Mineralogical characteristics of the granitoid exposed in the Nanling Scientific Drill Hole and implications for magmatism and mineralization in the Yinkeng orefield, Southern Jiangxi Province
-
摘要:
南岭科学钻探一孔(SP-NLSD-1)位于南岭成矿带与武夷山成矿带的交汇部位——赣南银坑矿田,该钻孔总进尺2967.83 m,钻遇了流纹岩、花岗闪长斑岩、花岗斑岩、辉长闪长玢岩等4种岩浆岩。各岩浆岩矿物组成简单,主要为石英、斜长石、钾长石、黑云母、角闪石及副矿物磷灰石、榍石等,岩石多发生绿泥石化、碳酸盐化、白云母化等蚀变。钾长石均以正长石为主。花岗闪长斑岩中的斜长石以中长石为主,少数为钠长石、更长石、拉长石;花岗斑岩中的斜长石以钠长石为主,少数为更长石。黑云母为富镁黑云母和镁铁黑云母。白云母均由黑云母蚀变而来,花岗闪长斑岩中的白云母具有低的AlVI、Fe/(Fe+Mg)值,花岗斑岩中的白云母具有高的AlVI、Fe/(Fe+Mg)值。磷灰石普遍含F、Cl,且F含量显著高于Cl含量。石榴石属钙铝榴石。绿泥石主要为蠕绿泥石(铁绿泥石)-密绿泥石。黑云母矿物化学特征指示花岗闪长斑岩为壳幔混源花岗岩,具有较高的氧逸度,在演化过程中发生了岩浆混合作用。根据锆石饱和温度计计算出花岗闪长斑岩、花岗斑岩、辉长闪长玢岩的结晶温度分别为810~922℃、764~819℃、742~747℃,成岩后岩浆岩经历了中高温-中低温热液蚀变作用。岩浆岩成岩时代、岩石学和岩相学所反映的岩浆演化过程、成岩物理化学条件、矿物化学特征等方面的综合信息显示,南岭科学钻探一孔中钻遇的花岗闪长斑岩与南岭地区成Cu(-Mo)-Pb-Zn-Au-Ag矿的花岗岩十分相似,应为钻孔中揭露的银金铅锌铜矿化以及牛形坝-柳木坑银金铅锌铜矿的成矿岩浆岩,而钨铋铀矿化与岩浆岩的关系还有待于进一步研究。
Abstract:The Nanling Scientific Drilling-1 (SP-NLSD-1), a subproject of the SinoProbe Program called "Deep Exploration Technology and Experimentation", is situated at the Yinkeng orefield in the junction of Nanling and Wuyi Mountain metallogenic belts. The drilling project, with footage of 2967.83 meters, revealed rhyolite, granodiorite porphyry, granite porphyry and pyroxene diorite porphyry. The magmatic rocks are mainly composed of quartz, plagioclase, potassium feldspar, biotite, amphibole and some accessory minerals, with chloritization, carbonatization and muscovitization. Potassium feldspar is dominated by orthose. Plagioclases are different in granodiorite and granite porphyry. Andesines and albites are dominant in granodiorite porphyry and granite porphyry, respectively. Most of the biotites are eastonites. Derived from biotites, muscovites in granodiorite porphyry have low AlVI and Fe/(Fe+Mg) values, while muscovites in granite porphyry have high values. Apatites are rich in F and Cl, and garnet belongs to grossularite. Chlorites are prochlorites and pycnochlorites. The chemical composition of biotite suggests that granodiorite porphyry was formed by magma derived from mixture of crust and mantle with relatively high oxygen fugacity, and had undergone magma mixing during the evolution. Granodiorite porphyry, granite porphyry, and pyroxene diorite porphyry crystallized at temperatures of 810-922℃, 764-819℃, 742-747℃, respectively. Comprehensive study suggests that granodiorite porphyry exposed in the Nanling Scientific Drill Hole is similar to granites related to Cu(-Mo)-Pb-Zn-Au-Ag deposits in Nanling region. The granodiorite porphyry is the ore-forming magmatite of Ag-Au-Pb-Zn-Cu mineralization and Niuxingba-Liumukeng deposit. The relationship between W-Bi-U mineralization and magmatism needs further research.
-
Keywords:
- mineral /
- magmatic source /
- magma mixing /
- Yanshanian Period /
- metallogeny /
- Nanling Scientific Drilling-1
-
1. 引言
在资源枯竭、经济发展和环境保护的三重压力下,寻找并开发利用新型清洁能源是关系国计民生和社会可持续发展的紧迫任务。推动绿色发展,构建清洁、安全、高效的能源体系已成为时代的要求。地热资源作为清洁能源的重要组成部分被寄予厚望。
天津市地热资源条件优越,地热开发利用水平一直处于全国前列。天津地热勘查研究工作开始于20世纪70年代,李四光同志主导的天津地热会战掀起了全国地热勘查研究的第一个春天,并发现了新近系和奥陶系两个热储。80年代以来,在市政府和原地矿部的支持以及联合国开发计划署的援助下,地热勘查开始向深部基岩热储发展,先后完成王兰庄、山岭子、塘沽地区三个地热田的勘查工作。自此之后,天津的地热研究与开发工作一直处于中国前列。先后发现地热田8个,已发现两大类6个热储,即孔隙型热储(新近系明化镇组、馆陶组热储和古近系东营组)和裂隙溶隙型热储(奥陶系、寒武系和蓟县系雾迷山组三、四段热储),3000 m以浅年可开采地热流体为7606×104 m3。其中,蓟县系雾迷山组三、四段热储是天津地热开发的主力储层。随着开发强度不断增大,部分地区开采潜力已达极限(天津地热勘查开发设计院, 2000;Wang, 2008;王继革等,2013)。
