• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

胶东院格庄岩体中辉钼矿Re-Os同位素测年及其地质意义

朱保霖, 柳振江, 成少博, 薛玉山, 王建平, 徐磊

朱保霖, 柳振江, 成少博, 薛玉山, 王建平, 徐磊. 胶东院格庄岩体中辉钼矿Re-Os同位素测年及其地质意义[J]. 中国地质, 2016, 43(4): 1353-1366. DOI: 10.12029/gc20160420
引用本文: 朱保霖, 柳振江, 成少博, 薛玉山, 王建平, 徐磊. 胶东院格庄岩体中辉钼矿Re-Os同位素测年及其地质意义[J]. 中国地质, 2016, 43(4): 1353-1366. DOI: 10.12029/gc20160420
ZHU Bao-lin, LIU Zhen-jiang, CHENG Shao-bo, XUE Yu-shan, WANG Jian-ping, XU Lei. Re-Os isotopic dating of molybdenites from the Yuangezhuang pluton in Jiaodong and its geological significance[J]. GEOLOGY IN CHINA, 2016, 43(4): 1353-1366. DOI: 10.12029/gc20160420
Citation: ZHU Bao-lin, LIU Zhen-jiang, CHENG Shao-bo, XUE Yu-shan, WANG Jian-ping, XU Lei. Re-Os isotopic dating of molybdenites from the Yuangezhuang pluton in Jiaodong and its geological significance[J]. GEOLOGY IN CHINA, 2016, 43(4): 1353-1366. DOI: 10.12029/gc20160420

胶东院格庄岩体中辉钼矿Re-Os同位素测年及其地质意义

基金项目: 

国家自然科学基金 41202062

国家自然科学基金 41230311

中央高校基本科研业务费专项资金 2652015043

详细信息
    作者简介:

    朱保霖, 男, 1990生, 硕士, 矿床学专业; E-mail:zhbln90@163.com

    通讯作者:

    柳振江, 男, 1983生, 博士, 讲师, 从事矿床学研究与教学工作; E-mail:lzj@cugb.edu.cn

  • 中图分类号: P618.65;P597

Re-Os isotopic dating of molybdenites from the Yuangezhuang pluton in Jiaodong and its geological significance

Funds: 

the National Natural Science Foundation of China 41202062

the National Natural Science Foundation of China 41230311

Fundamental Research Funds for Central Universities 2652015043

More Information
    Author Bio:

    ZHU Bao-lin, male, born in 1990, master, majors in deposit geology; E-mail:zhbln90@163.com

    Corresponding author:

    LIU Zhen-jiang, male, born in 1983, lecturer, doctor., majors in mineral deposits, engages in study and teaching of ore deposit geology; E-mail:lzj@cugb.edu.cn

  • 摘要:

    院格庄花岗岩体位于烟台市牟平区境内,是胶东地区燕山晚期伟德山超单元一个典型的复式岩体。本次研究针对花岗岩体内发育的辉钼矿开展Re-Os同位素测年,同时对采集于花岗岩体的新鲜样品进行了主量元素、微量元素和稀土元素测试分析。结果显示,院格庄花岗岩属于高钾富碱的钙碱性岩,具准铝质-过铝质特征,是壳幔混合来源的花岗岩。此外,辉钼矿Re-Os等时线年龄为(117.8±5.7)Ma,加权平均年龄为(118.27±0.70)Ma,与胶东已知多个燕山晚期铜钼矿赋矿岩体特征及成矿时代一致,显示该区可能具有良好的钼多金属成矿前景。

    Abstract:

    The Yuangezhuang pluton lies in Muping block, Yantai, Shandong Province. It is a typical granitic complex of Weideshan Late Yanshanian super-unit in Jiaodong. In this study, direct Re-Os dating of molybdenites collected from the granitoids was carried out, and the major elements and trace elements in whole rock samples were also analyzed. The results show that the pluton probably belongs to a kind of granite derived from mantle-crust and is characterized by high potassium and alkali as well as metaluminous to peraluminous nature. Besides, the isochron age is 117.8±5.7 Ma, with a weighted average of 118.27±0.70 Ma, similar to data of the metallogenetic epoch and characteristics of the host rock from many known Cu-Mo deposits in Late Yanshanian period. This suggests that it probably has a good prospect for molybdenum polymetallic mineralization.

  • 锶作为岩石圈上部含量最大的微量元素(胡进武等,2004黄奇波等,2011),广泛存在于自然界中但分布非常不均,锶的分布状态及其存在形态受到自然条件、人类活动等多种因素的影响,导致锶在分布上富集或贫乏(Comar et al., 1957; 范伟等2010)。在不同的时期、不同岩性的基岩地层中锶元素的丰度存在明显的差异性,一般在海相沉积的碳酸盐岩中锶的丰度最高,在含锶矿物的闪长岩、花岗岩、黏土岩以及碳酸盐岩中,锶含量相对比较富集,黏土、砂中锶的丰度最低(刘庆宣等,2004)。作为微量元素,锶主要存在于各种造岩矿物和副矿物中,也能形成一些独立的矿物,主要为存在于碳酸盐岩中的菱锶矿(SrCO3)和天青石(SrSO4),同时文石、方解石、钙长石及石膏等矿物中亦常见锶置换钙的类质同像现象(Clow et al., 1997文冬光等,1998)。岩石中的锶是地下水中锶的主要物质来源,锶在赋存母岩中主要经风化、淋滤后在地下水流作用下进行迁移转化(文冬光等,1998康志强等,2011苏春田等, 2017a, b),进而进入人类及其他动植物的物质循环。前人研究表明,地下水中锶的分布与富集受渗流地层岩性、溶滤强度、水化学条件(王增银等,2003祁晓凡等,2009范伟等, 2010)等因素的影响。目前,各国根据锶的含量及其生理医学作用制定了锶矿泉水的标准,参照饮用天然矿泉水国家标准(GB8537- 2016),地下水的质量浓度达到0.2mg/L,可命名为富锶矿泉水,规定的限值为5mg/L。岩溶水作为山区居民主要饮用的水源,关乎百姓的生活与饮食健康,因而查明地下水中锶的分布状态,揭示锶的动态变化,分析锶的富集规律,具有较大的研究意义与实际价值。

    前人对富锶地下水的研究多集中在赋存条件、水质评价等方面,多集中在非岩溶地区(孙岐发等,2019),针对西南岩溶区富锶地下水的研究还较少(祁晓凡等,2009康志强等,2011苏春田等, 2017a, b),针对三峡岩溶区的研究则更少。本文选取湖北秭归地区两个岩溶流域为研究区,以岩溶水系统为单元,从锶的物质来源条件入手,分析岩溶水系统中锶的水岩作用过程,研究不同含水岩组、不同水流条件下地下水中锶的分布与富集特征,探讨宜昌三峡岩溶去地下水中锶富集的条件与规律。

