• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

内蒙古达茂旗宫忽洞矽卡岩型铜矿床地质、地球化学特征及其意义

李志丹, 陈军强, 王佳营, 文思博, 肖志斌, 汤超, 刘行, 俞礽安

李志丹, 陈军强, 王佳营, 文思博, 肖志斌, 汤超, 刘行, 俞礽安. 内蒙古达茂旗宫忽洞矽卡岩型铜矿床地质、地球化学特征及其意义[J]. 中国地质, 2016, 43(4): 1367-1384. DOI: 10.12029/gc20160421
引用本文: 李志丹, 陈军强, 王佳营, 文思博, 肖志斌, 汤超, 刘行, 俞礽安. 内蒙古达茂旗宫忽洞矽卡岩型铜矿床地质、地球化学特征及其意义[J]. 中国地质, 2016, 43(4): 1367-1384. DOI: 10.12029/gc20160421
LI Zhi-dan, CHEN Jun-qiang, WANG Jia-ying, WEN Si-bo, XIAO Zhi-bin, TANG Chao, LIU Xing, YU Reng-an. Geology and geochemistry of the Gonghudong skarn copper deposit in Darhan Muminggan Joint Banner, Inner Mongolia and its significance[J]. GEOLOGY IN CHINA, 2016, 43(4): 1367-1384. DOI: 10.12029/gc20160421
Citation: LI Zhi-dan, CHEN Jun-qiang, WANG Jia-ying, WEN Si-bo, XIAO Zhi-bin, TANG Chao, LIU Xing, YU Reng-an. Geology and geochemistry of the Gonghudong skarn copper deposit in Darhan Muminggan Joint Banner, Inner Mongolia and its significance[J]. GEOLOGY IN CHINA, 2016, 43(4): 1367-1384. DOI: 10.12029/gc20160421

内蒙古达茂旗宫忽洞矽卡岩型铜矿床地质、地球化学特征及其意义

基金项目: 

中国地质调查项目 12120113057300

中国地质调查项目 12120113057400

国家自然科学基金项目 41502082

详细信息
    作者简介:

    李志丹, 男, 1986年生, 硕士, 工程师, 矿床学、矿产普查与勘探专业; E-mail:cugcug@qq.com

  • 中图分类号: P618.41;P597

Geology and geochemistry of the Gonghudong skarn copper deposit in Darhan Muminggan Joint Banner, Inner Mongolia and its significance

Funds: 

China Geological Survey Program 12120113057300

China Geological Survey Program 12120113057400

National Natural Science Foundation of China 41502082

More Information
    Author Bio:

    LI Zhi-dan, male, born in 1986, master, engineer, engages in the study of ore geology and exploration; E-mail:cugcug@qq.com

  • 摘要:

    宫忽洞是内蒙古中部的一例典型矽卡岩型铜矿床,位于华北板块北缘中段中元古代白云鄂博裂谷带内,赋存于矿区东南部花岗斑岩与白云鄂博群呼吉尔图组结晶灰岩形成的矽卡岩中。矿体呈透镜状、似层状分布,主要金属矿物为黄铜矿、斑铜矿、闪锌矿、辉铜矿、黄铁矿、磁黄铁矿等,脉石矿物为石榴石、透辉石、方解石、萤石等,矽卡岩类主要为透辉石-石榴石矽卡岩。花岗斑岩LA-ICP-MS锆石U-Pb年龄为(299.6±1.7)Ma,推断宫忽洞铜矿床是晚古生代构造岩浆活动的产物。花岗斑岩高Si、贫Al;亏损Ba、Sr、P、Ti等元素;10000Ga/Al值变化于2.32~3.49;稀土配分曲线呈典型的“V”字形;FeOT/MgO值介于9.86~12.27;其成因类型为A1亚类的A型花岗岩,可能形成于后造山拉张构造环境。3件热液方解石δ13CV-PDB值介于-10.6‰~-8.6‰,对应的δ18OV-SMOW值为4.6‰~15‰,宫忽洞铜矿床成矿期的CO2可能由花岗斑岩与灰岩地层的相互作用形成。4件不同硫化物的δ34S值介于1.2‰~10‰,表明成矿所需的硫可能来自于岩浆硫与海相硫酸盐的混合;4件不同硫化物的206Pb/204Pb=17.706~17.828,207Pb/204Pb=15.506~15.564;208Pb/204Pb=37.841~37.969,表明后造山阶段拉张环境形成的A型花岗斑岩体可能是成矿物质的主要提供者。

    Abstract:

    The Gonghudong is a typical skarn copper deposit in central Inner Mongolia. It is located in Mesoproterozoic Bayan Obo rift zone along the middle section of the northern margin of North China plate, and is hosted in the skarn belt formed by the contact of granite porphyry and crystalline limestone of Hujiertu Group. The Cu orebodies are lentoid and stratiform-like in shape. The metallic minerals mainly are chalcopyrite, bornite, sphalerite, chalcocite, pyrite and pyrrhotine, and the nonmetallic minerals mainly are garnet, diopside, calcite and fluorite. The LA-ICP-MS zircon U-Pb dating of granite porphyry yielded an age of (299.6±1.7) Ma, and thus the Gonghudong deposit was the product of Late Paleozoic tectonic magmatic activity. The granite porphyry has high Si, low Al, depleted Ba, Sr, P, Ti, with "V" type REE pattern, and the values of 10000Ga/Al and FeOT/MgO range from 2.32 to 3.49 and 9.86 to 12.27, respectively. These data indicate that the granite porphyry belongs to A1 subtype of A-type granites and was formed in a post-orogenic extension environment.δ13CV-PDB andδ18OV-SMOW of the hydrothermal calcite are from-10.6‰to-8.6‰and from 4.6‰to 24.67‰, respectively, suggesting that the CO2 was supplied by the interaction of granite porphyry and limestone. Theδ34S values of the sulfide range from 1.2‰to 10‰, indicating that the sulfur was derived from the magma sulfur and marine sulfate. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb of the ores are 17.847 to l8.173, 15.586 to 15.873 and 37.997 to 38.905, respectively. The Pb-isotopic compositions suggest that the ore-forming material was probably derived mainly from the granite porphyry.

  • 图  1   内蒙古达茂旗宫忽洞铜矿床大地构造位置(A)及区域地质图(B)(A—引自文献[21];B—引自文献[20])

    1—第四系;2—汉诺坝组;3—二连组;4—固阳组;5—苏吉火山岩;6—阿牙登组;7—呼吉尔图组三段;8—呼吉尔图组二段;9—呼吉尔图组一段;10—白音宝拉格组四段;11—新宝力格序列朱勒格单元;12—新宝力格序列花包特格单元;13—霍布序列乌兰敖包单元;14—霍布序列板申图单元;15—霍布序列那日图单元;16—花岗斑岩;17—地质界线;18—断层;19—宫忽洞铜矿床位置

    Figure  1.   Tectonic location (A) and regional geological map (B) of the Gonghudong copper deposit, Darhan Muminggan Joint Banner, Inner Mongolia (A-after reference [21]; B-after reference [20])

    1-Quaternary; 2-Hannuoba Formation; 3-Erlian Formation; 4-Guyang Formation; 5-Suji volcanic rocks; 6-Ayadeng Formation; 7-The third member of Hujiertu Formation; 8-The second member of Hujiertu Formation; 9-The first member of Hujiertu Formation; 10-The fourth member of Baiyinbaolage Formation; 11-Zhulege unit of Xinbaolige sequence; 12-Huabaotege unit of Xinbaolige sequence; 13-Wulanaobao unit of Huobu sequence; 14-Babshentu unit of Huobu sequence; 15-Naritu unit of Huobu sequence; 16-Granite porphyry; 17-Geological boundary; 18-Fault; 19-Gonghudong copper deposit

    图  2   内蒙古达茂旗宫忽洞铜矿床地质图(引自文献[17])

    1—第四系;2—二叠系下统苏吉组凝灰岩;3—白云鄂博群阿牙登组硅质灰岩;4—白云鄂博群呼吉尔图组黑云母板岩;5—白云鄂博群呼吉尔图组石英黑云母板岩;6—白云鄂博群呼吉尔图组黑云母透闪石角岩;7—白云鄂博群呼吉尔图组石英透辉石角岩;8—白云鄂博群呼吉尔图组结晶灰岩;9—白云鄂博群白音宝拉格组黑云母硅质板岩;10—白云鄂博群白音宝拉格组淡色石英岩;11—白云鄂博群白音宝拉格组黑云母石英板岩;12—白云鄂博群白音宝拉格组黑云母变余石英砂岩;13—白云鄂博群白音宝拉格组黑云母石英板岩;14—白云鄂博群白音宝拉格组深灰色变余石英砂岩;15—矽卡岩;16—花岗斑岩;17—闪长玢岩脉;18—闪斜煌斑岩脉;19—铜矿体;20—地质界线;21—断层及编号;22—8号勘探线剖面

    Figure  2.   Geological map of the Gonghudong copper deposit, Darhan Muminggan Joint Banner, Inner Mongolia (after reference [17])

