Zircon U-Pb age of the east Qingshui plagiogranite in Kalamaili belt of Xinjiang and its geological implications
-
摘要:
新疆卡拉麦里蛇绿混杂岩带中广泛存在斜长花岗岩,对其形成时代及成因还存在较大争议。在研究卡拉麦里地区岩石地球化学特征和测定LA-ICP-MS锆石U-Pb年龄时发现,清水东斜长花岗岩与蛇绿岩中斜长花岗岩、堆晶辉长岩在稀土、微量元素成分特征上存在较大差异,但与其中块状辉长岩具有相似的稀土、微量元素配分模式,并且两者符合部分熔融趋势,清水东斜长花岗岩的成岩年龄为(342.0±3.8)Ma,表明它是处于早石炭世后碰撞背景下的一次构造-热事件的产物,而不可能是蛇绿岩中的浅色岩。
Abstract:The age and genesis of plagiogranite in Karamaili ophiolitic melange of Xinjiang are still in controversy. In this study, the geochemical characteristics and LA-ICP-MS zircon U-Pb ages of the plagiogranite were determined. It is found that the rare earth and trace element characteristics of plagiogranite in east Qingshui are different from those of plagiogranite and cumulate gabbro in ophiolite, but are similar to those of massive gabbro. The geochemical characteristics of plagiogranite in east Qingshui and massive gabbro also show partial melting trend. The age of plagiogranite in east Qingshui is(342.0±3.8)Ma, suggesting that it was probably the product of post-collisional tectono-thermal event in early Carboniferous rather than the leucocrate in ophiolite.
-
Keywords:
- zircon U-Pb ages /
- plagiogranite /
- east Qingshui /
- Karamaili /
- Xinjiang
-
1. 引言
地下水氮污染是全球性的环境问题(Hu et al., 2005)。天然条件下,地下水中的氮尤其是铵态氮含量低,然而在城镇化进程中,受生活污水、工业废水、禽畜养殖场、化粪池及垃圾填埋场淋滤液泄漏影响,地下水中的铵态氮含量明显升高(刘兴权等,2010;杨静等,2018;徐进等,2018;苗晋杰等,2020)。地下水中NH4+质量浓度小于10 mg/L称为含铵地下水,NH4+质量浓度大于10 mg/L称为高铵地下水,而NH4+质量浓度超过30 mg/L的地下水称为高铵“肥水”(支兵发,2015)。高浓度的铵态氮对生活饮用水安全及生态环境存在潜在威胁。饮用水中的铵态氮会降低消毒效果,可转化为致癌的亚硝酸盐,也可转化为氨气引起水生物的死亡。此外,高铵地下水补给地表水会引起水生系统的富营养化(Du et al., 2017a)。高铵地下水的来源与成因是国内外学者研究的热点(支兵发,2015;杜尧,2017),城镇化地区高铵地下水铵氮来源复杂,相比较硝态氮和亚硝态氮,高浓度的铵态氮有各种人为来源,而天然沉积环境是造成高铵地下水的主要成因(Lingle et al., 2017;Du et al., 2017a)。
