Re-Os isotopic dating of molybdenites from the Yuangezhuang pluton in Jiaodong and its geological significance
-
摘要:
院格庄花岗岩体位于烟台市牟平区境内,是胶东地区燕山晚期伟德山超单元一个典型的复式岩体。本次研究针对花岗岩体内发育的辉钼矿开展Re-Os同位素测年,同时对采集于花岗岩体的新鲜样品进行了主量元素、微量元素和稀土元素测试分析。结果显示,院格庄花岗岩属于高钾富碱的钙碱性岩,具准铝质-过铝质特征,是壳幔混合来源的花岗岩。此外,辉钼矿Re-Os等时线年龄为(117.8±5.7)Ma,加权平均年龄为(118.27±0.70)Ma,与胶东已知多个燕山晚期铜钼矿赋矿岩体特征及成矿时代一致,显示该区可能具有良好的钼多金属成矿前景。
-
关键词:
- 院格庄岩体 /
- 辉钼矿Re?Os同位素年龄 /
- 岩石地球化学 /
- 胶东
Abstract:The Yuangezhuang pluton lies in Muping block, Yantai, Shandong Province. It is a typical granitic complex of Weideshan Late Yanshanian super-unit in Jiaodong. In this study, direct Re-Os dating of molybdenites collected from the granitoids was carried out, and the major elements and trace elements in whole rock samples were also analyzed. The results show that the pluton probably belongs to a kind of granite derived from mantle-crust and is characterized by high potassium and alkali as well as metaluminous to peraluminous nature. Besides, the isochron age is 117.8±5.7 Ma, with a weighted average of 118.27±0.70 Ma, similar to data of the metallogenetic epoch and characteristics of the host rock from many known Cu-Mo deposits in Late Yanshanian period. This suggests that it probably has a good prospect for molybdenum polymetallic mineralization.
-
1. 引言
地下水中的化学成分可以示踪地下水的循环途径, 反映地下水流系统的特征;而地下水水化学类型是地下水化学成分的集中反映,也是地下水水文地球化学特征研究的重要内容之一(袁道先,1990;沈照理和王焰新,2002;王焰新等,2005)。水文地球化学结合同位素示踪的方法可更深入研究区域地下水的循环特征和水动力场特征(刘文波等,2010;李向全等,2011;郭晓东等,2014;袁建飞等,2016;孙厚云等,2018)。晋祠泉出露于太原西山悬瓮山下,由难老泉、圣母泉、善利泉组成,1954—1958年实测泉水平均流量为l.94 m3/s。与晋祠泉同处太原西山山前断裂带的平泉,1978年建立了特大型岩溶水自流井水源地,自流量最大达到1.56 m3/s。由于这些自流井的开采,使晋祠泉的流量急剧下降,1994年4月30日断流。为建设美丽山西,省政府将规划实施晋祠泉复流工程。因此研究晋祠泉的补给来源、晋祠—平泉水力联系成为一项重要课题。
2. 研究区概况
山西太原晋祠泉域位于太原盆地的北部,泉域面积2713 km2(梁永平等, 2019)。其碳酸盐岩含水层为下古生界寒武系和奥陶系,连续沉积厚度超过900 m。晋祠岩溶地下水主要接受西山碳酸盐岩裸露区及覆盖区的降水人渗补给、汾河及支流在碳酸盐岩段的渗漏补给(后期又加入水库渗漏补给)。晋祠泉域岩溶地下水排泄方式主要包括:晋祠泉、平泉、通过西山边山断裂带向盆地内松散层的潜流排泄以及人工开采井。晋祠泉位于北北东向晋祠断裂之南端,位于岩溶发育的排泄区,为西山岩溶地下水的天然集中排泄点,断裂西侧出露有奥陶系峰峰组石灰岩,断裂东侧为第四系松散层,岩溶地下水向东遇第四系松散层的阻挡而沿断裂上升溢出地表形成泉水(图 1)。晋祠泉群泉总流量在20世纪50年代平均为1.95 m3 /s,60年代为1.61 m3 /s,70年代为1.21 m3 /s,80年代为0.52m3/s(晋华等, 2005)。1960年以前基本上为天然动态。平泉则位于交城至清徐的北东东向断裂带之北端,晋祠泉的下游,是西山岩溶地下水的人工排泄点之一,泉水出露高程为784.31~86.87 m。2011年8月,清徐县平泉村“不老泉”和沙河底“水巷”两处泉水呈现复流迹象。2016—2018实测群泉总流量分别为0.067 m3/s、0.084 m3/s、0.114 m3/s。
3. 研究技术与方法
通过开展野外地质、水文地质补充调查,查明晋祠、平泉水文地质条件。于2016年5月在晋祠泉域边山断裂带取样24组。其中简分析9组,全分析15组(表 1)。2016年5月—2018年5月布置水质长观点两处,分别为晋祠泉口岩溶井、平泉村不老池泉水。pH、温度、电导率等指标直接通过WTW多功能水质监测仪现场测试获得;Ca、HCO3离子由德国默克测试盒现场滴定。化学分析在中国地质科学院岩溶地质研究所国土资源部重点实验室完成。2H/18O同位素(中国地质科学院岩溶地质研究所国土资源部重点实验室)测定精度分别为±2.0‰和±0.1‰;δ34S值在中国地质调查局武汉地质调查中心实验室完成测试,δ34S值采用IsoPrime质谱仪进行测定,δ34S值采用CDT(Canyon Diablo Meteorite)标准,测试精度优于±0.1‰。所有水样阴阳离子平衡相对误差小于5%,利用水化学模拟软件Phreeqc计算矿物饱和指数;利用Origin软件绘制离子比例系数图、同位素分析。
表 1 取样点基本信息Table 1. The information of sampling point4. 晋祠—平泉水力联系分析
4.1 水位动态特征