随着钻探技术的不断进步和清洁能源需求的持续增长,向地球深部进军,探测深部地热资源、开辟深部热储第二空间、增加可开采资源量,成为保障天津地区地热可持续开发的有效途径之一。为此,2017年以来,中国地质调查局在天津东丽湖地区部署了深部地热探测工作,并在主力储层下部探获雾迷山组二段高产能新储层。本文主要介绍天津东丽湖深部岩溶热储探测和高产能地热井参数研究取得的新成果、新进展。
2. 研究区概况
2.1 地热地质背景
天津市地处Ⅰ级构造单元华北地台北缘,以宁河—宝坻断裂为界分为北部山区和南部平原区。其中,南部平原区属Ⅱ级构造单元华北断坳区,是中、新生代断陷、坳陷盆地。区内Ⅲ级构造单元包括一隆两坳即沧县隆起、冀中坳陷和黄骅坳陷。隆起和坳陷及其间分布的诸多Ⅳ级构造单元凸起、凹陷的延伸方向和较大断裂的走向均呈北北东(NNE)向,形成雁行式相间排列的构造格局(陈墨香, 1988)(图 1)。
宝坻—宁河断裂以南为天津南部平原区,总面积8700 km2,地热资源条件优越。发育有王兰庄、山岭子、滨海、武清、潘庄—芦台、宁河—汉沽、万家码头和周良庄等8个地热田,年可开采地热流体7606×104 m3(图 2)。各地热田均位于华北断坳范围内,地面均为第四系松散沉积物覆盖,厚度可达数百米。其下是巨厚的新生界陆相碎屑岩沉积,是一套半胶结的砂岩和泥岩地层,沉积厚度在沧县隆起相对较薄,在冀中坳陷和黄骅坳陷沉积较厚,最大厚度可达近万米。在新生界的巨大不整合覆盖之下,主要是古生界和中上元古界的基底地层,在坳陷中还有局部中生界分布。区内地热资源主要赋存于两大类6个储层中:一类为孔隙型热储,包括新近系明化镇组、馆陶组和古近系东营组热储;一类为裂隙溶隙型热储,包括奥陶系、寒武系和蓟县系雾迷山组热储(张百鸣等, 2006; Wang, 2008)(图 3)。
东丽湖地区位于天津市东部,隶属于天津市东丽区,位于Ⅳ级构造单元潘庄凸起上,发育有著名的山岭子地热田。依据研究区内地热井的钻探资料,揭露的地层从新到老为:新生界(第四系和新近系)、古生界(奥陶系和寒武系)、中新元古界(青白口系和蓟县系)(表 1)。区内已发现新近系明化镇组、新近系馆陶组、奥陶系和蓟县系雾迷山组三、四段4个热储。其中,雾迷山组三、四段为当前主力储层,沧县隆起上钻孔揭露顶板埋深为1752~2016 m,揭露厚度为480~1032 m,单井出水量为70~120 m3/h,最大可达204 m3/h,出水温度为88~102℃,孔隙度1%~5.8%,渗透率5.52×10-14 m2,水化学类型为Cl · HCO3·SO4-Na或Cl·SO4·HCO3-Na型,总矿化度为1670~2200 mg/L,总硬度为120~240 mg/L(以CaCO3计),pH值为7.3~8.4(林黎等, 2007; 王继革等, 2013)。从区域地质资料看(高昌,2003;赵苏民等, 2006),区内雾迷山组厚度约3500 m,岩石组合为一套富镁碳酸盐岩,岩性主要为白云岩。燧石条带白云岩、硅质白云岩夹2~5层棕红、紫红色泥岩和页岩,可作为雾迷山组三、四段和一、二段的分界线。从岩性组合的相似性可以推测,雾迷山组一、二段可作为未来深部热储探测的重要方向,也是本次研究的重点。
表 1 天津东丽湖地区综合地层简表Table 1. The simplified table of geological strata in Donglihu area, Tianjin2.2 开发利用现状
天津地热资源开发利用水平在全国居于较高地位,也是全国中低温地热直接利用规模最大的城市,是全国第一批“中国温泉之都”。自20世纪30年代以来,经过80多年的发展,天津地热资源开发利用从浅到深、从无序到有序、从粗放到精细,逐渐形成了规模化、产业化,在中国地热勘查开发利用史上具有举足轻重的作用。截至2017年,天津市共有地热开采井466眼,年开采总量为5181.08×104 m3,其中,蓟县系雾迷山组三、四段约占开采总量的54%。地热资源主要应用于供暖、洗浴、理疗、旅游、养殖等。其中,供暖是最主要的利用方式,占年总开采量的81.5%。建有地热供暖小区及公建项目496个,全市地热供暖总面积达3500×104 m2,占全市集中供暖面积的8%,是中国利用水热型地热资源供暖规模最大的城市。
东丽湖地区现有地热井34眼。其中,新近系明化镇组4眼,新近系馆陶组2眼,奥陶系3眼,蓟县系雾迷山组三、四段25眼。年开采地热流体约395.44×104 m3,采用梯级、综合利用和群井联动回灌的开发模式,达到资源的优化配置和实时调控,地热利用率和回灌率达到95%以上,实现了资源的统一规划、统一开发和统一管理。地热资源广泛应用于供暖、温泉洗浴、养生理疗、康乐旅游、矿泉水开发等领域,建有东丽湖温泉旅游度假区,在发展温泉旅游产业,促进地区经济发展,保护生态环境方面取得了显著的成效。2008年12月25日和2011年12月30日,分别被中国矿业联合会和国土资源部命名为“中国温泉之乡”。
3. 深部热储探测方法
本次研究主要基于地质综合分析,采用地球物理探测、地热钻探、地球物理测井和热储试验相结合的方法开展探测研究。
3.1 地球物理探测
为满足深部储层探测需要,本次地球物理探测的主要目标确定为5 km以浅地层的结构探测,为地热钻探提供依据。由于探测深度大,且存在高压线、铁路等城市干扰源,本次地球物理探测采用了二维地震和时频电磁相结合的勘查方法,其中,时频电磁方法首次应用到地热勘查领域。时频电磁方法是通过大功率人工场源激发信号,测量研究区测线的电磁场分量,分析频率域信号的振幅和相位特征,来获得介质的地电参数(电阻率和极化率),把信号转换到时间域,建立高分辨的电法勘探的时间断面。较传统电磁方法,在应对强电磁干扰方面具有一定的优势(Dong et al., 2008; 周印明等, 2013, 2015)。
本次工作部署时频电磁法完成测线4条,剖面24.4 km,点距200 m,物理点128个;二维地震完成剖面3条,8.25 km,测点254个(图 4)。
地球物理探测结果初步揭示了天津东丽湖地区雾迷山组二段的分布。从TFEM-1测线地质剖面解译图(图 5)可以看出,F1沧东断裂西侧,电阻率异常特征从上至下依次为“低—高—低—高—次高—高”,表层低阻和浅层高、低阻分别是第四系、新近系明化镇组与馆陶组地层响应特征,电阻率过渡连续,无明显的错断。第二套高阻层为寒武系(Є) 与青白口系(Qb)的反映,深部的次高阻为蓟县系雾迷山组4段(Jxw4)的反映,深部的高阻为蓟县系雾迷山组2、3段(Jxw2-3)的反映。蓟县系雾迷山组四段埋深2300~3000 m,下部发育雾迷山组二段和三段地层,埋深在3000 m以下。因缺乏雾迷山组二、三段电性参数,不易进一步细分。从二维地震DZ01剖面解释图(图 6)可以看出,区内4000 m以浅揭示的地层分别为第四系、新近系明化镇组、新近系馆陶组、寒武系、青白口系和蓟县系雾迷山组。新近系馆陶组底界以上主要标准反射界面清晰可辨,以下反射界面呈断续分布。推测第四系底界埋深341~363 m;新近系明化镇组底界埋深1123~1160 m,馆陶组底界埋深1347~1500 m;寒武系张夏组底界埋深1758~2033 m,馒头组底界埋深1786~2113 m,昌平组底界埋深1856~2164 m;青白口系底界埋深2196~2444 m;蓟县系雾迷山组四段底界埋深2802~3004 m,三段底界二段顶界埋深3552~3726 m。4000 m探测深度范围内未揭示蓟县系雾迷山组底界。
