类型等方面存在较大争议。2018年以来,笔者在滇东—黔西地区开展地质调查,发现研究区内广泛发育的二叠系宣威组富稀土黏土岩系属沉积成因,有别于Wang et al.(2018)提及的南方离子吸附型稀土矿,而类似于文俊等(2021)报道的川南沐川地区宣威组底部古风化壳-沉积型铌、稀土矿,该新类型稀土矿具有矿石禀赋好、矿层厚度大且较连续、“关键稀土元素(Critical rare earth element; Pr, Nd, Tb, Dy)”占比较高等特点,并伴生有铌、锆、镓等有价元素,其中镓的平均品位高达70.5×10-6,高于工业品位(Zhang et al., 2010)。另外,在稀土资源开发利用方面取得了重大突破,针对该稀土资源研发了“选择性浸出”新工艺(徐璐等, 2020),使稀土回收率可达90%以上,该新类型稀土资源有望实现规模化工业利用。滇东—黔西地区沉积型稀土资源的发现与利用,将有力支撑国家关键稀土资源战略储备。

    滇东—黔西地区大地构造位置位于扬子板块西缘(潘桂棠等, 2009),以北西向康定—水城断裂、北东向弥勒—师宗深大断裂带以及近南北向小江断裂所挟持的三角形地带(图 1)。区内地层属华南地层大区的扬子地层区之上扬子地层分区,主体位于黔西北地层小区,部分涉及到云南的昭通地层小区及曲靖地层小区。晚中生代以前主要是海相碳酸盐岩及陆源硅质碎屑岩,以后则主要为陆相沉积。火成岩主要为海西晚期陆相溢流的峨眉山玄武岩及同源异相的浅成侵入岩。

    图  1  研究区大地构造位置图(据骆耀南, 1985; 张志斌等, 2006
    ①—怒江断裂;②—金沙江—红河断裂;③—鲜水河断裂;④—龙门山山前断裂;⑤—小金河断裂;⑥—箐河—程海断裂;⑦—安宁河—绿汁江断裂;⑧—小江断裂;⑨—康定—水城断裂;⑩—弥勒—师宗断裂
    Figure  1.  Sketch map showing geotectonic position of the research area (after Luo Yaonan, 1985; Zhang Zhibin et al., 2006)
    ①-Nujiang fault; ②-Jinsha River—Red River fault; ③-Xian Shui River fault; ④-Longmen Mountain piedmont fault; ⑤-Xiao Jian River fault; ⑥-Jing River—Chenghai fault; ⑦-Anning River—Lü zhi River fault; ⑧-Xiao River fault; ⑨-Kang ding—Shui cheng fault; ⑩-Mile—Shizong fault

    在研究区内采集了186件宣威组一段沉积型稀土矿石样品,正样经破碎研磨至200目,取缩分样50 g/件,送至中国地质科学院矿产综合利用研究所分析测试中心,利用电感耦合等离子体质谱仪(Perkinelmer Optima Nexion 350X)测得稀土配分数据;再取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点缩分样20 g/件,送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用X射线衍射仪(日本理学Ultima Ⅳ)测得主要矿物成分。选取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点矿石副样,块样用切割机(MecatomeT330)切成3 cm×1 cm×2 cm样品,用环氧树脂镶嵌制光片坯样;松散样经研磨至40目,用环氧树脂镶嵌制砂片坯样。以上坯样用自动磨抛机(EcomeT300)制得直径为3.5 cm圆柱形待测样品,将待测样品送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用英国蔡司(ZEISS)Sigma 500型场发射扫描电镜及配套的德国布鲁克能谱仪(EDS)获取数据,并应用矿物特征自动定量分析软件(AMICS)进行矿物参数全自动定量分析。

    研究区内富稀土岩系发育于二叠系宣威组一段(P3x1)。宣威组出露面积较广(图 2),北至昭通金阳—大关一带,向南经昭通、威宁一直延伸至宣威—六盘水等地,呈北窄南宽的形态展布。宣威组平行不整合于二叠系峨眉山玄武岩组(P2-3em)之上、整合于三叠系东川组(T1dc)之下,是一套乐平世滨岸及湖沼相与同期曲流河相伴生产出的沉积地层,并且多出现在河泛平原背景上,无独立的大型湖泊沉积体系(戴传固, 2017)。

    图  2  研究区地质简图
    Figure  2.  Sketch Geological map of the study area

    据笔者对威宁县哲觉镇小箐沟(东经103°59′ 08″,北纬26°36′37″)二叠系宣威组一段典型地层剖面(Pm201)研究,查明宣威组一段富稀土岩系主要为灰白色铝土质黏土岩与粉砂质黏土岩互层(图 3a、b),偶见植物碎屑,中部夹砾屑砂岩(图 3f),砾屑呈次圆状,粒度2~4 mm不等,由下往上砾屑粒度表现出粗—细—粗的渐变特征;岩石碎裂呈砂状、松散片状(图 3c),局部可见层理构造;稀土含量较高的岩石主要为铝土质黏土岩(图 3de)、粉砂质黏土岩(⑨~⑪层,⑬~⑮层)。

    图  3  贵州威宁哲觉镇宣威组一段(P3x1)剖面-柱状图
    a—宣威组一段典型剖面;b—宣威组一段柱状图;c、d、e—铝土质黏土岩;f—砾屑砂岩
    Figure  3.  Typical profile and histogram of the first part of Xuanwei Group (P3x1) in the Zhejue town of Weining area, Guizhou Province
    a-Typical section of the first part of Xuanwei Group; b-Histogram of the first passage of Xuanwei Group; c, d, e-Bauxitic clay rock; f-Gravel sandstone

    研究区沉积型稀土矿石主要为深灰—灰白色铝土质黏土岩(图 3cde),具微细粒—隐晶质结构、鳞片状、块状构造。据偏光显微镜、X射线衍射仪、扫描电镜(图 4a)、AMICS矿物分析系统等仪器综合测试分析,结果显示矿石由黏土矿物(高岭石≈83%、埃洛石≈2%、伊利石 < 1%、绿泥石 < 1%)、金属氧化物(锐钛矿≈5%、褐铁矿≈1%、磁铁矿 < 1%、水铝石 < 1%)、硅酸盐矿物(石英+蛋白石 < 4%、火山玻璃≈2%)、金属硫化物(黄铁矿≈0.2%)以及其他方解石、针铁矿等微量矿物组成(徐莺等, 2018)。另外,偶见极少量的氟碳铈矿(图 4b)、方铈矿、磷铝铈矿等独立稀土矿物,其总含量 < 0.1%;以及少量锆石、磷灰石、金红石等含稀土元素的非独立稀土矿物,其总含量 < 1%。

