• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

中吉天山隆升时代对比——裂变径迹年代学证据

楚泽松, 余心起, 王宗秀, 肖伟峰, 陈正乐, 韩淑琴, 杨鑫朋

楚泽松, 余心起, 王宗秀, 肖伟峰, 陈正乐, 韩淑琴, 杨鑫朋. 中吉天山隆升时代对比——裂变径迹年代学证据[J]. 中国地质, 2016, 43(4): 1248-1257. DOI: 10.12029/gc20160411
引用本文: 楚泽松, 余心起, 王宗秀, 肖伟峰, 陈正乐, 韩淑琴, 杨鑫朋. 中吉天山隆升时代对比——裂变径迹年代学证据[J]. 中国地质, 2016, 43(4): 1248-1257. DOI: 10.12029/gc20160411
CHU Ze-song, YU Xin-qi, WANG Zong-xiu, XIAO Wei-feng, CHEN Zheng-le, HAN Shu-qin, YANG Xin-peng. A comparison of uplifting history between Tianshan Mountains in China and Kyrgyz: Insights from fission track chronology[J]. GEOLOGY IN CHINA, 2016, 43(4): 1248-1257. DOI: 10.12029/gc20160411
Citation: CHU Ze-song, YU Xin-qi, WANG Zong-xiu, XIAO Wei-feng, CHEN Zheng-le, HAN Shu-qin, YANG Xin-peng. A comparison of uplifting history between Tianshan Mountains in China and Kyrgyz: Insights from fission track chronology[J]. GEOLOGY IN CHINA, 2016, 43(4): 1248-1257. DOI: 10.12029/gc20160411

中吉天山隆升时代对比——裂变径迹年代学证据

基金项目: 

中国地质调查局工作项目 1212011120335

中国地质调查局工作项目 12120114006201

详细信息
    作者简介:

    楚泽松, 男, 1992年生, 硕士生, 地质工程专业; E-mail:chuzesong@cugb.edu.cn

    通讯作者:

    余心起, 男, 1962年生, 教授, 研究方向:构造地质学; E-mail:yuxinqi@cugb.edu.cn

  • 中图分类号: P542.1;P597

A comparison of uplifting history between Tianshan Mountains in China and Kyrgyz: Insights from fission track chronology

Funds: 

China Geological Survey Science and Technology Foreign Affairs Department Foundations of China 1212011120335

China Geological Survey Science and Technology Foreign Affairs Department Foundations of China 12120114006201

More Information
    Author Bio:

    CHU Ze-song, male, born in 1992, master, majors in geological engineering; E-mail: chuzesong@cugb.edu.cn

    Corresponding author:

    YU Xin-qi, male, professor, engages in research on tectonics; E-mail: yuxinqi@cugb.edu.cn

  • 摘要:

    中吉天山成矿带境内外天山在成矿时代、矿产种类、矿床规模等多方面存在重大差异。它们的成矿条件基本类似,是否因为保存条件的不同而产生这种差异值得关注。文章对采自吉尔吉斯斯坦北天山(境外西天山)的磷灰石样品进行了裂变径迹测试分析和温度-时间反演模拟研究,表明吉尔吉斯斯坦北天山在中新生代发生了四期抬升剥露作用,分别为晚侏罗世、晚白垩世、始新世和渐新世,且不同区域其抬升剥露史也不相同:晚侏罗世的抬升局限于伊塞克湖南岸的泰尔斯山脉,始新世的抬升主要发生在伊塞克湖南北两侧的泰尔斯山脉和昆格山脉,晚白垩世和渐新世的抬升为吉尔吉斯斯坦北天山整体抬升。与东部境内西天山对比表明,境内西天山整体隆升时间较早,历时较长,有可能隆升剥蚀程度超过境外西天山,从而造成了成矿方面的重大差异。

    Abstract:

    There are considerable differences of the Tianshan metallogenic belt between China and Kyrgyz in such aspects as metallogenic epoch, mineral type and deposit size. As their metallogenic conditions are similar, due attention should be paid to the problem whether the differences are caused by preservation conditions or not. Apatite fission track analysis of Kyrgyz Northern Tianshan and thermal history modeling were performed, and the result shows that there existed four uplifting events from the Mesozoic to Cenozoic, from late Jurassic to late Cretaceous, Eocene and Oligocene, respectively. The late Jurassic uplifting happened in Terskey Range located in the south of Issyk-Kul Lake; the Eocene uplifting happened in Terskey Range and Kungey Range located in the north of Issyk-Kul Lake; the late Cretaceous Issyk-Kul Lake and Oligocene uplifting happened in Kyrgyz Northern Tianshan. By comparing uplifting history of Kyrgyz Northern Tianshan with that of China's Western Tianshan, it is shown that China's Western Tianshan uplifted earlier and lasted for a long time; the extent of exhumation exceeded that of Kyrgyz Northern Tianshan. Maybe it is the reason of the significant differences of mineralization between China and Kyrgyz Tianshan.

  • 赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989陈郑辉等,2006毛景文等,2007郭春丽等,2007许建祥等,2008刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989张文兰等,2006王登红,2019杨斌等,2021秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981李建康,2012李建康等,2014王登红等,2017王成辉等,2019Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。

    赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007裴荣富和熊群尧,1999刘善宝等,2010)。

    图  1  赣南石雷钨锡矿地质简图
    Figure  1.  Simplified geological map of Shilei tungsten and tin deposits in the Southern Jiangxi Province

    石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。

    矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。

    表  1  ZKn11-11云英岩W、Sn、Li测试分析结果
    Table  1.  The W, Sn, Li analysis results of greisen samples of ZKn11-11
    下载: 导出CSV 
    | 显示表格

    (1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。

    图  2  石雷矿区钨锡锂多金属矿体特征
    a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿
    Figure  2.  Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining area
    a, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite

    (2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。

    本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-Al-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。

    图  3  石雷矿区11号勘探线简图
    Figure  3.  No.11 Sketch map of exploration line in the Shilei mining area
    表  2  石雷矿区云英岩中云母LA-ICP-MS原位分析结果
    Table  2.  LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area
    下载: 导出CSV 
    | 显示表格
    图  4  石雷矿区云英岩中云母的Fetot+Mn+Ti+Al-Mg-Li判别图解(据Guggenhim and Bailey, 1977)
    Figure  4.  Fetot+Mn+Ti+Al vs. Mg-Li discriminant diagram of the mica of greisen in the Shilei mining area (after Guggenhim and Bailey, 1977)

    云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018王正军等,2018张勇等,2020Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。

    随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。

    以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。

    总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019陈其慎等,2021王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。

    南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。

    致谢: 吉尔吉斯斯坦天山野外考察过程中得到吉尔吉斯斯坦共和国自然资源部吉尔吉斯地球物理考察队哈里洛夫·扎拉比金队长、拉提舍夫·尼基塔领队、吉尔吉斯地质矿产部地质经济调查局方法探险队Nurgazy Takenov教授等人的支持和帮助; 磷灰石裂变径迹年龄测试由中国科学院高能物理研究所完成; 审稿专家对论文提出了宝贵修改意见, 在此表示衷心感谢。
  • 图  1   吉尔吉斯斯坦构造分区图(据文献[3]修改)

    Figure  1.   The tectonic division of Kyrgyz (modified after reference [3])

    图  2   吉尔吉斯斯坦北天山地质构造简图

    1—第四系; 2—新近系; 3—二叠系; 4—石炭纪花岗岩; 5—泥盆纪花岗岩; 6—志留纪花岗岩; 7—奥陶纪花岗岩; 8—寒武纪花岗岩; 9—元古宙花岗岩; 10—太古宙花岗岩; 11—断层; 12—采样点

    Figure  2.   The geological structure of Kyrgyz Northern Tianshan

    1-Quaternary; 2-Neogene; 3-Permain; 4-Carboniferous granite; 5-Devonian granite; 6-Silurian granite; 7-Ordovician granite; 8-Cambrian granite; 9-Proterozoic granite; 10-Archean granite; 11-Fault; 12-Sampling position