3.2 地热科学钻探
在天津东丽湖部署地热科学钻探CGSD-01井,目标层位为蓟县系雾迷山组二段。2017年11月20日开钻,2018年11月19日完钻。成井深度4051.68 m,3715 m进入雾迷山组二段储层,是当时天津最深的地热井。
该井井身结构为三开直井。其中,护壁段(0~76 m)采用Ф660.4 mm冲击钻钻头施工,下入Ф508 mm×8.0 mm无缝套管,总长度为74.42 m。一开井段(76~1469.53 m)采用Ф444.5 mm牙轮钻头钻进,入Ф339.7 mm×J55钢级套管,长度1469.84 m。二开井段(1469.53~2262.75 m)采用Ф311.2 mm牙轮钻头钻进,下入Ф244.5 mm×10.03 mm N80钢级套管,长度866.60 m,与一开套管重叠68.12 m。三开井段(2262.75~4051.68 m)采用Ф215.9 mm牙轮钻头钻进,下入Ф177.8 mm×9.19 mm N80钢级套管,长度1939.96 m,其中实管长度为1747.23 m,花管长度为192.73 m,与二开套管重叠151.03 m。钻进过程中,开展了岩屑和岩心采集工作。1500 m以浅每5 m捞取岩屑一次,1500 m以深每2 m捞取岩屑一次,全井共计捞取岩屑样1873个。500~4051.68 m井段采取定深分段采取岩心,累计取心37回次,进尺161.25 m,长度140.78 m,采取率85%。
3.3 地球物理测井
钻井过程中,对地热井开展了综合地球物理测井工作,主要包括温度测井、压力测井、井径测井、井斜测井、视电阻率测井、双感应测井、自然电位测井、自然伽马测井、声波测井、伽马-伽马测井和流体流量测井11项。
3.4 热储试验
钻探完成后,为获取蓟县系雾迷山组二段新储层热储参数,对地热井开展了3个落程的稳定流降压抽水试验。其中,大落程试验历时62 h,涌水量130.2 m3/h,水温度稳定在100℃,稳定时间39.5 h;中落程试验历时24 h,涌水量94.5 m3/h,水温度稳定在100℃,稳定时间16.5 h;小落程试验历时16 h,涌水量43.9 m3/h,水温度稳定在98℃,稳定时间8 h(图 7)。
4. 结果与讨论
4.1 热储结构特征
综合全井段地球物理测井、岩心与岩屑及区域地热地质等资料,CGSD-01井钻遇地层包括:第四系、新近系、寒武系、青白口系及蓟县系。钻遇主要储层5个,主要包括新近系明化镇组、馆陶组2个砂岩热储,寒武系昌平组灰岩热储,蓟县系雾迷山组三四段和一二段白云岩热储(表 2)。
表 2 天津东丽湖CGSD-01井钻遇地层表Table 2. Geological stratum of well CGSD-01 in the Tianjin本次研究在地热井中实现雾迷山组四、三、二段精细划分,自上而下叙述如下。
雾迷山组四段(Jxw4):深度段为2258~2896 m,地层厚度638 m。上部岩性主要为浅灰色细晶白云岩夹灰黑色泥晶白云岩,偶见少量深灰色厚层角砾状白云岩、灰白色硅质白云岩等;下部岩性主要为浅灰色细晶白云岩与灰黑色泥晶白云岩、泥质白云岩交互;底部主要发育灰黑色白云质泥岩夹细晶白云岩、泥晶白云岩、硅质白云岩。受原始沉积及沉积后多期次构造与岩溶作用等影响,雾迷山组四段白云岩层系整体较破碎,钻井岩心中裂隙和溶蚀孔洞极其发育,为地热水提供了良好的储集空间。
雾迷山组三段(Jxw3):深度段为2896~3715 m,地层厚度819 m。上部岩性主要为深灰色细晶白云岩与灰黑色泥晶白云岩、泥质白云岩、白云质泥岩交互。电测曲线上,雾迷山组三段上部的GR值较雾迷山组四段底部低为特征,测井解释的泥质含量值也表现出类似特征;雾迷山组三段测井资料解释的孔隙度和渗透率值,下部整体较上部好(图 8);下部岩性主要发育浅灰—灰黑色细晶白云岩夹灰黑色泥晶—泥质白云岩、灰质泥晶白云岩及白云质泥岩;底部以发育一套紫红色泥质白云岩夹浅灰色细晶白云岩为典型特征,厚度约73 m,裂隙不发育,具有隔水—弱透水性质,作为与下伏雾迷山组二段的分界。
雾迷山组二段(Jxw2)深度段为3715~4051 m,地层厚度336 m,未钻穿。与上覆雾迷山组三段相比,雾迷山组二段的岩性及电测特征存在明显的差别(图 8)。岩性特征上,雾迷山组二段上部主要发育浅灰色细晶白云岩夹浅灰色粉晶白云岩、灰黑色泥质白云岩,之上为雾迷山组三段底部紫红色泥质白云岩作为两者明显分界;雾迷山组二段下部主要为浅灰色粉晶白云岩与灰黑色泥质白云岩交互。电测曲线上,雾迷山组二段上部的GR值、自然电位值(SP)较雾迷山组三段底部低为特征,测井解释的泥质含量值也体现出类似特征;雾迷山组二段上部的深侧向、浅侧向电阻率较雾迷山组三段底部高为特征。雾迷山组二段内部,自下而上,GR值、自然电位值(SP)、深侧向电阻率、浅侧向电阻率及测井解释的泥质含量呈逐渐变小趋势;声波时差呈逐渐变大趋势,测井资料解释的孔隙度和渗透率呈逐渐变大趋势,指示雾迷山组二段上部的热储层较下部更为发育。
4.2 温度特征
2018年11月19日对CGSD-01井开展了稳态测温。从测温曲线(图 9)可以看出,CGSD-01井底温度105℃。井温总体呈凸型曲线特征,体现了储盖层热传导机制为总体传导型、层间对流型。总体地温梯度2.4℃/100 m。其中,0~400 m第四纪地层地温梯度最高,可达8℃/100 m;400~2300 m新近系与寒武系盖层地温梯度次之,为2.4℃/100 m;2300~3500 m雾迷山组三、四段主力储层受对流作用影响,地温梯度最小,为0.83℃/100 m;3500 m以下雾迷山组二段储层地温梯度为1.7℃/100 m,对流作用较主力储层稍弱。
岩石热物性分析表明,雾迷山组二段岩石热导率在4.33~7.96 W/(m · K)(10个样品,表 3),平均值5.66 W/(m·K),略高于雾迷山组三四段平均值4.37 W/(m·K)。
表 3 CGSD-01井雾迷山组二段热储热导率测试值Table 3. Thermal conductivity test results of Wumishan Formation section 2 in well CGSD-014.3 热储参数
热储参数计算主要依据降压抽水试验计算。由于地热水密度与温度具有相关性,造成观测水位不能真实地反映地热井实际水位的变化,这种现象称之为“井筒效应”。资料整理过程中,以储层中部温度102.6℃作为储层温度对试验观测数据进行校准。校正后,做出的动水位埋深曲线如图 10。
采用Dupuit公式与W.Sihart公式对试验数据进行分析计算CGSD-01井的热储参数。本次抽水试验目标热储层为蓟县系雾迷山组二段,厚度336.68 m(未穿透),根据测井数据显示,裂隙厚度为123.1 m。根据降压抽水试验数据及相关校正,地热井基本参数见表 4。计算结果见表 5。依据降压抽水试验计算结果,取三个落程试验平均值可以得出,CGSD-01井单位涌水量1.53 m3/h · m,渗透系数0.40 m/d,导水系数48.69 m2/d。
表 4 CGSD-01井热储参数计算基本参数Table 4. Reservoir parameters of well CGSD-01表 5 CGSD-01井地热热储参数计算结果Table 5. Interpretation results of pumping test for well CGSD-014.4 水化学特征