    本文主要针对秭归地区的茅坪河和九畹溪两个岩溶流域开展研究。研究区地处长江之滨、西陵峡畔、清江以北,属于中国地形第二、三阶梯的过渡地带,为川东褶皱与鄂西山地交汇地,境内山脉为大巴山、巫山余脉,地形起伏较大。该地区属于亚热带季风气候,气候温暖、降雨充沛,年降雨量在900~1200 mm,其中汛期降雨量占绝大部分,受季风气候和山峦起伏的影响,降雨量的季节变化和空间差异明显,小气候特征比较显著。秭归县位于鄂西褶皱山地,西南高东北低,平均海拔高程千米以上,山峰耸立,河谷深切,相对高差一般在500~1300 m。其中中低山区多分布于秭归盆地周边,斜坡倾角介于15~25°,面积960 km2;大于25°以上的斜坡主要分布在长江峡谷区、中高山向中低山过渡地带,陡缓变化较大,多形成陡崖。

    研究区地处黄陵穹隆西南缘,自北东向西南从侵入岩体、前震旦纪到三叠纪地层连续出露且较齐全,区内南沱组角度不整合于侵入岩与变质岩基底之上,第四系与下伏地层为角度不整合,其余地层之间均为整合与平行不整合接触关系(南沱组与陡山沱组呈平行不整合,纱帽组与云台观组呈平行不整合)。区域内地层主要是以沉积岩为主,累计沉积岩岩层最大厚度约7567 m,其中碳酸盐岩总厚度达到3443 m,占沉积岩总厚度的45.5%,碳酸盐岩地层主要有震旦系,寒武系、奥陶系、志留系、二叠系及三叠系,岩性以灰岩、白云岩为主,非碳酸盐岩地层有志留系、泥盆系、白垩系,岩性以碎屑岩为主,尤以仙女山一带的白垩系的碎屑砾岩、砂岩为特殊,常常发育有可溶性砾岩裂隙孔洞水。

    前人在进行岩溶含水系统划分过程中,主要考虑了含水岩组、空间介质结构、组合特征、岩溶水径流方式、埋藏条件等因素(裴建国等,2008; 梁永平等,2015)。秭归地区属于南方岩溶的范畴,多种地层组合特征、构造条件下发育多样的岩溶水系统,既发育有管道裂隙集中排泄型系统、也有裂隙分散排泄型岩溶水系统。根据区域地层的含水性分析,大致可划分为3个岩溶含水系统(图 1):上震旦岩溶含水系统(Z2d、Z21d)、下寒武—奥陶岩溶含水系统(∈1t、∈1sl、∈2q、∈2O1l、O1n、O1g、O2-3b)、石炭—三叠岩溶含水系统(P1q、P1m、P2w、T1d、T2j),进一步可细分为7个岩溶含水子系统(表 1)。本文依据空间结构、含水介质、排泄方式、代表水流、标高、流量等特征数据,并结合野外调查资料,对岩溶子含水单元排泄特征进行整理划分(表 1)。

    图  1  研究区水文地质简图及主要泉点分布图
    Figure  1.  Hydrogeological map showing distribution of main springs in the study area
    表  1  岩溶含水子系统的介质结构及排泄特征
    Table  1.  Structure and drainage characteristics of karst water-bearing units
    下载: 导出CSV 
    | 显示表格

    2016—2018年期间,本文依托中国地质调查局二级项目“宜昌长江南岸岩溶流域水文地质环境地质调查”,系统地采集了研究区泉水、典型断面地表水样品,对重点岩溶泉点进行月度监测,并选送测区内主要含水岩组的岩样进行岩石矿物组成分析。针对不同岩溶水系统,选取了31组岩溶泉点作为长期监测点(长观站)(图 1),用于分析地下水的动态变化规律。本文的研究数据来源于区域水文地质调查,及31个岩溶泉长期监测点(长观站)月度样采集,共整理了415组水样数据,93组岩矿分析数据,基于此对锶的分布特征进行分析。

    水样采集采用600 mLPVC瓶,现场用水样涮洗3次,同时对水样水温、pH、电导率、流量等指标进行现场测定。此后样品在12 h内送回室内,采用《中华人民共和国地质矿产行业标准DZ/T 0064.49- 93地下水水质检验方法》酸碱滴定法测试并计算碱度。同时将水样用孔径0.45 μm的醋酸纤维膜过滤后,分装于2个50 mLPET瓶中分别用于阴阳离子测试,其中阳离子测试样会使用分析纯HNO3酸化至pH<2,阴离子样则不加处理。

    水化学样品的测试在中国地质大学(武汉)地质调查研究院实验中心完成,阴离子由戴安离子色谱仪ICS2100测试,阳离子由赛默飞公司生产的ICP-OES(ICAP6300)测试;岩石样品矿物组成测试在澳实分析检测(广州)有限公司测试完成,锶等矿物组分均采用封闭酸溶-电感耦合等离子体质谱法(ICP-MS)测试。

    通过对93组岩矿分析数据分析可知,不同地质年代的沉积地层中锶的含量大不相同(表 2),在震旦系地层中,灯影组地层锶含量比陡山沱组高,灯影组锶含量可达到2900 μg/g,均值为1121 μg/g,且组内不同段含量差异明显,如灯影组二段的白云质灰岩中锶含量介于800~2600 μg/g,其含量较一段和三段的白云岩大,灯影组地层整体变异系数为88.2%(n=10);寒武系上统娄山关组白云岩中锶含量介于77~2500 μg/g,变异系数为62.5%(n=11),锶含量均值大但分布上存在差异性;奥陶系地层锶含量均不高,介于100~400 μg/g,变异系数相对较低;嘉陵江组地层锶的含量较高,均值为2861 μg/g,变异系数也较高,为137.3%(n=17)。

    表  2  秭归岩溶地层中锶含量概况统计
    Table  2.  Statistics of Sr contents in karst strata in the Zigui area
    下载: 导出CSV 
    | 显示表格

    可知,秭归地区富锶地层主要为灯影组、娄山关组、嘉陵江组。从沉积相来看,上述沉积地层均为干旱气候条件下碳酸盐台地浅滩、潮坪-潟湖沉积(徐长昊,2016),为封闭性较好的沉积环境,是蒸发沉积富锶地层发育的良好条件。

    同时对区内浅层包气带内岩样分析发现,表层岩石中天青石矿物较少,锶含量偏低且与CaO的相关性较好,而与MgO、SO3、Al2O3的相关性一般。主要是由于表层岩石受到较强的淋滤作用而导致锶的流失,此外浅循环系统中的锶会以类质同像形式存在于方解石矿物中。