地下水位动态变化,是反映含水层中地下水资源量变化的一个指征,地下水位的上升或下降,直接反映了地下水补给与消耗量的变化(陶虹等, 2013)。根据地下水水位动态监测资料分析,在1980年前,地下水水位的变化随降水量的大小而变化,呈稳定状态(图 2);1980—1992年,晋祠泉地下水水位的变化呈稳定下降趋势,主要原因是有太原化学工业公司、开化沟、淸徐县平泉村和梁泉村等水源地大量开采岩溶地下水,导致地下水水位下降;1993—2005年,整个泉域地下水水位急剧下降,主要原因是岩溶水开采量急剧加大和降水量减少(图 3);2005—2012年,泉域地下水水位呈上升趋势,主要原因是万家寨引黄工程,“关井压采”,部分工矿企业置换利用黄河水,中小煤矿整治与关停,汾河实施清水复流工程(二库修建),使泉域内岩溶地下水水位有明显回升(图 2)。
图 3 晋祠泉流量与岩溶水开采量变化趋势对比曲线(a)及晋祠泉—平泉流量关系线(b),资料来源山西省第一水文地质工程地质队;1—晋祠泉流量;2—晋祠泉域岩溶地下水开采量;3—平泉流量Figure 3. Comparison curve of Jinci spring discharge and karst water exploitation(a) and the discharge relation between Jinci spring versus Pingquan spring(b)1-Jinci spring flow; 2-Karst groundwater exploitation in Jinci spring area; 3- Pingquan spring flow4.2 水化学特征
岩溶水化学成分受区域内的地质条件、水动力条件和人类工程活动等因素的控制,并能够较好的保存这种影响“信息”。因此,水文地质工作者经常利用水文地球化学方法研究复杂的岩溶水系统(Smykatz-Kloss et al., 1990; Fairchild et al., 2006; Musgrove et al., 2010; Rui Ma et al., 2011;唐春雷等,2019)。依据工作所取得岩溶地下水,碎屑岩井水样分析结果,得出岩溶水pH值6.92~7.86,均值为7.35。钙离子95.3~417.0 mg/L,均值为226.9 mg/ L。硫酸根离子149~1219 mg/L,均值为633 mg/L。碎屑岩井水30.5~73.1 mg/L,均值为60.0 mg/L。硫酸根离子35~90 mg/L,均值为66 mg/L。岩溶水(泉)总体特征表现为阳离子高钙镁、低钾钠,阴离子低氯,高硫酸根。按照舒卡列夫分类法,研究区碳酸盐岩含水岩组地下水主要类型是Ca-SO4型与Ca-SO4·HCO3型。其中Ca-SO4·HCO3型主要分布在西山断裂带北部。Ca-SO4型主要分布在西山断裂带南部。碎屑岩井地下水主要类型是Ca · NaHCO3型。晋祠泉、平泉同为Ca-SO4型(表 2)。
表 2 晋祠泉域岩溶地下水水化学类型Table 2. Karst groundwater hydrochemical type of Jinci spring catchment研究区岩溶地下水化学组分主要受方解石(文石)、白云石和石膏等矿物影响。SO42-+ HCO3-与Ca2++Mg2+关系图(图 4a)显示,岩溶地下水样品呈直线分布并偏离至1:1线以下,表明少量有煤矿排水,地表水的混入岩溶地下水中。Na++K+-Cl与Ca2++ Mg2+ - SO42-- HCO3-关系图(图 4b)显示,径流区部分点位于阳离子交换线附近,说明地下水水化学形成除方解石(文石)、白云石和石膏的溶解,还有阳离子交换作用。
图 4 龙子祠岩溶地下水离子关系图a—(SO4+ HCO3)-(Ca2++Mg2+)图; b—(Na++K+-Cl-)-(Ca2++Mg2+-SO4-HCO3)图; c—SO42+ -TDS图; d—Sr2+ -Ca2+图; 1—晋祠泉;2—平泉;3—碎屑岩井;4—岩溶井Figure 4. Ion relation diagrams of karst groundwater in Longzicia-(SO4+ HCO3)versus(Ca2++Mg2+); b-(Na++K+-Cl-)versus(Ca2++Mg2+-SO4-HCO3); c-SO42+ versus TDS; (d-Sr2+ versus Ca2+; 1-Jinci spring; 2-Pingquan spring; 3-Clastic rock well; 4-Karst well在TDS是反映水质的综合指标。研究区TDS与硫酸根含量存在着极高的线性相关(图 4c)。区域岩溶地下水中SO42-主要来源有奥陶系碳酸盐岩含水层石膏溶解,煤矿酸性水和大气降水中的硫酸根(张海潇等, 2019)。说明含水层石膏溶解,煤矿酸性水补给,大气降水中的硫酸根是影响TDS的主要因素之一。
岩溶水循环过程中,Sr2+浓度随着径流途径和水岩交互作用的时间而增加,相比之下Ca2+浓度却受制于溶解平衡,因此,不同来源的水的Sr2+/Ca2+值不同,径流途径和水岩交互作用的时间越长,其值越大,反之越小(Keul et al., 2017; Yokota et al., 2018; Pracný et al., 2019)。如图 4(d)所示岩溶水径流区(晋祠泉J17,J24,J13,J19,J18,J21,J20),排泄区(平泉,J04,J11,J10,J12,J01,J07),热水井(J16,J15) Sr2+浓度随着径流途径增加。热水井(J16,J15)Sr2+浓度最高,其原因是水岩交互作用的时间较长。
4.3 同位素环境特征
δ34S-SO42-被广泛用于追踪水中硫酸盐的来源氢(Temovski et al., 2018; Xiao et al., 2018; Zhou et al., 2018; Sim et al., 2019)。氢氧同位素是研究地下水起源与演化的理想示踪剂,可利用地下水中的稳定氢氧同位素识别研究区地下水补给来源(Schiavo et al., 2009; Capaccioni et al., 2011; Pasvanoğlu, 2013; Zhang and Li, 2019)。晋祠泉—平泉段岩溶地下水的δ18O变化在-9.7‰~-8.5‰,δD变化在-70.1‰~-63.9‰,平均值分别为-9.3‰和-68.4‰。,该段岩溶水样点均散落于太原站大气降水线右下方(图 5a),表明其主要补给来源为大气降雨。晋祠—平泉一带岩溶地下水氢氧同位素值较接近,说明这一带补给来源与补给途径相近。
地下水中硫酸盐主要有3种来源,即降水、蒸发岩溶解和硫化物或有机硫氧化。在水文地球化学研究中,常使用δ34S对水中硫酸盐的来源进行标定。大量研究表明,山西中奥陶统石膏的δ34S值为23.8‰ ~31.4‰,矿坑水中的δ34S值为- 13.6% ~ 7.98‰,新近系黄土中δ34S值为5.5‰~9.5‰,汾河及其支流与引黄水的中δ34S值7.9‰~10.66‰。从晋祠泉—平泉段岩溶水δ34S分布图(图 5b),可以看出,岩溶地下水的δ34S值总体较大,接近于石膏的δ34S值范围,说明岩溶地下水中的SO42-主要来源于石膏溶解。