抽水试验过程中,采集样品对雾迷山组二段地热水进行了水化学、同位素和气体成分分析。
水化学分析表明,雾迷山组二段地热水水化学类型为Cl · SO4 · HCO3-Na型,矿化度1770.0 mg/L,总硬度124.6 mg/L(以CaCO3计),pH值7.63。
结垢性和腐蚀性表明,地热水不生成碳酸钙垢,不生成硫酸钙垢,不生成硅酸盐垢,对管道及利用设施具有中等腐蚀性。
气体组分测试表明,溶解气体中以氮气和甲烷为主,分别占气体组分含量的66%和27%,还有少量乙烷、丙烷、异丁烷和异戊烷,指示储层处于还原环境。
同位素分析表明,地热水δD为-72‰~-72.7‰,δ18O为9.3‰~-9.5‰,δ13C为-3‰~-3.6‰,87Sr/86Sr为0.7113~0.7114。综合水化学和同位素特征,初步推断雾迷山组二段地热水来源于大气降水,主要发生混合、阳离子交替吸附、碳酸盐岩溶解、硫酸盐还原等作用,且未达到平衡。
4.5 开发利用潜力分析与建议
从区域地质背景和地层沉积序列看,雾迷山二段热储在潘庄凸起区全区均有分布,分布面积约604 km2,依据CGSD-01地热参数井信息,对潘庄凸起雾迷山组二段热储热量进行保守估算。年可开采热资源量按照100 a富水段可回收热量的0.01% 进行保守估算,其热量每年折合标煤250万t,初步估计可满足供暖面积6114×104 m2。
为了提高地热资源利用率,本文建议推广地热利用集约节约新技术,采用地热梯级利用联合水源热泵、地板辐射采暖、群井联动、地热与燃气或太阳能等多能源结合技术,降低尾水排放温度,实现地热资源利用最大化。
5. 结论
(1) 综合全井段地球物理测井、岩心与岩屑及区域地热地质等资料,CGSD-01井钻遇主要储层5个,主要包括新近系明化镇组、馆陶组2个砂岩热储,寒武系昌平组灰岩热储,蓟县系雾迷山组三四段和一二段白云岩热储。
(2) 雾迷山组二段上部单位涌水量1.53 m3/h · m,渗透系数0.40 m/d,导水系数48.69 m2/d,岩石热导率5.66 W/(m · K),地热水类型为Cl · SO4 · HCO3-Na型,矿化度1.7 g/L,热储参数与潘庄凸起三、四段热储相近。
(3) CGSD-01井降压抽水试验结果表明,蓟县系雾迷山组二段单井最大涌水量可达130 m3/h,出水温度100 ℃,单井可满足约30万m2建筑物供暖需求;初步估计潘庄凸起雾迷山组二段热储热量可满足供暖面积6114×104 m2。
(4) 从区域地层沉积规律看,天津地区深部雾迷山组一段、杨庄组、高于庄组,厚度大、岩溶发育,与雾迷山组四、三、二段性质相似,均具有成为高产能新储层的可能性,加强深部地热探测研究意义重大。
致谢: 本次研究的野外工作得到了赣南地质调查大队曾载淋总工程师和李江东、杨洲畬、刘珍、曾路平等工程师的大力支持,在此深表感谢。 -
图 3 南岭科学钻探一孔所揭露燕山期岩浆岩的岩相学特征
a—钾长石斑晶被石英交代,孔深1380.52 m花岗斑岩,正交偏光;b—长石斑晶高岭土化、绢云母化,孔深1715.02 m花岗斑岩,单偏光;c—斜长石斑晶发育环带结构,孔深1892.61 m花岗闪长斑岩,正交偏光;d~e—包体(d)与寄主岩(e)的矿物蚀变程度差异显著,孔深2013.80 m花岗闪长斑岩,单偏光;f—黑云母边部蚀变为白云母,核部蚀变为方解石和菱铁矿,孔深1380.52 m花岗斑岩,单偏光;g—黑云母发生绿泥石化,析出针状金红石,内部包含磷灰石,孔深1502.06 m花岗闪长斑岩,单偏光;h—未蚀变黑云母,孔深2017.29 m花岗闪长斑岩中暗色包体,单偏光;i—石英斑晶中包含大量磷灰石,孔深1052.54 m花岗闪长斑岩,单偏光;j—磷灰石与方解石共生,孔深2371.72 m花岗闪长斑岩,单偏光;k—石榴石发育震荡环带,孔深2258.45 m花岗闪长斑岩,背散射;l—白云石化、黄铁矿化,孔深1373.84 m辉长闪长玢岩,单偏光;Ap—磷灰石;Bt—黑云母;Cal—方解石;Chl—绿泥石;Dol—白云石;Grt—石榴石;Kfs—钾长石;Ms—白云母;Pl—斜长石;Py—黄铁矿;Qtz—石英;Sd—菱铁矿
Figure 3. Microphysiography of the magmatic dykes exposed in the Nanling Scientific Drill Hole
a-Metasomatic texture in orthoclase phenocryst,granite porphyry at the depth of 1380.52 m,crossed nicols; b-Orthoclase phenocryst with kaolinization and sericitization,granite porphyry at the depth of 1715.02 m,plainlight; c-Plagioclase phenocryst with zoned texture,granodiorite porphyry at the depth of 1892.61 m,crossed nicols; d~e-Different alteration intensitiesy between enclave (d) and host rock (e),Granodiorite porphyry at the depth of 2013.80m,plainlight; f-Biotite turned into muscovite at the edge,and carbonate minerals at the core,granite porphyry at the depth of 1380.52 m,plainlight; g-Chloritized biotite with rutile and apatite inside,granodiorite porphyry at the depth of 1502.06m,plainlight; h-Biotite without alteration in dark enclave in granodiorite porphyry at the depth of 2017.29 m,plainlight; i-Quartz phenocryst with many apatites,granodiorite porphyry at the depth of 1052.54 m,plainlight; j-Associated apatite and calcite,granodiorite porphyry at the depth of 2371.72 m,plainlight; k-Garnet with zonal texture,granodiorite porphyry at the depth of 2258.45 m,BSE image; l-Dolomitization and Pyritization,pyroxene diorite porphyry at the depth of 1373.84 m,plainlight;Ap-Apatite; Bt-Biotite; Cal-Calcite; Chl-Chlorite; Dol-Dolomite; Grt-Garnet; Kfs-Potassium feldspar; Ms-Muscovite; Pl-Plagioclase; Py-Pyrite; Qtz-Quartz; Sd-Siderite
图 11 南岭科学钻探一孔中岩浆混合作用的岩石学、岩相学特征