    对由钻孔揭露深层封闭地层岩样分析发现,锶主要以天青石形式存在,常常与石膏矿物共存。如钻孔ZK05揭露的娄山关组地层中,锶含量普遍较高且与SO3有较好的相关性(R2=0.737,n=10)。另在对钻孔ZK03揭露的奥陶系岩心分析发现,随着MgO含量的增大,岩性逐渐白云岩化,同时锶含量逐渐减小(图 2);此外,锶的含量会随着碳酸盐中泥质含量的增大(SiO2含量增大)而减小(图 2)。

    图  2  ZK03孔奥陶系岩心中MgO-Sr(a)与SiO2-Sr(b)浓度关系
    Figure  2.  Relationship of Sr vs. MgO and SiO2 of rocks revealed from ZK03

    通过对茅坪河与九畹溪两个流域岩溶地下水样分析,从富锶水化学类型、水岩作用程度、物理化学条件等方面,对该区地下水锶分布与富集展开讨论。

    针对研究区所采集的415组水样,从Piper三线图(图 3)来看,地下水中锶含量大于2 mg/L时,水中阳离子以Ca2+、Mg2+为优势离子,阴离子以SO42-为主;地下水中锶含量在0.70~10 mg/L时,水中阳离子以Na+为主,阴离子以Cl-为主;地下水中锶含量小于0.70 mg/L时,水中阴离子以HCO3-为主。因此,锶浓度相对较高的地下水化学类型主要包括SO4型和Cl型,其中尤以SO4型地下水的锶浓度最高。

    图  3  富锶地下水Piper三线图
    Figure  3.  Piper diagram of Sr-rich groundwater

    岩溶地下水中离子组分主要来源于对母岩的溶滤作用,其决定着地下水中主要水化学过程(康志强等,2011; 苏春田等,2017a)。母岩中锶含量影响着水流系统地下水中锶的分布(文冬光等,1998苏春田等,2017b)。地下水中锶离子主要来源于富锶矿物(天青石、菱锶矿),赋存在方解石、文石及白云石类质同像形态的锶,以及铝硅酸盐中的锶等的溶解(徐兴国,1984),具体的化学反应方程式如下:

    (1)

    (2)

    (3)

    表层岩溶泉可反映局部水流系统的水化学特征。基于所采集的334处表层岩溶泉,绘制出研究区锶在表层岩溶水中的分布规律,发现全区存在5处富锶地下水分布区(图 4),且这些富锶地下水分布与富锶地层的分布表现出一致性,二叠系阳新组岩溶水,三叠系嘉陵江组岩溶水,寒武系娄山关组岩溶水,寒武系水井沱组岩溶水及震旦系灯影组岩溶水。其中杨新组表层岩溶水中Sr含量介于0.26~ 0.76 mg/L;嘉陵江组介于0.23~0.60 mg/L;娄山关组介于0.13~0.43 mg/L;水井沱组与灯影组介于0.22~0.72 mg/L。

    图  4  表层岩溶泉中锶的分布特征
    Figure  4.  Distribution of strontium in karst water

    对于排泄区,选取研究区内4处锶含量较高的地层中出露的地下水点为例,即白龙潭、龙洞、迷宫泉和龙王洞(表 1)。从锶离子与硫酸根离子、重碳酸根离子的浓度关系(图 5)发现,嘉陵江组白龙潭岩溶泉水锶含量较高,与硫酸根离子有较好的一致性(R2=0.707,n=5),另知嘉陵江组岩矿分析中SO3含量较高,反映出在该泉域的径流途径上有天青石的存在;娄山关组迷宫泉与重碳酸根离子和硫酸根离子均呈现较好的相关性(R2=0.668,n=10;R2= 0.768,n=13),反映出径流途径中存在两种富锶矿物溶解。此外,针对地下水中丰、枯两季表现出差异性(图 5),主要是由于研究区具有典型南方岩溶管道-裂隙水系统,地下水径流路径和径流时间短、水岩作用不充分(罗明明等,2015),表现出枯季地下水中锶含量普遍比丰水期的要高。由上可知,岩溶水中锶离子含量与各岩溶水系统中富锶矿物含量密切相关,流经的地层岩性差异导致各岩溶水流系统表现出不同的水岩作用过程,或受石膏、天青石矿物溶解的影响,或受菱锶矿溶解的影响,或受多种锶源的混合补给。

    图  5  地下水锶与HCO3-、SO42-的摩尔浓度关系
    Figure  5.  Relationship between strontium concentration and HCO3-, SO42- in groundwater

    对于锶在多级水系系统中的分布规律,本文以泗溪流域庙坪—鱼泉洞多级水流系统为例(图 1b),不同级次的地下水中锶含量及饱和程度易表现出差异性(表 3图 6)。庙坪洼地表层岩溶泉为局部水流系统,锶含量均值为0.08 mg/L,si_Str与si_Cel均比较低(表 3),多为方解石中类质同像锶的溶解释放;鱼泉洞泉水为中间水流系统,地下水锶含量均值为0.22 mg/L,si_Stron与SI_Cel相比于局部水流系统稍高但未达到饱和(表 3),但冬季其锶的饱和指数相对夏季要高,主要由于冬季水流滞缓,水岩作用相对充分(表 3);以钻孔ZK04揭露的区域水流系统,其锶均值在2.33 mg/L,si_Str、si_Cel、si_Cal、si_Dol均趋于饱和(图 6)。可知地下水与母岩水岩相互作用的时间与水流路径长短决定了地下水中富锶矿物的饱和程度及地下水中锶含量(张群利等,2011苏春田等,2017a)。

    表  3  不同级次水流水化学信息统计表
    Table  3.  Hydrochemistry of different water flow levels
    下载: 导出CSV 
    | 显示表格
    图  6  地下水中Sr2+与SO42-的关系
    si_Cal—方解石饱和指数;si_Dol—白云岩饱和指数;si_Cel—天青石饱和指数;si_Str—菱锶矿饱和指数
    Figure  6.  Relationship between Sr2+ and SO42- in groundwater
    si_Cal-Calcite saturation index; si_Dol-Dolomite saturation index; si_Cel: Celestine saturation index; si_Str-Strontianite saturation index

    此外,通过对钻孔ZK04及钻孔ZK05中锶含量分析(表 3图 6),发现两者锶离子浓度均很大。在两孔钻进施工中,均有H2S与CH4等还原性气体溢出,且岩心中有机炭的含量相对较高,尤其是ZK05岩矿组分中发现有单质S存在。推知两孔均混有碳酸盐岩和硫酸盐岩(富含大量的石膏),且均为相对封闭的还原环境。

    在这种封闭缺氧还原环境中,地下水中的SO42-在有机炭和脱硫细菌作用下,容易发生脱硫酸作用(刘硕等,2016),其化学反应式为:

    (4)

    (5)