珠江三角洲是中国沿海地带经济飞速发展的地区。区内河网密布,地下水与地表水水力联系密切。工业化和城镇化的快速发展带来了地表水环境问题,同时对地下水环境也形成了潜在威胁。生活污水、工业废水无序排放,人畜粪便的淋滤下渗等导致地下水“三氮”污染突出,局部地区出现面状污染(Zhang et al., 2020)。高铵地下水在三角洲平原地区分布普遍,多赋存于洼地、谷地的第四系含水层底部。珠江三角洲高铵地下水基本形成于中全新世早期,与古海水的退积过程关系密切,迟缓的水循环条件和地下还原环境有利于高铵地下水的赋存(支兵发,2015)。然而,城镇化进程中,在原生沉积环境和人类活动双重作用下,研究区高铵地下水铵氮来源及赋存机制还鲜有报道。基于此,本文以珠江三角洲为研究区,综合多方面水文地质调查数据,运用数理统计、离子相关性分析等方法,探讨珠江三角洲地区高铵地下水赋存环境特征、驱动因素及城镇化扩张对三角洲地下水铵氮含量的影响。以期对珠江三角洲地区地下水资源的合理开发提供参考,也为沿海三角洲地区高铵地下水的研究提供借鉴。
2. 材料与研究方法
2.1 研究区水文地质概况
珠江三角洲地区位于广东省中南部,东、西、北三面低山、丘陵环绕,中南部为三角洲平原区陆地总面积约42000 km2。研究区属亚热带季风气候区,年平均气温23.2℃;年平均降水量1800~2200 mm,受季风气候影响,集中在4—9月。珠江三角洲属华南褶皱系粤北、粤中坳陷带;地层以泥盆系、石炭系、二叠系、侏罗系、第四系为主,其中第四系海陆交互相堆积物广泛分布于三角洲平原区。区内地下水可分为松散岩类孔隙水、碳酸盐岩类裂隙岩溶水、基岩裂隙水。三角洲冲洪积平原区以松散岩类孔隙水为主,厚度3~40 m,岩性以粗中砂及卵砾石为主,自下而上颗粒由粗变细。三角洲下部为晚更新世三角洲沉积前古河流沉积相砂砾层、砂质黏土层,上部为晚全新世泛滥平原相和三角洲沉积相砂质黏土、枯土、粉砂、细砂层,中部为早—中全新世陆相过渡到三角洲浅海相沉积淤泥或黏土层。大气降水、地表水以及灌溉回归渗水是地下水的主要补给来源。河流排泄、潜流排泄、人工开采和蒸发是地下水的主要排泄方式。地下水总体上自北向南,自北西向南东汇流,经珠江口和伶仃洋汇入南海(图 1,图 2)。
图 2 研究区水文地质剖面示意图1—砂;2—砂砾石;3—砂质黏土;4—黏质砂土;5—淤泥;6—黏土;7—砂岩;8—砂砾岩;9—粉砂质泥岩;10-页岩;11—泥灰岩;12—石灰岩;13—白云岩;14—片麻岩;15—混合岩;16—花岗岩;17—玄武岩;18—火山碎屑岩;19—水位埋深Figure 2. Hydrogeological profile of the study area1-Sand; 2-Sandy gravel; 3-Sandy clay; 4-Clay sand; 5-Silt; 6-Clay; 7-Sandstone; 8-Glutenite; 9-Sandy mudstone; 10-Shale; 11-Marl; 12-Limestone; 13-Dolomite; 14-Gneiss; 15-Migmatite; 16-Granite; 17-Basalt; 18-Pyroclastic rock; 19-Water level2.2 研究区城镇化扩张
珠江三角洲是中国经济发展最快的三大经济单元之一,据广东统计年鉴(2020),近30 a来,珠江三角洲常驻人口从1988年的2370万人增加到2018年的6300万人,经济生产总值(GDP)由1988年的1007亿元增加到2018年的81049亿元。珠江三角洲工业化、城镇化发展迅速,建设用地扩张明显,由1988年的2600 km2增加到2018年的13100 km2.,扩大了4倍多。新增的建设用地主要为工业区,工业化快速发展和市政建设的滞后,给当地地下水环境带来严峻压力。城市生活污水、工业废水和垃圾渗滤液的下渗是研究区地下水水质恶化的重要影响因素(Huang et al., 2013;朱丹尼等,2018)(图 3)。
2.3 样品采集与分析