4.4 晋祠—平泉水化学水质监测分析
为了分析晋祠—平泉水力联系的水化学证据,在晋祠难老泉、不老池开展了逐月水化学含量动态监测(Ca2+、Mg2+、K++Na+、Cl-、SO42-、NO3-)。2016年5月至2018年5月共50组水样,如图 6所示晋祠泉与平泉各个离子变化趋势基本一致。说明晋祠与平泉存在紧密的水力联系。平泉Ca2+、Mg2+、SO42-、K++Na+含量显著高于晋祠泉,而Cl-、NO3-含量则低于晋祠泉。
4.5 径流途径水化学演化
反向地球化学反应路径模拟是定量研究水文地球化学演化的重要手段。反应路径模拟的理论基础是沿地下水同一水流路径,终点的水化学成分和同位素的质量等于起点的水化学成分和同位素的质量加上两点间由于水岩作用(如沉淀、溶解、阳离子交换等)、蒸发作用和不同水流的混合作用引起的化学组分和同位素的转移量,通过质量平衡反应模型和同位素质量传输模型,可推测地下水从起点到终点间的水文地球化学反应路径(Plummer et al., 1990; Petalas and Lambrakis, 2006; Han et al., 2011; Cánovas et al., 2016)。
4.5.1 饱和指数与可能矿物相的确定
饱和指数能反映常见的含有碳酸盐类、硫酸盐类和硅酸盐类等矿物与地下水之间所处的溶解平衡状态,这是反向水文地球化学模拟计算的基础。利用Phreeqc计算各矿物饱和指数(表 3),由表 3可以看出:方解石、文石、白云石的饱和指数均大于0,说明它们在地下水中呈饱和状态,具有沉淀趋势;石膏、硬石膏和岩盐的饱和指数均小于0,说明它们在地下水中处于非饱和状态,具有继续溶解趋势。依据饱和指数分析结果,选择石膏、方解石、白云石、NaCl,作为水文地球化学模拟的“可能矿物相”。
表 3 岩溶地下水中矿物饱和指数Table 3. Mineral saturation index in karst groundwater4.5.2 Phreeqc水化学模拟
应用Phreeqc软件确定了水中各种组分和矿物的饱和状态;通过物质平衡模型,来确定岩溶地下水系统径流路径上不同两点之间矿物沉淀或溶解的数量。晋祠—平泉径流路径发生的主要水岩作用为:石膏的溶解,方解石沉淀、岩盐稀释和二氧化碳气体溶解或逸出等。
5. 对晋祠泉复流的贡献
晋祠泉与平泉同属于一个晋祠泉岩溶地下水系统,都位于西山山前边山断裂带的排泄区。晋祠与平泉存在紧密的水力联系。说明晋祠泉与平泉存在一个比较强的导水通道。可以通过在晋祠泉下游导水通道上帷幕灌浆,提高晋祠泉水水位,使晋祠泉出流。此方案的优点:(1)晋祠泉水水质明显优于平泉。(2)降低下游带压煤矿开采突水的风险。(3)晋祠泉水出流以地表水渠形式管理调度,生态人文环境影响较小。
6. 结论
(1) 在1980年前,晋祠泉地下水水位的变化随降水量的大小而变化,呈稳定状态;1980—1992年,地下水水位的变化呈稳定下降趋势,主要原因是大量开采岩溶地下水;2005—2012年,地下水水位呈上升趋势,主要原因是万家寨引黄工程,关井压采,部分工矿企业置换,汾河实施清水复流工程(二库修建),使泉域内岩溶地下水水位有明显回升。
(2) 研究区碳酸盐岩含水岩组地下水主要类型是Ca-SO4型、Ca-SO4·HCO3型。Ca-SO4·HCO3型主要分布在西山断裂带北部。Ca-SO4型主要分布在西山断裂带南部。碎屑岩井地下水主要类型是Ca·Na-HCO3型。晋祠泉、平泉同为Ca-SO4型。
(3) 晋祠泉的δ18O和δD值分别为- 9.39‰,- 68.5‰。平泉的δ18O和δD值分别为- 9.29‰,-71.0‰。其点均散落于太原站大气降水线右下方,表明晋祠泉与平泉的主要补给来源为大气降雨,氢氧同位素值较接近,说明晋祠泉与平泉补给来源与补给途径相近。研究区岩溶地下水的δ34S值总体较大,接近于石膏的δ34S值范围,说明岩溶地下水中的SO42-主要来源于石膏溶解。
(4) 晋祠与平泉存在紧密的水力联系,晋祠泉与平泉存在一个比较强的导水通道。可以通过帷幕灌浆,提高晋祠泉水水位,使晋祠泉出流。
致谢: 衷心感谢匿名审稿专家提出的宝贵修改意见;感谢中国地质大学(北京)宓奎峰博士、李春风硕士在图件绘制方面的帮助。 -
图 2 院格庄岩体区域地质图❶
1—第四系; 2—白垩系莱阳群; 3—古元古界粉子山群; 4—古元古界荆山群陡崖组; 5—古元古界荆山群野头组; 6—古元古界荆山群禄格庄组; 7—中生代伟德山超单元斑状角闪二长花岗岩; 8—中生代伟德山超单元巨斑状角闪二长花岗岩; 9—中生代伟德山超单元巨斑状黑云二长花岗岩; 10—中生代玲珑超单元伟晶花岗岩; 11—中生代玲珑超单元弱片麻状二长花岗岩; 12—新太古代栖霞超单元条带状英云闪长岩; 13—煌斑岩; 14—闪长玢岩; 15—铜矿体; 16—铁矿体; 17—韧性断裂; 18—压扭性断裂; 19—断裂破碎带; 20—采样点
Figure 2. Regional geological map of the Yuangezhuang pluton❶
1-Quartnary; 2-Cretaceous Laiyang Group; 3-Paleoproterozoic Fenzishan Group; 4-Paleoproterozoic Jingshan Group Douya Formation; 5-Paleoproterozoic Jingshan Group Yetou Formation; 6-Paleoproterozoic Jingshan Group Lugezhuang Formation; 7-Mesozoic Weideshan superunit porphyritic hornblende monogranite; 8-Mesozoic Weideshan superunit megaporphyritic hornblende monogranite; 9-Mesozoic Weideshan superunit megaporphyritic biotite monogranite; 10-Mesozoic Linglong superunit giant granite; 11-Mesozoic Linglong superunit weakly gneissic monogranite; 12-Neoarchean Qixia superunit banded tonalite; 13-Lamprophyre; 14-Dioritic porphyrite; 15-Copper orebody; 16-Iron orebody; 17-Ductile fault; 18-Compresso-shear fault; 19-Fault fracture zone; 20-Sampling locations
图 3 院格庄岩体露头、手标本和显微照片
