-
摘要:
川甘陕交汇地区新构造活动强烈、地震频发,具有复杂多样的构造变形模式和构造强烈活动特征,为一潜在地震危险性研究的关键构造部位。为了查明川甘陕交汇关键构造部位地壳浅表层现今地应力环境和潜在地震危险性,在甘肃省水市甘谷县及四川省广元市三堆镇实施机械岩心钻探工程和水压致裂地应力测量。地应力测量结果表明,甘谷钻孔3个主应力关系为SH >Sh >Sv,甘谷地区现今水平主应力起主导作用,且具有较高地应力值,钻孔附近最大水平主压应力方位平均为N41°E,易于钻孔附近北西西向西秦岭北缘断裂产生左旋走滑兼逆冲活动;三堆钻孔3个主应力关系为SH >Sh >Sv,该地区现今水平主应力起主导作用,钻孔附近最大水平主压应力方位平均为N85°W,利于钻孔附近北东向青川断裂产生右旋走滑兼逆冲活动。利用库仑摩擦滑动准则对断裂活动进行分析,结果表明天水和广元地区的地应力大小均已经达到了使地壳浅部断层产生滑动失稳的临界条件,需加强地应力实时监测和分析。该研究成果为川甘陕交汇关键构造部位的断裂活动性分析和地质环境安全评价提供科学依据。
Abstract:The Sichuan-Gansu-Shaanxi border area has experienced many great earthquakes with complicated tectonic deformation and tectonic activities, which is the reason why this area is important for study of seismic risk. In order to better understand in-situ stress environment of Tianshui area and to evaluate the seismic risk, it is necessary to conduct deep borehole in-situ stress measurement. In this study, data were gathered from 9 in-situ stress sensors installed in deep borehole (600 m) in the southwest of Gangu County, Gansu Province and 14 in-situ stress sensors installed in deep borehole (400.12 m) at Sandui Town, Sichuan Province. The in-situ stress data reveal that the geostress level of the region is relatively high and both horizontal principal stresses in two tests are larger than the vertical stress (SH >Sh >Sv). The direction of the current maximum horizontal principal stress is N41°E in Gangu borehole and is N85°W in Sandui borehole. The directions of the current maximum horizontal principal stress reflect that the present activity property of the north margin of west Qinling fault is thrust and sinistral slip, and that the present activity property of the Qingchuan fault is thrust and dextral slip. The activity of the north margin of west Qinling fault and the Qingchuan dault was analyzed by Coulomb friction sliding criterion, and the results reveal that the current in-situ stress levels have reached the critical condition of sliding instability. Based on the in-situ stress state and earthquake migration data, it is suggested that more attention should be paid to the Sichuan-Gansu-Shaanxi border area. The results obtained by the authors have great significance for analysis of active faults, long-term monitoring of in-situ stresses, assessment of the regional geological environment and geological disasters prevention.
