• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

南岭科学钻探(NLSD-1)矿化规律与深部找矿方向

赵正, 陈毓川, 郭娜欣, 陈郑辉, 王登红, 曾载林, 何绍森

赵正, 陈毓川, 郭娜欣, 陈郑辉, 王登红, 曾载林, 何绍森. 南岭科学钻探(NLSD-1)矿化规律与深部找矿方向[J]. 中国地质, 2016, 43(5): 1613-1624. DOI: 10.12029/gc20160511
引用本文: 赵正, 陈毓川, 郭娜欣, 陈郑辉, 王登红, 曾载林, 何绍森. 南岭科学钻探(NLSD-1)矿化规律与深部找矿方向[J]. 中国地质, 2016, 43(5): 1613-1624. DOI: 10.12029/gc20160511
ZHAO Zheng, CHEN Yu-chuan, GUO Na-xin, CHEN Zheng-hui, WANG Deng-hong, ZENG Zai-lin, HE Shao-sen. Ore-forming regularity and deep prospecting direction of Nanling Scientific Drilling-1(NLSD-1)[J]. GEOLOGY IN CHINA, 2016, 43(5): 1613-1624. DOI: 10.12029/gc20160511
Citation: ZHAO Zheng, CHEN Yu-chuan, GUO Na-xin, CHEN Zheng-hui, WANG Deng-hong, ZENG Zai-lin, HE Shao-sen. Ore-forming regularity and deep prospecting direction of Nanling Scientific Drilling-1(NLSD-1)[J]. GEOLOGY IN CHINA, 2016, 43(5): 1613-1624. DOI: 10.12029/gc20160511

南岭科学钻探(NLSD-1)矿化规律与深部找矿方向

基金项目: 

国土资源部公益性行业科研专项 201311162,201411050

国家自然科学基金项目 41372092

国家科技支撑计划“十二五” 项目 201311162

中国地质大调查项目之整装勘查区找矿预测研究项目 12120114034801

国家重点研发计划课题 2016YFC0600208

详细信息
    作者简介:

    赵正,男,1984年生,博士,主要从事成矿规律与成矿预测研究;E-mail:kevin8572@hotmail.com

  • 中图分类号: P612

Ore-forming regularity and deep prospecting direction of Nanling Scientific Drilling-1(NLSD-1)

Funds: Supported by Nonprofit Industry Research of Ministry of Land and Resources (No. 20131162 and 201411050) and National Natural Science Foundation (No. 413772092); "Five-second" National Science and Technology Support Program (No. 201311162); China Geological Survey Program (No. 12120114034801)
More Information
    Author Bio:

    ZHAO Zheng, male, born in 1984, doctor, mainly engages in the study of metallogenic regularity andmetallogenic prediction;E-mail:kevin8572@hotmail.com

  • 摘要:

    南岭科学钻探(NLSD-1)是目前中国在华南金属矿集区内实施的最深钻探工程,总进尺2967.83 m,揭露金银铜铅锌和钨铋铀各类矿化120余处,矿化层可分为破碎带型、硅质脉型、长英质脉型,以微细脉、细脉、网脉状、浸染状、块状形式产出,其中达到工业品位的矿脉具有3段,多处矿化可侧向追索,具有潜力工业矿体。元素垂向矿化规律上表现为金银铜、铅锌矿化分别以组合形式出现,铋的元素异常与亲硫元素矿化具有明显相关性,其中贵金属矿化异常集中在推覆体内,而钨锡铀矿化向深部有增强趋势,两者在钻孔内具有较明显的岩性地层、构造和岩浆岩的专属性特征。根据NLSD-1揭露的垂向矿化规律,结合区域成矿规律研究成果提出四大找矿方向,即:推覆体内V10~V31向东向深部延展、推覆体下部钨铋多金属矿化、深部3个空间位置可能出现的厚大矿体以及外围高山角-井笔山一带斑岩型-爆破角砾岩型矿化。

    Abstract:

    Nanling Scientific Drilling-1(NLSD-1) is the deepest drilling engineering in South China ore concentration. The total drilling depth is 2967.83 m. 120 gold, silver, lead and zinc, bismuth, tungsten and uranium mineralization spots were exposed. Mineralization can be divided into fracture zone, siliceous vein type, quartz-feldspar vein type, which are produced in such forms as tracing detected very favorable industrial orebody potential. Vertical element mineralization regularity exhibits gold-silver-copper combination and lead-zinc combination. Bismuth anomaly is correlated significantly with the thiophile element mineralization. Precious metal mineralization anomalies are concentrated in nappe, whereas tungsten, tin and uranium mineralization tends to increase toward the depth, with both having specialization in lithological strata, tectonics and magmatic rocks in the borehole. According to uncovered information of vertical mineralization regularity revealed by NLSD-1 in combination with regional metallogenic regularity, the authors propose four prospecting directions:(1)V10-V31 in the nappe that extends to the east and to the depth; (2)Tungsten-tin polymetallic mineralization under the nappe; (3)Three deep spatial positions where thick orebodies may occur; (4)Porphyry-explosion breccia type mineralization in the periphery of Gaoshanjiao Hill-Bijia Hill.

  • 南岭成矿带作为中国有色金属、贵金属、放射性、稀有和稀土矿产资源的重要基地[1],众多大型矿山的浅部资源历经开采、面临枯竭,急需开展深部找矿[2-6]。南岭科学钻探(NLSD-1)选址南岭成矿带东段与武夷山成矿带交汇部位钨锡银金矿集区内实施,旨在探索南岭成矿带“第二成矿空间”、深部控矿要素和成矿系列叠加等科学问题[7-9]

    南岭科学钻探(NLSD-1)是目前中国在华南金属矿集区内实施的最深钻探工程,总进尺2967.83m,揭露了丰富的地层、构造、岩浆岩和矿化信息[10],为南岭地区成矿地质背景、成矿规律研究和第二找矿空间的探索提供了宝贵的素材。关于NLSD-1选址[7]、岩心地质信息[10]和钻孔岩浆岩研究[11]在前文已有报道,关于选址位置和区域地质背景亦有详细介绍(图 1)。本文对NLSD-1 揭露的矿化类型、矿化组合进行报道,对矿化元素垂向分带规律进行分析,将NLSD-1 揭露的矿化信息与区域成矿规律综合研究,讨论深部找矿方向问题。