    当地层中含有大量铁的时候S2-便会与铁结合,逐渐生成黄铁矿,而硫化氢气体极易溶于水(溶解比例约为1∶3),在氧气充足的时候,H2S会被氧化成硫酸与碳酸盐结合形成石膏矿物沉淀,但当氧气不足的时候,少部分的H2S会被氧化成单质S,更大一部分仍以气体的形式存在于封闭的还原条件中,这也就是ZK05孔岩心组分中单质S存在的原因。硫酸根离子的转化,促进了石膏、天青石的溶解过程,致使地下水中锶离子富集,甚至使天青石溶解达到饱和,同时菱锶矿的溶解也增大了地下水中锶的含量(罗璐等,2015)。

    本文通过对秭归岩溶流域锶的分布与迁移进行分析,得到以下结论:

    (1)研究区内嘉陵江组、娄山关组、灯影组地层中的锶含量最高,代表着潮坪-潟湖沉积相;区内浅层岩石中天青石矿物较少,锶含量偏低;深层封闭地层岩样中锶主要以天青石形式存在,常常与石膏矿物共存。

    (2)富锶岩溶水的水化学类型主要包括SO4型和Cl型,尤以SO4型地下水的锶浓度最高;母岩中锶的含量决定了地下水中锶的浓度,且锶主要通过溶滤作用进入地下水中。

    (3)地下水水流系统中水岩作用程度及地下水的滞留时间均影响地下水中锶的浓度,浅循环岩溶地下水流系统中锶均未达到饱和,少数深循环区域地下水流系统中锶浓度趋近饱和状态。对于富含石膏、天青石的封闭还原环境有利于地下水中锶的富集。

    致谢: 衷心感谢匿名审稿专家提出的宝贵修改意见;感谢中国地质大学(北京)宓奎峰博士、李春风硕士在图件绘制方面的帮助。
  • 图  1   胶东地区地质图及主要贵金属、有色金属矿床分布图(转引自参考文献[12])

    Figure  1.   Geological map and distribution of precious and nonferrous metal deposits in Jiaodong region (modified after reference [12])

    图  2   院格庄岩体区域地质图

    1—第四系; 2—白垩系莱阳群; 3—古元古界粉子山群; 4—古元古界荆山群陡崖组; 5—古元古界荆山群野头组; 6—古元古界荆山群禄格庄组; 7—中生代伟德山超单元斑状角闪二长花岗岩; 8—中生代伟德山超单元巨斑状角闪二长花岗岩; 9—中生代伟德山超单元巨斑状黑云二长花岗岩; 10—中生代玲珑超单元伟晶花岗岩; 11—中生代玲珑超单元弱片麻状二长花岗岩; 12—新太古代栖霞超单元条带状英云闪长岩; 13—煌斑岩; 14—闪长玢岩; 15—铜矿体; 16—铁矿体; 17—韧性断裂; 18—压扭性断裂; 19—断裂破碎带; 20—采样点

    Figure  2.   Regional geological map of the Yuangezhuang pluton

    1-Quartnary; 2-Cretaceous Laiyang Group; 3-Paleoproterozoic Fenzishan Group; 4-Paleoproterozoic Jingshan Group Douya Formation; 5-Paleoproterozoic Jingshan Group Yetou Formation; 6-Paleoproterozoic Jingshan Group Lugezhuang Formation; 7-Mesozoic Weideshan superunit porphyritic hornblende monogranite; 8-Mesozoic Weideshan superunit megaporphyritic hornblende monogranite; 9-Mesozoic Weideshan superunit megaporphyritic biotite monogranite; 10-Mesozoic Linglong superunit giant granite; 11-Mesozoic Linglong superunit weakly gneissic monogranite; 12-Neoarchean Qixia superunit banded tonalite; 13-Lamprophyre; 14-Dioritic porphyrite; 15-Copper orebody; 16-Iron orebody; 17-Ductile fault; 18-Compresso-shear fault; 19-Fault fracture zone; 20-Sampling locations

    图  3   院格庄岩体露头、手标本和显微照片

    aa, b—暗色微粒包体; c—花岗闪长岩; d—薄膜状辉钼矿; e—浸染状辉钼矿; f—细脉状辉钼矿; g, h—薄膜状辉钼矿(黑白照片); i—浸染状辉钼矿(黑白照片); j—细脉状辉钼矿(黑白照片); k—花岗闪长岩(正交偏光); l—花岗岩(正交偏光)Bi—黑云母; Mc—微斜长石; Mo—辉钼矿; Pl—斜长石; Hbl—普通角闪石; Kfs—钾长石

    Figure  3.   Field, hand specimen and microscopic photos of rocks from the Yuangezhuang pluton

    a, b-MME; c-Granodiorite; d-Pellicular molybdenite; e-Disseminated molybdenite; f-Veinlet molybdenite; g, h-Pellicular molybdenite (black and white photo); i-Disseminated molybdenite (black and white photo); j-Veinlet molybdenite (black and white photo); k-Granodiorite (CPL); l-Granite (CPL) Bi-Biotite, Mc-Microcline, Mo-Molybdenite, Pl-Plagioclase, Hbl-Hornblende, Kfs-Potassium feldspar

    图  4   院格庄岩体TAS图解(底图据文献[38])

    图  5   院格庄岩体SiO2-K2O图解(底图据文献[3940])

    Figure  5.   SiO2-K2O diagram of the Yuangezhuang pluton (base map after reference [39, 40])

    图  6   院格庄岩体A/CNK-A/NK图解(底图据文献[41])

    Figure  6.   A/CNK-A/NK diagram of the Yuangezhuang pluton(base map after reference [41])

    图  7   院格庄岩体微量元素原始地幔标准化蛛网图(底图据文献[42])

    Figure  7.   Preliminary mantle-normalized trace element patterns of the Yuangezhuang pluton (base map after reference [42])

    图  8   院格庄岩体(Y+Nb)-Rb图解(底图据文献[43])

    Figure  8.   Y+Nb-Rb diagram of the Yuangezhuang pluton (base map after reference [43])

    图  9   院格庄岩体稀土元素球粒陨石标准化配分图(底图据文献[42])

    Figure  9.   Chondrite-normalized REE patterns of the Yua

    图  10   院格庄岩体辉钼矿Re-Os等时线年龄

    Figure  10.   Re-Os isochron age of molybdenites from the Yuangezhuang pluton

    图  11   院格庄岩体辉钼矿Re-Os模式年龄加权平均值

    Figure  11.   Weighted average of Re-Os model age of molybdenites from the Yuangezhuang pluton

    表  1   院格庄岩体主量元素分析结果(%)

    Table  1   Major element (%) analyses of rocks from the Yuangezhuang pluton

    下载: 导出CSV

    表  2   院格庄岩体微量元素、稀土元素分析结果(10-6)

    Table  2   Analytical data and characteristic ratios (10-6) of trace and rare earth elements from the Yuangezhuang pluton

    下载: 导出CSV

    表  3   院格庄岩体辉钼矿Re-Os同位素分析结果

    Table  3   Analytical results of Re-Os isotopes of molybdenites from the Yuangezhuang pluton