-
1. 引言
地下水中的化学成分可以示踪地下水的循环途径, 反映地下水流系统的特征;而地下水水化学类型是地下水化学成分的集中反映,也是地下水水文地球化学特征研究的重要内容之一(袁道先,1990;沈照理和王焰新,2002;王焰新等,2005)。水文地球化学结合同位素示踪的方法可更深入研究区域地下水的循环特征和水动力场特征(刘文波等,2010;李向全等,2011;郭晓东等,2014;袁建飞等,2016;孙厚云等,2018)。晋祠泉出露于太原西山悬瓮山下,由难老泉、圣母泉、善利泉组成,1954—1958年实测泉水平均流量为l.94 m3/s。与晋祠泉同处太原西山山前断裂带的平泉,1978年建立了特大型岩溶水自流井水源地,自流量最大达到1.56 m3/s。由于这些自流井的开采,使晋祠泉的流量急剧下降,1994年4月30日断流。为建设美丽山西,省政府将规划实施晋祠泉复流工程。因此研究晋祠泉的补给来源、晋祠—平泉水力联系成为一项重要课题。
2. 研究区概况
山西太原晋祠泉域位于太原盆地的北部,泉域面积2713 km2(梁永平等, 2019)。其碳酸盐岩含水层为下古生界寒武系和奥陶系,连续沉积厚度超过900 m。晋祠岩溶地下水主要接受西山碳酸盐岩裸露区及覆盖区的降水人渗补给、汾河及支流在碳酸盐岩段的渗漏补给(后期又加入水库渗漏补给)。晋祠泉域岩溶地下水排泄方式主要包括:晋祠泉、平泉、通过西山边山断裂带向盆地内松散层的潜流排泄以及人工开采井。晋祠泉位于北北东向晋祠断裂之南端,位于岩溶发育的排泄区,为西山岩溶地下水的天然集中排泄点,断裂西侧出露有奥陶系峰峰组石灰岩,断裂东侧为第四系松散层,岩溶地下水向东遇第四系松散层的阻挡而沿断裂上升溢出地表形成泉水(图 1)。晋祠泉群泉总流量在20世纪50年代平均为1.95 m3 /s,60年代为1.61 m3 /s,70年代为1.21 m3 /s,80年代为0.52m3/s(晋华等, 2005)。1960年以前基本上为天然动态。平泉则位于交城至清徐的北东东向断裂带之北端,晋祠泉的下游,是西山岩溶地下水的人工排泄点之一,泉水出露高程为784.31~86.87 m。2011年8月,清徐县平泉村“不老泉”和沙河底“水巷”两处泉水呈现复流迹象。2016—2018实测群泉总流量分别为0.067 m3/s、0.084 m3/s、0.114 m3/s。
3. 研究技术与方法
通过开展野外地质、水文地质补充调查,查明晋祠、平泉水文地质条件。于2016年5月在晋祠泉域边山断裂带取样24组。其中简分析9组,全分析15组(表 1)。2016年5月—2018年5月布置水质长观点两处,分别为晋祠泉口岩溶井、平泉村不老池泉水。pH、温度、电导率等指标直接通过WTW多功能水质监测仪现场测试获得;Ca、HCO3离子由德国默克测试盒现场滴定。化学分析在中国地质科学院岩溶地质研究所国土资源部重点实验室完成。2H/18O同位素(中国地质科学院岩溶地质研究所国土资源部重点实验室)测定精度分别为±2.0‰和±0.1‰;δ34S值在中国地质调查局武汉地质调查中心实验室完成测试,δ34S值采用IsoPrime质谱仪进行测定,δ34S值采用CDT(Canyon Diablo Meteorite)标准,测试精度优于±0.1‰。所有水样阴阳离子平衡相对误差小于5%,利用水化学模拟软件Phreeqc计算矿物饱和指数;利用Origin软件绘制离子比例系数图、同位素分析。
表 1 取样点基本信息Table 1. The information of sampling point4. 晋祠—平泉水力联系分析
4.1 水位动态特征
地下水位动态变化,是反映含水层中地下水资源量变化的一个指征,地下水位的上升或下降,直接反映了地下水补给与消耗量的变化(陶虹等, 2013)。根据地下水水位动态监测资料分析,在1980年前,地下水水位的变化随降水量的大小而变化,呈稳定状态(图 2);1980—1992年,晋祠泉地下水水位的变化呈稳定下降趋势,主要原因是有太原化学工业公司、开化沟、淸徐县平泉村和梁泉村等水源地大量开采岩溶地下水,导致地下水水位下降;1993—2005年,整个泉域地下水水位急剧下降,主要原因是岩溶水开采量急剧加大和降水量减少(图 3);2005—2012年,泉域地下水水位呈上升趋势,主要原因是万家寨引黄工程,“关井压采”,部分工矿企业置换利用黄河水,中小煤矿整治与关停,汾河实施清水复流工程(二库修建),使泉域内岩溶地下水水位有明显回升(图 2)。
图 3 晋祠泉流量与岩溶水开采量变化趋势对比曲线(a)及晋祠泉—平泉流量关系线(b),资料来源山西省第一水文地质工程地质队;1—晋祠泉流量;2—晋祠泉域岩溶地下水开采量;3—平泉流量Figure 3. Comparison curve of Jinci spring discharge and karst water exploitation(a) and the discharge relation between Jinci spring versus Pingquan spring(b)1-Jinci spring flow; 2-Karst groundwater exploitation in Jinci spring area; 3- Pingquan spring flow4.2 水化学特征