    图  1  南岭科学钻探(NLSD-1)大地构造位置及地质矿产图(据文献[7]修改)
    1—第四系全新统~更新统;2—上白垩统周田组;3—上白垩统茅店组;4—下白垩统石溪组;5—上侏罗统罗坳组;6—下侏罗统水北组;7—上二 叠系统乐平组;8—下二叠统并层;9—上石炭统壶天群;10—下石炭统梓山组;11—中-上泥盆系统峡山群;12—寒武系中统高滩群;13—寒武 系下统牛角河群;14—震旦系上统老虎塘组;15—震旦系上统坝里组;16—震旦系下统沙坝黄组;17—青白口纪上施组;18—青白口纪库里组; 19—青白口纪神山组;20—燕山晚期安山岩;21—燕山早期第五阶段花岗斑岩,22—燕山早期第五阶段辉长岩;23—燕山早期第四阶段细粒花 岗岩24—燕山早期第三阶段细粒似斑状黑云母花岗岩、细粒斑状二云母花岗岩;25—燕山早期第二阶段中细粒似斑状二云母花岗岩;26—燕 山早期第一阶段中粗粒似斑状花岗岩、二长花岗岩、花岗闪长岩;27—燕山早期第一阶段辉长岩;28—加里东期第二阶段粗粒似斑状黑云母花 岗岩;29—印支期似斑状黑云母花岗岩;30—加里东期第一阶段似斑状黑云母花岗岩;31—加里东期第一阶段石英闪长岩;32—脉岩:玄武岩 (Kβ )流纹斑岩(Kξ )闪长玢岩(Kδμ )石英斑岩(JQπ )花岗闪长斑岩(Jγδπ )辉绿岩(Jβμ );33—断裂;34—构造窗;35—地质界线;36—整合界线; 37—铅锌矿;38—钨矿;39—金矿;40—银矿;41—、稀土矿;42—铌钽矿;43—铍矿;44—硫铁矿;45—萤石矿;46—砂金矿
    Figure  1.  Tectonic position (a) and geological map (b) of Nanling Scientific Drilling-1 (modified after reference [7])
    1-Holocene-Pleistocene Series of Quatemary;2-Zhoutian Formation of Upper Cretaceous;3-Miaodian Formation of Upper Cretaceous; 4-Shixi Formation of Lower Cretaceous;5-Luoao Formation of Upper Jurassic;6-Shuibei Formation of Lower Jurassic;7-Leping Formation of Upper Permian;8-Lower Permian;9-Hutian Group of Upper Carboniferous;10-Zishan Formation of Lower Carboniferous;11-Xiashan Group of Middle-Upper Devonian;12-Gaotan Group of Middle Cambrian;13-Niujiaohe Group of Lower Cambrian;14-Laohutang Formation of Upper Sinian;15-Bali Formation of Upper Sinian;16-Shabahuang Formation of Lower Sinian;17-Shangshi Formation of Qingbaikou;18-Kuli Formation of Qingbaikou;19-Shenshan Formation of Qingbaikou;20-Andesite of Late Yanshanian;21-Granite porphyry of the fifth stage of Early Yanshanian; 22-Gabbro of the fifth stage of Early Yanshanian;23-Fine-grained granite of the fourth stage of Early Yanshanian;24-Fine-grained porphyaceous biotite granite and fine-grained porphyritic two-mica granite of the third stage of Early Yanshanian;25-Intermediate-fine-grained porphyritic twomica granite of the second stage of Early Yanshanian;26-Intermediate-coarse-grained porphyaceous granite,monzogranite,granodiorite of the first stage of Early Yanshanian;27-Gabbro of the first stage of Early Yanshanian;28-Coarse-grained porphyritic biotite granite of the second stage of Caledonian;29-Porphyraceous biotite granite of Indosinian;30-Porphyraceous biotite of the first stage of Caledonian;31-Quartz diorite of the first stage of Caledonian;32-Dikes of basalt (Kβ ),rhyolite porphyry (Kξ ),diorite porphyrite (Kδμ ),quartz porphyry (JQπ ),granodiorite porphyry (Jγδπ ) and diabase (Jβμ );33-Faults;34-Tectonic window;35-Geological boundary;36-Unconformity 37-Lead-zinc mine; 38-Tungsten mine;39-Gold mine;40-Silver mine;41-Rare earth mine;42-Columbotantalite mine;43-Beryllium mine; 44-Pyrite mine;45-Fluorite mine;46-Alluvial gold mine.

    NLSD-1 中见各类矿化128 处,其中,0~1373.71 m孔段发育Cu-Pb-Zn-Ag矿化,多为矿化破碎带,也有在地层中的细脉状、浸染状蚀变矿化,共揭露59处,视厚度0.27~3.75 m。

    1376.75~2965.12 m孔段中,1376.75~1743.79 m发育Cu-Pb-Zn-Ag矿化,多为矿化破碎带,也有在地层中的细脉状、浸染状矿化,共揭露35 处,视厚度0.21~6.84 m。1743.79~2965.12 m主要为发育在地层中的沉积型细脉状、浸染状黄铁矿化,少量黄铜矿化,共揭露33 处,视厚度0.2~6.85 m。该孔段中1376.75~1463.63 m 为F1 推覆体的构造影响带,断裂构造极为发育,其中,1376.75~1429.71 m破碎带较少,仅发育2 段,具有黄铁矿化、云英岩化、绿泥石化、硅化蚀变; 1429.71~1463.63 m,原岩受构造应力作用,发育有7 段硅化破碎带,多发生黄铜矿化、黄铁矿矿化,部分可见铅锌矿化,并具绿泥石化、绿帘石化蚀变。

    推覆构造下部发现5 处W-Bi-U矿化,分别为1668~1680 m黄铁矿-白钨矿-黑钨矿-辉铋矿-自然铋-铀矿化、2013.05~2018.13 m黄铁矿-白钨矿化、2090.07~2096.68 m黄铁矿-闪锌矿-方铅矿-黄铜矿-白钨矿化、2765.61~2766.19 m黄铁矿-白钨矿化、2867.37~2875.92 m黄铁矿-白钨矿化。

    矿化层可分为破碎带型、硅质脉型、长英质脉型,以微细脉、细脉、网脉状、浸染状、块状形式产出(图 2)。破碎带型中的矿化主要为黄铁矿化、黄铁矿-黄铜矿-方铅矿-闪锌矿化。矿化破碎带厚度小,为0.20~3.93 m,顶、底板轴心夹角30°~45°,硫化物在破碎带中呈团块状、脉状分布。该类矿化在钻孔浅部,如孔深220~270 m、400~650 m、720~790 m、915~1160 m较为集中,随着钻孔深度的增大,矿化破碎带出现的频率降低。其中,472.48~473.45 m、623.35~624.33 m、985.82~986.21 m 这3 段黄铁矿-黄铜矿-方铅矿-闪锌矿化破碎带中的Au、Ag、Pb、Zn达到工业品位[10]。硅质脉型中的矿化主要为黄铁矿化、黄铁矿-黄铜矿化、黄铁矿-黄铜矿-方铅矿-闪锌矿化,硫化物在硅质脉中呈浸染状或团块状。该类矿化在孔深40~1060 m和1570~1740 m较为集中。长英质脉型中的矿化主要为黄铁矿化、黄铁矿-黄铜矿-方铅矿-闪锌矿化。脉宽1~55 cm,轴心夹角多为25°~45°,硫化物在其中呈星点状、小团块状、脉状,团块大小1 mm×1 mm~18 mm×34 mm,脉宽1~5 mm。该类矿化脉体主要赋存于青白口系浅变质岩中,745~850 m、1220~1345 m为矿化长英质脉分布较集中的部位。