    1-Quaternary; 2-Tuff, Lower Permian Suji Formation; 3-Siliceous limestone, Hujiertu Formation, Bayan Obo Group; 4-Biotite slate, Hujiertu Formation, Bayan Obo Group; 5-Quartz biotite slate, Hujiertu Formation, Bayan Obo Group; 6-Biotite tremolite hornstone, Hujiertu Formation, Bayan Obo Group; 7-Biotite diopside hornstone, Hujiertu Formation, Bayan Obo Group; 8-Crystalline limestone, Hujiertu Formation, Bayan Obo Group; 9-Biotite siliceous slate, Baiyinbaolage Formation, Bayan Obo Group; 10-Tinge quartzite, Baiyinbaolage Formation, Bayan Obo Group; 11-Biotite quartz slate, Baiyinbaolage Formation, Bayan Obo Group; 12-Biotite palimpsest quartz sandstone, Baiyinbaolage Formation, Bayan Obo Group; 13-Biotite quartz slate, Baiyinbaolage Formation, Bayan Obo Group; 14-Dark gray palimpsest quartz sandstone, Baiyinbaolage Formation, Bayan Obo Group; 15-Skarn; 16-Granite porphyry; 17-Diorite-porphyrite vein; 18-Camptonite; 19-Copper orebody; 20-Geological boundary; 21-Fault; 22-No. 8 cross section

    图  3   宫忽洞铜矿花岗斑岩手标本(A)及显微镜下特征(正交偏光,B;Q—石英)

    Figure  3.   Sample (A) and microscopic (B) characteristics of granite porphyry in the Gonghudong copper deposit

    图  4   内蒙古宫忽洞铜矿床8号勘探线剖面图(据文献[17]修改)

    Figure  4.   No. 8 cross section of the Gonghudong copper deposit, Darhan Muminggan Joint Banner, Inner Mongolia (after reference [17])

    图  5   宫忽洞铜矿石显微组构特征

    a—黄铜矿交代黄铁矿呈结状结构;b—闪锌矿被黄铜矿浸蚀交代;c—早期半自形黄铁矿晶体被黄铜矿包含,黄铜矿边部被闪锌矿交代;d—黄铜矿呈他形晶体充填于脉石矿物或半自形黄铁矿的颗粒之间;e—黄铜矿被闪锌矿交代呈孤岛状残留结构;f—黄铜矿呈他形充填于石英等脉石矿物的粒间空隙Sp—锌矿;Ccp—黄铜矿;Py—黄铁矿;Q—石英

    Figure  5.   Microscopic petrofabric characteristics of Huoshibulake Zn-Pb ore

    a-Pyrite replaced by chalcopyrite exhibiting knot texture; b-Sphalerite etching replaced by chalcopyrite; c-Early stage subhedral pyrite wrapped by chalcopyrite and the edge of chalcopyrite replaced by sphalerite; d-Xenomorphic chalcopyrite filling the intergranular space of gangue minerals and subhedral pyrites; e-Chalcopyrite exhibiting island form and replaced by sphalerite; f-Xenomorphic chalcopyrite filling the intergranular space of quartz; Sp-Sphalerite; Ccp-Chalcopyrite; Py-Pyrite; Q-Quartz

    图  6   宫忽洞铜矿东南部花岗斑岩锆石U-Pb年龄(a、b)和CL图像及测点号(c)

    Figure  6.   CL images, analytical spots (c) and U-Pb ages (a, b) of the analyzed zircon for granite porphyry in the Gonghudong copper deposit

    图  7   内蒙古达茂旗宫忽洞铜矿床花岗斑岩的SiO2-(K2O+Na2O)图解(底图据文献[29])

    Figure  7.   Granite porphyry samples from the Gonghudong copper deposit plotted on SiO2-(K2O+ Na2O) (after reference [29])

    图  8   宫忽洞铜矿床花岗斑岩的SiO2-K2O图(a,实线据文献[30]; 虚线据文献[31])和含铝指数图(b,据文献[32])

    Figure  8.   SiO2 versus K2O diagram (a, solid line after reference [30]; dotted line after reference [31]) and aluminous index diagrams (b, after reference [32]) for granite porphyry in the Gonghudong copper deposit

    图  9   宫忽洞铜矿床花岗斑岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(标准化数值据文献[33])

    Figure  9.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for granite porphyry in the Gonghudong copper deposit (normalized data after reference [33])

    图  10   宫忽洞铜矿花岗斑岩10000Ga/Al-Ce、Zn、Nb、Zr、Y和K2O+Na2O图解(底图据文献[28])

    Figure  10.   Diagrams of 10000Ga/Al-Ce, Zn, Nb, Zr, Y and K2O+Na2O for granite porphyry in the Gonghudong copper deposit (after reference [28])

    图  11   宫忽洞铜矿花岗斑岩的Nb-Y-3Ga和Nb-Y-Ce图解(底图据文献[39])