2016—2018年8—10月(本次研究)在研究区采集地下水样品1539组(图 1),搜集2005—2008年(首轮调查)历史水化学数据990组,两轮调查采集重复样品387组。样品取自民井、监测井和泉,采样井井深主要集中在0.2~40 m,地下水水位埋深0.05~15 m。采样设备主要有离心泵和潜水泵,采样前,对采样井进行抽水清洗,等排出水量大于井孔储水量3倍,并且电导率稳定后再进行采样,以确保采集的样品具有代表性。所用采样瓶为2.5 L的高密度聚乙烯瓶。取样后,贴标签并用Para film封口膜密封避光保存,7d内送达实验室测试。样品由自然资源部广东省物料实验检测中心测定,执行标准参照GB/T 8538-95。利用DX-120型离子色谱仪和ICP-AES分别对阴、阳离子进行测定,用纳氏试剂比色法对NH4+进行测定,用紫外分光光度法对NO3-进行测定,用ā-萘胺分光光度法对NO2-进行测定;现场测试指标酸碱度(pH)、溶解氧(DO)和氧化还原电位(Eh)等采用多功能便携式测试仪(Multi-340i/SET,德国WTW)进行测试。
2.4 研究方法
主成分分析是分析高维水化学数据的有利工具,其原理是通过线性组合对原始数据进行降维统计,提取少数几个主成分来分析控制水化学特征的天然及人为因素(Zhang et al., 2019)。吉布斯(Gibbs)图是利用半对数坐标图直观的表示了地表水化学组分特征、控制因素及其相互关系(Gibbs,1970)。本文运用舒卡列夫分类法分析水化学类型,运用SPSS、AquaChem等软件分析水化学数据,运用Gibbs图、离子比和主成分分析法探讨高铵地下水赋存特征及驱动因素。
3. 结果与讨论
3.1 高铵地下水赋存特征
3.1.1 不同城镇化水平地区高铵地下水分布特征
本次研究共采集地下水样品1539组,根据不同城镇化水平进行划分,林地、耕地、2008年前形成建设用地和2009—2018年新增建设用地4个单元分别采集地下水样品109组、374组、374组和681组(表 1)。其中,林地和耕地主要位于三角洲周缘丘陵台地区,城镇化建设用地主要位于三角洲平原区(图 1和图 3)。研究区浅层地下水NH4+质量浓度介于未检出~180 mg/L。1539组样品中,NH4+质量浓度大于10 mg/L的高铵地下水69组,其中包含NH4+质量浓度大于30 mg/L的高铵“肥水”23组。2008年前形成的城镇建设用地检出高铵水25组,检出率为6.7%;2009—2018年新增城镇建设用地检出高铵水44组,检出率为6.5%。不同时期形成的建设用地高铵地下水检出比例相近。然而,对比2005—2008年历史水化学数据,近10a来新增建设用地高铵地下水检出率增加25%,表明高铵地下水分布受人类活动影响较大。林地和耕地地下水中NH4+浓度较低,大于90% 的地下水样品点NH4+浓度集中在未检出~0.52 mg/L,均值分别为0.31mg/L和0.08 mg/L,均未检出高铵地下水。高铵地下水呈斑块状分布于城镇化快速发展的三角洲平原区第四系底部退积层序发育淤泥质含水层中。主要分布在广州南部、深圳、东莞等沿海地区和佛山顺德一带。西北江三角洲中部佛山—顺德为高铵“肥水”分布区,其中顺德北滘镇NH4+质量浓度最高达180 mg/L(图 1)。三角洲平原区上部及其周缘的丘陵台地区均未检出高铵地下水,表明高铵地下水的形成受控于第四系基底起伏形态、富含有机质的淤泥质的封闭-半封闭沉积环境(支兵发,2015)。
表 1 研究区不同城镇化水平区地下水化学组分统计表(mg/L)Table 1. Chemical composition of groundwater in various areas with different urbanization levels in the study area3.1.2 高铵地下水的赋存环境特征
珠江三角洲浅层地下水总体上呈低溶解性总固体弱酸性特征(表 1),地下水中阳离子以Na+、Ca2+为主,阴离子以HCO3-、Cl-为主。研究区地下水总体上属于稳态水,略偏还原水(图 4)。研究区地下水pH值主要集中于4.72~7.76(图 4),酸化问题明显(Huang et al., 2018)。三角洲平原区高铵地下水pH值集中在6.17~8.73,高铵地下水氧化还原电位(Eh)集中在-217~12.7 mV。高铵地下水约70% 的样品氧化还原电位小于零,且高铵地下水中NH4+浓度与耗氧量(COD)呈显著的正相关关系(图 5)。表明低Eh高COD的中性—弱碱性还原环境有利于高铵地下水的赋存。研究区高铵地下水位于三角洲平原区,地下水径流缓慢,在阳离子交替吸附和蒸发浓缩作用下,地下水TDS含量明显升高。研究区高铵地下水起源于古海水,总体上以高溶解性总固体Cl-Na、HCO3·Cl-Na型水为主。