    图  2  南岭科学钻中不同类型矿化岩心照片
    a—黄铜矿-黄铁矿-方铅矿-闪锌矿化、硅化破碎带(623.35~624.33 m); b—矿化破碎带中团块状方铅矿、黄铁矿(945.55~945.94 m); c—铅锌矿 化、黄铁矿化破碎带(1733.25~1733.83 m); d—黄铁矿-黄铜矿-闪锌矿-方铅矿化石英脉(1166.99 m); e—花岗闪长斑岩中黄铁矿-白钨矿-黑 钨矿-辉铋矿-自然铋-铀矿化石英脉(1667.75 m); f—含炭质泥岩中黄铁矿化、铅锌矿化石英脉(1874.55 m); g—变质沉凝灰岩中黄铁矿化、铅 锌矿化长英质脉(750.55 m); h—黄铜矿化长英质脉(793.22 m); i—黄铜矿-方铅矿-闪锌矿化长英质脉(819.59 m)
    Figure  2.  The photo of different types of mineralized core in Nanling Scientific Drilling-1
    a-Chalcopyrite-pyrite-galena-sphalerite altered silicified fracture zone (623.35~624.33 m); b-Lumpy galena,pyrite in the mineralized fracture zone (945.55~945.94 m); c-Pb-Zn mineralized,pyritized fracture zone (1733.25~1733.83 m); d-Pyrite-chalcopyrite-sphalerite-galena altered quartz vein(1166.99 m); e-Pyrite-scheelite-wolframite-bismuthinite-bismuth-uranium altered quartz vein in the granodiorite porphyry (1667.75 m); f-Pyrite,Pb-Zn mineralized quartz vein containing carbonaceous mudstone (1874.55 m); g-Pyrite,Pb-Zn mineralized quartz-feldspar vein in the metamorphic sedimentary tuff (750.55 m); h-Chalcopyritized quartz-feldspar vein (793.22 m); i-Chalcopyrite-galena-sphalerite altered quartz-feldspar vein (819.59 m)

    黄铁矿: 黄铁矿呈自形-半自形粒状,粒径0.1~1mm,星点状散布于硅质脉、长英质脉、碳酸盐脉、破碎带、裂隙面或围岩地层中。黄铁矿含量较高时聚集形成3~5 mm大小的团块或致密的黄铁矿微细脉(图 3-a)。

    图  3  南岭科学钻不同矿物组合的矿化/显微照片
    a—黄铁矿化,黄铁矿在石英脉中呈微细脉状(1874.55 m); b—黄铁矿-黄铜矿化,黄铁矿呈半自形-他形粒状,黄铜矿呈他形不规则状沿黄铁矿 晶隙生长(1343.26 m); c—闪锌矿-方铅矿化,闪锌矿与方铅矿镶嵌生长(1067.61 m); d—黄铁矿-闪锌矿化,黄铁矿与闪锌矿呈微细硫化物脉状 (1636.85 m); e、f—黄铜矿-黄铁矿-方铅矿-闪锌矿化,黄铁矿呈自形-半自形粒状,黄铜矿、方铅矿、闪锌矿呈他形(2090.48 m); g~j—细脉状黄铁矿-白钨矿-黑钨矿-辉铋矿-自然铋-铀矿化(1668~680 m); k—浸染状白钨矿化(2018.84 m); l—黄铁矿呈不规则粒状,黑钨 矿与白钨矿呈他形交代黄铁矿(1668~680 m); m—自然铋交代黄铁矿,表面氧化呈铁锈红色(1668~680 m); n—白钨矿与黑钨矿交代黄铁矿 (1668~680 m); o—白钨矿交代黑钨矿呈交代残余结构(1668~680 m) Ccp—黄铜矿; Gn—方铅矿; Bg—自然铋; Py—黄铁矿; Qtz—石英; Sch—白钨矿; Sh—闪锌矿; U—铀矿; Wf—黑钨矿
    Figure  3.  Different mineral assemblages mineralization/microsurgery photos in Nanling Scientific Drilling-1
    a-Pyritization,pyrite is fine in quartz vein (1874.55 m); b-Pyrite-chalcopyrite mineralization,chalcopyrite is growing along the crystal gap of pyrite in anhedral form with irregular shape (1343.26 m); c-Sphalerite-galena mineralization,sphalerite and galena are mosaic growth (1067.61 m); d-Pyrite-sphalerite mineralization,pyrite and sphalerite are fine veins of sulfide (1636.85 m); e,f-Chalcopyrite-pyrite-galena-sphalerite mineralization,pyrite is euhedral-subhedral grains,chalcopyrite,galena and sphalerite are anhedral (2090.48 m); g-j-Pyrite-scheelite-wolframitebismuthinite- bismuth-uranium altered vein (1668-680 m); k-Disseminated scheelite mineralization (2018.84 m); l-Pyrite is irregular,wolframite and scheelite are anhedral and replace pyrite (1668-680 m); m-Bismuth replaces pyrite,oxidation is rusty red at surface (1668-680 m); n-Wolframite and scheelite replace pyrite (1668-680 m); o-Scheelite replace wolframite which exhibits metasomatic relict texture (1668-680 m) Ccp-Chalcopyrite; Gn-Galena; Bg-Bismuth; Py-Pyrite; Qtz-Quartz; Sch-Scheelite; Sh-Sphalerite; U-Uraniume; Wf-Wolframite

    黄铜矿-黄铁矿: 黄铜矿呈他形,粒径1.5~3mm; 黄铁矿呈自形-半自形粒状,粒径1 mm左右。黄铜矿与黄铁矿共生,呈大小2~7 mm的团块分布于硅质脉、长英质脉、破碎带中(图 3-b)。

    闪锌矿-方铅矿: 闪锌矿在单偏光下呈黑色、灰黑色、暗褐色、棕灰色,粒径0.1~8 mm; 方铅矿呈自形粒状,粒径小于1 mm,含量远小于闪锌矿。闪锌矿与方铅矿共生呈大小约2 mm的团块分布于硅质脉、长英质脉、破碎带中,含量高时形成致密的方铅矿-闪锌矿集合体微细脉(图 3-c)。黄铁矿-闪锌矿: 黄铁矿呈自形-半自形粒状,闪锌矿在单偏光下呈黑色、棕褐色的半自形-他形粒状。黄铁矿与闪锌矿粒度均较小,粒径0.05~0.1 mm,二者共生呈浸染状、团块状、微细脉状分布于硅质脉中,少数分布于碳酸盐脉、长英质脉中(图 3-d)。