    图  4  稀土矿石扫描电镜照片
    a—扫描电镜照片;b—独立稀土矿物显微照片;Q—石英;Kl—高岭石;Lm—褐铁矿;Bsn—氟碳铈矿
    Figure  4.  Scanning electron microscope photograph of rare earth ores
    a-Scanning electron microscope photograph; b-Micrograph of independent rare earth minerals; Q-Quartz; Kl-Kaolinite; Lm-Limonite; BsnBastnaesite

    本文作者在研究区内优选二叠系宣威组(P3x)出露较好的区域,通过32个探槽工程、6个剥土工程地表控制及22个钻探工程深部验证,初步查明研究区二叠系宣威组(P3x)一段稀土矿层厚度2~18 m不等,单个矿石样品TREO含量最高为1.6%,圈定三处稀土矿找矿靶区(图 5):

    图  5  稀土矿找矿靶区分布图
    1—稀土矿体;2—断层;3—找矿靶区及其编号
    Figure  5.  Sketch map showing distribution of the target areas for rare earth ore
    1-Rare earth deposit; 2-Fault; 3-Target area for prospecting and its number

    (1)Ⅰ号找矿靶区:该靶区矿体形态呈层状、似层状,圈定一个矿体,矿体倾角26°~31°,矿体厚度2.96~18.92 m,矿体在地表出露较连续,沿走向延伸可达8 km,矿体TREO加权平均品位为0.21%(边界品位:0.18%,下同),该找矿靶区内推断资源量约4万t,矿床规模达小型。

    (2)Ⅱ号矿找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、三个矿体,矿体倾角12° ~17°,矿体TREO加权平均品位0.23% ~ 0.39%,矿体厚度5.85~9.23 m,其中主矿体沿倾向延伸可达1.6 km,该找矿靶区内推断资源量约25万t,矿床规模达中型,并具有达大型的潜力。

    (3)Ⅲ号找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、十个矿体,矿体倾角4° ~10°不等,矿体TREO加权平均品位0.18% ~ 0.46%,矿体厚度1.29~2.99 m。其中主矿体在地表出露连续,深部钻探控制也较稳定,沿倾向延伸可达2 km,该找矿靶区内推断资源量约2万t,矿床规模为小型。

    综上所述,该区稀土资源规模大,矿体埋藏浅,产状较缓且连续,有利于大规模露天开采。

    笔者在研究区内、找矿靶区以外的昭通、鲁甸、威宁炉山—东风—二塘、六盘水大湾、宣威大井等地(图 2),采集了宣威组一段铝土质黏土岩样品,分析结果显示均有稀土矿化异常,十余处稀土TREO品位超0.1%,最高品位0.42%,算数平均品位0.2%,矿体出露厚度2~6 m不等,推测滇东—黔西地区沉积型稀土资源找矿潜力巨大,远景资源量超100万t。

    物源区岩石经风化剥蚀形成的碎屑物质再搬运至沉积区沉积成岩,通常沉积岩继承了物源区岩石的稀土配分特征,风化和成岩作用对沉积岩中稀土元素再分配影响不大(Mclennan, 1993),所以稀土可作为一种有效的示踪物质。

    在研究区内优选4条宣威组典型剖面(Pm101、Pm104、Pm205、Pm207),逐层采集岩石样品,分别按玄武岩、铁质黏土岩、铝土质黏土岩、黏土质粉砂岩、炭质黏土岩和砾岩进行稀土元素球粒陨石标准化,从稀土配分模式(图 6)可以看出宣威组富稀土岩系中所有样品均与峨眉山玄武岩均具有相对富集轻稀土元素、亏损重稀土元素、呈现右倾模式的特征;不同的是,大部分铁质黏土岩、黏土质粉砂岩与玄武岩具有更加相近的配分模式,即都只表现出轻微的负Eu异常;而铝土质黏土岩层作为主要的含矿层却表现为明显的负Eu异常(田恩源等, 2020)。

    图  6  全岩球粒陨石稀土配分图(据田恩源等, 2020修改;标准化数值据Sun and McDonough, 1989)
    1—玄武岩;2—铁质粉砂质黏土岩;3—铝土质黏土岩;4—炭质粘土岩;5—黏土质粉砂岩;6—砂质砾岩
    Figure  6.  Chondrite-normalized REE patterns of the samples (modifiled from Tian Enyuan et al., 2020; standardized values modifiled from Sun and McDonough, 1989)
    1-Basalt; 2-Fe-Silty clay rock; 3-Bauxitic clay rock; 4-Carbonaceous clay rock; 5-Clayey siltstone; 6-Sandy conglomerate

    滇东—黔西地区沉积型稀土矿石中关键稀土元素(CREO)高于国内正在开发利用的四川冕宁碳酸岩型、白云鄂博碳酸岩型、山东微山碳酸岩型以及部分南方离子吸附型等大型、超大型稀土矿床,同样也高于国外即将开发利用的美国芒廷帕斯碳酸岩型、格陵兰岛碱性岩型等超大型稀土矿床。另外,该沉积型稀土资源与离子吸附型、古砂矿型稀土矿对比,在矿石品位、资源规模、集中程度、开采方式、环境影响等方面具有较大的优势,其开发前景巨大(图 7ab)。

    图  7  世界典型稀土矿床“关键稀土元素(CREE)”含量对比图(矿床序号如表 1所示)
    a—关键稀土元素含量-资源量对比图;b—关键稀土元素含量-矿石品位对比图
    Figure  7.  CREE content comparison diagram of typical rare earth deposits in the world (the sequence number of deposits is shown in Table 1)
    a-CREO-Resource comparison diagram; b-CREO-ore content comparison diagram
    表  1  世界典型稀土矿床对比表
    Table  1.  Comparison table of typical rare earth deposits in the world
    下载: 导出CSV 
    | 显示表格