a~c—2011.93~2017.50 m花岗闪长斑岩中暗色包体;d—包体与寄主岩的界线清晰截然,单偏光;e—熔蚀的石英斑晶横跨包体和寄主岩,包体和寄主岩中黄铁矿含量显著不同,反射光;f—包体中黑云母发生塑性变形,单偏光;g—寄主岩中石英斑晶发育变形纹,并发生破裂,正交偏光;h~i—斜长石斑晶被熔蚀呈卵形,内部含针状磷灰石,孔深1949.41 m花岗闪长斑岩,单偏光;j—更长石斑晶被熔蚀后外部生长中长石环边,1045.42 m花岗闪长斑岩,单偏光;k—石英斑晶内部包含小颗粒斜长石、云母、钛铁氧化物,1892.61 m花岗闪长斑岩,正交偏光;l—石英斑晶边部被拉长石熔蚀交代,内部含针状磷灰石,1892.61 m花岗闪长斑岩,正交偏光;Ap—磷灰石;Bt—黑云母;Pl—斜长石;Py—黄铁矿;Qtz—石英
Figure 11. Petrology and petrography suggesting magma mixing in the Nanling Scientific Drill Hole
a~c-Dark enclaves in granodiorite porphyry at the depth of 2011.93~2017.50 m; d-Distinct boundary between enclave and host rock,plainlight; e-Corroded quartz phenocryst steps over the boundary between enclave and host rock. Pyrite content in enclave and host rock is markedly different. Reflected light; f-Biotite in enclave was plastic deformed,plainlight; g-Quartz phenocryst in host rock displays deformation lamellae,crossed nicols; h~i-Egg-shaped plagioclase phenocryst,with needle-like apatite inside,granodiorite porphyry at the depth of 1949.41m,plainlight; j-Corroded oligoclase phenocryst with andesine rim,granodiorite porphyry at the depth of 1045.42m; k-Quartz phenocryst wraps aggregation of fine-grain plagioclase,mica and oxide,granodiorite porphyry at the depth of 1892.61 m,crossed nicols; l-Rim of quartz phenocryst replaced by labradorite,with needle-like apatite inside,granodiorite porphyry at the depth of 1892.61m,crossed nicols Ap-Apatite; Bt-Biotite; Pl-Plagioclase; Py-Pyrite; Qtz-Quartz
图 12 南岭科学钻探一孔中花岗闪长斑岩的黑云母Fe3+-Fe2+-Mg图解(底图据文献[33])
HM—Fe2O3-Fe3O4的氧缓冲线;NNO—Ni-NiO的氧缓冲线;FMQ—Fe2SiO4-SiO2-Fe3O4的氧缓冲线
Figure 12. Diagram of Fe3+-Fe2+-Mg for biotites in granodiorite porphyry exposed in the Nanling Scientific Drill Hole (after reference [33])
HM-Oxygen buffer line of Fe2O3-Fe3O4; NNO-Oxygen buffer line of Ni-NiO; FMQ-Oxygen buffer line of Fe2SiO4-SiO2-Fe3O4
表 1 南岭科学钻探一孔揭露的岩浆岩
Table 1 Magmatic dykes in the Nanling Scientific Drill Hole
表 2 钾长石电子探针分析结果(平均值)(%)
Table 2 EPMA analysis results of potassium feldspars of magmatic rocks in the Nanling Scientific Drill Hole (mean value)(%)
表 3 斜长石电子探针分析结果(平均值)(%)
Table 3 EPMA analysis results of plagioclases of magmatic rocks in the Nanling Scientific Drill Hole (mean value)(%)
表 4 黑云母电子探针分析结果(%)
Table 4 EPMA analysis results of biotites of magmatic rocks in the Nanling Scientific Drill Hole (%)
表 5 白云母电子探针分析结果(平均值)(%)
Table 5 EPMA analysis results of muscovites of magmatic rocks in the Nanling Scientific Drill Hole (mean value) (%)
表 6 花岗闪长斑岩中磷灰石电子探针分析结果(平均值)(%)
Table 6 EPMA analysis results of apatites of granodiorite porphyry in the Nanling Scientific Drill Hole (mean value) (%)
表 7 花岗闪长斑岩中石榴石电子探针分析结果(%)
Table 7 EPMA analysis results of garnet of granodiorite porphyry in the Nanling Scientific Drill Hole (%)
表 8 绿泥石电子探针分析结果(平均值)(%)
Table 8 EPMA analysis results of chlorites of magmatic rocks in the Nanling Scientific Drill Hole (mean value) (%)
表 9 锆石饱和温度计算结果
Table 9 Zircon saturation temperatures calculated according to major and trace element values
-
[1] 徐志刚,陈毓川,王登红,等.中国成矿区带划分方案[M].北京:地质出版社,2008:1-138. Xu Zhigang,Chen Yuchuan,Wang Denghong,et al.The Scheme of the Classification of the Minerogenetic Units in China[M].Beijing:Geological Publishing House,2008:1-138(in Chinese).