    黄铜矿-方铅矿-闪锌矿: 黄铜矿、方铅矿、闪锌矿多呈不规则他形状。闪锌矿常交代黄铁矿,闪锌矿内部出溶黄铜矿,方铅矿交代闪锌矿、黄铁矿,黄铜矿交代黄铁矿、闪锌矿、方铅矿或充填其裂隙(图 3-e、f),根据矿物结构关系,矿物生成顺序为黄铁矿-(闪锌矿+方铅矿)-黄铜矿。该矿化组合常见于硅质脉中,硫化物在硅质脉中呈星点状、团块状断续分布或线状连续分布,含量高时形成硫化物脉。此外,该矿化组合在破碎带中可呈1~3 mm的团块状。

    黄铁矿-白钨矿-黑钨矿-辉铋矿-自然铋-铀:主要见于孔深1668~1680 m石英细脉内,石英细脉轴心夹角40°~45°,宽约5 mm,见石英细脉被与其近垂直的微型断裂错断,断距0.5~2.5 cm(图 3-g)。黄铁矿呈自形-半自形粒状,粒径小于0.5 mm,在其石英细脉呈稠密浸染状、团块状分布; 白钨矿和黑钨矿呈半自形-他形状,粒径小于0.5 mm,交代黄铁矿(图 3-n),白钨矿交代黑钨矿形成交代残留结构; 自然铋和辉铋矿呈他形细粒状,粒径0.01~0.05 mm,穿孔交代黄铁矿,或沿黄铁矿裂隙进行交代(图 3-m); 晶质铀矿呈尘点状分布于石英中(图 3-n)。矿化石英细脉与围岩界面平直、截然,脉侧围岩内无矿化,说明该矿化组合为围岩成岩后含矿硅质流体沿裂隙充填形成。

    此外,孔深2017.50~2018.13 m花岗闪长斑岩的底板泥灰岩中见星点状黄铁矿-白钨矿化(图 2-k),而岩脉内部及顶板未见钨矿化; 2090.07~2096.68 m泥灰岩中见碳酸盐脉,脉宽2 mm左右,轴心夹角约20°左右,碳酸盐脉内发育黄铁矿-闪锌矿-方铅矿-黄铜矿-白钨矿化; 2765.61~2766.19 m泥灰岩中见石英脉,脉宽1~5 mm,轴心夹角约15°,脉内发育黄铁矿-白钨矿化,黄铁矿呈星点状、小团块状,白钨矿仅见2 粒,粒径0.2~0.5 mm; 2867.37~2875.92 m花岗闪长斑岩中见碳酸盐和硅质流体充填张裂隙,裂隙内发育黄铁矿-白钨矿化,黄铁矿呈星点状、小团块状,白钨矿仅见一粒。

    本次工作对NLSD-1 全孔岩心进行了元素地球化学分析,主要包括10 种矿化元素及矿化指示元素(S、As)。如图 4图 5 显示,Au、Ag、Cu、Pb、Zn 矿化强度较好的层位集中于浅部孔深0~1351 m,即F1上部的青白口系库里组变质火山-沉积岩系中,且Au、Ag、Cu三种元素的矿化强度随深度变化而高度同步。孔深0~1351 m,随着深度的增加,除极高值点外,岩心中Au、Ag、Pb、Zn 含量整体较稳定,而Cu含量则显示有逐步增高的趋势。目前,南岭科学钻仅揭露3 段(分别为孔深472.48~473.45 m、623.35~624.33 m、985.82~986.21 m)达到工业品位的矿层,但根据成矿元素分析结果,271.73~271.85 m、417.64m、588.3 m、933.74 m、1139.13 m、1305.62~1351.06 m也很有存在工业矿体的潜力(表 1)。

    图  4  NLSD-1孔深0~1500 m矿化元素含量图
    Figure  4.  Mineralization element content at the hole depth of 0-1500 m in NLSD-1
    图  5  NLSD-1 孔深1500~3000 m矿化元素含量图
    Figure  5.  Mineralization element content at the hole depth of 1500-3000 m in NLSD-1
    表  1  南岭科学钻中部分层位的成矿元素分析结果
    Table  1.  Metallogenic element analysis results in part of horizons of Nanling Scientific Drilling−1
    下载: 导出CSV 
    | 显示表格

    W、Sn、Mo、Bi、U的矿化虽未达到边界品位,与Au、Ag、Cu、Pb、Zn 相比,也并未以组合矿化形式出现,但在钻孔垂向上具有明显分带规律。W矿化强度较好的层位主要集中于孔深565~2015 m,且在1095.52 m黄铜矿化、黄铁矿化、绿泥石化凝灰质板岩和1265.31 m黄铜矿化、黄铁矿化、铅锌矿化、硅化粉屑沉凝灰岩中达到高值点(W含量分别为387×10-6、249×10-6); Sn 矿化强度较好的层位主要集中于孔深945~1715 m,且在1578.80 m角岩化岩屑石英砂岩夹含炭质粉砂岩和1715.02 m绿帘石化、绿泥石化花岗斑岩中达到高值点(Sn 含量分别为668×10-6、456×10-6); Mo矿化在孔深0~1800 m内整体稳定,1800 m以下,Mo矿化强度有明显增强; Bi 矿化强度较好的层位主要集中于浅部孔深0~1351 m处,显示其与Au、Ag、Cu、Pb、Zn 等亲硫元素矿化具有相关性; U 在孔深588~644 m 和1011~1315 m 矿化相对较好。

    综合对比钻孔中矿相学和岩浆岩的分布特征,结合成矿元素本身的地球化学行为,W矿化可能与孔深1380~1723 m的花岗斑岩(7 条)有关; Au、Ag、Cu、Pb、Zn 则可能为深部花岗闪长岩体的远端低温矿化组合。

    NLSD-1 以F1 (1373 m)推覆构造为界,各类贵金属矿化集中出露于推覆体上部,矿化180 余层,单层假厚0.17~7.85 m,包括黄铜矿-黄铁矿化、闪锌矿-黄铜矿和方铅矿-闪锌矿化等,Au-Ag-Cu-Pb-Zn 以组合异常的形式集中出现于青白口系推覆体地层之中。其中,469.63~478.14 m段、623.35~661.06 m段和981.88~990.29 m段中铅、锌、金、银达到工业品位,假厚分别为0.97 m、0.98 m、0.39 m。指示工业矿体在推覆体内可延伸至1 km以下。

    牛形坝—柳木坑矿区出露的银金多金属矿化以10 号脉为中心,以脉组形式产出,北部矿脉组倾向南,南部矿脉组倾向北[12]。根据NLSD-1 与矿区地表矿化脉的相对位置,10 号脉位于钻孔南约125m,产状倾角75°~88°,倾向延伸约300 m,平均厚度1.24 m,计算得到其可能与钻孔中469.63~478.14 m矿化段中472.48~473.45 m矿体相对应。该矿体标高之下的矿化段可能因为埋深较大、倾向延伸距离短而未在地表出露; 该矿体标高之上的矿化段,则可能是由于未达工业品位而在地表未被标记。