    下载: 导出CSV

    表  4   胶东地区钼矿成矿年龄统计

    Table  4   The formation age of molybdenite in the Jiaodong region

    下载: 导出CSV
  • [1] 李旭芬,刘建朝,张学仁,等.牟平-乳山金矿带构造特征及成矿预测[J].黄金科学技术,2013,21(3):10-15. http://www.cnki.com.cn/article/cjfdtotal-hjkj201303004.htm

    Li Xufen,Liu Jianchao,Zhang Xueren,et al.Structural features and metallogenic prognosis of Muping-Rushan gold ore belt[J].Gold Science and Technology,2013,21(3):10-15(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-hjkj201303004.htm

    [2] 宋明春,李三忠,伊丕厚,等.中国胶东焦家式金矿类型及其成矿理论[J].吉林大学学报(地球科学版),2014,44(1):87-104. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401008.htm

    Song Mingchun,Li Sanzhong,Yi Pihou,et al.Classification and metallogenic theory of the Jiaojia-atyle gold deposit in Jiaodong peninsula,China[J].Journal of Jilin University (Earth Science Edition),2014,44(1):87-104(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401008.htm

    [3] 宋明春,伊丕厚,崔书学,等.胶东金矿"热隆-伸展"成矿理论及其找矿意义[J].山东国土资源,2013,29(7):1-12. http://mall.cnki.net/magazine/article/sddi201307005.htm

    Song Mingchun,Yi Pihou,Cui Shuxue,et al.Thermal upliftingextension ore-forming theory and its prospecting significance in Jiaodong gold deposit[J].Shandong Land and Resources,2013,29(7):1-12(in Chinese with English abstract). http://mall.cnki.net/magazine/article/sddi201307005.htm

    [4]

    Goldfarb R J,Santosh M.The dilemma of the Jiaodong gold deposits:Are they unique?[J].Geoscience Frontiers,2014,5(2):139-153. doi: 10.1016/j.gsf.2013.11.001

    [5]

    Guo P,Santosh M,Li S R.Geodynamics of gold metallogeny in Shandong Province,NE China:An integrated geological,geophysical and geochemical perspective[J].Gondwana Research,2013,24:1172-1202. doi: 10.1016/j.gr.2013.02.004

    [6] 李士先,刘长春,安郁宏,等.胶东金矿地质[M].北京:地质出版社,2007:1-423.

    Li Shixian,Liu Changchun,An Yuhong,et al.Geology of Gold Deposits in Jiaodong[M].Beijing:Geological Publishing House,2007:1-423(in Chinese with English abstract).

    [7] 李兆龙,杨敏之.胶东金矿床地质地球化学[M].天津:天津科学技术出版社,1993:1-300.

    Li Zhaolong,Yang Minzhi.The Geology-Geochemistry of Gold Deposits in Jiaodong Region[M].Tianjin:Science and Technology Press,1993:1-300(in Chinese with English abstract).

    [8] 宋明春,崔书学,伊丕厚,等.胶西北金矿集中区深部大型-超大型金矿找矿与成矿模式[M].北京:地质出版社,2010:1-353.

    Song Mingchun,Cui Shuxue,Yi Pihou,et al.Deep Large-Super Large Gold Deposit Forming and Prospecting Model in the Northwestern Jiaodong Gold Deposit Concentrating Area[M].Beijing:Geological Publishing House,2010:1-353(in Chinese with English abstract).

    [9] 宋明春,宋英昕,沈昆,等.胶东焦家深部金矿矿床地球化学特征及有关问题讨论[J].地球化学,2013,42(3):274-289. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201303008.htm

    Song Mingchun,Song Yingxin,Shen Kun,et al.Geochemical features of deeply-seated gold deposit and discussions on some associated problems in Jiaojia gold ore field,Shandong peninsula,China[J].Geochimica,2013,42(3):274-289(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201303008.htm

    [10] 宋雪龙,李俊健,李秀章,等.胶东金矿床成矿流体、稳定同位素及成矿时代研究进展[J].地质找矿论丛,2014,29(1):13-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401002.htm

    Song Xuelong,Li Junjian,Li Xiuzhang,et al.The research progress of ore-forming fluids,stable isotope and mineralizing age in Jiaodong peninsular of eastern China[J].Contributions to Geology and Mineral Resources Research,2014,29(1):13-19(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201401002.htm

    [11] 杨立强,邓军,王中亮,等.胶东中生代金成矿系统[J].岩石学报,2014,30(9):2447-2467. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm

    Yang Liqiang,Deng Jun,Wang Zhongliang,et al.Mesozoic gold metallogenic system of the Jiaodong gold province,eastern China[J].Acta Petrologica Sinica,2014,30(9):2447-2467(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm

    [12] 柳振江.胶东西北部金矿床变化保存及找矿潜力分析[D].北京:中国地质大学(北京),2011. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009076152.htm

    Liu Zhenjiang.Post-ore Denudation and Exploration Potential of the Northwestern Jiaodong Gold Province,China[D].Beijing:China University of Geosciences (Beijing),2011. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009076152.htm

    [13] 蓝廷广,范宏瑞,胡芳芳,等.鲁东昌邑古元古代BIF铁矿矿床地球化学特征及矿床成因讨论[J].岩石学报,2012,28(11):3595-3611. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211014.htm

    Lan Tingguang,Fan Hongrui,Hu Fangfang,et al.Geological and geochemical characteristics of Paleoproterozoic Changyi banded iron formation deposit,Jiaodong peninsula of eastern China[J].Acta Petrologica Sinica,2012,28(11):3595-3611(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211014.htm

    [14] 刘善宝,王登红,陈毓川,等.胶东半岛烟台地区邢家山钨钼矿床地质特征及其辉钼矿Re-Os同位素测年[J].地质通报,2011,30(8):1294-1302. http://mall.cnki.net/magazine/article/zqyd201108016.htm

    Liu Shanbao,Wang Denghong,Chen Yuchuan,et al.Geological characteristics and molybdenite Re-Os age of the Xingjiashan W-Mo deposit in Yantai area,Jiaodong peninsula,Shandong Province[J].Geological Bulletin of China,2011,30(8):1294-1302(in Chinese with English abstract). http://mall.cnki.net/magazine/article/zqyd201108016.htm

    [15] 王奎峰,郭宝奎,陈晓曼,等.山东省铅锌矿床类型、地质特征及找矿远景[J].地质调查研究,2012,35(4):260-267. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201204005.htm

    Wang Kuifeng,Guo Baokui,Chen Xiaoman,et al.Lead-zinc deposits and geological characteristics,ore-prospecting in Shandong Province[J].Geological Survey and Research,2012,35(4):260-267(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201204005.htm

    [16] 王奎峰,李文平,杨德平,等.山东省铜矿床类型、时空分布、典型矿床特征及成矿远景[J].地质学报,2013,87(4):565-576. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304011.htm

    Wang Kuifeng,Li Wenping,Yang Deping,et al.Types,distribution and feature of typical copper ore deposits in Shandong province and its ore-forming prospect[J].Acta Geologica Sinica,2013,87(4):565-576(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304011.htm

    [17] 赵伦华.胶东地区钼矿床类型及其成矿特征[J].山东地质,1988,4(1):101-112. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI198801008.htm

    Zhao Lunhua.Types of molybdenum ore deposits in the eastern Shandong region and its characteristics of minerlization[J].Geology of Shandong,1988,4(1):101-112(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-SDDI198801008.htm

    [18] 孔庆友,张天祯,于学峰,等.山东矿床[M].济南:山东科学技术出版社,2006:1-902.