    笔者开展该沉积型稀土矿原矿铵盐浸出对比实验,结果表明稀土原矿中仅有少量(< 5%)稀土元素以离子吸附状态赋存于矿石中。通过多轮技术攻关,利用选择性浸出技术控制焙烧温度和焙烧时间,准确破坏稀土矿中高岭石的特定结构,脱去其层状结构中的羟基,变为高活性的偏高岭石,但偏高岭石仍保持了片状的结构特征。焙烧温度低于550℃,高岭石未转化为偏高岭石,稀土无法有效浸出,焙烧温度高于850℃,高岭石结构被完全破坏,硅和铝晶型会发生变化,对稀土元素进行重新包裹,导致稀土元素无法有效浸出,焙烧过程中不使用添加剂避免产生额外的有害废气。该技术通过协同控制焙烧和浸出条件,选择性浸出偏高岭石中的稀土元素,稀土元素浸出率高于90%,同时主要杂质铝、铁、钛和硅浸出率均<5%,有效抑制杂质大量进入富稀土料液。该技术申请了国家发明专利(徐璐等, 2020)。该技术的推广应用,有望使研究区内的稀土资源实现规模化工业利用。

    滇东—黔西地区稀土矿的成因研究程度不高,且存在较大争议,目前主要有三种观点:一是风化淋滤型,杨瑞东等(2006)王伟(2008)以及Yang et al.(2008)通过分析稀土含矿层的地球化学特征,认为该矿床属与峨眉山玄武岩有关的风化壳型,峨眉山玄武岩及凝灰岩被强烈风化淋漓形成高岭石黏土岩,母岩中辉石的稀土元素被解析出来,被高岭石颗粒吸附,使稀土富集,形成稀土矿床;葛枝华(2018)同样赞同风化淋滤型稀土的观点,认为玄武岩风化过程实质就是一种脱硅富铝的过程,辉石、长石类矿物强烈分解,铁铝钛等氧化物明显增加,Ca、Na、Mg、K强烈迅速淋失,SiO2的含量不断降低,元素的迁移活动顺序是CaO>MgO>Na2O>SiO2,认为稀土元素通过风化淋滤作用在风化壳中不断富集起来。二是沉积-改造型,张海(2014)认为稀土矿床的形成与母岩的风化作用、沉积成岩作用以及地下流体作用有关,是沉积-再造型稀土矿床;黄训华(1997)周灵洁(2012)张海(2014)吴承泉等(2019)通过稀土物源、地球化学特征分析,认为稀土矿物源不仅是峨眉山玄武岩,还应包括后期喷发的中酸性火成岩,经风化剥蚀后形成富集稀土的玄武岩质、凝灰质及少量长英质碎屑,经水介质搬运至沉积盆地形成高岭石硬质黏土岩,成岩过程中遭受一定程度的热液蚀变,促进稀土元素再富集;三是部分学者通过对比研究二叠纪峨眉山玄武岩及其同期长英质凝灰岩的地球化学特征,认为稀土异常富集与峨眉山玄武岩同期的碱性岩浆活动产生的凝灰岩有关,并接受了后期低温热液改造(Xu et al., 2001; Zhou et al., 2002; Long et al., 2004; Dai et al., 2010; Zhao et al., 2016)。

    笔者研究发现,区域上宣威组富稀土岩系整体呈层状产出,从滇东到黔西横向演化和相变特征清晰;富稀土岩系底部常见河道相砾岩,辫状河沉积体系发育,层内偶见植物碎屑化石,层间发育水平层理等典型沉积构造;稀土含量较高的岩石主要为灰白色铝土质黏土岩,矿物组成主要为高岭石以及少量来自玄武岩及凝灰岩的典型矿物;由稀土配分模式看出铁质黏土岩和黏土质粉砂岩与玄武岩相比具有继承性,而铝土质黏土岩呈现出有别于玄武岩的明显负Eu异常特征(田恩源等, 2020);滇东—黔西地区位于上扬子陆块西缘,晚震旦世以来,长期处于相对稳定的台地沉积环境,区内无岩浆活动,不具备热液型稀土及南方离子吸附型稀土的成矿条件。基于以上认识,本文认为峨眉山玄武岩及同期的凝灰岩为富稀土岩系提供了主要的物质来源,而富稀土岩系中铝土质黏土岩很可能在沉积成岩过程中混入了大量上地壳富稀土物源区的物质,使得铝土质黏土岩中稀土异常富集。综上所述,本文认为滇东—黔西地区稀土资源成因类型为沉积型,是一种新类型的稀土资源。

    该稀土矿中稀土元素的赋存状态存在较大争议,前人分析矿石中稀土元素含量的高低可能与矿物组分有密切关系(周灵洁, 2012; Zhou et al., 2013; Zhang et al., 2016; Zhao et al., 2016, 2017; He et al., 2018)。在风化过程中,如果含稀土元素的副矿物抗风化能力弱,稀土元素则容易从副矿物中释放出来,以离子形式迁移富集于黏土矿物中,黏土矿物含量越高,稀土含量往往也相应比较高,稀土含量与黏土矿物含量就有较高的正相关性,据此推测认为稀土元素极有可能以离子吸附相和富含稀土元素的残余独立矿物相组成,与高岭石等黏土矿物含量密切相关;徐莺等(2018)利用电子探针、X射线衍射等现代分析测试手段并结合矿石选冶试验,认为稀土元素以类质同象为主、离子吸附相为辅的形式赋存于高岭石质黏土岩中;黄训华(1997)吴承泉等(2019)通过分析在强烈风化条件下母岩被解析形成的稀土元素可能存在的赋存状态,认为稀土元素可能以离子吸附态、胶体吸附态等的混合态赋存于高岭石硬质黏土岩中。以上研究并未提供确凿证据证明稀土元素赋存状态。本文作者开展多组原矿铵盐浸出对比实验,稀土元素浸出率不超过20%,间接说明了稀土原矿中以离子吸附态赋存的稀土元素占比很低;据矿石岩矿鉴定,查明以独立稀土矿物形式赋存的稀土元素占比<0.1%,以类质同像(非独立稀土矿物)形式赋存的稀土元素占比也很低;而通过550℃~850℃焙烧选择性浸出技术,准确破坏稀土元素载体矿物——高岭石的特定结构,稀土元素浸出率高于90%。基于以上研究,推测稀土元素极有可能以某种形态赋存于高岭石矿物晶体层间间隙中。