    NLSD-1 于1660~1680 m 段岩心中发现黄铜 矿-黄铁矿-白钨矿-黑钨矿-辉铋矿-自然铋-铀矿矿化组合。黄铜矿呈铜黄色他形; 黄铁矿呈自形-半自形粒状; 白钨矿呈他形粒状; 黑钨矿主要呈黑色微细粒状(<0.05 mm); 辉铋矿呈灰白色微细粒状(0.01~0.05 mm); 自然铋呈带红色色调彩色锖色的他形片状; 铀矿物呈尘点状。其中,黄铜矿、黄铁矿、白钨矿在石英中镶嵌生长; 黑钨矿和辉铋矿常包裹于黄铁矿或石英内部; 铀矿物分布于石英中;自然铋包裹于辉铋矿内部或生长于黄铁矿边缘(图 6)。这为示范区内W-Bi-U类矿化体的寻找拓宽了思路。

    银坑—青塘盆地由前寒武系基底褶皱和古生代盖层褶皱双层基底组成,钻孔深部揭露的二叠系炭质页岩-泥灰岩即为盆地西部乐平组—栖霞组地层,在江背复式岩基之岩前单元即形成矽卡岩型钨多金属矿[13]。NLSD-1 揭露了推覆体下部广泛发育的花岗斑岩岩脉,指示深部隐伏花岗岩体的存在,地球物理探测指示该区2.5~4 km 范围内存在隐伏岩体,由此预测银坑地区1.5 km以下隐伏岩体或岩枝与二叠系接触部位可作为矽卡岩型钨多金属矿的有利靶区。

    示范区内目前发现的各类工业矿体均为脉状矿体,研究推断本区厚大矿体可能在深部3 个部位出现,一为牛形坝四脉组向东延展(1.5 km 以下)汇聚,二为深部推覆构造带内,三为隐伏岩体顶部接触带内。

    F1 为区内推覆构造主滑脱面,总体走向NNE,局部NEE,延长约40 km,浅地表和坑道内均有矿化体充填。NLSD-1 于1373.71~1440.62 m揭露本区主推覆构造(F1)带内共发育6 段破碎带,发育大量与其近于垂直的NWW-SWW向张性裂隙,破碎带普遍发生硅化和黄铁矿化,带内充填的花岗闪长斑岩与闪长玢岩发育绿泥石化和黄铁矿化,且其上部地层中发育黄铜矿-闪锌矿-方铅矿化石英脉。结合地表矿区工作成果[12, 14-15],中酸性花岗质岩浆活动与铜铅锌金银矿化关系密切,推覆构造形成的次级裂隙和破碎带则提供流体运移和矿质沉淀的通道和空间,推覆带内的破碎带则成为深部厚大矿体的有利容矿空间。

    根据地球物理探测成果,江背岩体与高山角岩体的深部延展结合部位,存在低密度和较高磁性地质体。该地质体呈筒柱状,顶面埋深2.5~4 km,其较高磁性特征指示岩体内部可能存在金属硫化物的富集。地表发育花岗闪长斑岩脉,浅表发育脉状银多金属矿化,且矿化有向深部增大、归并为体的趋势。隐伏岩体(或岩突)顶部与围岩的接触带上可能存在层状-似层状厚大的多金属矿体。

    高山角岩体为银坑矿田内燕山早期第三阶段岩浆活动的产物,呈岩株状产出,岩性为细粒斑状黑云母花岗闪长岩,锆石SHRIMP U-Pb 年龄为(160±1) Ma[14]。NLSD-1 中揭露了大量的花岗闪长岩与贵多金属矿化紧密伴生,其地球化学性质及成岩时代与高山角花岗闪长岩高度一致。地球物理探测成果显示,高山角岩体为一期岩浆活动的产物,岩浆从东南方向侵入,形成5~7 个磁性较强的小岩体,总体走向为北东向,大部分隐伏于出露岩体的东、南、西边,深部空间分布范围是实际出露范围的数倍,显示低重高磁异常。该岩体接触带上发育数十米宽的环状面型黄铁矿化蚀变,其南侧一带的NE向断裂破碎带含有金矿化体。目前已发现多条长达数百至千余米的矿化带,品位: Au 0.3~3.61 g/t,Ag 67.5~215.6 g/t,显示了巨大的资源潜力。

    隐爆角砾岩是近地表超浅成封闭条件下,在地下由隐蔽爆发作用形成的角砾状碎屑岩类,与成矿关系密切。国内外很多金、银、铀、钨锡矿及斑岩型铜金钼矿床等都与隐爆角砾岩有紧密的内在联系,如银山银铜铅锌矿的九区和西山矿段发育隐爆角砾岩型铜金矿化[16]、紫金山铜金矿主要产于隐爆角砾岩中[17-18],悦洋银多金属矿[19]、龙江亭铜矿等也与隐爆角砾岩有紧密关系。柳木坑隐伏岩体南东桥子坑、井笔山、樟石坳地区发现隐爆角砾岩筒。筒内为爆破角砾岩,角砾大小不一,成分以花岗闪长斑岩为主,少量围岩角砾,隐爆角砾岩中张性裂隙发育,充填有硫化物-石英细网脉,岩石蚀变较强,以硅化、绢云母化、绿泥石化及高岭土化为主,地表为低品位的含金地质体,Au 品位为0.1~4.86 g/t,说明该地即为隐爆中心。结合以上信息,推断示范区内围绕井笔山和樟树坳隐爆破角砾岩筒周围极有可能发育斑岩型-隐爆角砾岩型-脉型铜金系列矿床。

    南岭科学钻探(NLSD-1)在总进尺2967.83 m范围内,揭露了大量的多金属矿化,通过NLSD-1垂向矿化信息与区域成矿规律对比研究,获得几点认识:(1)区内由浅及深、由盆地内而外发育两套多金属矿化,即金银铜铅锌和钨铋铀各类矿化,NLSD-1 验证了两套矿化在三维空间内的存在;(2)各类矿化成因类型以岩浆热液型为主,矿化层可分为破碎带型、硅质脉型、长英质脉型和浸染型,在NLSD-1 构造-岩浆与矿化关系研究显示,深部和外围具有寻找矽卡岩型和斑岩型潜力;(3)元素垂向矿化规律上表现为Au-Ag-Cu、Pb-Zn分别以组合形式出现,Bi的元素异常与亲硫元素矿化具有明显相关性,其中贵金属矿化异常集中在推覆体内,而W-Sn-U矿化向深部有增强趋势,各组矿化在垂向上有较明显的岩性、构造和岩浆岩的控矿专属性;(4)NLSD-1 垂向矿化与区域成矿规律研究提出四大找矿方向,即: 推覆体内V10~V31 向东向深部延展、推覆体下部钨铋多金属矿化、深部3个空间位置可能出现的厚大矿体以及外围高山角—井笔山一带斑岩型-爆破角砾岩型矿化。