    Kong Qingyou,Zhang Tianzhen,Yu Xuefeng,et al.Deposits in Shandong Province[M].Jinan:Shandong Scientific and Technical Publishing House,2006:1-902(in Chinese with English abstract).

    [19] 王奎峰.胶东栖霞香夼铅锌多金属矿床地质特征及成因[J].地质调查与研究,2008,31(2):89-96. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200802005.htm

    Wang Kuifeng.Geochemical characteristics and origin of the Xiangkuang lead-zinc polymetallic deposit in Qixia City,eastern Shandong Province[J].Geological Survey and Research,2008,31(2):89-96(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200802005.htm

    [20] 孙丰月,丁正江,刘殿浩,等.初论胶东福山北部地区斑岩成矿系统[J].黄金,2011,1(32):14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201101006.htm

    Sun Fengyue,Ding Zhengjiang,Liu Dianhao,et al.Garch forecast model of international gold price considering exogenous variables[J].Gold,2011,1(32):14-19(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201101006.htm

    [21] 薛玉山,柳振江,成少博,等.胶东邢家山大型钼矿地质地球化学特征及成因意义[J].中国地质,2014,41(2):540-561. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201402017.htm

    Xue Yushan,Liu Zhenjiang,Cheng Shaobo,et al.Geologicalgeochemical characteristics of the Xingjiashan Mo deposit in Jiaodong and their geological significance[J].Geology in China,2014,41(2):540-561(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201402017.htm

    [22] 柳振江,王建平,刘家军,等.胶东南宿花岗岩中辉钼矿的同位素年龄及其地质意义[J].矿床地质,2010,29(增刊):483-484. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1246.htm

    Liu Zhenjiang,Wang Jianping,Liu Jiajun,et al.Isotopic dating of molybdenite from Nansu granite in Jiaodong and its geological significance[J].Mineral Deposits,2010,29(Supp.):483-484(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1246.htm

    [23] 李杰,宋明春,王美云,等.胶东尚家庄钼矿床Re-Os同位素年龄及其地质意义[J].中国地质,2013,40(5):1612-1621. http://www.cnki.com.cn/article/cjfdtotal-dizi201305024.htm

    Li Jie,Song Mingchun,Wang Meiyun,et al.The molybdenite Re-Os age and genetic analysis of the Shangjiazhuang Mo deposit in Jiaodong area[J].Geology in China,2013,40(5):1612-1621(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dizi201305024.htm

    [24] 成少博,柳振江,薛玉山,等.胶东尚家庄钥矿区岩体地球化学特征及地质意义[J].高校地质学报,2013,19(增刊):263. http://cpfd.cnki.com.cn/article/cpfdtotal-zgkd201304001258.htm

    Cheng Shaobo,Liu Zhenjiang,Xue Yushan,et al.Geochemical characteristics of pluton in the Shangjiazhuang molybdenum deposit of Jiaodong and its geological significance[J].Geological Journal of China Universities,2013,19(Supp.):263(in Chinese). http://cpfd.cnki.com.cn/article/cpfdtotal-zgkd201304001258.htm

    [25] 张田,张岳桥.胶东半岛中生代侵入岩浆活动序列及其构造制约[J].高校地质学报,2007,13(2):323-336. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200702014.htm

    Zhang Tian,Zhang Yueqiao.Geochronological sequence of mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints[J].Geological Journal of China Universities,2007,13(2):323-336(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200702014.htm

    [26] 金秉福.牟平院格庄花岗岩体的地球化学特征分析[J].烟台师范学院学报(自然科学版),1997,13(4):308-312. http://www.cnki.com.cn/Article/CJFDTOTAL-WOOD704.017.htm

    Jin Bingfu.Geochemical characteristics of granite of Yuangezhuang pluton in Muping[J].Yantai Teachers University Journal (Natural Science),1997,13(4):308-312(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-WOOD704.017.htm

    [27] 李洪奎,李逸凡,耿科,等.鲁东地区古元古界形成的大地构造环境探讨[J].地质调查与研究,2013,36(2):114-130. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201302008.htm

    Li Hongkui,Li Yifan,Geng Ke,et al.Palaeoproterozoic tectonic setting in the eastern Shandong Province[J].Geological Survey and Research,2013,36(2):114-130(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201302008.htm

    [28] 徐扬,杨坤光,李日辉,等.北苏鲁超高压变质带前寒武纪基底研究新进展[J].现代地质,2013,27(2):248-259. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201302002.htm

    Xu Yang,Yang Kunguang,Li Rihui,et al.Main progresses in the study of precambrian basement of the North Sulu ultra-high pressure metamorphic belt,Eastern China[J].Geoscience,2013,27(2):248-259(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201302002.htm

    [29] 张勇,任凤楼,龚淑云,等.牟平-即墨断裂带白垩纪构造应力场及转化机制[J].海洋地质与第四纪地质,2013,33(2):79-85. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201302013.htm

    Zhang Yong,Ren Fenglou,Gong Shuyun,et al.Cretaceous stress field of the Muping-Jimo fault belt and its implication for tectonic evolution[J].Marine Geology & Quaternary Geology,2013,33(2):79-85(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201302013.htm

    [30] 张岳桥,李金良,张田,等.胶东半岛牟平-即墨断裂带晚中生代运动学转换历史[J].地质论评,2007,53(3):289-300. http://www.cnki.com.cn/article/cjfdtotal-dzlp200703000.htm

    Zhang Yueqiao,Li Jinliang,Zhang Tian,et al.Late Mesozoic kinematic history of the Muping-Jimo fault zone in Jiaodong Peninsula,Shandong Province,East China[J].Geological Review,2007,53(3):289-300(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-dzlp200703000.htm

    [31]

    Markey R,Stein H,Morgan J.Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS[J].Talanta,1998,45:935-946. doi: 10.1016/S0039-9140(97)00198-7

    [32]

    Shirey S B,Walker R J.Carius tube degetion for low-blank rhenium-osmium analysis[J].Analytical Chemistry,1995,67:2136-2141. doi: 10.1021/ac00109a036