    图  3   中国天山造山带地质构造简图(据文献[22]修改)

    1—新生界; 2—侏罗系; 3—白垩系; 4—前中生界; 5—断层

    Figure  3.   Simplified geological map of the Tianshan orogeny in China (modified after reference [22])

    1-Cenozoic; 2-Jurassic; 3-Cretaceous; 4-Pre−Mesozonic; 5-Fault

    图  4   昆格山脉样品磷灰石裂变径迹温度-时间模拟结果图

    Figure  4.   Temperature−time modeling result of samples from Kungey Range

    图  5   伊塞克湖盆地样品磷灰石裂变径迹温度-时间模拟结果图

    Figure  5.   Temperature-time modeling result of samples from Issyk-Kul Lake Basin

    图  6   泰尔斯山脉样品磷灰石裂变径迹温度-时间模拟结果图

    Figure  6.   Temperature-time modeling result of samples from Terskey Range

    表  1   吉尔吉斯斯坦北天山磷灰石裂变径迹测试结果

    Table  1   Apatite fission track test result from Kyrgyz Northern Tianshan

    下载: 导出CSV

    表  2   中吉天山隆升时代对比

    Table  2   The comparison of uplifting history between China and Kyrgyz Tianshan

    下载: 导出CSV
  • [1]

    Jahn B M, Wu F Y, Chen B.Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J].Episodes, 2000, 23, 82-92. http://d.wanfangdata.com.cn/ExternalResource-dzxb-e200801012%5e15.aspx

    [2]

    Windley B F, Alexeiev D, Xiao W, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J].Geological Society of London, 2007, 164, 31-47. doi: 10.1144/0016-76492006-022

    [3]

    Grave J D, Glorie S, Mikhail M, et al.Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia)[J].Gondwana Research, 2013, 23(3):998-1020. doi: 10.1016/j.gr.2012.06.014

    [4] 舒良树, 郭召杰, 朱文斌, 等.天山地区碰撞后构造与盆山演化[J].高校地质学报, 2004, 10(3):394-404. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403009.htm

    Shu Liangshu, Guo Zhaojie, Zhu Wenbin, et al.Post-collision tectonism and Basin-Range evolution in the Tianshan Belt[J].Geological Journal of China Universities, 2004, 10(3):394-404(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200403009.htm

    [5]

    Hendrix M S, Graham S A, Carroll A R, et al.Sedimentary record and climatic implication of recurrent of the Tian Shan:Evidence from Mesozoic strata of the north Tarim, south Junggar and Turpan basins[J].Geological Society of America Bulletin, 1992, 104(1):53-79. doi: 10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2

    [6]

    Buslov M M, Klerkx J, Abdrakhmatov K, et al.Recent strike-slip deformation of the northern Tien Shan[J].Geological Society of London, 2003, 210(1):53-64. doi: 10.1144/GSL.SP.2003.210.01.04

    [7] 薛春纪, 赵晓波, 莫宣学, 等.西天山"亚洲金腰带"及其动力背景和成矿控制与找矿[J].地学前缘, 2014, 21(5):128-155. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405015.htm

    Xue Chunji, Zhao Xiaobo, Mo Xuanxue, et al.Asian Gold Belt in western Tianshan and its dynamic setting, metallogenic control and exploration[J].Earth Science Frontiers, 2014, 21(5):128-155(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201405015.htm

    [8] 薛春纪, 赵晓波, 张国震, 等.西天山金铜多金属重要成矿类型、成矿环境及找矿潜力[J].中国地质, 2015, 42(3):381-410. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150302&flag=1

    Xue Chunji, Zhao Xiaobo, Zhang Guozhen, et al.Metallogenic environments, ore-forming types and prospecting potential of Au-Cu-Zn-Pb resources in Western Tianshan Mountains[J].Geology in China, 2015, 42(3):381-410(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150302&flag=1

    [9] 张祺, 薛春纪, 赵晓波, 等.新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代[J].中国地质, 2015, 42(3):411-437. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150303&flag=1