    随着全球新材料、新技术、新能源、高新电子、高端装备制造、先进军事装备等战略性产业迅猛发展,加快了对原材料的结构性调整,一批新兴战略性关键矿产成为各国竞相争夺的资源。根据稀土各元素特有的性质,轻稀土中的Pr、Nd,重稀土中的Tb、Dy等元素由于其在高强度永磁行业、新能源汽车产业、高端声光电材料等方面具备不可替代的地位,这些制约着全球新兴产业、高新科技健康发展的稀土元素称之为“关键稀土元素(CREE)”。据上海有色网公布的2020年6月稀土氧化物实时交易均价(据上海有色网未公布Tm2O3、Yb2O3、Lu2O3成交均价)显示(图 8),Pr、Nd、Tb、Dy关键稀土氧化物价格分别29.5万元/t、28.0万元/t、419万元/t、194万元/t,合计约占所有单一稀土氧化物价格总和的88%,可见关键稀土元素具有极高的经济价值和重要的战略地位。

    图  8  稀土氧化物价格对比柱状图
    Figure  8.  Price comparison bar chart of rare earth oxide

    滇东—黔西地区发现的沉积型稀土矿具有矿层厚、矿石品位高、资源潜力大、矿石中关键稀土元素(CREE)占比高等特点,特别是矿石选冶新工艺取得重大突破,使该类型稀土矿可能实现规模化工业利用。该沉积型稀土矿的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。

    (1)滇东—黔西地区发育于二叠系宣威组的稀土矿,其成因类型属沉积型。

    (2)稀土元素极有可能以某种形式赋存于高岭石矿物晶体层间间隙中。

    (3)该沉积型稀土矿具有矿体厚度大、矿石品位高、资源潜力大、开采成本低、矿石中关键稀土元素(CREO)占比高等优点,其开发利用前景较好。

    (4)该沉积型稀土资源的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。

    致谢: 感谢项目组成员在野外的协助,西北大学大陆重点实验室以及中国地质调查局西安地质调查中心国土资源部岩浆作用成矿与找矿重点实验室工作人员在实验及测试上的指导与支持,在此一并感谢。
  • 图  1   热水钼多金属矿地质简图(图a据[36, 37]修改)

    1—石炭系酸性熔岩组:浅肉红色流纹岩及灰绿色薄层粉砂岩,细砂岩夹灰岩;2—灰白—肉红色二长花岗岩;3—灰白—肉红色似斑状黑云母二长花岗岩;4—灰白色花岗闪长岩;5—灰绿色闪长岩、角闪闪长岩;6—断层;7—地质界线;8—铜矿化点;9—采样位置

    Figure  1.   Geological sketch map of the Reshui Mo polymetallic ore district

    1-Carboniferous acidic lava group: light red rhyolite and celadon thin layer siltstone, fine sandstone with limestone; 2-Grayish white-red monzonitic granite; 3-Grayish white and red porphyritic monzonitic granite; 4-Grayish white granodiorite; 5-Diorite, hornblende diorite; 6-Fault; 7-Geological boundary; 8-Copper mineralized site; 9-Sampling location

    图  2   热水似斑状黑云母二长花岗岩野外及镜下显微结构照片

    Kfs—钾长石;Mc—微斜长石;Pl—斜长石;Bt—黑云母;Q—石英

    Figure  2.   Outcrop picture and microstructure photographs of porphyroid biotite monzogranite from the Reshui ore district

    Kfs-K-feldspar; Mc-Microcline; Pl-Plagioclase; Bt-Biotite; Q-Quartz

    图  3   似斑状黑云母二长花岗岩的SiO2-K2O(a) [40]和A/CNK-A/NK(b)图解[41]

    Figure  3.   SiO2-K2O (a) [40] and A/CNK-A/NK (b) [41] diagrams of porphyroid biotite monzogranite

    图  4   似斑状黑云母二长花岗岩稀土元素配分模式图(球粒陨石标准化值据[42])

    Figure  4.   Chondrite-normalized REE patterns of porphyroid biotite monzogranite

    图  5   似斑状黑云母二长花岗岩微量元素蛛网图(原始地幔标准化值据[43])

    Figure  5.   Primitive mantle-mormoalized trace elemet spirder diagrams of porphyroid biotite monzogranite

    图  6   似斑状黑云母二长花岗岩锆石CL图像

    Figure  6.   Cl images of zircons from porphyroid biotite monzogranite

    图  7   似斑状黑云母二长花岗岩锆石U-Pb谐和图和加权平均年龄

    Figure  7.   Zircon U-Pb concordia diagram and histograms of weighted average ages of porphyroid biotite monzogranite

    图  8   似斑状黑云母二长花岗岩岩石类型判别图(底图据[50]

    Figure  8.   Porphyroid biotite monzogranite type discrimination diagram of the Reshui ore district (after[50])

    图  9   似斑状黑云母二长花岗岩SiO2-Mg#

    1—压力7 kbar,温度:825~950℃环境下纯地壳的局部熔融(据文献[59]);2—压力7~13 kbar,温度:825~950℃环境下纯地壳的局部熔融(据文献[60]);3—压力8~16 kbar,温度1000~1050℃环境下纯地壳的局部熔融(据文献[56])

    Figure  9.   Porphyroid biotite monzogranite of SiO2-Mg# diagram

    1-Pure crustal partial melt at 7kbar and 825~950℃(after reference [59]); 1-Pure crustal partial melt at 7~13 kbar and 825~950℃(after reference [60]; 3-Pure crustal partial melt at 8~16kbar and 1000~1050℃(after reference [56])

    表  1   热水似斑状黑云母二长花岗岩主量元素(%)

    Table  1   Major elements (%) of porphyroid biotite monzogranite

    下载: 导出CSV

    表  2   热水似斑状黑云母二长花岗岩微量元素(10-6)和稀土元素(10-6

    Table  2   Trace elements (10-6) and REE (10-6) of porphyroid biotite monzogranite

    下载: 导出CSV

    表  3   似斑状黑云母二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table  3   LA-ICP-MS zircon U-Th-Pb isotope analytical results of porphyroid biotite monzogranite

    下载: 导出CSV

    表  4   热水地区印支期含矿岩体(矿床)年龄及测试方法

    Table  4   Age of Indosinian ore-beariang rock mass and testing method

    下载: 导出CSV
  • [1] 袁万明, 莫宣学, 喻学惠, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2):203-211. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200002012.htm

    Yuan Wanming, Mo Xuanxue, Yu Xuehu, et al.The record of Indosinian tectonic setting from the granotoid of Eastern Kulun Mountains[J].Geological Review, 2000, 46(2):203-211(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200002012.htm

    [2] 姜春发.中央造山带几个重要地质问题及其研究进展(代序)[J].地质通报, 2002, 21(8):453-455. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2002Z2000.htm

    Jiang Chunfa.Several important geological problems of central orogenic belt and its research progress[J].Geological Bulletin of China, 2002, 21(8):453-455(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2002Z2000.htm

    [3] 刘成东.东昆仑造山带东段花岗岩岩浆混合作用[M].北京:地质出版社, 2008.