aa, b—暗色微粒包体; c—花岗闪长岩; d—薄膜状辉钼矿; e—浸染状辉钼矿; f—细脉状辉钼矿; g, h—薄膜状辉钼矿(黑白照片); i—浸染状辉钼矿(黑白照片); j—细脉状辉钼矿(黑白照片); k—花岗闪长岩(正交偏光); l—花岗岩(正交偏光)Bi—黑云母; Mc—微斜长石; Mo—辉钼矿; Pl—斜长石; Hbl—普通角闪石; Kfs—钾长石
Figure 3. Field, hand specimen and microscopic photos of rocks from the Yuangezhuang pluton
a, b-MME; c-Granodiorite; d-Pellicular molybdenite; e-Disseminated molybdenite; f-Veinlet molybdenite; g, h-Pellicular molybdenite (black and white photo); i-Disseminated molybdenite (black and white photo); j-Veinlet molybdenite (black and white photo); k-Granodiorite (CPL); l-Granite (CPL) Bi-Biotite, Mc-Microcline, Mo-Molybdenite, Pl-Plagioclase, Hbl-Hornblende, Kfs-Potassium feldspar
图 4 院格庄岩体TAS图解(底图据文献[38])
图 9 院格庄岩体稀土元素球粒陨石标准化配分图(底图据文献[42])
Figure 9. Chondrite-normalized REE patterns of the Yua
表 1 院格庄岩体主量元素分析结果(%)
Table 1 Major element (%) analyses of rocks from the Yuangezhuang pluton
表 2 院格庄岩体微量元素、稀土元素分析结果(10-6)
Table 2 Analytical data and characteristic ratios (10-6) of trace and rare earth elements from the Yuangezhuang pluton
表 3 院格庄岩体辉钼矿Re-Os同位素分析结果
Table 3 Analytical results of Re-Os isotopes of molybdenites from the Yuangezhuang pluton
表 4 胶东地区钼矿成矿年龄统计
Table 4 The formation age of molybdenite in the Jiaodong region
-
[1] 李旭芬,刘建朝,张学仁,等.牟平-乳山金矿带构造特征及成矿预测[J].黄金科学技术,2013,21(3):10-15. http://www.cnki.com.cn/article/cjfdtotal-hjkj201303004.htm Li Xufen,Liu Jianchao,Zhang Xueren,et al.Structural features and metallogenic prognosis of Muping-Rushan gold ore belt[J].Gold Science and Technology,2013,21(3):10-15(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-hjkj201303004.htm
[2] 宋明春,李三忠,伊丕厚,等.中国胶东焦家式金矿类型及其成矿理论[J].吉林大学学报(地球科学版),2014,44(1):87-104. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401008.htm Song Mingchun,Li Sanzhong,Yi Pihou,et al.Classification and metallogenic theory of the Jiaojia-atyle gold deposit in Jiaodong peninsula,China[J].Journal of Jilin University (Earth Science Edition),2014,44(1):87-104(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401008.htm
[3] 宋明春,伊丕厚,崔书学,等.胶东金矿"热隆-伸展"成矿理论及其找矿意义[J].山东国土资源,2013,29(7):1-12. http://mall.cnki.net/magazine/article/sddi201307005.htm Song Mingchun,Yi Pihou,Cui Shuxue,et al.Thermal upliftingextension ore-forming theory and its prospecting significance in Jiaodong gold deposit[J].Shandong Land and Resources,2013,29(7):1-12(in Chinese with English abstract). http://mall.cnki.net/magazine/article/sddi201307005.htm
[4] Goldfarb R J,Santosh M.The dilemma of the Jiaodong gold deposits:Are they unique?[J].Geoscience Frontiers,2014,5(2):139-153. doi: 10.1016/j.gsf.2013.11.001
[5] Guo P,Santosh M,Li S R.Geodynamics of gold metallogeny in Shandong Province,NE China:An integrated geological,geophysical and geochemical perspective[J].Gondwana Research,2013,24:1172-1202. doi: 10.1016/j.gr.2013.02.004
[6] 李士先,刘长春,安郁宏,等.胶东金矿地质[M].北京:地质出版社,2007:1-423. Li Shixian,Liu Changchun,An Yuhong,et al.Geology of Gold Deposits in Jiaodong[M].Beijing:Geological Publishing House,2007:1-423(in Chinese with English abstract).