    Zhang Qi, Xue Chunji, Zhao Xiaobo, et al.Geology, geochemistry and metallogenic epoch of the Katebasu large-sized gold deposit, Western Tianshan Mountains, Xinjiang[J].Geology in China, 2015, 42(3):411-438(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150303&flag=1

    [10] 杨鑫朋, 余心起, 王宗秀, 等.西天山成矿带热液型金矿成矿地质条件及成矿物质来源对比[J].大地构造与成矿学, 2015, 39(4):633-646. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201504007.htm

    Yang Xinpeng, Yu Xinqi, Wang Zongxiu, et al.Comparative study on ore-forming conditions and sources of the hydrothermal gold deposits in the Chinese Western Tianshan[J].Geotectonica et Metallogenia, 2015, 39(4):633-646(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201504007.htm

    [11]

    Zonenshain L P, Kuzmin M I, Natapov L M.Geology of the USSR:A plate-ectonic synthesis[M].Washington:American Geophysical Union, 1990, 242.

    [12]

    Jenchuraeva R J.Tectonic settings of porphyry-type mineralization and hydrothermal alteration in Paleozoic island arcs and active continental margins, Kyrghyz Range, (Tien Shan) Kyrghyzstan[J].Mineralium Deposita, 1997, 32(5):434-440. doi: 10.1007/s001260050111

    [13]

    Bakirov A B, Maksumova R A.Geodynamic evolution of the Tien Shan lithosphere[J].Russian Geology and Geophysics, 2001, 42:1359-1366. https://www.researchgate.net/publication/283862883_Geodynamic_evolution_of_the_Tien_Shan_lithosphere

    [14] 胡雄伟, 吴良士.吉尔吉斯斯坦共和国地质构造与区域成矿[J].矿床地质, 2008, 27(5):655-658. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200805014.htm

    Hu Xiongwei, Wu Liangshi.Tectonics and regional metallogeny of Kyrgyz[J].Mineral Deposits, 2008, 27(5):655-658(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200805014.htm

    [15]

    Bike Y S, Seltmann R.Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans[J].Gondwana Research, 2010, 17:602-613. doi: 10.1016/j.gr.2009.11.014

    [16]

    Mikolaichu A V, Kurenkov S A, Degtyarev K E, et al.Northern Tien Shan main stages of geodynamic evolution[J].Geotectonics, 1997, 31:445-462.

    [17]

    Lomize M G, Demina L I, Zarshchikov A A.The Kyrgyz-Terskei paleoceanic basin, Tien Shan[J].Geodynamics, 1997, 6:35-55.

    [18]

    Bazhnov M L, Collins A Q, Degtyarev K E, et al.Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism[J].Tectonophysics, 2003, 366:113-141. doi: 10.1016/S0040-1951(03)00075-1

    [19]

    Kheraskova T N, Didenko A N, Bush V A, et al.The Vendian-Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian ocean, and Central Asian foldbelt[J].Russian Journal of Earth Sciences, 2003, 5(3):165-184. doi: 10.2205/2003ES000123

    [20] 岳萍(译).吉尔吉斯斯坦的地质构造及矿产资源[J].中亚信息, 2007, 7:18-24.

    Yue Ping (Translation).Tectonics and mineral resources of Kyrgyz[J].Central Asian Information, 2007, 7:18-24.

    [21] 肖伟峰, 王宗秀.中吉天山加里东期构造演化与岩浆活动对比[R].北京:中国地质科学院地质力学研究所, 2012.

    Xiao Weifeng, Wang Zongxiu.The Comparison of Tectonic Evolution and Magmatism during Caledonian between Chian and Kyrgyz Tien Shan[R].Beijing:Institute of Geomechanics, Chinese Academy of Geological Sciences, 2012.

    [22] 陈正乐, 李丽, 刘健, 等.西天山隆升-剥露过程初步研究[J].岩石学报, 2008, 24(4):625-636(in Chinese with English abstract).