    致谢: 南岭科学钻探工程由国家深部探测实验研究专项资助、安徽省地勘局313 地质大队负责施工,钻探选址、施工及现场编录过程中克服种种困难和难题,期间得到了裴荣富院士、许志琴院士、杨经绥研究员、董树文研究员、吕庆田研究员、张家菁教授等专家的指导,江西省国土资源厅、赣州市、于都县、银坑镇等各级管理部门和润鹏矿业公司的大力支持,两年余的施工期间一线钻探技术人员和现场编录的同事付出了艰辛的汗水和不懈的努力,限于篇幅没能一一刊名,以此文刊出表示由衷感谢! 审稿专家对论文提出了宝贵修改意见,在此致以诚挚谢意!
  • 图  1   南岭科学钻探(NLSD-1)大地构造位置及地质矿产图(据文献[7]修改)

    1—第四系全新统~更新统;2—上白垩统周田组;3—上白垩统茅店组;4—下白垩统石溪组;5—上侏罗统罗坳组;6—下侏罗统水北组;7—上二 叠系统乐平组;8—下二叠统并层;9—上石炭统壶天群;10—下石炭统梓山组;11—中-上泥盆系统峡山群;12—寒武系中统高滩群;13—寒武 系下统牛角河群;14—震旦系上统老虎塘组;15—震旦系上统坝里组;16—震旦系下统沙坝黄组;17—青白口纪上施组;18—青白口纪库里组; 19—青白口纪神山组;20—燕山晚期安山岩;21—燕山早期第五阶段花岗斑岩,22—燕山早期第五阶段辉长岩;23—燕山早期第四阶段细粒花 岗岩24—燕山早期第三阶段细粒似斑状黑云母花岗岩、细粒斑状二云母花岗岩;25—燕山早期第二阶段中细粒似斑状二云母花岗岩;26—燕 山早期第一阶段中粗粒似斑状花岗岩、二长花岗岩、花岗闪长岩;27—燕山早期第一阶段辉长岩;28—加里东期第二阶段粗粒似斑状黑云母花 岗岩;29—印支期似斑状黑云母花岗岩;30—加里东期第一阶段似斑状黑云母花岗岩;31—加里东期第一阶段石英闪长岩;32—脉岩:玄武岩 (Kβ )流纹斑岩(Kξ )闪长玢岩(Kδμ )石英斑岩(JQπ )花岗闪长斑岩(Jγδπ )辉绿岩(Jβμ );33—断裂;34—构造窗;35—地质界线;36—整合界线; 37—铅锌矿;38—钨矿;39—金矿;40—银矿;41—、稀土矿;42—铌钽矿;43—铍矿;44—硫铁矿;45—萤石矿;46—砂金矿

    Figure  1.   Tectonic position (a) and geological map (b) of Nanling Scientific Drilling-1 (modified after reference [7])

    1-Holocene-Pleistocene Series of Quatemary;2-Zhoutian Formation of Upper Cretaceous;3-Miaodian Formation of Upper Cretaceous; 4-Shixi Formation of Lower Cretaceous;5-Luoao Formation of Upper Jurassic;6-Shuibei Formation of Lower Jurassic;7-Leping Formation of Upper Permian;8-Lower Permian;9-Hutian Group of Upper Carboniferous;10-Zishan Formation of Lower Carboniferous;11-Xiashan Group of Middle-Upper Devonian;12-Gaotan Group of Middle Cambrian;13-Niujiaohe Group of Lower Cambrian;14-Laohutang Formation of Upper Sinian;15-Bali Formation of Upper Sinian;16-Shabahuang Formation of Lower Sinian;17-Shangshi Formation of Qingbaikou;18-Kuli Formation of Qingbaikou;19-Shenshan Formation of Qingbaikou;20-Andesite of Late Yanshanian;21-Granite porphyry of the fifth stage of Early Yanshanian; 22-Gabbro of the fifth stage of Early Yanshanian;23-Fine-grained granite of the fourth stage of Early Yanshanian;24-Fine-grained porphyaceous biotite granite and fine-grained porphyritic two-mica granite of the third stage of Early Yanshanian;25-Intermediate-fine-grained porphyritic twomica granite of the second stage of Early Yanshanian;26-Intermediate-coarse-grained porphyaceous granite,monzogranite,granodiorite of the first stage of Early Yanshanian;27-Gabbro of the first stage of Early Yanshanian;28-Coarse-grained porphyritic biotite granite of the second stage of Caledonian;29-Porphyraceous biotite granite of Indosinian;30-Porphyraceous biotite of the first stage of Caledonian;31-Quartz diorite of the first stage of Caledonian;32-Dikes of basalt (Kβ ),rhyolite porphyry (Kξ ),diorite porphyrite (Kδμ ),quartz porphyry (JQπ ),granodiorite porphyry (Jγδπ ) and diabase (Jβμ );33-Faults;34-Tectonic window;35-Geological boundary;36-Unconformity 37-Lead-zinc mine; 38-Tungsten mine;39-Gold mine;40-Silver mine;41-Rare earth mine;42-Columbotantalite mine;43-Beryllium mine; 44-Pyrite mine;45-Fluorite mine;46-Alluvial gold mine.

    图  2   南岭科学钻中不同类型矿化岩心照片

    a—黄铜矿-黄铁矿-方铅矿-闪锌矿化、硅化破碎带(623.35~624.33 m); b—矿化破碎带中团块状方铅矿、黄铁矿(945.55~945.94 m); c—铅锌矿 化、黄铁矿化破碎带(1733.25~1733.83 m); d—黄铁矿-黄铜矿-闪锌矿-方铅矿化石英脉(1166.99 m); e—花岗闪长斑岩中黄铁矿-白钨矿-黑 钨矿-辉铋矿-自然铋-铀矿化石英脉(1667.75 m); f—含炭质泥岩中黄铁矿化、铅锌矿化石英脉(1874.55 m); g—变质沉凝灰岩中黄铁矿化、铅 锌矿化长英质脉(750.55 m); h—黄铜矿化长英质脉(793.22 m); i—黄铜矿-方铅矿-闪锌矿化长英质脉(819.59 m)

    Figure  2.   The photo of different types of mineralized core in Nanling Scientific Drilling-1

    a-Chalcopyrite-pyrite-galena-sphalerite altered silicified fracture zone (623.35~624.33 m); b-Lumpy galena,pyrite in the mineralized fracture zone (945.55~945.94 m); c-Pb-Zn mineralized,pyritized fracture zone (1733.25~1733.83 m); d-Pyrite-chalcopyrite-sphalerite-galena altered quartz vein(1166.99 m); e-Pyrite-scheelite-wolframite-bismuthinite-bismuth-uranium altered quartz vein in the granodiorite porphyry (1667.75 m); f-Pyrite,Pb-Zn mineralized quartz vein containing carbonaceous mudstone (1874.55 m); g-Pyrite,Pb-Zn mineralized quartz-feldspar vein in the metamorphic sedimentary tuff (750.55 m); h-Chalcopyritized quartz-feldspar vein (793.22 m); i-Chalcopyrite-galena-sphalerite altered quartz-feldspar vein (819.59 m)