[7] 李兆龙,杨敏之.胶东金矿床地质地球化学[M].天津:天津科学技术出版社,1993:1-300. Li Zhaolong,Yang Minzhi.The Geology-Geochemistry of Gold Deposits in Jiaodong Region[M].Tianjin:Science and Technology Press,1993:1-300(in Chinese with English abstract).
[8] 宋明春,崔书学,伊丕厚,等.胶西北金矿集中区深部大型-超大型金矿找矿与成矿模式[M].北京:地质出版社,2010:1-353. Song Mingchun,Cui Shuxue,Yi Pihou,et al.Deep Large-Super Large Gold Deposit Forming and Prospecting Model in the Northwestern Jiaodong Gold Deposit Concentrating Area[M].Beijing:Geological Publishing House,2010:1-353(in Chinese with English abstract).
[9] 宋明春,宋英昕,沈昆,等.胶东焦家深部金矿矿床地球化学特征及有关问题讨论[J].地球化学,2013,42(3):274-289. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201303008.htm Song Mingchun,Song Yingxin,Shen Kun,et al.Geochemical features of deeply-seated gold deposit and discussions on some associated problems in Jiaojia gold ore field,Shandong peninsula,China[J].Geochimica,2013,42(3):274-289(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201303008.htm
[10] 宋雪龙,李俊健,李秀章,等.胶东金矿床成矿流体、稳定同位素及成矿时代研究进展[J].地质找矿论丛,2014,29(1):13-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401002.htm Song Xuelong,Li Junjian,Li Xiuzhang,et al.The research progress of ore-forming fluids,stable isotope and mineralizing age in Jiaodong peninsular of eastern China[J].Contributions to Geology and Mineral Resources Research,2014,29(1):13-19(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401002.htm
[11] 杨立强,邓军,王中亮,等.胶东中生代金成矿系统[J].岩石学报,2014,30(9):2447-2467. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm Yang Liqiang,Deng Jun,Wang Zhongliang,et al.Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,2014,30(9):2447-2467(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
[12] 柳振江.胶东西北部金矿床变化保存及找矿潜力分析[D].北京:中国地质大学(北京),2011. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009076152.htm Liu Zhenjiang.Post-ore Denudation and Exploration Potential of the Northwestern Jiaodong Gold Province,China[D].Beijing:China University of Geosciences (Beijing),2011. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009076152.htm
[13] 蓝廷广,范宏瑞,胡芳芳,等.鲁东昌邑古元古代BIF铁矿矿床地球化学特征及矿床成因讨论[J].岩石学报,2012,28(11):3595-3611. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211014.htm Lan Tingguang,Fan Hongrui,Hu Fangfang,et al.Geological and geochemical characteristics of Paleoproterozoic Changyi banded iron formation deposit,Jiaodong peninsula of eastern China[J].Acta Petrologica Sinica,2012,28(11):3595-3611(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211014.htm
[14] 刘善宝,王登红,陈毓川,等.胶东半岛烟台地区邢家山钨钼矿床地质特征及其辉钼矿Re-Os同位素测年[J].地质通报,2011,30(8):1294-1302. http://mall.cnki.net/magazine/article/zqyd201108016.htm Liu Shanbao,Wang Denghong,Chen Yuchuan,et al.Geological characteristics and molybdenite Re-Os age of the Xingjiashan W-Mo deposit in Yantai area,Jiaodong peninsula,Shandong Province[J].Geological Bulletin of China,2011,30(8):1294-1302(in Chinese with English abstract). http://mall.cnki.net/magazine/article/zqyd201108016.htm
[15] 王奎峰,郭宝奎,陈晓曼,等.山东省铅锌矿床类型、地质特征及找矿远景[J].地质调查研究,2012,35(4):260-267. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201204005.htm Wang Kuifeng,Guo Baokui,Chen Xiaoman,et al.Lead-zinc deposits and geological characteristics,ore-prospecting in Shandong Province[J].Geological Survey and Research,2012,35(4):260-267(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201204005.htm
[16] 王奎峰,李文平,杨德平,等.山东省铜矿床类型、时空分布、典型矿床特征及成矿远景[J].地质学报,2013,87(4):565-576. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304011.htm Wang Kuifeng,Li Wenping,Yang Deping,et al.Types,distribution and feature of typical copper ore deposits in Shandong province and its ore-forming prospect[J].Acta Geologica Sinica,2013,87(4):565-576(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304011.htm
[17] 赵伦华.胶东地区钼矿床类型及其成矿特征[J].山东地质,1988,4(1):101-112. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI198801008.htm Zhao Lunhua.Types of molybdenum ore deposits in the eastern Shandong region and its characteristics of minerlization[J].Geology of Shandong,1988,4(1):101-112(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI198801008.htm
[18] 孔庆友,张天祯,于学峰,等.山东矿床[M].济南:山东科学技术出版社,2006:1-902. Kong Qingyou,Zhang Tianzhen,Yu Xuefeng,et al.Deposits in Shandong Province[M].Jinan:Shandong Scientific and Technical Publishing House,2006:1-902(in Chinese with English abstract).