    Figure  11.   Nb-Y-3Ga and Nb-Y-Ce diagrams for granite porphyry in the Gonghudong copper deposit (base map after reference [39])

    图  12   宫忽洞铜矿花岗斑岩构造环境判别图解(底图据文献[42])

    Syn-COLG—同碰撞花岗岩;Post-COLG—后碰撞花岗岩;VAG—火山弧花岗岩;ORG—洋脊花岗岩;WPG—板内花岗岩

    Figure  12.   Discrimination diagrams of tectonic setting for granite porphyry in the Gonghudong copper deposit (base map after reference [42])

    Syn-COLG-Syn-collision granites; Post-COLG-Post-collision granites; VAG-Volcanic arc granites; ORG-Ocean ridge granites; WPG-Intraplate granites

    图  13   宫忽洞铜矿花岗斑岩构造环境判别图解(a, b—据文献[42]; c—据文献[43])

    AG-岛弧花岗岩类;CAG-大陆弧花岗岩类;CCG-大陆碰撞花岗岩类;POG-后造山花岗岩类;RRG-与裂谷有关的花岗岩类;CEUG-与大陆陆陆抬升有关的花岗岩类;1-地幔斜长花岗岩;2-破坏性活动板块边缘(板块碰撞前)花岗岩;3-板块碰撞后隆起期花岗岩;4-晚造山期花岗岩;5-非造山区A型花岗岩;6-同碰撞(S型)花岗岩;7-造山期后A型花岗岩

    Figure  13.   Discrimination diagrams of tectonic setting for granite porphyry in the Gonghudong copper deposit (a, b-after reference [42]; c-after reference [43])

    IAG-Island arc granite; CAG-Continent-arc granite; CCG-Continent-collision granite; POG-Post-orogenic granite; RRG-Granite related to rift; CEUG-Continent emerging-uplift granite; 1-Mantle plagioclase granite; 2-Granite before plate collision; 3-Uplifted granite after plate collision; 4-Late orogenic granite; 5-A-type granite of nonorogenic area; 6-Syn-collision granite; 7-Post-orogenic A-type granite

    图  14   宫忽洞铜矿床热液方解石的δ13CV-PDB-δ18OV-SMOW图解(底图据文献[47-50]修改)

    Figure  14.   Theδ13CV-PDB-δ18OV-SMOW diagram of the hydrothermal calcite in the Gonghudong copper deposit (base diagram modified after reference [47-50])

    图  15   宫忽洞铜矿床硫化物铅同位素构造模式图(底图据[54])

    Figure  15.   Tectonic model of the 208Pb/204Pb versus 206Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb of sulfides in the Gonghudong copper deposit (after reference [54])

    图  16   宫忽洞铜矿硫化物铅同位素的Δβγ成因分类图解(底图据[53])

    1—地幔源铅;2—上地壳铅;3—上地壳与地幔混合的俯冲带铅(3a、岩浆作用;3b、沉积作用);4—化学沉积型铅;5—海底热水作用铅;6—中深变质作用铅;7—深变质下地壳铅;8—造山带铅;9—古老页岩上地壳铅;10—退变质铅;Δβ=1000×β/(βM-1),Δγ=1000×γ/(γM-1),βγβMγM分别为样品和地幔的207Pb/204Pb和208Pb/204Pb

    Figure  16.   Δβγ genetic classification diagram of lead isotope of sulfides in the Gonghudong copper deposit (base map after [53])

    1-Mantle-derived lead; 2-Upper crust lead; 3-Mixed lead of the upper crust and mantle subduction zones (3a Magmatism, 3b Sedimentation); 4-Chemical sedimentary lead; 5-Submarine hydrothermal lead; 6-Medium-high grade metamorphism lead; 7-Lower crust lead of high grade metamorphism; 8-Orogenic belt lead; 9-Upper crust lead of ancient shale; 10-Retrograde metamorphism lead; Δβ=1000×β/(βM-1), Δγ=1000×γ /(γM-1), β and γ are ratios of 207Pb/204Pb and 208Pb/204Pb respectively in samples, βM and γ M are ratios of 207Pb/204Pb and 208Pb/204Pb respectively in mantle

    表  1   宫忽洞铜矿花岗斑岩La-MC-ICP-MS锆石U-Pb分析结果

    Table  1   La-MC-ICP-MS zircon U-Pb analytical data of granite porphyry in the Gonghudong copper deposit

    下载: 导出CSV

    表  2   宫忽洞铜矿花岗斑岩主量元素(%)、微量元素(10-6)分析结果

    Table  2   Major (%) and trace (10-6) element values of granite porphyry in the Gonghudong copper deposit