    Liu Chengdong.East Section of East Kunlun Orogenic Belt Granite Magma Mingling[M].Beijing:Geological Publishing House, 2008(in Chinese with English abstract).

    [4] 杜玉良, 贾群子, 韩生福.青海东昆仑成矿带中生代构造-岩浆-成矿作用及铜金多金属找矿研究[J].西北地质, 2012, 45(4):69-75.

    Du Yuliang, Jia Qunzi, Han Shengfu.Mesozoic tectonomagmatic-mineralization and copper-gold polymetallic ore prospecting research in east Kunlun Metallogenic Belt in Qinghai[J].Northwestern Geology, 2012, 45(4):69-75(in Chinese with English abstract).

    [5] 丰成友, 李东生, 吴正寿, 等.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质, 2010, 43(4):10-17. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201004004.htm

    Feng Chengyou, Li Dongsheng, Wu Zhengshou, et al.Major types, time-space distribution and metallogeneses of polymetallic deposits in the Qimantag Metallogenic Belt, Eastern Kunlun area[J].Northwestern Geology, 2010, 43(4):10-17(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201004004.htm

    [6] 丰成友, 赵一鸣, 李大新, 等.青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征[J].地质学报, 2011, 85(7):1108-1115. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107005.htm

    Feng Chengyou, Zhao Yiming, Li Daxin, et al.Skarn types and mineralogical characteristics of the Fe-Cu-polymetallic skarn deposits in the Qimantag area, Western Qinghai Province[J].Acta Geologica Sinica, 2011, 85(7):1108-1115(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107005.htm

    [7] 伍跃中, 乔耿彪, 陈登辉.东昆仑祁漫塔格地区构造岩浆作用与成矿关系初步探讨[J].大地构造与成矿学, 2011, 25(2):232-241. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102009.htm

    Wu Yuezhong, Qiao Gengbiao, Chen Denghui.A preliminary study on relationship between tectonic magmatism and mineralization in Qimantag area, Eastern Kunlun Mountains[J].Geotectonica et Metallogenia, 2011, 35(2):232-241(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201102009.htm

    [8] 武明德.青海省东昆仑燕山期斑岩型矿床成矿潜力研究[D].中国地质大学(北京), 2013. http://cdmd.cnki.com.cn/article/cdmd-11415-1014125461.htm

    Wu Mingde.Ore Potential of the Yanshanian Porphyry Deposit, East Kunun of Qinghai Province[D].China University of Geosciences (Beijing), 2013(in Chinese with English abstract). http://cdmd.cnki.com.cn/article/cdmd-11415-1014125461.htm

    [9] 许长坤, 刘世宝, 赵子基, 等.青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J].地质学报, 2012, 86(10):1621-1636. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201210007.htm

    Xu Changkun, Liu Shibao, Zhao Ziji, et al.Metallogenic law and prospect direction of iron deposists in the East Kunlun Metallogenic Belt in Qinghai[J].Acta Geologica Sinica, 2012, 86(10):1621-1636(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201210007.htm

    [10] 赵财胜.青海东昆仑造山带金、银成矿作用[D].长春:吉林大学, 2004. http://www.oalib.com/references/19182596

    Zhao Caisheng.Gold, Silver Metallogeny in Eastern Kunlun Orogenic Belt, Qinghai Province[D].Changchun:Jilin University, 2004(in Chinese with English abstract). http://www.oalib.com/references/19182596

    [11] 赵俊伟.青海东昆仑造山带造山型金矿床成矿系列研究[D].长春:吉林大学, 2008. http://www.oalib.com/references/18449192

    Zhao Junwei.Study on Orogenic Gold Mettallogenic Series in Eastern Kunlun Orogenic Belt, Qinghai Province[D].Changchun:Jilin University, 2008(in Chinese with English abstract). http://www.oalib.com/references/18449192

    [12] 张文秦.青海省东昆仑地区火成岩的岩石-地球化学基本特征及含矿性研究[D].中国地质大学(北京), 2003.

    Zhang Wenqin.The East Kunlun Area of Igneous Rock-Geochemical Characteristics and Ore Research, Qinghai Province[D].China University of Geosciences (Beijing), 2003(in Chinese with English abstract).

    [13] 张德全, 丰成友, 李大新, 等.柴北缘-东昆仑地区的造山型金矿床[J].矿床地质, 2001, 20(2):137-146.

    Zhang Dequan, Feng Chengyou, Li Daxin, et al.Orogenic gold deposits in the North Qaidam and East Kunlun Orogen, West China[J].Mineral Deposits, 2001, 20(2):137-146(in Chinese with English abstract).