[19] 王奎峰.胶东栖霞香夼铅锌多金属矿床地质特征及成因[J].地质调查与研究,2008,31(2):89-96. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200802005.htm Wang Kuifeng.Geochemical characteristics and origin of the Xiangkuang lead-zinc polymetallic deposit in Qixia City,eastern Shandong Province[J].Geological Survey and Research,2008,31(2):89-96(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200802005.htm
[20] 孙丰月,丁正江,刘殿浩,等.初论胶东福山北部地区斑岩成矿系统[J].黄金,2011,1(32):14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201101006.htm Sun Fengyue,Ding Zhengjiang,Liu Dianhao,et al.Garch forecast model of international gold price considering exogenous variables[J].Gold,2011,1(32):14-19(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201101006.htm
[21] 薛玉山,柳振江,成少博,等.胶东邢家山大型钼矿地质地球化学特征及成因意义[J].中国地质,2014,41(2):540-561. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201402017.htm Xue Yushan,Liu Zhenjiang,Cheng Shaobo,et al.Geologicalgeochemical characteristics of the Xingjiashan Mo deposit in Jiaodong and their geological significance[J].Geology in China,2014,41(2):540-561(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201402017.htm
[22] 柳振江,王建平,刘家军,等.胶东南宿花岗岩中辉钼矿的同位素年龄及其地质意义[J].矿床地质,2010,29(增刊):483-484. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1246.htm Liu Zhenjiang,Wang Jianping,Liu Jiajun,et al.Isotopic dating of molybdenite from Nansu granite in Jiaodong and its geological significance[J].Mineral Deposits,2010,29(Supp.):483-484(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1246.htm
[23] 李杰,宋明春,王美云,等.胶东尚家庄钼矿床Re-Os同位素年龄及其地质意义[J].中国地质,2013,40(5):1612-1621. http://www.cnki.com.cn/article/cjfdtotal-dizi201305024.htm Li Jie,Song Mingchun,Wang Meiyun,et al.The molybdenite Re-Os age and genetic analysis of the Shangjiazhuang Mo deposit in Jiaodong area[J].Geology in China,2013,40(5):1612-1621(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dizi201305024.htm
[24] 成少博,柳振江,薛玉山,等.胶东尚家庄钥矿区岩体地球化学特征及地质意义[J].高校地质学报,2013,19(增刊):263. http://cpfd.cnki.com.cn/article/cpfdtotal-zgkd201304001258.htm Cheng Shaobo,Liu Zhenjiang,Xue Yushan,et al.Geochemical characteristics of pluton in the Shangjiazhuang molybdenum deposit of Jiaodong and its geological significance[J].Geological Journal of China Universities,2013,19(Supp.):263(in Chinese). http://cpfd.cnki.com.cn/article/cpfdtotal-zgkd201304001258.htm
[25] 张田,张岳桥.胶东半岛中生代侵入岩浆活动序列及其构造制约[J].高校地质学报,2007,13(2):323-336. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200702014.htm Zhang Tian,Zhang Yueqiao.Geochronological sequence of mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints[J].Geological Journal of China Universities,2007,13(2):323-336(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200702014.htm
[26] 金秉福.牟平院格庄花岗岩体的地球化学特征分析[J].烟台师范学院学报(自然科学版),1997,13(4):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-WOOD704.017.htm Jin Bingfu.Geochemical characteristics of granite of Yuangezhuang pluton in Muping[J].Yantai Teachers University Journal (Natural Science),1997,13(4):308-312(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-WOOD704.017.htm
[27] 李洪奎,李逸凡,耿科,等.鲁东地区古元古界形成的大地构造环境探讨[J].地质调查与研究,2013,36(2):114-130. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201302008.htm Li Hongkui,Li Yifan,Geng Ke,et al.Palaeoproterozoic tectonic setting in the eastern Shandong Province[J].Geological Survey and Research,2013,36(2):114-130(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201302008.htm
[28] 徐扬,杨坤光,李日辉,等.北苏鲁超高压变质带前寒武纪基底研究新进展[J].现代地质,2013,27(2):248-259. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201302002.htm Xu Yang,Yang Kunguang,Li Rihui,et al.Main progresses in the study of precambrian basement of the North Sulu ultra-high pressure metamorphic belt,Eastern China[J].Geoscience,2013,27(2):248-259(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201302002.htm
[29] 张勇,任凤楼,龚淑云,等.牟平-即墨断裂带白垩纪构造应力场及转化机制[J].海洋地质与第四纪地质,2013,33(2):79-85. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201302013.htm Zhang Yong,Ren Fenglou,Gong Shuyun,et al.Cretaceous stress field of the Muping-Jimo fault belt and its implication for tectonic evolution[J].Marine Geology & Quaternary Geology,2013,33(2):79-85(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201302013.htm
[30] 张岳桥,李金良,张田,等.胶东半岛牟平-即墨断裂带晚中生代运动学转换历史[J].地质论评,2007,53(3):289-300. http://www.cnki.com.cn/article/cjfdtotal-dzlp200703000.htm Zhang Yueqiao,Li Jinliang,Zhang Tian,et al.Late Mesozoic kinematic history of the Muping-Jimo fault zone in Jiaodong Peninsula,Shandong Province,East China[J].Geological Review,2007,53(3):289-300(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dzlp200703000.htm
[31] Markey R,Stein H,Morgan J.Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS[J].Talanta,1998,45:935-946. doi: 10.1016/S0039-9140(97)00198-7
[32] Shirey S B,Walker R J.Carius tube degetion for low-blank rhenium-osmium analysis[J].Analytical Chemistry,1995,67:2136-2141. doi: 10.1021/ac00109a036
[33] 王礼兵,屈文俊,李超,等.负离子热表面电离质谱法测量铼的化学分离方法研究[J].岩矿测试,2013,32(3):402-408. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201303008.htm Wang Libing,Qu Wenjun,Li Chao,et al.Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry[J].Rock and Mineral Analysis,2013,32(3):402-408(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201303008.htm
[34] 周利敏,高炳宇,王礼兵,等.Carius管直接蒸馏快速分离锇方法的改进[J].岩矿测试,2012,31(3):413-418. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203007.htm Zhou Limin,Gao Bingyu,Wang Libing,et al.Improvements on the separation method of osmium by direct distillation in Carius tube[J].Rock and Mineral Analysis,2012,31(3):413-418(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203007.htm
[35] Wieser M E.Atomic weights of the elements 2005(IUPAC Technical Report)[J].Pure and Applied Chemistry,2006,78(11):2051-2066. http://cn.bing.com/academic/profile?id=1980458819&encoded=0&v=paper_preview&mkt=zh-cn
[36] Bohlkea J K,de Laeter J R,De Bievre P,et al.Isotopic compositions of the elements,2001[J].Journal of Physical and Chemical Reference Data,2001,34(1):57-67. http://adsabs.harvard.edu/abs/2005JPCRD..34...57B
[37] Smoliar M I,Walker R J,Morgan J W.Re-Os ages of group ⅡA,ⅢA,IVA,and IVB iron meteorites[J].Science,1996,271:1099-1102. doi: 10.1126/science.271.5252.1099
[38] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews,1994,37(3/4):215-224. http://cn.bing.com/academic/profile?id=2019034794&encoded=0&v=paper_preview&mkt=zh-cn
[39] Middlemost E A K.Magmas and Magmatic Rocks:An Introduction to Igneous Petrology[M].London:Longman Group United Kingdom,1985:1-280.