    Chen Zhengle, Li Li, Liu Jian, et al.Preliminary study on the uplifting-exhumation process of the western Tianshan range, northwestern China[J].Acta Petrologica Sinica, 2008, 24(4):625-636(in Chinese with English abstract).

    [23]

    Gleadow A J W, Duddy L R.A natural long-term track annealing experiment for apatite[J].Nuclear Tracks, 1981, 5(1):169-174. http://cn.bing.com/academic/profile?id=1976166773&encoded=0&v=paper_preview&mkt=zh-cn

    [24]

    Donelick R A, Miller D S.Enhanced TINT fission track density apatites using 252Cf-derived fission fragment tracks:a model and experimental observatuions[J].Nuclear Track Radiation Measurement, 1991, 18(3):301-307. doi: 10.1016/1359-0189(91)90022-A

    [25]

    Gleadow A J W, Duddy L R, Green P F, et al.Confined fission track lengths in apatite:A diagnostic tool for thermal history analysis[J].Contributions to Mineralogy & Petrology, 1986, 94(4):405-415. http://cn.bing.com/academic/profile?id=2060504234&encoded=0&v=paper_preview&mkt=zh-cn

    [26]

    Laslett G M, Green P F, Duddy I R, et al.Thermal annealing of fission tracks in apatite 2:A quantitative analysis[J].Chemical Geology Isotope Geoscience, 1987, 65:1-13. doi: 10.1016/0168-9622(87)90057-1

    [27]

    Green P F, Duddy I R, Gleadow A J W, et al.Thermal annealing of fission track in apatite 1:A qualitative description[J].Chemical Geology, 1986, 59:237-253. doi: 10.1016/0168-9622(86)90074-6

    [28]

    Ketcham R A, Donelick R A, Carlson W D.Variability of apatite fission-track annealing kineticsⅢ:Extrapolation to geological time scales[J].Amer.Mineralogist, 1999, 84:1235-1255. doi: 10.2138/am-1999-0903

    [29]

    Yin A, Harrison T M.Geologic evolution of the Himalayan-Tibetan orogrn[J].Annual Review of Earth and Planetary Sciences, 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211

    [30]

    Schwab M, Ratschbacher L, Siebel W, et al.Assembly of the Pamirs:Age and origin of magmatic belts from the southern Tien Shan to the southern Parmirs and their relation to Tibet[J].Tectonics, 2004, 23(4):443-459. http://cn.bing.com/academic/profile?id=1636091909&encoded=0&v=paper_preview&mkt=zh-cn

    [31]

    Otofuji Y I, Mu C L, Tanaka K, et al.Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data[J].Earth and Planetary Science Letters, 2007, 262:581-593. doi: 10.1016/j.epsl.2007.08.013

    [32] 杜治利, 王清晨.中新生代天山地区隆升历史的裂变径迹证据[J].地质学报, 2007, 08:1081-1101. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708008.htm

    Du Zhili, Wang Qingchen.Mesozoic and Cenozoic uplifting history of the Tianshan region:Insight from apatite fission track[J].Acta Geologica Sinica, 2007, 08:1081-1101(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708008.htm

    [33] 胡雄伟, 吴良士.吉尔吉斯斯坦共和国矿产资源及其地质特征[J].矿床地质, 2008, 27(6):791-793. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200806013.htm

    Hu Xiongwei, Wu Liangshi.Geological characteristics and mineral resources of Kyrgyz[J].Mineral Deposits, 2008, 27(6):791-793(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200806013.htm

    [34] 何国琦, 朱永峰.中国新疆及其邻区地质矿产对比研究[J].中国地质, 2006, 33(3):451-460. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20060301&flag=1

    He Guoqi, Zhu Yongfeng.Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions[J].Geology in China, 2006, 33(3):451-460(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20060301&flag=1

  • 期刊类型引用(3)

    1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
    2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
    3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术

    其他类型引用(1)

图(6)  /  表(2)
计量
  • 文章访问数:  3231
  • HTML全文浏览量:  558
  • PDF下载量:  5217
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-11-15
  • 修回日期:  2016-03-27
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-08-24

目录

/

返回文章
返回
x 关闭 永久关闭