    [14] 胡正国, 刘继庆, 钱壮志, 等.东昆仑区域成矿规律初步研究[J].黄金科学技术, 1998, 6(5):6-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ8Z1.001.htm

    Hu Zhengguo, Liu Jiqing, Qian Zhuangzhi, et al.A study of the regional metallogenetic regularity in East Kunlun Mountain[J].Gold Science and Technology, 1998, 6(5):6-13(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ8Z1.001.htm

    [15] 罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6):292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm

    Luo Zhaohua, Ke Shan, Cao Yongqing, et al Late Indosinian mantle-derived magmatism in the East Kunlun[J].Geological Bulletin of China, 2002, 21(6):292-297(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm

    [16] 王松, 丰成友, 李世金, 等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J].中国地质, 2009, 36(1):74-84. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20090105&flag=1

    Wang Song, Feng Chengyou, Li Shijin, et al.Zircon SHRIMP UPb dating of granodiorite in the Kaerqueka polymetallic ore deposist, Qimantag Mountain, Qinghai Province, and its geological implications[J].Geology in China, 2009, 36(1):74-84(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20090105&flag=1

    [17] 苏旭亮, 赵永亮, 赵闯, 等.东昆仑祁漫塔格克停哈尔斑岩型铜钼矿找矿突破思路及找矿模型[J].中国地质, 2014, 41(6):2048-2062. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20140619&flag=1

    Su Xuliang, Zhao Yongliang, Zhao Chuang, et al.Prospecting thinking and model for the Ketinghaer porphyry copper molybdenum deposit in the East Kunlun Mountains[J].Geology in China, 2014, 41(6):2048-2062(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20140619&flag=1

    [18] 刘建楠, 丰成友, 亓锋, 等.青海都兰县下得波利铜钼矿区锆石UPb测年及流体包裹体研究[J].岩石学报, 2012, 28(2):679-690. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202026.htm

    Liu Jiannan, Feng Chengyou, Qi Feng, et al.SIMS zircon U-Pb dating and fluid inclusion studies of Xiadeboli Cu-Mo ore district in Dulan County, Qinghai Province, China[J].Acta Petrologica Sinica, 2012, 28(2):679-690.(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202026.htm

    [19] 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2):665-678. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202025.htm

    Feng Chengyou, Wang Song, Li Guocheng, et al.Middle to Late Triassic granitoids in the Qimantag area, Qinghai Province, China:Chronology, geochemistry and metallogenic significances[J].Acta Petrologica Sinica, 2012, 28(2):665-678(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202025.htm

    [20] 姜常义, 凌锦兰, 周伟, 等.东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J].岩石学报, 2015, 31(4):1117-1136.

    Jiang Changyi, Lin Jinlan, Zhou Wei, et al.Petrogenesis of the Xiarihamu Nibearing layered mafic-ultramafic intrusion, East Kunlun:Implications for its extensional island arc environment[J].Acta Petrologica Sinica, 2015, 31(4):1117-1136(in Chinese with English abstract).

    [21] 杨延乾, 李碧乐, 许庆林, 等.东昆仑埃坑德勒斯特二长花岗岩锆石U-Pb定年及地质意义[J].西北地质, 2013, 46(1):56-62.

    Yang Yanqian, Li Bile, Xu Qinglin, et al.Zircon U-Pb ages and its geological significance of the monzonitic granite in the Aikengdelesite, Eastern Kunlun[J].Northwestern Geology, 2013, 46(1):56-62(in Chinese with English abstract).

    [22] 奚仁刚, 校培喜, 伍跃中, 等.东昆仑肯德可克铁矿区二长花岗岩组成、年龄及地质意义[J].西北地质, 2010, 43(4):195-202. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201004029.htm

    Xi Rengang, Xiao Peixi, Wu Yuezhong, et al.The geological significances, composition and age of the monzonitic granite in Kendekeke Iron Mine[J].Northwestern Geology, 2010, 43(4):195-202(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201004029.htm

    [23] 奥琮, 孙丰月, 李碧乐, 等.青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义[J].西北地质, 2014, 47(1):96-106.

    Ao Cong, Sun Fengyue, Li Bile, et al.Geochemistry, Zircon UPb dating and geological significance of diorite porphyrite in Xiarihamu Deposit, Eastern Kunlun Orogenic Belt, Qinghai[J].Northwestern Geology, 2014, 47(1):96-106(in Chinese with English abstract).

    [24] 杨延乾, 李碧乐, 许庆林, 等.东昆仑埃坑德勒斯特二长花岗岩锆石U-Pb定年及地质意义[J].西北地质, 2013, 46(1):56-62.

    Yang Yanqian, Li Bile, Xu Qinglin, et al.Zircon U-Pb ages and its geological significance of the monzonitic granite in the Aikengdelesite, Eastern Kunlun[J].Northwestern Geology, 2013, 46(01):56-62(in Chinese with English abstract).

    [25] 高永宝, 李文渊, 马晓光, 等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版), 2012, 48(2):36-47. http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201202008.htm

    Gao Yongbao, Li Wenyuan, Ma Xiaoguang, et al.Genesis, geoehronology and Hf isotopic compositions of the magmatic rocks in Galinge iron deposit, Eastern Kunlun[J].Journal of Lanzhou University (Natural Sciences)2012, 48(2):36-47(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201202008.htm

    [26] 赵财胜, 杨富全, 代军治.青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J].矿床地质, 2006, (S1):427-430. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1113.htm

    Zhao Caisheng, Yang Fuquan, Dai Junzhi.Metallogenic age of the Kendekeke Co, Bi, Au deposit in East Kunlun Mountains, Qinghai Province, and its significance[J].Mineral Deposits, 2006, (S1):427-430(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1113.htm

    [27] 肖晔, 丰成友, 刘建楠, 等.青海肯德可克铁多金属矿区年代学及硫同位素特征[J].矿床地质, 2013, 32(01):177-186. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201301016.htm

    Xiao Ye, Feng Chegyou, Liu Jiannan, et al.LA-MC-ICP-MS zircon U-Pb dating and sulfur isotope characteristics of Kendekeke Fe-polymetallic deposit, Qinghai Province[J].Mineral Deposits, 2013, 32(01):177-186(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201301016.htm

    [28] 丰成友, 王雪萍, 舒晓峰, 等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报(地球科学版), 2011, 41(6):1806-1817. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106014.htm

    Feng Chengyou, Wang Xueping, Shu Xiaofeng, et al.Isotopic chronology of the Hutouya skarn lead-zinc polymetailic ore district in Qimantag area of Qinghai Province and its geological significance[J].Journal of Jilin University (Earth Science Edition), 2011, 41(6):1806-1817(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106014.htm

    [29] 李世金, 孙丰月, 丰成友, 等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报, 2008, 82(7):949-955. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807015.htm

    Li Shijin, Sun Fengyue, Feng Chengyou, et al.Geochronological study on Yazigou polymetallic deposit in Eastern Kunlun, Qinghai Province[J].Acta Geological Sinica, 2008, 82(7):949-955(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807015.htm

    [30] 南卡俄吾, 贾群子, 李文渊, 等.青海东昆仑哈西亚图铁多金属矿区石英闪长岩LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征[J].地质通报, 2014, (6):841-849.