    下载: 导出CSV

    表  3   宫忽洞铜矿热液方解石碳、氧同位素分析结果(‰)

    Table  3   C and O isotopic compositions of the hydrothermal calcite in the Gonghudong copper deposit(‰)

    下载: 导出CSV

    表  4   宫忽洞铜矿硫化物硫同位素分析结果(‰)

    Table  4   Sulfur isotopic compositions of sulfides in the Gonghudong copper deposit(‰)

    下载: 导出CSV

    表  5   宫忽洞铜矿硫化物铅同位素组成

    Table  5   Lead isotopic compositions of sulfides in the Gonghudong copper deposit

    下载: 导出CSV

    表  6   宫忽洞铜矿硫化物铅同位素特征参数

    Table  6   Characteristic parameters of lead isotopic compositions of sulfides in the Gonghudong

    下载: 导出CSV
  • [1] 聂凤军, 江思宏, 张义, 等.中蒙边境及邻区斑岩型铜矿床地质特征及成因[J].矿床地质, 2004, 23(2):176-189. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200402005.htm

    Nie Fengjun, Jiang Sihong, Zhang Yi, et al.Geological features and origin of porphyry copper deposits in China-Mongolia border region and its neighboring areas[J].Mineral Deposits, 2004, 23(2):176-189(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200402005.htm

    [2] 王守光, 黄占起, 苏新旭, 等.一条值得重视的跨国境成矿带——南戈壁-东乌旗铜多金属成矿带[J].地学前缘, 2004, 11(1):249-255. http://mall.cnki.net/magazine/article/dxqy200401033.htm

    Wang Shouguang, Huang Zhanqi, Su Xinxu, et al.A notable metallogenic belt striding across the border between China and Mongolia-South Gobi-Dongwuqi copper-polymetallic metallogenic belt[J].Earth Science Frontiers, 2004, 11(1):249-255(in Chinese with English abstract). http://mall.cnki.net/magazine/article/dxqy200401033.htm

    [3] 余学中, 薛春纪, 丛丽娟, 等.二连浩特一带境内外构造-成矿带的衔接问题浅析[J].地学前缘, 2011, 18(2):231-241. http://mall.cnki.net/magazine/article/dxqy201102027.htm

    Yu Xuezhong, Xue Chunji, Cong Lijuan, et al.A study of the connection of faults and metallogenic belts between Erenhot Region, China and South Gobi, Mongolia[J].Earth Science Frontiers, 2011, 18(2):231-241(in Chinese with English abstract). http://mall.cnki.net/magazine/article/dxqy201102027.htm

    [4] 汤超, 陈军强, 刘晓雪, 等.内蒙古达茂旗北部岩浆活动与铜金成矿作用[J].地质与勘探, 2013, 49(2):224-235. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302007.htm

    Tang Chao, Chen Junqiang, Liu Xiaoxue, et al.Magmatic activities and copper and gold mineralization in northern Damaoqi, Inner Mongolia[J].Geology and Exploration, 2013, 49(2):224-235(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302007.htm

    [5] 张义, 聂凤军, 江思宏, 等.中蒙边境欧玉陶勒盖大型铜-金矿床的发现及对找矿勘查工作的启示[J].地质通报, 2003, 22(9):708-712. http://mall.cnki.net/magazine/article/zqyd200309014.htm

    Zhang Yi, Nie Fengjun, Jiang Sihong, et al.Discovery of the Ouyu Tolgoi copper-gold deposit in the Sino-Mongolia border region and its significance for mineral exploration[J].Geological Bulletin of China, 2003, 22(9):708-712(in Chinese with English abstract). http://mall.cnki.net/magazine/article/zqyd200309014.htm

    [6] 刘益康, 徐叶兵.蒙古Oyu Tolgoi斑岩铜金矿的勘查[J].地质与勘探, 2003, 39(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200301001.htm

    Liu Yikang, Xu Yebing.The prospecting and main features of Oyu tolgoi porphyry Cu-Au deposit in Mongolia[J].Geology and Exploration, 2003, 39(1):1-4(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200301001.htm

    [7] 王大为, 邹治平, 李绍雄.甘肃公婆泉铜矿成矿地质特征及矿床成因[J].西北地质科学, 1995, 16(1):115-122. http://www.cnki.com.cn/Article/CJFDTOTAL-XBFK501.008.htm

    Wang Dawei, Zou Zhiping, Li Shaoxiong.On the ore-forming geological features and ore deposit genesis of Gongpoquan copper deposit, Gansu Province[J].Northwest Geoscience, 1995, 16(1):115-122(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XBFK501.008.htm