[40] Peccerillo A,Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):63-81. doi: 10.1007/BF00384745
[41] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of American Bulletin,1989,101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[42] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D,Norry M J (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,1989,42:313-345. http://www.oalib.com/references/19039797
[43] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25(4):956-983. doi: 10.1093/petrology/25.4.956
[44] Ludwig K R.User's manual for isoplot/Ex Version 2.49:A geochronological toolkit for Microsoft Excel[M].Geochronology Center,Berkeley,Special Publication,2001:1-58. http://cn.bing.com/academic/profile?id=9942273&encoded=0&v=paper_preview&mkt=zh-cn
[45] 翟德高,刘家军,王建平,等.内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义[J].现代地质,2009,23(2):262-268. http://mall.cnki.net/magazine/article/xddz200902009.htm Zhai Degao,Liu Jiajun,Wang Jianping,et al.Re-Os isotopic chronology of molybdenite from the Taipinggou porphyry-type molybdenum deposit in Inner Mongolia and its geological significance[J].Geoscience,2009,23(2):262-268(in Chinese with English abstract). http://mall.cnki.net/magazine/article/xddz200902009.htm
[46] Stein H,Schersten A,Hannah J,et al.Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite[J].Geochimica et Cosmochimica Acta,2003,67(19):3673-3686. doi: 10.1016/S0016-7037(03)00269-2
[47] Stein H J,Morgan J W,Markey R J,et al.An introduction to Re-Os:What's in it for the mineral industry[J].SEG Newsletter,1998,32(1):8-15.
[48] Stein H J,Markey R J,Morgan J W,et al.The remarkable Re-Os chronometer in molybdenite:How and why it works[J].Terra Nova,2001,13(6):479-486. doi: 10.1046/j.1365-3121.2001.00395.x
[49] Luck J M,Allegre C J.The study of molybdenites through the 187Re-187Os chronometer[J].Earth and Planetary Science Letters,1982,61:291-296. doi: 10.1016/0012-821X(82)90060-7
[50] Selby D,Creaser R A.Macroscale NTIMS and microscale LAMC-ICP-MS Re-Os isotopic analysis of molybdenite:Testing spatial restrictions for reliable Re-Os age determinations and implications for the decoupling of Re and Os within molybdenite[J].Geochimica et Cosmochimica Acta,2004,68(19):3897-3908. doi: 10.1016/j.gca.2004.03.022
[51] 杜安道, 屈文俊, 王登红, 等. 辉钼矿亚晶粒范围内Re和187Os的失耦现象[J].矿床地质,2007,26(5):572-580. http://mall.cnki.net/magazine/article/kcdz200705012.htm Du Andao, Qu Wenjun, Wang Denghong, et al. Subgrain-size decoupling of Re and 187Os within molybdenite[J]. Mineral Deposits, 2007, 26(5): 572-580 (in Chinese with English abstract). http://mall.cnki.net/magazine/article/kcdz200705012.htm
[52] 李超,屈文俊,杜安道.大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究[J].矿床地质,2009,28(5):707-712. http://mall.cnki.net/magazine/article/kcdz200905017.htm Li Chao,Qu Wenjun,Du Andao.Decoupling of Re and Os and migration model of 187Os in coarse-grained molybdenite[J].Mineral Deposits,2009,28(5):707-712(in Chinese with English abstract). http://mall.cnki.net/magazine/article/kcdz200905017.htm
[53] Davidson J,Turner S,Handley H,et al.Amphibole "sponge" in arc crust?[J].Geology,2007,35(9):787-790. doi: 10.1130/G23637A.1
[54] Castillo P R.Adakite petrogenesis[J].Lithos,2012,134-135:304-316. doi: 10.1016/j.lithos.2011.09.013
[55] Taylor S R,Mclennan S M.The geochemical evolution of the continental crust[J].Reviews of Geophysics,1995,33(2):241-265. doi: 10.1029/95RG00262
[56] Rudnick R L,Fountain D M.Nature and composition of the continental crust:A lower crustal perspective[J].Reviews of Geophysics,1995,33(3):267-309. doi: 10.1029/95RG01302
[57] Rudnick R L,Gao S.Composition of the Continental Crust[C]//Holland H D,Turekian K K (eds.).Treatise on Geochemistry.Amsterdam:Elsevier,2003:1-64.