[2] 陈毓川,王登红,徐志刚,等.华南区域成矿和中生代岩浆成矿规律概要[J].大地构造与成矿学,2014,38(2):219-229. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm Chen Yuchuan,Wang Denghong,Xu Zhigang,et al.Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in South China[J].Geotectonica et Metallogenia,2014,38(2):219-229(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm
[3] 陈毓川,裴荣富,张宏良,等.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社,1989:1-508. Chen Yuchuan,Pei Rongfu,Zhang Hongliang,et al.The Geology of Non-ferrous and Rare Metal Deposits Related to Mesozoic Granitoids to Nanling Region[M].Beijing:Geological Publishing House,1989:1-508(in Chinese).
[4] 陈毓川,陈郑辉,曾载淋,等.南岭科学钻探第一孔选址研究[J].中国地质,2013,40(3):659-670. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20130301&flag=1 Chen Yuchuan,Chen Zhenghui,Zeng Zailin,et al.Research on the site selection of Nanling Scientific Drilling-1[J].Geology in China,2013,40(3):659-670(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20130301&flag=1
[5] 郭娜欣,陈毓川,赵正,等.南岭科学钻中与两种岩浆岩有关的矿床成矿系列——年代学、地球化学、Hf同位素证据[J].地球学报,2015,36(6):742-754. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201506006.htm Guo Naxin,Chen Yuchuan,Zhao Zheng,et al.Metallogenic Series related to two types of granitoid exposed in the Nanling Scientific Drill Hole:Evidence from geochronology,geochemistry and Hf isotope[J].Acta Geoscientica Sinica,2015,36(6):742-754(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201506006.htm
[6] 王殿良.赣南银坑铅锌银矿矿田构造解析与成矿预测[D].北京:中国地质大学,2013. http://cdmd.cnki.com.cn/article/cdmd-11415-1013270142.htm Wang Dianliang.Orefield Structural Analysis and Prediction of Yinkeng Pb-Zn-Ag Ore-field in the South Jiangxi Region[D].Beijing:China University of Geosciences (Beijing),2013(in Chinese with English abstract). http://cdmd.cnki.com.cn/article/cdmd-11415-1013270142.htm
[7] 赵正,陈毓川,曾载淋,等.南岭东段岩前钨矿床地质特征及成岩成矿时代[J].吉林大学学报(地球科学版),2013,43(6):1828-1839. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306012.htm Zhao Zheng,Chen Yuchuan,Zeng Zailin,et al.Geological characteristics and petrogenic&metallogenic ages of the Yanqian tungsten deposit in Eastern Nanling region[J].Journal of Jilin University (Earth Science Edition),2013,43(6):1828-1839(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306012.htm
[8] Feng Chengyou,Li Daxin,Zeng Zailin,et al.Mineralization styles and genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn polymetallic orefield,Southern Jiangxi Province,SE China:Evidence from geology,fluid inclusions,isotopes and chronology[J].Acta Geologica Sinica (English edition),2014,88(3):825-844. doi: 10.1111/acgs.2014.88.issue-3
[9] Feng Chengyou,Zhao Zheng,Qu Wenjun,et al.Temporal consistency between granite evolution and tungsten mineralization in Huamei'ao,southern Jiangxi Province,China:Evidence from precise zircon U-Pb,molybdenite Re-Os,and muscovite 40Ar-40Ar isotope geochronology[J].Ore Geology Reviews,2015,65:1005-1020. doi: 10.1016/j.oregeorev.2014.07.023
[10] 全淦.江西于都银坑银多金属矿田地质特征与找矿远景初步分析[J].江西地质,1995,9(4):259-266. http://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ504.001.htm Quan Gan.An analysis of the geological features and prospect of Yinkeng Ag polymetallic orefield in Yudu County,Jiangxi[J].Geology of Jiangxi,1995,9(4):259-266(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ504.001.htm
[11] 范世祥,张家菁,邓茂春,等.江西于都营脑锰银多金属矿区矿化特征及找矿方向[J].福建地质,2011,(1):38-45. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201101008.htm Fan Shixiang,Zhang Jiajing,Deng Maochun,et al.Mineralizing characteristics and ore-finding target of the Yingnao manganesesilver polymetallic deposit in Yudu County,Jiangxi Province[J].Geology of Fujian,2011,(1):38-45(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201101008.htm
[12] 杨明桂,梅勇文,周子英,等.罗霄-武夷隆起及郴州-上饶坳陷成矿规律及预测[M].北京:地质出版社,1998:1-115. Yang Minggui,Mei Yongwen,Zhou Ziying,et al.Ore-forming Regularities and Ore-searching Prediction of Luoxiao-Wuyi Uplift and Chenzhou-Shangrao Depression[M].Beijing:Geological publishing House,1998:1-115(in Chinese).