    [8] 聂凤军, 江思宏, 白大明, 等.内蒙古北山及邻区金属矿床类型及其时空分布[J].地质学报, 2003, 77(3):367-378. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303011.htm

    Nie Fengjun, Jiang Sihong, Bai Daming, et al.Type and temporalspatial distribution of metal deposits in the Beishan mountains, Inner Mongolia, and its Neighboring region[J].Acta Geologica Sinica, 2003, 77(3):367-378(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200303011.htm

    [9] 薛春纪, 赵战锋, 吴淦国, 等.中亚构造域多期叠加斑岩铜矿化:以阿尔泰东南缘哈腊苏铜矿床地质、地球化学和成岩成矿时代研究为例[J].地学前缘, 2010, 17(2):53-82. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002012.htm

    Xue Chunji, Zhao Zhanfeng, Wu Gan'guo, et al.The multiperiodic superimposed porphyry copper mineralization in Central Asian Tectonic Region:A case study of geology, geochemistry and chronology of Halasu copper deposit, Southeastern Aaltai, China[J].Earth Science Frontiers, 2010, 17(2):53-82(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002012.htm

    [10] 申萍, 潘鸿迪, 董连慧, 等.新疆延东斑岩铜矿床火山机构、容矿岩石及热液蚀变[J].岩石学报, 2012, 28(7):1966-1980. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207003.htm

    Shen Ping, Pan Hongdi, Dong Lianhui, et al.Caldera complex, hosted rocks and alteration of the Yandong porphyry copper deposit in eastern Tianshan, Xinjiang[J].Acta Petrologica Sinica, 2012, 28(7):1966-1980(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207003.htm

    [11] 刘晓雪, 毛德宝, 曹秀兰, 等.内蒙古查干诺尔铜矿区矿石特征及成因探讨[J].地质调查与研究, 2007, 30(4):271-276. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200704004.htm

    Liu Xiaoxue, Mao Debao, Cao Xiulan, et al.Characters and Genesis of the Chaganuoer Copper Deposit in Inner Mongolia[J].Geological Survey and Research, 2007, 30(4):271-276(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200704004.htm

    [12] 任军平, 张连营, 唐文龙, 等.内蒙古达茂旗查干若尔铜矿区构造特征浅析[J].地质调查与研究, 2010, 33(2):130-133. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201002008.htm

    Ren Junping, Zhang Lianying, Tang Wenlong, et al.Study on the structural features of the Chagannuoer copper deposit in Damaoqi, Inner Mongolia[J].Geological Survey and Research, 2010, 33(2):130-133(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201002008.htm

    [13] 陈军强, 李志丹, 汤超, 等.内蒙古哈布齐尔金矿床地质及物化探特征[J].中国矿业, 2013, 22(6):62-65. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201306016.htm

    Chen Junqiang, Li Zhidan, Tang Chao, et al.Geophysical, geochemical and geological characteristics of Habuqier gold deposit in Inner Mongolia[J].China Mining Magazine, 2013, 22(6):62-65(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201306016.htm

    [14] 齐钒宇, 张志, 祝新友, 等.湖南黄沙坪钨钼多金属矿床矽卡岩地球化学特征及其地质意义[J].中国地质, 2012, 39(2):338-348. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202006.htm

    Qi Fanyu, Zhang Zhi, Zhu Xinyou, et al.Skarn geochemistry of the Huangshaping W-Mo polymetallic deposit in Hunan and its geological significance[J].Geology in China, 2012, 39(2):338-348(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202006.htm

    [15] 王立强, 唐菊兴, 陈伟, 等.西藏邦铺钼多金属矿床矽卡岩矿物学特征及其地质意义[J].中国地质, 2014, 41(2):562-576. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201402018.htm

    Wang Liqiang, Tang Juxing, Chen Wei, et al.Mineralogical characteristics of skarn in the Bangpu Mo polymetallic deposit, Tibet, and their geological significance[J].Geology in China, 2014, 41(2):562-576(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201402018.htm

    [16] 曾红, 柴凤梅, 周刚, 等.新疆雅满苏铁矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J].中国地质, 2014, 41(6):1914-1928. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201406010.htm

    Zeng Hong, Chai Fengmei, Zhou Gang, et al.Mineralogy of skarn and magnetite of the Yamansu iron deposit and its geological significance[J].Geology in China, 2014, 41(6):1914-1928(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201406010.htm

    [17] 刘章顺, 燕振云, 巴福臣, 等.内蒙古自治区达尔罕茂名安联合旗宫忽洞矿区铜矿详查报告[R].包头市同孚矿业有限公司.2008, 1-112.

    Liu Zhangshun, Yan Zhenyun, Ba Fuchen, et al.General Exploration Report of Gonghudong Copper Deposit, Darhan Muminggan Joint Banner[R].Tongfu Mining limited company.2008, 1-112(in Chinese).