3.2 高铵地下水的成因分析
3.2.1 高铵地下水来源
地下水中的Na+、K+离子主要来源于大气降水、硅酸盐岩风化及蒸发盐岩溶解(左禹政等,2017;孙厚云等,2018;吕晓立等,2020)。钠氯系数(γNa+/γCl-)常作为成因系数判断地下水的来源、浓缩变质作用程度及水动力条件等(李建森等,2013;支兵发,2015)。海水中γNa+/γCl-比值约为0. 86,大气降水的γNa+/γCl-比值与海水相似。珠江三角洲沿海地区的大部分高铵“肥水”和部分高铵水样品点γNa+/γCl-比值接近于0.86(图 6),表明高铵地下水历史上受古咸水入侵形成。部分高铵水γNa+/γCl-比值大于1(图 6),说明高铵地下水形成过程中,在大气降水溶滤作用下,含钾钠岩石矿物风化溶解导致地下水中Na+、K+升高。部分样品γNa+/γCl-比值小于0.86(图 6),表明高铵地下水形成过程中Na+与Ca2+发生阳离子交替吸附作用而降低。
Ca2+/Na+、Mg2+/Na+和HCO3-/Na+等离子比值与地下水流动性及蒸发浓缩程度密切相关(Zhu et al., 2011;Xiao et al., 2012;Fan et al., 2014)。珠江三角洲高铵地下水样品主要集中在硅酸盐岩和蒸发盐岩控制端元之间且偏向硅酸盐岩控制端元(图 7),表明珠江三角洲地区高铵地下水的水化学主要受蒸发盐岩和硅酸盐岩的风化溶解作用控制。研究区大部分高铵水远离碳酸盐岩控制端元,说明高铵地下水化学组分受碳酸盐岩风化溶解作用影响较小。由Mg2+/Na+和HCO3-/Na+分布图 7可见,部分高铵“肥水”地下水Ca2+/Na+比值小于0.1,部分高铵水HCO3-/Na+比值小于0.1。受历史海咸水入侵、潮汐、水产养殖和人类活动多重因素驱动,分布于东莞、佛山、广州等沿海地区的高铵地下水化学组分以Na+为主,Ca2+/Na+比很低。
3.2.2 高铵地下水水化学演化过程
由Gibbs图(图 8)可见,研究区高铵地下水样品点主要分布在岩石风化和蒸发浓缩(海咸水入侵)两个区域,铵含量大于30 mg/L的“肥水”更靠近蒸发浓缩(海咸水入侵)区域。研究区高铵“肥水”的ρ(Na+)/ (ρ(Na+)+ρ(Ca2+))主要集中于0.5~0.98,TDS值介于498~11685 mg/L。进一步说明,研究区高铵地下水尤其是高铵“肥水”与海水具有相似的特征,高铵地下水的形成与历史上的海咸水入侵密切相关,表现为地下水TDS、Na+、Cl-同时升高。广州南部、深圳、东莞等沿海地区,处于地下水径流缓慢的排泄区,含水层为新统海冲积砂黏土,受阳离子交替吸附作用,地下水化学组分Na+/Ca2+比逐渐升高。
3.2.3 城镇化扩张对高铵地下水的影响
为探讨城镇化扩张对高铵地下水的影响,对比本次水化学数据与2005—2008年历史水化学数据,从387组重复样中选取铵氮污染单指标评价结果中超Ⅲ类水的样品点114组(其中,含本次水化学数据54组,2005—2008年水化学数据60组)与土地利用类型叠加,利用数理统计、箱型图分析不同时期不同城镇化水平铵态氮含量分布特征。由图 9可见,影响铵氮污染的土地利用类型主要为城镇建设用地。城镇化建设用地地下水中铵氮含量高,相应的箱型图表明数据离散程度高、高值点较多。尤其是2009—2018年近10年来的新增城镇建设用地,地下水铵态氮含量呈显著上升态势,地下水NH4+质量浓度中位值从十年前的2.6 mg/L增加到4.5 mg/L。相比之下,2008年以前形成的建设用地,近10年来地下水铵氮呈下降趋势,地下水中NH4+浓度中位值从2.9 g/L下降为2.2 g/L。这是由于近10年来,随着老城工业区的环境规划治理,很多分散污染企业统一规划搬迁到城郊工业区,老城区地下水NH4+浓度下降。另外,耕地和林地地下水中NH4+浓度呈上升趋势,耕地地下水中NH4+浓度中位值分别从1.2 g/L增加到1.5 g/L;林地地下水中铵氮浓度中位值从1.9 g/L增加到1.93 g/L。由此可见,地下水中铵态氮含量,建设用地明显高于耕地和林地。城镇化地区生活污水、工业废水的渗漏及耕地区化肥施加是引起NH4+浓度升高的重要因素。另外,三角洲平原区受原生沉积环境影响赋存高铵水。