[58] McDonough W F,Sun S S.The composition of the earth[J].Chemical Geology,1995,120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4
[59] Muncker C,Pfander G A,Weyer S,et al.Evolution of planetary cores and the earth-moon system from Nb/Ta systematics[J].Science,2003,301(5629):84-87. doi: 10.1126/science.1084662
[60] Deniel C,Vidal P,Fernandez A,et al.Isotopic study of the Manaslu granite (Himalaya,Nepal):Inferences on the age and source of Himalayan leucogranites[J].Contributions to Mineralogy and Petrology,1987,96:78-92. doi: 10.1007/BF00375529
[61] Vidal P,Cocherie A,Le Fort P.Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya,Nepal).Geochimica et Cosmochimica Acta,1982,46:2279-2292. doi: 10.1016/0016-7037(82)90201-0
[62] Chen Bin,Jahn B M,Wilde S,et al.Two contrasting Paleozoic magmatic belts in northern Inner Mongolia,China:petrogenesisand tectonic implications.Tectonophysics,2000,328:157-182. doi: 10.1016/S0040-1951(00)00182-7
[63] Hildreth W,Moorbath S.Crustal contributions to arc magmatism in the Andes of Central Chile[J].Contributions to Mineralogy and Petrology,1988,98:455-489. doi: 10.1007/BF00372365
[64] Kocak K.Hybridization of mafic microgranular enclaves:mineral and whole-rock chemistry evidence from the Karamadazı Granitoid,Central Turkey[J].International Journal of Earth Sciences,2006,95:587-607. doi: 10.1007/s00531-006-0090-x
[65] 马昌前,王人镜,邱家骧.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例[J].地质论评,1992,38(2):109-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199202001.htm Ma Changqian,Wang Renjing,Qiu Jiaxiang.Enclaves as indicators of the origin of granitoid magma and repeated magma mingling:an example from the Zhoukoudian intrusion,Beijing[J].Geological Review,1992,38(2):109-119(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199202001.htm
[66] 谢银财,陆建军,马东升,等.湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约[J].岩石学报,2013,29(12):4186-4214. https://www.researchgate.net/profile/Rongqing_Zhang/publication/266416042_Origin_of_granodiorite_porphyry_and_mafic_microgranular_enclave_in_the_Baoshan_Pb-Zn_polymetallic_deposit_southern_Hunan_Province_Zircon_U-Pb_chronological_geochemical_and_Sr-Nd-Hf_isotopic_constraints/links/54bdbda60cf218da9391baeb.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail Xie Yincai,Lu Jianjun,Ma Dongsheng,et al.Origin of granodiorite porphyry and mafic microgranular enclave in the Baoshan Pb-Zn polymetallic deposit,southern Hunan Province:Zircon U-Pb chronological,geochemical and Sr-Nd-Hf isotopic constraints.Acta Petrologica Sinica,2013,29(12):4186-4214(in Chinese with English abstract). https://www.researchgate.net/profile/Rongqing_Zhang/publication/266416042_Origin_of_granodiorite_porphyry_and_mafic_microgranular_enclave_in_the_Baoshan_Pb-Zn_polymetallic_deposit_southern_Hunan_Province_Zircon_U-Pb_chronological_geochemical_and_Sr-Nd-Hf_isotopic_constraints/links/54bdbda60cf218da9391baeb.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
[67] 李靖辉.河南嵩县大石门沟钼矿床辉钼矿Re-Os同位素年龄及地质意义[J].中国地质,2014,41(4):1364-1374. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401004.htm Li Jinghui.Re-Os isotopic dating of molybdenites from the Dashimengou molybdenum deposit in Songxian County,Henan Province,and its geological significance[J].Geology in China,2014,41(4):1364-1374(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401004.htm
[68] Mao J W,Zhang Z C,Zhang Z H,et al.Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J].Geochimica et Cosmochimica Acta,1999,63(11-12):1815-1819. doi: 10.1016/S0016-7037(99)00165-9
[69] Mao J W,Du A D,Seltmann R,et al.Re-Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite,central Urals,Russia[J].Mineralium Deposita,2003,38(2):251-257. http://cn.bing.com/academic/profile?id=56371422&encoded=0&v=paper_preview&mkt=zh-cn
[70] 吴福元,孙德有.Re-Os同位素体系理论及其应用[J].地质科技情报,1999,18(3):43-46. http://mall.cnki.net/magazine/article/dzkq199903010.htm Wu Fuyuan,Sun Deyou.Theory and applications of Re-Os isotopic system[J].Geological Science and Technology Information,1999,18(3):43-46(in Chinese with English abstract). http://mall.cnki.net/magazine/article/dzkq199903010.htm
[71] 丁正江,孙丰月,刘福来,等.胶东中生代动力学演化及主要金属矿床成矿系列[J].岩石学报,2015,31(10):3045-3080. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510011.htm Ding Zhengjiang,Sun Fengyue,Liu Fulai,et al.Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula,China[J].Acta Petrologica Sinica,2015,31(10):3045-3080(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510011.htm
[72] 文博杰,范宏瑞,胡芳芳,等.胶西北三山岛伟晶岩型脉状钼矿化成因及对胶东钼成矿的指示意义[J].岩石学报,2015,31(4):1002-1014. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504009.htm Wen Bojie,Fan Hongrui,Hu Fangfang,et al.The genesis of pegmatite-type molybdenum mineralization in Sanshandao,and their implications for molybdenum deposit in Jiaodong,East China[J].Acta Petrologica Sinica,2015,31(4):1002-1014(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504009.htm
-
期刊类型引用(7)
1. 陈玲玉,解建建,刘恋. ERT在晋祠泉复流工程地下水勘查中的应用. 工程地球物理学报. 2024(04): 621-627 . 百度学术
2. 姜宝良,李志超,王秀明,刘宇,余晨. 新乡百泉泉水复流与保护措施. 能源与环保. 2023(02): 46-52+57 . 百度学术
3. 唐春雷,申豪勇,赵春红,王志恒,谢浩,赵一,梁永平. 古堆泉域岩溶地下水水化学特征及成因. 环境科学. 2023(09): 4874-4883 . 百度学术
4. 赵春红,梁永平,王志恒,唐春雷,申豪勇. 山西省阳泉山底河流域煤矿“老窑水”动态特征、演化机理及对娘子关泉域的环境效应. 中国地质. 2023(05): 1471-1485 . 本站查看
5. 唐春雷,梁永平,晋华,申豪勇,赵春红,王志恒,谢浩,赵一,王士娜. 山西娘子关泉群及其水的来源. 中国岩溶. 2022(02): 174-182 . 百度学术
6. 王焰新. 我国北方岩溶泉域生态修复策略研究——以晋祠泉为例. 中国岩溶. 2022(03): 331-344 . 百度学术
7. 唐春雷,梁永平,晋华,赵春红,申豪勇,王志恒,赵一,谢浩,梁琛. 山底河流域煤矿酸性矿井水野外监测. 中国岩溶. 2022(04): 522-531 . 百度学术
其他类型引用(4)