    [18] 王楫, 李双庆, 王保良.狼山-白云鄂博裂谷系[C]//中国北方板块构造丛书.北京:北京大学出版社, 1989, 1-130. http://www.doc88.com/p-4723405913144.html

    Wang Ji, Li Shuangqing, Wang Baoliang.The Langshan-Baiyunobo rift systems[C]//Contributions to the Plate Tectonics in North China.Beijing:Peking University Press, 1989, 1-130(in Chinese with English abstract). http://www.doc88.com/p-4723405913144.html

    [19] 聂凤军, 江思宏, 侯万荣, 等.内蒙古中西部浅变质岩为容矿围岩的金矿床地质特征及形成过程[J].矿床地质, 2010, 29(1):58-70. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201001008.htm

    Nie Fengjun, Jiang Sihong, Hou Wanrong, et al.Geological features and genesis of gold deposits hosted by low-grade metamorphic rocks in central-western Inner Mongolia[J].Mineral Deposits, 2010, 29(1):58-70(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201001008.htm

    [20] 李尚林, 等.达尔罕茂明安联合旗幅1:5万区域地质调查图幅说明书[R].内蒙古第一区域地质研究院.1997.

    Li Shanglin, et al.Regional Geological Survey Mappable Unit Specification of Darhan Muminggan Joint Banner[R].No.1 Regional Geological Survey and Research Institute of Inner Mongolia.1997.

    [21] 张玉清, 张明, 贺锋, 等.内蒙古自治区矿产资源潜力评价成果报告[R].内蒙古国土资源厅.2011.

    Zhang Yuqing, Zhang Ming, He Feng, et al.Mineral resource Potential Assessment Report of Inner Mongolia[R].Office of Land and Resources of Inner Mongolia.2011(in Chinese).

    [22]

    Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].J.Petrol., 2010, 51(1/2):537-571. http://cn.bing.com/academic/profile?id=2140093647&encoded=0&v=paper_preview&mkt=zh-cn

    [23]

    Ludwig K R.Users manual for isoplot/Ex (rsv.3.0):A Geochronologica Toolkit for Microsoft excel:berkrley Geochronology Center[J].Special Publication, 2003, No.1a, 1-55.

    [24]

    Friedman I, O'Neil J R.Compilation of stable isotope fractionation factors of geochemical interest[M].U.S.Geological Survey, 1977, Prof.Paper 440-KK, 6th Edition. http://cn.bing.com/academic/profile?id=2081461486&encoded=0&v=paper_preview&mkt=zh-cn

    [25]

    Faure G.Principles of Isotope Geology, Second edition[M].John Wiley and Sons, New York, 1986:1-589.

    [26]

    Compston W, Williams I S, Kirschvink J L, et al.Zircon U-Pb ages for the Early Cambrian time-scale[J].Journal of the Geological Society, 1992, 149(2):171-184. doi: 10.1144/gsjgs.149.2.0171

    [27]

    Zhu J C, Wang R C, Zheng P H, et al.Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China[J].Science in China (Series D), 2009, 52(9):1279-1294. doi: 10.1007/s11430-009-0154-4

    [28]

    Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202

    [29]

    Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews, 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9

    [30]

    Peccerillo R, Taylor S R.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J].Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    [31]

    Middlemost E A K.Magmas and Magmatic Rocks[M].London:Longman, 1985:1-266.

    [32]

    Maniar P D and Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [33]

    Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, Special Publications, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [34] 王立强, 顾雪祥, 程文斌, 等.西藏蒙亚啊铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪[J].现代地质, 2010, 24(1):52-58. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201001008.htm

    Wang Liqiang, Gu Xuexiang, Cheng Wenbin, et al.Sulfur and lead isotope composition and tracing for the sources of oreforming materials in the Mengya'a Pb-Zn deposit, Tibet[J].Geoscience, 2010, 24(1):52-58(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201001008.htm

    [35]

    Perello J, Cox D, Garamjav D, et al. Oyu Tolgoi, Mongolia: Siluro-Devonian porphyry Cu-Au-(Mo) and high sulfidation Cu mineralization with a Cretaceous chalcocite blanket[J]. Econ. Geol., 2001, 96: 1407-1428. doi: 10.2113/gsecongeo.96.6.1407

    [36]

    Lamb M A, Badarch G. Paleozoic sedimentary basins and volcanic-arc systems of southern Mongolia: New stratigraphic and sedimentologic constraints[J]. International Geology Reviews, 1997, 39, 542-576. doi: 10.1080/00206819709465288

    [37]

    Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America (Abstracts with Programs), 1979, 11:468. http://cn.bing.com/academic/profile?id=35968382&encoded=0&v=paper_preview&mkt=zh-cn

    [38]

    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38: 371-391. doi: 10.1093/petroj/38.3.371

    [39]

    Eby G N. The A type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1/2):115-134. http://cn.bing.com/academic/profile?id=2059250966&encoded=0&v=paper_preview&mkt=zh-cn

    [40] 肖庆辉, 王涛, 邓晋福, 等.中国典型造山带花岗岩与大陆地壳生长研究[M].北京:地质出版社, 2009: 1-107.