    [33] 王礼兵,屈文俊,李超,等.负离子热表面电离质谱法测量铼的化学分离方法研究[J].岩矿测试,2013,32(3):402-408. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201303008.htm

    Wang Libing,Qu Wenjun,Li Chao,et al.Method study on the separation and enrichment of rhenium measured by negative thermal ionization mass spectrometry[J].Rock and Mineral Analysis,2013,32(3):402-408(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201303008.htm

    [34] 周利敏,高炳宇,王礼兵,等.Carius管直接蒸馏快速分离锇方法的改进[J].岩矿测试,2012,31(3):413-418. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203007.htm

    Zhou Limin,Gao Bingyu,Wang Libing,et al.Improvements on the separation method of osmium by direct distillation in Carius tube[J].Rock and Mineral Analysis,2012,31(3):413-418(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203007.htm

    [35]

    Wieser M E.Atomic weights of the elements 2005(IUPAC Technical Report)[J].Pure and Applied Chemistry,2006,78(11):2051-2066. http://cn.bing.com/academic/profile?id=1980458819&encoded=0&v=paper_preview&mkt=zh-cn

    [36]

    Bohlkea J K,de Laeter J R,De Bievre P,et al.Isotopic compositions of the elements,2001[J].Journal of Physical and Chemical Reference Data,2001,34(1):57-67. http://adsabs.harvard.edu/abs/2005JPCRD..34...57B

    [37]

    Smoliar M I,Walker R J,Morgan J W.Re-Os ages of group ⅡA,ⅢA,IVA,and IVB iron meteorites[J].Science,1996,271:1099-1102. doi: 10.1126/science.271.5252.1099

    [38]

    Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews,1994,37(3/4):215-224. http://cn.bing.com/academic/profile?id=2019034794&encoded=0&v=paper_preview&mkt=zh-cn

    [39]

    Middlemost E A K.Magmas and Magmatic Rocks:An Introduction to Igneous Petrology[M].London:Longman Group United Kingdom,1985:1-280.

    [40]

    Peccerillo A,Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):63-81. doi: 10.1007/BF00384745

    [41]

    Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of American Bulletin,1989,101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [42]

    Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D,Norry M J (eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,1989,42:313-345. http://www.oalib.com/references/19039797

    [43]

    Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25(4):956-983. doi: 10.1093/petrology/25.4.956

    [44]

    Ludwig K R.User's manual for isoplot/Ex Version 2.49:A geochronological toolkit for Microsoft Excel[M].Geochronology Center,Berkeley,Special Publication,2001:1-58. http://cn.bing.com/academic/profile?id=9942273&encoded=0&v=paper_preview&mkt=zh-cn

    [45] 翟德高,刘家军,王建平,等.内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义[J].现代地质,2009,23(2):262-268. http://mall.cnki.net/magazine/article/xddz200902009.htm

    Zhai Degao,Liu Jiajun,Wang Jianping,et al.Re-Os isotopic chronology of molybdenite from the Taipinggou porphyry-type molybdenum deposit in Inner Mongolia and its geological significance[J].Geoscience,2009,23(2):262-268(in Chinese with English abstract). http://mall.cnki.net/magazine/article/xddz200902009.htm

    [46]

    Stein H,Schersten A,Hannah J,et al.Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite[J].Geochimica et Cosmochimica Acta,2003,67(19):3673-3686. doi: 10.1016/S0016-7037(03)00269-2

    [47]

    Stein H J,Morgan J W,Markey R J,et al.An introduction to Re-Os:What's in it for the mineral industry[J].SEG Newsletter,1998,32(1):8-15.

    [48]

    Stein H J,Markey R J,Morgan J W,et al.The remarkable Re-Os chronometer in molybdenite:How and why it works[J].Terra Nova,2001,13(6):479-486. doi: 10.1046/j.1365-3121.2001.00395.x

    [49]

    Luck J M,Allegre C J.The study of molybdenites through the 187Re-187Os chronometer[J].Earth and Planetary Science Letters,1982,61:291-296. doi: 10.1016/0012-821X(82)90060-7

    [50]

    Selby D,Creaser R A.Macroscale NTIMS and microscale LAMC-ICP-MS Re-Os isotopic analysis of molybdenite:Testing spatial restrictions for reliable Re-Os age determinations and implications for the decoupling of Re and Os within molybdenite[J].Geochimica et Cosmochimica Acta,2004,68(19):3897-3908. doi: 10.1016/j.gca.2004.03.022

    [51] 杜安道, 屈文俊, 王登红, 等. 辉钼矿亚晶粒范围内Re和187Os的失耦现象[J].矿床地质,2007,26(5):572-580. http://mall.cnki.net/magazine/article/kcdz200705012.htm

    Du Andao, Qu Wenjun, Wang Denghong, et al. Subgrain-size decoupling of Re and 187Os within molybdenite[J]. Mineral Deposits, 2007, 26(5): 572-580 (in Chinese with English abstract). http://mall.cnki.net/magazine/article/kcdz200705012.htm

    [52] 李超,屈文俊,杜安道.大颗粒辉钼矿Re-Os同位素失耦现象及187Os迁移模式研究[J].矿床地质,2009,28(5):707-712. http://mall.cnki.net/magazine/article/kcdz200905017.htm

    Li Chao,Qu Wenjun,Du Andao.Decoupling of Re and Os and migration model of 187Os in coarse-grained molybdenite[J].Mineral Deposits,2009,28(5):707-712(in Chinese with English abstract). http://mall.cnki.net/magazine/article/kcdz200905017.htm

    [53]

    Davidson J,Turner S,Handley H,et al.Amphibole "sponge" in arc crust?[J].Geology,2007,35(9):787-790. doi: 10.1130/G23637A.1

    [54]

    Castillo P R.Adakite petrogenesis[J].Lithos,2012,134-135:304-316. doi: 10.1016/j.lithos.2011.09.013

    [55]

    Taylor S R,Mclennan S M.The geochemical evolution of the continental crust[J].Reviews of Geophysics,1995,33(2):241-265. doi: 10.1029/95RG00262

    [56]

    Rudnick R L,Fountain D M.Nature and composition of the continental crust:A lower crustal perspective[J].Reviews of Geophysics,1995,33(3):267-309. doi: 10.1029/95RG01302

    [57]

    Rudnick R L,Gao S.Composition of the Continental Crust[C]//Holland H D,Turekian K K (eds.).Treatise on Geochemistry.Amsterdam:Elsevier,2003:1-64.