    图  3   南岭科学钻不同矿物组合的矿化/显微照片

    a—黄铁矿化,黄铁矿在石英脉中呈微细脉状(1874.55 m); b—黄铁矿-黄铜矿化,黄铁矿呈半自形-他形粒状,黄铜矿呈他形不规则状沿黄铁矿 晶隙生长(1343.26 m); c—闪锌矿-方铅矿化,闪锌矿与方铅矿镶嵌生长(1067.61 m); d—黄铁矿-闪锌矿化,黄铁矿与闪锌矿呈微细硫化物脉状 (1636.85 m); e、f—黄铜矿-黄铁矿-方铅矿-闪锌矿化,黄铁矿呈自形-半自形粒状,黄铜矿、方铅矿、闪锌矿呈他形(2090.48 m); g~j—细脉状黄铁矿-白钨矿-黑钨矿-辉铋矿-自然铋-铀矿化(1668~680 m); k—浸染状白钨矿化(2018.84 m); l—黄铁矿呈不规则粒状,黑钨 矿与白钨矿呈他形交代黄铁矿(1668~680 m); m—自然铋交代黄铁矿,表面氧化呈铁锈红色(1668~680 m); n—白钨矿与黑钨矿交代黄铁矿 (1668~680 m); o—白钨矿交代黑钨矿呈交代残余结构(1668~680 m) Ccp—黄铜矿; Gn—方铅矿; Bg—自然铋; Py—黄铁矿; Qtz—石英; Sch—白钨矿; Sh—闪锌矿; U—铀矿; Wf—黑钨矿

    Figure  3.   Different mineral assemblages mineralization/microsurgery photos in Nanling Scientific Drilling-1

    a-Pyritization,pyrite is fine in quartz vein (1874.55 m); b-Pyrite-chalcopyrite mineralization,chalcopyrite is growing along the crystal gap of pyrite in anhedral form with irregular shape (1343.26 m); c-Sphalerite-galena mineralization,sphalerite and galena are mosaic growth (1067.61 m); d-Pyrite-sphalerite mineralization,pyrite and sphalerite are fine veins of sulfide (1636.85 m); e,f-Chalcopyrite-pyrite-galena-sphalerite mineralization,pyrite is euhedral-subhedral grains,chalcopyrite,galena and sphalerite are anhedral (2090.48 m); g-j-Pyrite-scheelite-wolframitebismuthinite- bismuth-uranium altered vein (1668-680 m); k-Disseminated scheelite mineralization (2018.84 m); l-Pyrite is irregular,wolframite and scheelite are anhedral and replace pyrite (1668-680 m); m-Bismuth replaces pyrite,oxidation is rusty red at surface (1668-680 m); n-Wolframite and scheelite replace pyrite (1668-680 m); o-Scheelite replace wolframite which exhibits metasomatic relict texture (1668-680 m) Ccp-Chalcopyrite; Gn-Galena; Bg-Bismuth; Py-Pyrite; Qtz-Quartz; Sch-Scheelite; Sh-Sphalerite; U-Uraniume; Wf-Wolframite

    图  4   NLSD-1孔深0~1500 m矿化元素含量图

    Figure  4.   Mineralization element content at the hole depth of 0-1500 m in NLSD-1

    图  5   NLSD-1 孔深1500~3000 m矿化元素含量图

    Figure  5.   Mineralization element content at the hole depth of 1500-3000 m in NLSD-1

    表  1   南岭科学钻中部分层位的成矿元素分析结果

    Table  1   Metallogenic element analysis results in part of horizons of Nanling Scientific Drilling−1

    下载: 导出CSV
  • [1] 陈毓川,裴荣富,张宏良,等.南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质[M].中华人民共和国地质矿产部地质专报,四.矿床与矿产,1989.

    Chen Yuchuan,Pei Rongfu,Zhang Hongliang,et al.The Geology of Non-ferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Regions[M].People's Republic of China Ministry of Geology and Mineral Resources Geological Special Report,Four.Deposit and Mineral,1989(in Chinese).

    [2] 王登红,陈毓川,陈郑辉,等.南岭地区矿产资源形势分析和找矿方向研究[J].地质学报,2007(7):882-890. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200707001.htm

    Wang Denghong,Chen Yuchuan,Chen Zhenghui,et al.Assessment on Mineral resource in Nanling Region and suggestion for further prospecting[J].Acta Geological Sinica,2007(7):882-890(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200707001.htm

    [3] 王登红,许建祥,张家菁,等.华南深部找矿有关问题探讨[J].地质学报,2008(7):865-872. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807001.htm

    Wang Denghong,Xu Jianxiang,Zhang Jiajing,et al.Several Issues on the Deep Prospecting in South China[J].Acta Geological Sinica,2008(7):865-872(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807001.htm

    [4] 王登红.南岭有色-贵金属成矿潜力及综合探测技术研究[M].北京:地质出版社,2010.

    Wang Denghong.Colored-Precious metals forming potential and Integrated Detection Technique in Nanling[M].Beijing:Geological Publishing House,2010(in Chinese).

    [5] 王登红,陈毓川,王瑞江,等.对南岭与找矿有关问题的探讨[J].矿床地质,2013,(4):854-863. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304018.htm

    Wang Denghong,Chen Yuchuan,Wang Ruijiang,et al.Discussion on some problems related to prospecting breakthrough in Nanling region[J].Mineral Deposits,2013,(4):854-863(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201304018.htm

    [6] 吕志成,张志,李永胜,等.南岭成矿地区矿山深部找矿新进展[J].高校地质学报,2013(2):175-181. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201302002.htm

    Lv Zhicheng,Zhang Zhi,Li Yongsheng,et al.Recent status of deep ore prospecting in the Nanling range[J].Geological Journal of China Universities,2013(2):175-181(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201302002.htm

    [7] 陈毓川,陈郑辉,曾载淋,等.南岭科学钻探第一孔选址研究[J].中国地质,2013(3):659-670. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20130301&flag=1

    Chen Yuchuan,Chen Zhenghui,Zeng Zailin,et al.Research on the site selection of Nanling Scientific Drilling-1[J],Geology in China,2013(3):659-670(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20130301&flag=1

    [8] 陈毓川,王登红.华南地区中生代岩浆成矿作用的四大问题[J].大地构造与成矿学,2012(3):315-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201203004.htm

    Chen Yuchuan,Wang Denghong.Four main topics concerning the metallogeny related to Mesozoic magmatism in South China[J].Geotectonica et Metallogenia,2012(3):315-321(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201203004.htm