3.2.4 人为活动输入
地下水中SO42-多来源于含硫矿物的溶解以及工矿活动、大气降尘引起的污染,而地下水中的氮主要来自农业活动含氮化肥的使用以及城市生活污水、垃圾渗滤液泄漏入渗。因此,常用SO42-/Ca2+、NO3-/Ca2+的比值关系来分析人类活动对地下水中主要离子的影响。如果SO42-/Ca2+比值高、NO3-/Ca2+比值低,则地下水可能受工矿活动的影响较大;反之,则可能受农业活动和生活污水的影响较大(蒲俊兵等,2010;朱亮等,2020)。相对于高铵水,研究区高铵“肥水”样品点SO42-/Ca2+和NO3-/Ca2+比值均较低,表明,高铵“肥水”处于封闭—半封闭环境,受人类活动影响较小。然而NH4+浓度大于10 mg/L的高铵水,SO42-/Ca2+和NO3-/Ca2+比值均较高(图 10)。表明在天然沉积环境与污染输入综合作用下,三角洲平原区形成了有利于高铵地下水赋存的还原环境。同时,在有机污染输入和微生物作用下,发生脱硫酸作用和有机质分解作用,促使地下水中NH4+离子浓度升高。
3.2.5 基于“主成分分析”的高铵地下水驱动因素
应用主成分分析法(PCA)对研究区高铵地下水主要离子间的关系进行分析,探讨高铵地下水的赋存特征及主要控制因素。本次研究选择影响地下水水质的17个主要水质参数(Na+、TDS、Cl-、Mg2+、总硬度、SO42-、K+、Ca2+、TFe、Mn2+、COD、NH4+、NO3-、NO2-、ORP、pH和HCO3-),对69组高铵地下水化学数据进行了KMO检验和Barlett球形检验,结果显示(表 2),KMO值为0.560,Barlett球形检验值为2859.302(P < 0.001)。基于特征值大于1的筛选要求,识别出引起珠江三角洲地区高铵地下水水质演化的4个主控因子,累积方差为85.610%。因子载荷矩阵详见表 2。
表 2 高铵地下水主要离子主成分分析Table 2. Principal component analysis of the major ions第一主成分(PC1)的贡献率为38.160%,Na+、TDS、Cl-、Mg2+、总硬度、SO42-、K+、Ca2+与PC1表现出强正相关关系。蒸发岩盐溶解和海水入侵可为地下水中的K+、Na+、Ca2+、Mg2+、Cl-、SO42-提供重要来源,因此,PC1代表高铵地下水受蒸发盐岩溶解和海咸水入侵影响明显。第二主成分(PC2)的贡献率为23.818%,Fe、Mn、COD和NH4+呈显著正相关。PC2表明,在天然沉积环境和有机污染污染输入综合作用下,三角洲平原区形成了有利于高铵地下水赋存的还原环境。三角洲平原区孔隙含水层及上覆全新世—更新世弱透水层中富含的含氮有机质(Jiao et al., 2010),在封闭—半封闭的还原条件下,含氮有机物质矿化释放出大量的铵氮进入含水层。同时,受有机污染及微生物降解作用下,地层中的含Fe/Mn矿物还原为低价态Fe/Mn活化释放进入含水层。第三主成分(PC3)的贡献率为11.906%,ORP、NO3-和NO2-呈显著正相关,与NH4+呈弱负相关。表明在相对氧化环境下,易发生硝化作用,引起地下水硝酸盐的升高,不利于铵态氮的赋存。第四主成分(PC4)的贡献率为11.726%,HCO3-、pH值和NH4+呈较强—中等正相关关系,与氧化还原电位和NO3-有一定的负相关。该因子可视为还原环境因子,指示弱碱性还原环境有利于高铵地下水的赋存。
三角洲平原区孔隙水铵主要来源于淤泥层有机物的分解。在缺氧还原环境下,丰富的有机氮矿化分解为NH4+和HCO3-进入地下水,致使地下水中NH4+和HCO3-升高且呈正相关关系(Jiao et al., 2010)。因此笔者认为,淤泥层等富含有机质和总有机碳的沉积层是珠江三角洲地区的“生铵层”,有机氮的矿化是三角洲城镇老城区孔隙含水层中高铵地下水的主要驱动力。而位于三角洲周缘的河谷平原区城乡结合部孔隙含水层中高铵地下水可能来源于生活污水、垃圾填埋场以及农业污水灌溉等人为输入。城郊结合部地下水位埋深浅,包气带颗粒粗,地下水防污性能差;城镇化扩张致使该区人口密度逐渐增大,但排污管道还不健全,生活污水和人畜粪便的泄漏成为地下水中铵氮的重要来源。另外,该区分布大量的农业菜园,受富含铵的污水灌溉导致地下水中NH4+升高。