[13] 刘昌实.华南不同成因花岗岩黑云母类矿物化学成份对比[J].桂林冶金地质学院学报,1984,(2):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX198402000.htm Liu Changshi.Chemical comparison between biotites of different genetic types of granite in Southern China[J].Journal of Guilin Institute of Metallurgical Geology,1984,(2):1-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GLGX198402000.htm
[14] 孙世华,于洁.Mg-Fe云母化学成分的解释和分类(Ⅱ)——Mg-Fe云母的自然分类[J].地质科学,1989,(2):176-189. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198902005.htm Sun Shihua,Yu Jie.Interpretation of chemical composition and subdivision of Mg-Fe micas,part B:The natural subdivision of Mg-Fe micas[J].Scientia Geologica Sinica,1989,(2):176-189(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198902005.htm
[15] 郭娜欣,吕晓强,赵正,等.南岭地区中生代两种成矿花岗质岩的岩石学和矿物学特征探讨[J].地质学报,2014,88(12):2423-2436. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412020.htm Guo Naxin,Lv Xiaoqiang,Zhao Zheng,et al.Petrological and mineralogical characteristics of two types of metallogenic granitoid formed during the Mesozoic Period,Nanling Region[J].Acta Geologica Sinica,2014,88(12):2423-2436(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412020.htm
[16] 王蝶,毕献武,尚林波.德兴铜矿花岗闪长斑岩成岩过程分异的初始岩浆流体HF、HCl浓度特征[J].矿物学报,2010,30(3):331-337. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201003010.htm Wang Die,Bi Xianwu,Shang Linbo.The concentration characteristics of HF and HCl deriving from early crystal of granodiorite porphyry in Dexing County,Jiangxi Province,China[J].Acta Mineralogica Sinica,2010,30(3):331-337(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201003010.htm
[17] 谭运金.南岭地区脉状黑钨矿床成矿母岩的石榴子石研究[J].矿物学报,1985,5(4):294-300. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198504001.htm Tan Yunjin.Garnets from host granites of wolframite vein deposits in Nanling Region[J].Acta Mineralogica Sinica,1985,5(4):294-300(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198504001.htm
[18] Deer WA,Howie R A,Zussman H J.Rock-forming minerals[J].The Journal of Geology,1982,90(6):748-749. http://cn.bing.com/academic/profile?id=617353587&encoded=0&v=paper_preview&mkt=zh-cn
[19] 徐克勤,孙鼐,王德滋,等.华南两类不同成因花岗岩岩石学特征[J].岩矿测试,1982,1(2):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198202000.htm Xu keqin,Sun Nai,Wang Dezi,et al.Two genetic series of granitic rocks in Southeastern China[J].Acta Petrologica Mineralogica et Analytica,1982,1(2):1-12(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198202000.htm
[20] Abdel Rahman A F M.Nature of biotites from alkaline,calcalkaline and peraluminous magmas[J].Journal of Petrology,1994,35(2):525-541. doi: 10.1093/petrology/35.2.525
[21] 彭花明.杨溪岩体中黑云母的特征及其地质意义[J].岩石矿物学杂志,1997,16(3):271-281. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW703.009.htm Peng Huaming.Geological characteristics of biotite from Yangxi granite body and their geological implications[J].Acta Petrologica et Mineralogica,1997,16(3):271-281(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW703.009.htm
[22] 周作侠.湖北丰山洞岩体成因探讨[J].岩石学报,1986,2(1):59-70. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198601007.htm Zhou Zuoxia.The origin of intrusive mass in Fengshandong,Hubei Province[J].Acta Petrologica Sinica,1986,2(1):59-70(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198601007.htm
[23] 王德滋,谢磊.岩浆混合作用:来自岩石包体的证据[J].高校地质学报,2008,14(1):16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200801004.htm Wang Dezi,Xie Lei.Magma mingling:Evidence from enclaves[J].Geological Journal of China Universities,2008,14(1):16-21(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200801004.htm
[24] 齐有强,胡瑞忠,刘燊,等.岩浆混合作用研究综述[J].矿物岩石地球化学通报,2008,27(4):409-416. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200804015.htm Qi Youqiang,Hu Ruizhong,Liu Shen,et al.Review on magma mixing and mingling[J].Bulletin of Mineralogy,Petrology and Geochemistry,2008,27(4):409-416(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200804015.htm
[25] Webster J D.The exsolution of magmatic hydrosaline chloride liquids[J].Chemical Geology,2004,210:33-48. doi: 10.1016/j.chemgeo.2004.06.003
[26] Ginibre C,Wörner G,Kronz A.Minor and trace element zoning in plagioclase:IParinacota Volcano,N.Chile[J].Contributions to Mineralogy and Petrology,2002,143:300-315 doi: 10.1007/s00410-002-0351-z
[27] 谢磊,王德滋,王汝成,等.浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录[J].岩石学报,2004,20(6):96-107. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406008.htm Xie Lei,Wang Dezi,Wang Rucheng,et al.Complex zoning texture in plagioclase from the quartz diorite enclave in the Putuo granitic complex,Zhejiang province:Record of magma mixing[J].Acta Petrologica Sinica,2004,20(6):96-107(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200406008.htm
[28] Borodina N S,Fershtater G B,Votyakov S.The oxidation ratio of iron in coexisting biotite and hornblende from granitic and metamorphic rocks:role of P,T,and f (O2)[J].The Canadian Mineralogist,1999,37:1423-1429.
[29] Zhao Kuidong,Jiang Shaoyong,Jiang Yaohui,et al.Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan Province,South China:for the genesis of granite and related tin mineralization[J].European Journal of Mineralogy,2005,17:635-648. doi: 10.1127/0935-1221/2005/0017-0635
[30] Miller C F,McDowell S M,Mapes R W.Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J].Geology,2003,31(6):529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
[31] Watson E B,Harrison T M.Zircon saturation revisited:Constraints and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters,1983,64:295-304. doi: 10.1016/0012-821X(83)90211-X
[32] 朱碧,蒋少涌,丁昕,等.江西永平铜矿区花岗岩热液蚀变与岩石成因:矿物化学、元素地球化学和Sr-Nd-Hf同位素制约[J].岩石学报,2008,24(8):1900-1916. Zhu Bi,Jiang Shaoyong,Ding Xin,et al.Hydrothermal alteration and petrogenesis of granites in the Yongping copper deposit,Jiangxi Province:constraints from mineral chemistry,element geochemistry,and Sr-Nd-Hf isotopes[J].Acta Petrologica Sinica,2008,24(8):1900-1916(in Chinese with English abstract).
[33] Wones D P,Eugeter P.Stability of biotite:Experiment,theory,and application[J].The American Mineralogist,1965,50:1228-1272. http://www.minsocam.org/ammin/AM50/AM50_1228.pdf
[34] 徐克勤,胡受奚,俞受鋆.矿床学[M].北京:人民教育出版社,1964:1-434. Xu keqin,Hu Shouxi,Yu Shoujun.Mineral Deposits[M].Beijing:People's Education Press,1964:1-434(in Chinese).