    Namhka Norbu, Jia Qunuzi, Li Wenyuan, et al.LA-ICP-MS zircon U-Pb age and geochemical characteristics of quartz diorite from the Haxiyatu iron-polymetallic ore district in Eastern Kunlun[J].Geological Bulletin of China, 2014, (6):841-849(in Chinese with English abstract).

    [31] 孔会磊, 李金超, 栗亚芝, 等.青海东昆仑东段按纳格闪长岩地球化学及锆石U-Pb年代学研究[J].地质科技情报, 2014, 33(6):11-17.

    Kong Huilei, Li Jinchao, Li Yanzhi, et al.Geochemistry and zircon U-Pb geochronology of annage diorite in the Eastern Section from East Kunlun in Qinghai Province[J].Geological Science and Technology Information, 2014, 33(6):11-17(in Chinese with English abstract).

    [32] 何书跃, 李东生, 李良林, 等.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J].大地构造与成矿学, 2009, 33(2):236-242.

    He Shuyue, Li Dongsheng, Li Lianglin, et al.Re-Os age of molybdenite from the Yazigou copper (molybdenum) mineralized area in Eastern Kunlun of Qinghai Province, and its geological significance[J].Geotectonica et Metallogenia, 2009, 33(2):236-242(in Chinese with English abstract).

    [33] 宋忠宝, 张雨莲, 陈向阳, 等.东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J].矿床地质, 2013, 32(1):157-168.

    Song Zhongbao, Zhang Yulian, Chen Xiangyang, et al.Geochemical characteristics of Harizha granite diorite-porphyry in East Kunlun and their geological implications[J].Mineral Deposits, 2013, 32(1):157-168(in Chinese with English abstract).

    [34] 许庆林.青海东昆仑造山带斑岩型矿床成矿作用研究[D].长春:吉林大学, 2014.

    Xu Qinglin.Study on Metallogenesis of Porphyry Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D].Changchun:Jilin University, 2014(in Chinese with English abstract).

    [35] 殷鸿福, 张克信.中央造山带的演化及其特点[J].地球科学, 1998, 23(5):437-442. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.000.htm

    Yin Hongfu, Zhang Kexin.The evolution of the central orogenic belt and its characteristics[J].Journal of Earth Science, 1998, 23(5):437-442(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.000.htm

    [36]

    Song Shuguang, Niu Yaoling, Su Li, et al.Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling:The example of the North Qaidam UHPM belt, NW China[J].Earth-Science Reviews, 2014, 129(1):59-84. http://cn.bing.com/academic/profile?id=2075328050&encoded=0&v=paper_preview&mkt=zh-cn

    [37] 许志琴, 姜枚, 杨经绥.青藏高原北部隆升的深部构造物理作用:以"格尔木-唐古拉山"地质及地球物理综合剖面为例[J].地质学报, 1996, 70(3):195-206.

    Xu Zhiqin, Jiang Mei, Yang Jingsui.Tectonophysical process at depth for the uplife of the Northern part of the Qinghai-Tibet Plateau:illustrated by the geological and geophysical comprehensive profile from Golmud to the Tanggula Mountains, Qinghai Province China[J].Acta Geologica Sinica, 1996, 70(3):195-206(in Chinese with English abstract).

    [38]

    Yuan Honglin, Gao Shan, Dai Mengning, et al.Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247(1/2):100-118. http://cn.bing.com/academic/profile?id=2001772043&encoded=0&v=paper_preview&mkt=zh-cn

    [39]

    Ludwig K R.Mathematical-statistical treatment of data and errors for 230Th/U geochronology[J].Reviews in Mineralogy &Geochemistry, 2003, 52(1)631-656. http://cn.bing.com/academic/profile?id=2011085792&encoded=0&v=paper_preview&mkt=zh-cn

    [40]

    Rickwood Peter C.Boundary lines within petrologic diagrams which use oxides of major and minor elements[J].Lithos, 1989, 22(4):247-263. doi: 10.1016/0024-4937(89)90028-5

    [41]

    Peccerillo Angelo, Taylor S R.Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    [42]

    Boynton W V.Cosmochemistry of the rare earth elements:meteoric studies[J].Rare Earth Element Geochemistry, 1984:63-114. http://cn.bing.com/academic/profile?id=2245266537&encoded=0&v=paper_preview&mkt=zh-cn

    [43]

    Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society of London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [44] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604.

    Wu Yuanbao, Zheng Yongfei.Zircon genetic mineralogy research and interpretation of U-Pb age restriction[J].Chinese Science Bulletin, 2004, 49(16):1589-1604(in Chinese).

    [45]

    Yang Shuiyuan, Jiang Shaoyong, Jiang Yaohui, et al.Geochemical, zircon U-Pb dating and Sr-Nd-Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China[J].Mineralogy and Petrology, 2012, 58(11):21-48. http://cn.bing.com/academic/profile?id=2095157687&encoded=0&v=paper_preview&mkt=zh-cn

    [46]

    Claesson S, Vetrin V, Bayanova T, et al.U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia:A record of geological evolution from the Archaean to The Palaeozoic[J].Lithos, 2000, 51(1):95-108. http://cn.bing.com/academic/profile?id=2038728224&encoded=0&v=paper_preview&mkt=zh-cn

    [47] 李文良, 夏锐, 卿敏, 等.应用辉钼矿Re-Os定年技术研究青海什多龙矽卡岩型钼铅锌矿床的地球动力学背景[J].岩矿测试, 2014, 33(06):900-907.

    Li Wenliang, Xia Rui, Qing Min, et al.Re-Os molybdenite ages of the shenduolong skarn Mo-Pb-Zn deposit and geodynamic framework, Qinghai Province[J].Rock and Mineral Analysis, 2014, 33(06):900-907(in Chinese with English abstract).

    [48]

    Xia Rui, Wang Changming, Qing Min, et al.Molybdenite Re-Os, zircon U-Pb dating and Hf isotopic analysis of the Shuangqing Fe-Pb-Zn-Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China[J].Ore Geology Reviews, 2015, 66:114-131. doi: 10.1016/j.oregeorev.2014.10.024

    [49] 孙延贵, 张国伟, 郑健康, 等.柴达木地块东南缘岩浆弧(带)形成的动力学背景[J].华南地质与矿产, 2001, (04):16-21.