4. 结论
(1)珠江三角洲高铵地下水呈斑块状分布于三角洲平原区第四系底部低洼的基底、洼地等退积层序发育的淤泥质含水层中。三角洲平原区第四系富含有机质的淤泥层是三角洲的“生铵层”,有机氮的矿化是三角洲平原区城市化孔隙含水层中高铵地下水的主要驱动力。城镇化扩张中生活污水及富铵工业废水的泄漏入渗是城乡结合部高铵地下水中铵氮的另一重要来源。
(2)研究区高铵地下水化学演化受天然和人为因素双重作用影响,封闭—半封闭的沉积还原环境是三角洲高铵地下水的主要成因。然而城市化扩张生活污水、工业废水及垃圾渗滤液泄漏导致三角洲平原区地下水NH4+浓度的明显升高,城镇化和工业化是该区高铵地下水环境劣变恶化的强大驱动力。
-
图 4 斜长花岗岩与辉长岩的稀土(a)、微量元素(b)标准化图解[5]
(泥盆纪斜长花岗岩数据文献[2] ;堆晶辉长岩和块状辉长岩数据据文献[6] )
Figure 4. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for the gabbros or the plagiogranites [5]
(Data of Devonian plagiogranite after reference [2]; data of cumulate gabbro and massive gabbro after reference [6])
图 5 斜长花岗岩与卡拉麦里蛇绿岩中辉长岩La/Sm-La 协变图
(泥盆纪斜长花岗岩据文献[2],❶;堆晶辉长岩数据据文献[6];块状辉长岩据文献[6, 16-17])
Figure 5. La/Sm-La concordant plot for the plagiogranites and the gabbros in Kalamaili ophiolite
(Data of Devonian plagiogranite after reference [2],❶; Data of cumulate gabbro after reference [6]; Data of massive gabbro after reference [6, 16-17])
表 1 清水东斜长花岗岩LA-ICP-MS锆石U-Pb同位素分析结果
Table 1 LA-ICP-MS zirzon U-Pb isotopic analyses of east Qingshui plagiogranite
表 2 清水东斜长花岗岩主量元素(%)和微量元素(10-6)分析结果
Table 2 Major (%) and trace element (10-6) content of east Qingshui plagiogranite
-
[1] 李锦轶,肖序常,汤耀庆,等.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J].地质论评,1990,36(4):305-316. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199004002.htm Li Jinyi,Xiao Xuchang,Tang Yaoqing,et al.Main characteristics of Late Paleozoic plate tectonics in the southern part of east Junggar,Xinjiang[J].Geological Review,1990,36(4):305-316(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199004002.htm