    [58]

    McDonough W F,Sun S S.The composition of the earth[J].Chemical Geology,1995,120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4

    [59]

    Muncker C,Pfander G A,Weyer S,et al.Evolution of planetary cores and the earth-moon system from Nb/Ta systematics[J].Science,2003,301(5629):84-87. doi: 10.1126/science.1084662

    [60]

    Deniel C,Vidal P,Fernandez A,et al.Isotopic study of the Manaslu granite (Himalaya,Nepal):Inferences on the age and source of Himalayan leucogranites[J].Contributions to Mineralogy and Petrology,1987,96:78-92. doi: 10.1007/BF00375529

    [61]

    Vidal P,Cocherie A,Le Fort P.Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya,Nepal).Geochimica et Cosmochimica Acta,1982,46:2279-2292. doi: 10.1016/0016-7037(82)90201-0

    [62]

    Chen Bin,Jahn B M,Wilde S,et al.Two contrasting Paleozoic magmatic belts in northern Inner Mongolia,China:petrogenesisand tectonic implications.Tectonophysics,2000,328:157-182. doi: 10.1016/S0040-1951(00)00182-7

    [63]

    Hildreth W,Moorbath S.Crustal contributions to arc magmatism in the Andes of Central Chile[J].Contributions to Mineralogy and Petrology,1988,98:455-489. doi: 10.1007/BF00372365

    [64]

    Kocak K.Hybridization of mafic microgranular enclaves:mineral and whole-rock chemistry evidence from the Karamadazı Granitoid,Central Turkey[J].International Journal of Earth Sciences,2006,95:587-607. doi: 10.1007/s00531-006-0090-x

    [65] 马昌前,王人镜,邱家骧.花岗质岩浆起源和多次岩浆混合的标志:包体——以北京周口店岩体为例[J].地质论评,1992,38(2):109-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199202001.htm

    Ma Changqian,Wang Renjing,Qiu Jiaxiang.Enclaves as indicators of the origin of granitoid magma and repeated magma mingling:an example from the Zhoukoudian intrusion,Beijing[J].Geological Review,1992,38(2):109-119(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199202001.htm

    [66] 谢银财,陆建军,马东升,等.湘南宝山铅锌多金属矿区花岗闪长斑岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约[J].岩石学报,2013,29(12):4186-4214. https://www.researchgate.net/profile/Rongqing_Zhang/publication/266416042_Origin_of_granodiorite_porphyry_and_mafic_microgranular_enclave_in_the_Baoshan_Pb-Zn_polymetallic_deposit_southern_Hunan_Province_Zircon_U-Pb_chronological_geochemical_and_Sr-Nd-Hf_isotopic_constraints/links/54bdbda60cf218da9391baeb.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail

    Xie Yincai,Lu Jianjun,Ma Dongsheng,et al.Origin of granodiorite porphyry and mafic microgranular enclave in the Baoshan Pb-Zn polymetallic deposit,southern Hunan Province:Zircon U-Pb chronological,geochemical and Sr-Nd-Hf isotopic constraints.Acta Petrologica Sinica,2013,29(12):4186-4214(in Chinese with English abstract). https://www.researchgate.net/profile/Rongqing_Zhang/publication/266416042_Origin_of_granodiorite_porphyry_and_mafic_microgranular_enclave_in_the_Baoshan_Pb-Zn_polymetallic_deposit_southern_Hunan_Province_Zircon_U-Pb_chronological_geochemical_and_Sr-Nd-Hf_isotopic_constraints/links/54bdbda60cf218da9391baeb.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail

    [67] 李靖辉.河南嵩县大石门沟钼矿床辉钼矿Re-Os同位素年龄及地质意义[J].中国地质,2014,41(4):1364-1374. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401004.htm

    Li Jinghui.Re-Os isotopic dating of molybdenites from the Dashimengou molybdenum deposit in Songxian County,Henan Province,and its geological significance[J].Geology in China,2014,41(4):1364-1374(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401004.htm

    [68]

    Mao J W,Zhang Z C,Zhang Z H,et al.Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J].Geochimica et Cosmochimica Acta,1999,63(11-12):1815-1819. doi: 10.1016/S0016-7037(99)00165-9

    [69]

    Mao J W,Du A D,Seltmann R,et al.Re-Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite,central Urals,Russia[J].Mineralium Deposita,2003,38(2):251-257. http://cn.bing.com/academic/profile?id=56371422&encoded=0&v=paper_preview&mkt=zh-cn

    [70] 吴福元,孙德有.Re-Os同位素体系理论及其应用[J].地质科技情报,1999,18(3):43-46. http://mall.cnki.net/magazine/article/dzkq199903010.htm

    Wu Fuyuan,Sun Deyou.Theory and applications of Re-Os isotopic system[J].Geological Science and Technology Information,1999,18(3):43-46(in Chinese with English abstract). http://mall.cnki.net/magazine/article/dzkq199903010.htm

    [71] 丁正江,孙丰月,刘福来,等.胶东中生代动力学演化及主要金属矿床成矿系列[J].岩石学报,2015,31(10):3045-3080. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510011.htm

    Ding Zhengjiang,Sun Fengyue,Liu Fulai,et al.Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula,China[J].Acta Petrologica Sinica,2015,31(10):3045-3080(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510011.htm

    [72] 文博杰,范宏瑞,胡芳芳,等.胶西北三山岛伟晶岩型脉状钼矿化成因及对胶东钼成矿的指示意义[J].岩石学报,2015,31(4):1002-1014. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504009.htm

    Wen Bojie,Fan Hongrui,Hu Fangfang,et al.The genesis of pegmatite-type molybdenum mineralization in Sanshandao,and their implications for molybdenum deposit in Jiaodong,East China[J].Acta Petrologica Sinica,2015,31(4):1002-1014(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201504009.htm

  • 期刊类型引用(5)

    1. 王鹤源,王泽堃,谷思莹,杨烁暄,赵梓垚,陈旭. 宜昌—武汉长江沿岸典型砾石层对比分析. 高校地质学报. 2024(01): 47-55 . 百度学术
    2. 林旭,李玲玲,刘静,吴中海,李长安,刘维明,向宇,刘海金,陈济鑫. 长江早更新世向江汉盆地输送碎屑物质:来自碎屑锆石U-Pb年龄的约束. 地球科学. 2023(11): 4214-4228 . 百度学术
    3. 孙杨,谢远云,迟云平,康春国,吴鹏. 大兴安岭东麓龙江县白土山组地层特征:化学风化、沉积循环、源-汇体系和沉积环境. 山地学报. 2022(01): 14-28 . 百度学术
    4. 魏松林,孙全,陈平,杜林诚. 基于航测无人机的卵石三轴粒径计算及精度评估. 工程勘察. 2022(11): 68-74 . 百度学术
    5. 王令占,杨博,涂兵. 鄂东南咸宁北部冲洪积物的ESR年代及意义. 华南地质. 2021(02): 127-135 . 百度学术

    其他类型引用(3)

图(11)  /  表(4)
计量
  • 文章访问数:  3547
  • HTML全文浏览量:  451
  • PDF下载量:  5691
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-03-22
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-08-24

目录

/

返回文章
返回
x 关闭 永久关闭