    Xiao Qinghui, Wang Tao, Deng Jinfu, et al. Research on China Typical Orogenic Granitoids and Continental Crustal Growth[M]. Beijing: Geological Publishing House, 2009: 1-107(in Chinese).

    [41] 肖庆辉, 邓晋福, 马大铨, 等.花岗岩研究思维与方法[M].北京:地质出版社, 2002: 1-294.

    Xiao Qinghui, Deng Jinfu, Ma Daquan, et al. The Ways of Investigation on Granitoids [M]. Beijing: Geological Publishing House, 2002: 1-294(in Chinese).

    [42]

    Pearce J A. Source and settings of granitic rocks[J]. Episodes, 1996, 19: 120-125. http://www.oalib.com/references/17386390

    [43]

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1-4): 43-55. doi: 10.1016/0009-2541(85)90034-8

    [44]

    Taylor B E. Magmatic volatiles: Isotope variation of C, H and S reviews in mineralogy[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1): 185-255. http://www.oalib.com/references/17376964

    [45]

    Veizer J, Holser W T, Wilgus C K. Correlation of 13C/12C and 34S/ 32S secular variation[J]. Geochim. Cosmochim. Acta, 1980, 44: 579-588. doi: 10.1016/0016-7037(80)90250-1

    [46]

    Ohmoto H. Systematics of sulfer and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol., 1972, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551

    [47] 刘建明, 刘家军, 顾雪祥.沉积盆地中的流体活动及其成矿作用[J].岩石矿物学杂志, 1997, 16(4): 341-352. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW704.006.htm

    Liu Jianmin, Liu Jiajun, Gu Xuexiang. Basin fluids and their related ore deposits[J]. Acta Petrologica et Mineralogical, 1997, 16 (4): 341-352(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW704.006.htm

    [48] 毛景文, 赫英, 丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氢氧同位素证据[J].矿床地质, 2002, 21(2): 121-128. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200202003.htm

    Mao Jingwen, He Ying, Ding Tiping. Mantle fluids involved in metallogenesis of Jiaodong (East Shandong) Gold district: evidence of C, O and H isotopes[J]. Mineral Deposits, 2002, 21 (2): 121-128(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200202003.htm

    [49] 刘家军, 何明勤, 李志明, 等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质, 2004, 23(1): 1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401000.htm

    Liu Jiajun, He Mingqin, Li Zhimin, et al. Oxygen and carbon isotopic geochemistry of Baiyangping silver-copper polymetallic ore concentration area in Lanping basin of Yunnan Province and its significance[J]. Mineral Deposits, 2004, 23(1): 1-10(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401000.htm

    [50]

    Keller J, Hoefs J. Stable Isotope Characteristics of Recent Natrocarbonatites from Oldoinyo Lengai[C]//Bell K, Keller J (ed.). Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites[M]. Berlin: Springer, 1995: 113-123. http://cn.bing.com/academic/profile?id=46372954&encoded=0&v=paper_preview&mkt=zh-cn

    [51]

    Chaussidon M, Albarède F, Sheppard S M F. Sulfur isotope variations in the mantle from ion microprobe analyses of microsulphide inclusions[J]. Earth and Planetary Science Letters, 1989, 92: 144-156. doi: 10.1016/0012-821X(89)90042-3

    [52] 吴开兴, 胡瑞忠, 毕献武, 等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学, 2002, 30(3): 73-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200203012.htm

    Wu Kaixing, Hu Ruizhong, Bi Xianwu, et al. Ore lead isotopes as a tracer for ore-forming material sources: a review[J]. Geology-Geochemistry, 2002, 30(3): 73-81 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200203012.htm

    [53] 朱炳泉.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社, 1998: 1-330.

    Zhu Bingquan. The Isotopic System Theory and Application in Earth Science-and on the Crust-Mantle Evolution in China [M]. Beijing: Science Press, 1998: 1-330(in Chinese).

    [54]

    Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4

图(16)  /  表(6)
计量
  • 文章访问数:  3341
  • HTML全文浏览量:  563
  • PDF下载量:  6019
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-24
  • 修回日期:  2015-12-29
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