    Sun Yangui, Zhang Guowei, Zheng Jiankang, et al.Analysis of dynamic backgrounds of magmatic arc in the southeastern margin of Qaidam massif[J].Geology and Mineral Resources of South China, 2001, (04):16-21(in Chinese with English abstract).

    [50]

    Frost B Ronald, Barnes Calvin G, Collins William J, et al.A geochemical classification for granitic rocks[J].Journal of Petrology, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    [51]

    Pitcher Wallace Spencer.Granites and yet more granites forty years on[J].Geologische Rundschau, 1987, 76(76):51-79.

    [52]

    Pearce Julian A, Harris Nigel B W, Tindle Andrew G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    [53]

    Petford Nick, Atherton Michael.Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith, Peru[J].Journal of Petrology, 1996, 37(6):1491-1521. doi: 10.1093/petrology/37.6.1491

    [54]

    Defant Marc J, Mmond Mark S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 1990, 347(6294):662-665. doi: 10.1038/347662a0

    [55] 朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2006, 22(3):534-546.

    Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al.Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J].Acta Petrologica Sinica, 2006, 22(3):534-546(in Chinese with English abstract).

    [56]

    Rapp Robert P, Watson E.Bruce.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling[J].Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    [57]

    Barth Matthias G, Nough William F, Rudnick Roberta L.Tracking the budget of Nb and Ta in the continental crust[J].Chemical Geology, 2000, 165(99):197-213. http://cn.bing.com/academic/profile?id=1988215475&encoded=0&v=paper_preview&mkt=zh-cn

    [58]

    Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society of London Special Publications, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [59]

    Sisson T W, Ratajeski K, Hankins W B, et al.Voluminous granitic magmas from common basaltic sources[J].Contributions to Mineralogy&Petrology, 2005, 148(6):635-661. http://cn.bing.com/academic/profile?id=2053396208&encoded=0&v=paper_preview&mkt=zh-cn

    [60]

    Douce Alberto E, Patiño, Johnston A.Dana.Phase equilibria and melt productivity in the pelitic system:implications for the origin of peraluminous granitoids and aluminous granulites[J].Contributions to Mineralogy&Petrology, 1991, 107(2):202-218. http://cn.bing.com/academic/profile?id=1966564764&encoded=0&v=paper_preview&mkt=zh-cn

    [61]

    Roberts Malcolm P., Clemens John D.Origin of high-potassium, talc-alkaline, I-type granitoids[J].Geology, 1993, 21(9):825. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    [62] 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm

    Mo Xuanxue, Luo Zhaohua, Deng Jinfu, et al.Granite and crustal growth orogenic belt of East Kunlun[J].Geological Journal of China Universities, 2007, 13(3):403-414(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm

    [63] 熊富浩.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义[D].中国地质大学(武汉), 2014. http://cdmd.cnki.com.cn/article/cdmd-10491-1014340842.htm

    Xiong Fuhao.Spatial-temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt (Eastern Segment)[D].China University of Geosciences (Wuhan), 2014(in Chinese with English abstract). http://cdmd.cnki.com.cn/article/cdmd-10491-1014340842.htm

    [64] 郭正府, 邓晋福, 许志琴, 等.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J].现代地质, 1998, 12(3):344-352.

    Guo Zhengfu, Deng Jinfu, Xu Zhiiqin, et al.Late Palaeozoicmesozoic intracontinental orogenic process and iniermedate-acidic igneous rocks from the Eastern Kunlun Mountains of Northwestern China[J].Geoscience, 1998, 12(3):344-352(in Chinese with English abstract).

    [65] 孙延贵.西秦岭-东昆仑造山带的衔接转换与共和坳拉谷[D].西安:西北大学, 2004. http://cdmd.cnki.com.cn/article/cdmd-10697-2004104020.htm

    Sun Yangui.Gonghe Aulaeogen and Conjugate and Transfer between the West Qinling and East Kunlun orogens[D].Xi'an:Northwest University, 2004(in Chinese with English abstract). http://cdmd.cnki.com.cn/article/cdmd-10697-2004104020.htm

  • 期刊类型引用(9)

    1. 孔祥科,李义,王平,韩占涛,刘圣华,张兆吉,王妍妍. 制革污泥渗滤液中特征污染物对土壤氨氮转化及微生物群落结构的影响. 中国地质. 2024(05): 1676-1685 . 本站查看
    2. 谷培科,陆海建,梁小阳,王俊,邓一荣. 华南地区某地块地下水污染特征与成因分析. 农业与技术. 2024(22): 96-99 . 百度学术
    3. 李晓源,程庆禧,张宇霆,陆海建,邓一荣. 华南典型工业地块地下水污染特征与成因分析. 生物化工. 2024(06): 114-117 . 百度学术
    4. 陈秀梅. 基于因子-聚类分析的地下水中阳离子来源研究. 环境监控与预警. 2023(02): 15-21 . 百度学术
    5. 陈秀梅. 南通市深层地下水中氨氮的影响因素研究. 环境监测管理与技术. 2023(04): 72-75 . 百度学术
    6. 吕晓立,郑跃军,韩占涛,李海军,杨明楠,张若琳,刘丹丹. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因. 地学前缘. 2022(03): 88-98 . 百度学术
    7. 吕晓立,刘景涛,韩占涛,朱亮,李海军. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因. 环境科学. 2022(10): 4449-4458 . 百度学术
    8. 郑艺文,李福杰,刘晓煌,常铭,赵宏慧,赖明,张子凡. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应. 中国地质. 2022(05): 1361-1373 . 本站查看
    9. 曹建文,夏日元,唐仲华,赵良杰,王喆,栾崧,王松. 粤港澳大湾区地下水资源特征及开发潜力. 中国地质. 2021(04): 1075-1093 . 本站查看

    其他类型引用(0)

图(9)  /  表(4)
计量
  • 文章访问数:  3601
  • HTML全文浏览量:  476
  • PDF下载量:  5493
  • 被引次数: 9
出版历程
  • 收稿日期:  2015-10-07
  • 修回日期:  2016-03-06
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-08-24

目录

/

返回文章
返回
x 关闭 永久关闭