    [9] 陈毓川,王登红,徐志刚,等.华南区域成矿和中生代岩浆成矿规律概要[J].大地构造与成矿学,2014(2):219-229. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm

    Chen Yuchuan,Wang Denghong,Xu Zhigang,et al.Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in South China[J].Geotectonica et Metallogenia,2014(2):219-229(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm

    [10] 赵正,陈毓川,郭娜欣,等.南岭科学钻探0~2000 m地质信息及初步成果[J].岩石学报,2014(4):1130-1144. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404018.htm

    Zhao Zheng,Chen Yuchuan,Guo Naxin,et al.The geological information and investigation progresses of Nanling Scientific Drilling in the depth between 0 and 2000m[J].Acta Petrologica Sinica,2014(4):1130-1144(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404018.htm

    [11] 郭娜欣,陈毓川,赵正,等.南岭科学钻中与两种岩浆岩有关的矿床成矿系列——年代学.地球化学,Hf同位素证据[J].地球学报,2015(6):742-754. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201506006.htm

    Guo Naxin,Chen Yuchuan,Zhao Zheng,et al.Metallogenic Series Related to Two Types of Granitoid Exposed in the Nanling Scientific Drill Hole:Evidence from Geochronology,Geochemistry and Hf Isotope[J].Acta Geoscientica Sinica,2015(6):742-754(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201506006.htm

    [12] 张家菁.赣南东部银抗矿田控矿因素及找矿方向浅析[J].江西地质,1997(4):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ704.003.htm

    Zhang Jiajing.A preliminary analysis on ore-controlling factors in Yinkeng ore field and prospecting targets in eastern south Jiangxi[J].Jiangxi Geology,1997(4):23-29(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ704.003.htm

    [13] 赵正,陈毓川,曾载淋,等.南岭东段岩前钨矿床地质特征及成岩成矿时代[J].吉林大学学报(地球科学版),2013(6):1828-1839. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306012.htm

    Zhao Zheng,Chen Yuchuan,Zeng Zailin,et al.Geological characteristics and rock forming and ore-forming ages of Yanqian Tungsten Deposit in east Nanling region[J].Journal of Jilin.University (Earth Science Edition),2013(6):1828-1839(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306012.htm

    [14] 赵正,陈毓川,陈郑辉,等.赣南银坑矿田高山角花岗闪长岩SHRIMP U-Pb定年及其与成矿的关系[J].岩矿测试,2012(3):536-542.

    Zhao Zheng,Chen Yuchuan,Chen Zhenghui,et al.SHRIMPU-Pb dating of Gaoshanjiao granodiorite in Yinkeng ore-field of South Jiangxi region and its relations to mineralization[J].Rock and Mineral Analysis,2012(3):536-542(in Chinese with English abstract).

    [15] 赵正,王登红,张长青,等.南岭地区与铅锌矿有关岩浆岩的成矿专属性研究[J].大地构造与成矿学,2014(2):289-300. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402008.htm

    Zhao Zheng,Wang Denghong,Zhang Changqing,et al.Metallogenic specialization of the magmatic rocks associated with the lead-zinc deposits in the Nanling region[J].Geotectonica et Metallogenia,2014(2):289-300(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402008.htm

    [16] 华仁民.江西银山铅锌铜矿化机制的讨论[J].矿床地质,1987(2):90-96. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198702008.htm

    Hua Renmin.A discussion on the mechanism of lead,zinc and copper metallogeneses in Yinshan,Jiangxi province[J].Mineral Deposits,1987(2):90-96(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198702008.htm

    [17] 张德全,李大新.紫金山地区中生代岩浆系统的时空结构及其地质意义[J].地球学报,2001(5):403-408. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200105003.htm

    Zhang Dequan,Li Daxin.The temporal and spatial framework of the Mesozoic magmatic system in Zijinshan area and its geological significance[J].Acta Geological Sinica,2001(5):403-408(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200105003.htm

    [18] 张德全,佘宏全,李大新,等.紫金山地区的斑岩-浅成热液成矿系统[J].地质学报,2003(2):253-261.

    Zhang Dequan,Shen Hongquan,Li Daxin,et al.The porphyryepithermal metallogenic system in the Zijinshan region,Fujian Provinee[J].Acta Geological Sinica,2003(2):253-261(in Chinese with English abstract).

    [19] 林全胜.福建武平悦洋银多金属矿床特征及成因探讨[J].福建地质,2006(2):82-88. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ200602002.htm

    Lin Quansheng.On the Characteristics and genesis of the Yueyang silver polymetallic deposit in Wuping County,Fujian Province[J].Geology of Fujian,2006(2):82-88(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ200602002.htm

  • 期刊类型引用(7)

    1. 李晓夏,赵正,陈振宇. 江西银坑矿田钨钼与铅锌银成因关系研究:来自流体包裹体和同位素的证据. 矿床地质. 2025(01): 183-202 . 百度学术
    2. 刘阳生,赵正,文一卓,许若潮,李立兴,李厚民,许以明,田军委. 湘南科学深钻构造样式及其对区域成矿预测的启示. 矿床地质. 2024(03): 688-706 . 百度学术
    3. 许若潮,文一卓,许以明,刘阳生,李立兴,龚述清,李厚民,孟雨红,刘小林. 湘南科学钻1665~1700 m铜矿体成因及深部找矿启示. 地质通报. 2023(04): 646-656 . 百度学术
    4. 林彬,唐菊兴,唐攀,周敖日格勒,孙渺,祁婧,陈国良,张忠坤,张泽斌,吴纯能,田志超,代晶晶,杨征坤,姚晓峰. 青藏高原甲玛斑岩成矿系统首例3000 m科学深钻的初步认识. 矿床地质. 2021(06): 1119-1134 . 百度学术
    5. 刘翠辉,于长琦,贺根文,李伟,刘孝斌. 赣南宁都地区1∶50000青塘幅矿产地质图数据集. 中国地质. 2019(S1): 75-83 . 本站查看
    6. 赵正,陈毓川,曾载淋,郭娜欣,陈郑辉,王登红,刘翠辉,刘宗翊,王平安,李江东. 江西银坑W-Ag-Au多金属矿田成矿规律与找矿方向:兼论华南两个成矿系列叠加问题. 地学前缘. 2017(05): 54-61 . 百度学术
    7. 赵正,王登红,陈毓川,刘善宝,方贵聪,梁婷,郭娜欣,王少轶,王浩洋,刘战庆,曾载淋,丁明,陈伟,周新鹏. “九龙脑成矿模式”及其深部找矿示范:“五层楼+地下室”勘查模型的拓展. 地学前缘. 2017(05): 8-16 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  3085
  • HTML全文浏览量:  445
  • PDF下载量:  4053
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-05-18
  • 修回日期:  2016-06-20
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-10-24

目录

/

返回文章
返回
x 关闭 永久关闭