[35] Cathelineau M.Cation site occupancy in chlorites and illites as a function of temperature[J].Clay Minerals,1988,23:471-485. doi: 10.1180/claymin
[36] Jowett E C.Fitting iron and magnesium into the hydrothermal chlorite geothermometer[J].GAC/MAC/SEG Joint annual meeting,Toronto,1991:27-29. https://www.researchgate.net/publication/292146312_Fitting_Iron_and_Magnesium_into_the_Hydrothermal_Chlorite_Geothermometer
[37] 李晓峰,胡瑞忠,华仁民,等.华南中生代与同熔型花岗岩有关的铜铅锌多金属矿床时空分布及其岩浆源区特征[J].岩石学报,2013,29(12):4037-4050. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312001.htm Li Xiaofeng,Hu Ruizhong,Hua Renmin,et al.The Mesozoic syntexis type granite-related Cu-Pb-Zn mineralization in South China[J].Acta Petrologica Sinica,2013,29(12):4037-4050(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312001.htm
[38] 毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,2008,14(4):510-526. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm Mao jingwen,Xie Guiqing,Guo Chunli,et al.Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J].Geological Journal of China Universities,2008,14(4):510-526(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm
[39] Guo Chunli,Chen Yuchuan,Zeng Zailin,et al.Petrogenesis of the Xihuashan granites in southeastern China:Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J].Lithos,2012,148:209-227. doi: 10.1016/j.lithos.2012.06.014
[40] 方贵聪.赣南盘古山钨矿床岩浆-热液-成矿作用研究[D].北京:中国地质科学院,2014. Fang Guicong.The Magmatism-Hydrothermalism-Mineralization Study of Pangushan Tungsten Deposit in South Jiangxi Province[D].Beijing:Chinese Academy of Geological Sciences,2014(in Chinese with English abstract).
[41] 赵正,陈毓川,郭娜欣,等.南岭科学钻探0~2000 m地质信息及初步成果[J].岩石学报,2014,30(04):1130-1144. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404018.htm Zhao Zheng,Chen Yuchuan,Guo Naxin,et al.The geological information and investigation progresses of Nanling Scientific Drilling in the depth between 0 and 2000 m[J].Acta Petrologica Sinica,2014,30(04):1130-1144(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404018.htm
[42] 彭惠娟,汪雄武,Axel M,等.西藏甲玛铜多金属矿区成矿斑岩的岩浆混合作用:石英及长石斑晶新证据[J].矿床地质,2011,30(2):249-265. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102008.htm Peng Huijuan,Wang Xiongwu,Axel M,et al.Magma mixing in Jiama Cu-polymetalic deposit of Tibet:Evidence from quartz and feldspar phenocrysts[J].Mineral Deposits,2011,30(2):249-265(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201102008.htm
[43] Chen C J,Chen B,Li Z,et al.Important role of magma mixing in generating the Mesozoic monzodioritic-granodioritic intrusions related to Cu mineralization,Yongling,East China:Evidence from petrological and in situ Sr-Hf isotopic data[J].Lithos,2016,248-251:80-93. doi: 10.1016/j.lithos.2016.01.009
[44] 魏少妮,朱永峰.新疆西准噶尔包古图地区中酸性侵入体的岩石学、年代学和地球化学研究[J].岩石学报,2015,31(1):143-160. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501011.htm Wei Shaoni,Zhu Yongfeng.Petrology,geochronology and geochemistry of intermediate-acidic intrusions in Baogutu area,West Junggar,Xinjiang[J].Acta Petrologica Sinica,2015,31(1):143-160(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501011.htm
[45] Hattori K H,Keith J D.Contribution of mafic melt to porphyry copper mineralization:Evidence from Mount Pinatubo,Philippines,and Bingham Canyon,Utah,USA[J].Mineralium Deposita,2001,36:799-806. doi: 10.1007/s001260100209
[46] 王玉往,王京彬,龙灵利,等.岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例[J].岩石学报,2012,28(8):2317-2330. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1187.htm Wang Yuwang,Wang Jingbin,Long Lingli,et al.Type,indicator,mechanism,model and relationship with mineralization of magma mixing:A case study in North Xinjiang[J].Acta Petrologica Sinica,2012,28(8):2317-2330(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1187.htm
[47] Müller D, Groves D I. Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 8(5): 383-406. doi: 10.1016/0169-1368(93)90035-W
[48] Sun Weidong, Arculus R J, Kamenetsky V S, et al. Release of gold- bearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 2004, 431: 975-978. doi: 10.1038/nature02972
[49] 芮宗瑶, 黄崇轲, 徐钰, 等. 西藏玉龙斑岩铜(钼)矿带含矿斑岩与非含矿斑岩的鉴别标志[C]//青藏高原地质文集, 1983, 2: 159-176. Rui Zongyao, Huang Chongke, Xu Jue, et al. On some criteria for the discrimination between ore- bearing porphyries and barren porphyries[C]//Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 1983, 2: 159-176 (in Chinese with English abstract).
-
期刊类型引用(7)
1. 何沛欣. 广东省粤中断裂型碳酸盐岩地热水的水文地球化学研究——以马星-隔陂地热系统为例. 广东化工. 2024(05): 67-71 . 百度学术
2. 王君照,李胜涛,岳冬冬,张秋霞,李菊红,崔俊艳,杨骊. 基于GIS与GOCAD的天津双窑凸起构造区热储三维地质建模. 科学技术与工程. 2023(14): 5887-5902 . 百度学术
3. 程正璞,雷鸣,李戍,连晟,魏强. 天津东丽湖深部岩溶热储时频电磁法探测及有利区预测. 华北地质. 2023(02): 1-8 . 百度学术
4. 岳冬冬,贾小丰,张秋霞,冯昭龙,李胜涛. 天津山岭子地热田蓟县系雾迷山组热储流体同位素特征及其指示意义. 华北地质. 2023(02): 45-50 . 百度学术
5. 刘杰,宋美钰,胥博文,阮传侠,石峰. 天津市馆陶组地热流体可采量计算方法及适宜性分区研究. 中国地质. 2023(06): 1655-1666 . 本站查看
6. 杨吉龙,汪大明,牛文超,相振群,刘洋,赵泽霖,程先钰. 天津地热资源开发利用前景及存在问题. 华北地质. 2022(03): 1-6 . 百度学术
7. 王婷灏,汪新伟,毛翔,罗璐,高楠安,刘慧盈,吴陈冰洁. 沧县隆起北部地区地热资源特征及开发潜力. 中国地质. 2022(06): 1747-1764 . 本站查看
其他类型引用(2)