[2] 唐红峰,苏玉平,刘丛强,等.新疆北部卡拉麦里斜长花岗岩的锆石U-Pb年龄及其构造意义[J].大地构造与成矿学,2007,31(1):110-117. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200701014.htm Tang Hongfeng,Su Yuping,Liu Congqiang,et al.Zircon U-Pb age of the plagogranite in Kalamaili belt,northern Xinjiang and its tectonic implieations[J].Geotectonica et Metallogenia,2007,31(1):110-117(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200701014.htm
[3] 李锦轶.新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩石学报,1995,11(增刊):73-84. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.005.htm Li Jinyi.Main characteristics and emplacement processes of the east Jungaer ophiolites,Xinjiang,China[J].Acta Petrologca Sinica,1995,11(supp.):73-84(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB5S1.005.htm
[4] 李锦轶,杨天南,李亚萍,等.东准噶尔卡拉麦里断裂带的地质特征及其对中亚地区晚古生代洋陆格局重建的约束[J].地质通报,2009,28(12):1817-1826. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912015.htm Li Jinyi,Yang Tiannan,Li Yaping,et al.Geological features of the Karamaili faulting belt,eastern Junggar region,Xinjiang,China and its constraints on the reconstruction of Late Paleozoic ocean continental framework of the Central Asian region[J].Geological Bulletin of China,2009,28(12):1817-1826(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912015.htm
[5] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[C].Saunders A D,Norry M J (eds.).Magmatism in the Ocean Basins.London:Geol Soc Spec Publ,1989,42:313-345. http://www.oalib.com/references/19270119
[6] 李现冰.新疆东准噶尔卡拉麦里蛇绿混杂岩组成、结构及演化研究[D].西安:长安大学,2013:41-55. http://cdmd.cnki.com.cn/article/cdmd-11941-1014023772.htm Li Xianbing.The Characteristics of Kalamaily Ophiolite Complex,Structure and Evolution in Eastern Junggar,Xinjiang[D].Xi'an:Chang'an University,2013:41-55(in Chinese with English abstract). http://cdmd.cnki.com.cn/article/cdmd-11941-1014023772.htm
[7] Coleman R G,Donato M M.Oceanic Plagiogranite Revisited[C].Barker F (ed.).Trondhiemites,dacites and related rocks.Amsterdam:Elsevier,1979:149-168.
[8] Floyd P A,Yaliniz M K,Goncuoglu M G.Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites,central Anatolian crystalline complex,Turkey[J].Lithos,1998,42(3):225-241. http://cn.bing.com/academic/profile?id=1990305818&encoded=0&v=paper_preview&mkt=zh-cn
[9] Koepke J,Feig S T,Snow J,et al.Petrogenesis of oceanic plagiogranites by partial melting of gabbros:An experimental study[J].Contributions to Mineralogy and Petrology,2004,146(4):414-432. doi: 10.1007/s00410-003-0511-9
[10] Koepke J,Berndt J,Feig S T,et al.The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros[J].Contributions to Mineralogy and Petrology,2007,153(1):67-84. doi: 10.1007/s00410-006-0135-y
[11] Kimura J I,Yoshida T,Iizumi S.Origin of Low K intermediate lavas at Nekoma volcano,NE Honshu arc,Japan:Geochemical constraints for lower-crustal melts[J].Journal of Petrology,2002,43(4):631-661. doi: 10.1093/petrology/43.4.631
[12] Luchitskaya M V,Morozov O L,Palandzhyan S A.Plagioranite Magmatism in the Mesozoic island arc structure of the Pekulney Ridge,Chukotka Peninsula,NE Russia[J].Lithos,2005,79:251-269. doi: 10.1016/j.lithos.2004.04.056
[13] Dixon S,Rutherford M J.Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites:An experimental study[J].Earth and planetary Science Letters,1979,45(1):45-60. doi: 10.1016/0012-821X(79)90106-7
[14] 黄岗,牛广智,王新录,等.新疆东准噶尔卡拉麦里蛇绿岩的形成和侵位时限——来自辉绿岩和凝灰岩LA-ICP-MS锆石UPb年龄的证据[J].地质通报,2012,31(8):1267-1278. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201208006.htm Huang Gang,Niu Guangzi,Wang Xinlu,et al.Formation and emplacement age of Karamaili ophiolite:LA-ICP-MS zircon UPb age evidence from the diabase and tuff in eastern Junggar,Xinjiang[J].Geological Bulletin of China,2012,31(8):1267-1278(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201208006.htm
[15] 黄岗,张占武,董志辉,等.南天山铜花山蛇绿混杂岩中斜长花岗岩锆石LA-ICP-MS微区U-Pb定年及其地质意义[J].中国地质,2011,38(1):94-102. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20110110&flag=1 Huang Gang,Zhang Zhanwu,Dong Zhihui,et al.Zircon LAICP-MS U-Pb age of plagiogranite from Tonghuashan ophiolite in Southern Tianshan Mountains and its geological implications[J].Geology in China,2011,38(1):94-102(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20110110&flag=1
[16] 刘希军,许继峰,候青叶,等.新疆东准噶尔克拉麦里蛇绿岩地球化学:洋脊俯冲的产物[J].岩石学报,2007,23(7):1591-1601. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707003.htm Liu Xijun,Xu Jifeng,Hou Qinye,et al.Geochemical characteristics of Karamaili ophiolite in east Junggar,Xingjiang:products of ridge subduction[J].Acta Petrologica Sinica,2007,23(7):1591-1601(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200707003.htm
[17] 杨梅珍,吴宏恩,杨高学.东准噶尔卡拉麦里SSZ型蛇绿岩地球化学及构造意义[J].岩石矿物学杂志,2009,28(3):251-263. http://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201302009.htm Yang Meizhen,Wu Hongen,Yang Gaoxue.Geochemical characteristics and tectonic significance of Kalamaili SSZ ophiolite from Eastern Junggar[J].Acta Petrologica et Mineralogical,2009,28(3):251-263(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201302009.htm
[18] 王富明,廖群安,樊光明,等.新疆卡拉麦里上——中泥盆统间角度不整合和346.8Ma后碰撞火山岩的意义[J].地质科学——中国地质大学学报,2014.39(9):1243-1257. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409001.htm Wang Fuming,Liao Qun'an,Fang Guangming,et al.Geological implications of Unconformity between Upper and Middle Devonian,and 346.8 Ma Post-Collision Volcanic Rocks in Karamaili,Xinjiang[J].Earth Science——Journal of China University Of Geosciences,2014,39(9):1243-1257(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201409001.htm
[19] Pearce J A,Harris B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J],Petrology,1984,25:956-983. doi: 10.1093/petrology/25.4.956
[20] Pearce J A.Sources and settings of granitic rocks[J].Episodes,1996,19(4):120-125. http://cn.bing.com/academic/profile?id=1514994218&encoded=0&v=paper_preview&mkt=zh-cn