岩溶水化学成分受区域内的地质条件、水动力条件和人类工程活动等因素的控制,并能够较好的保存这种影响“信息”。因此,水文地质工作者经常利用水文地球化学方法研究复杂的岩溶水系统(Smykatz-Kloss et al., 1990; Fairchild et al., 2006; Musgrove et al., 2010; Rui Ma et al., 2011;唐春雷等,2019)。依据工作所取得岩溶地下水,碎屑岩井水样分析结果,得出岩溶水pH值6.92~7.86,均值为7.35。钙离子95.3~417.0 mg/L,均值为226.9 mg/ L。硫酸根离子149~1219 mg/L,均值为633 mg/L。碎屑岩井水30.5~73.1 mg/L,均值为60.0 mg/L。硫酸根离子35~90 mg/L,均值为66 mg/L。岩溶水(泉)总体特征表现为阳离子高钙镁、低钾钠,阴离子低氯,高硫酸根。按照舒卡列夫分类法,研究区碳酸盐岩含水岩组地下水主要类型是Ca-SO4型与Ca-SO4·HCO3型。其中Ca-SO4·HCO3型主要分布在西山断裂带北部。Ca-SO4型主要分布在西山断裂带南部。碎屑岩井地下水主要类型是Ca · NaHCO3型。晋祠泉、平泉同为Ca-SO4型(表 2)。
表 2 晋祠泉域岩溶地下水水化学类型Table 2. Karst groundwater hydrochemical type of Jinci spring catchment研究区岩溶地下水化学组分主要受方解石(文石)、白云石和石膏等矿物影响。SO42-+ HCO3-与Ca2++Mg2+关系图(图 4a)显示,岩溶地下水样品呈直线分布并偏离至1:1线以下,表明少量有煤矿排水,地表水的混入岩溶地下水中。Na++K+-Cl与Ca2++ Mg2+ - SO42-- HCO3-关系图(图 4b)显示,径流区部分点位于阳离子交换线附近,说明地下水水化学形成除方解石(文石)、白云石和石膏的溶解,还有阳离子交换作用。
图 4 龙子祠岩溶地下水离子关系图a—(SO4+ HCO3)-(Ca2++Mg2+)图; b—(Na++K+-Cl-)-(Ca2++Mg2+-SO4-HCO3)图; c—SO42+ -TDS图; d—Sr2+ -Ca2+图; 1—晋祠泉;2—平泉;3—碎屑岩井;4—岩溶井Figure 4. Ion relation diagrams of karst groundwater in Longzicia-(SO4+ HCO3)versus(Ca2++Mg2+); b-(Na++K+-Cl-)versus(Ca2++Mg2+-SO4-HCO3); c-SO42+ versus TDS; (d-Sr2+ versus Ca2+; 1-Jinci spring; 2-Pingquan spring; 3-Clastic rock well; 4-Karst well在TDS是反映水质的综合指标。研究区TDS与硫酸根含量存在着极高的线性相关(图 4c)。区域岩溶地下水中SO42-主要来源有奥陶系碳酸盐岩含水层石膏溶解,煤矿酸性水和大气降水中的硫酸根(张海潇等, 2019)。说明含水层石膏溶解,煤矿酸性水补给,大气降水中的硫酸根是影响TDS的主要因素之一。
岩溶水循环过程中,Sr2+浓度随着径流途径和水岩交互作用的时间而增加,相比之下Ca2+浓度却受制于溶解平衡,因此,不同来源的水的Sr2+/Ca2+值不同,径流途径和水岩交互作用的时间越长,其值越大,反之越小(Keul et al., 2017; Yokota et al., 2018; Pracný et al., 2019)。如图 4(d)所示岩溶水径流区(晋祠泉J17,J24,J13,J19,J18,J21,J20),排泄区(平泉,J04,J11,J10,J12,J01,J07),热水井(J16,J15) Sr2+浓度随着径流途径增加。热水井(J16,J15)Sr2+浓度最高,其原因是水岩交互作用的时间较长。
4.3 同位素环境特征
δ34S-SO42-被广泛用于追踪水中硫酸盐的来源氢(Temovski et al., 2018; Xiao et al., 2018; Zhou et al., 2018; Sim et al., 2019)。氢氧同位素是研究地下水起源与演化的理想示踪剂,可利用地下水中的稳定氢氧同位素识别研究区地下水补给来源(Schiavo et al., 2009; Capaccioni et al., 2011; Pasvanoğlu, 2013; Zhang and Li, 2019)。晋祠泉—平泉段岩溶地下水的δ18O变化在-9.7‰~-8.5‰,δD变化在-70.1‰~-63.9‰,平均值分别为-9.3‰和-68.4‰。,该段岩溶水样点均散落于太原站大气降水线右下方(图 5a),表明其主要补给来源为大气降雨。晋祠—平泉一带岩溶地下水氢氧同位素值较接近,说明这一带补给来源与补给途径相近。
地下水中硫酸盐主要有3种来源,即降水、蒸发岩溶解和硫化物或有机硫氧化。在水文地球化学研究中,常使用δ34S对水中硫酸盐的来源进行标定。大量研究表明,山西中奥陶统石膏的δ34S值为23.8‰ ~31.4‰,矿坑水中的δ34S值为- 13.6% ~ 7.98‰,新近系黄土中δ34S值为5.5‰~9.5‰,汾河及其支流与引黄水的中δ34S值7.9‰~10.66‰。从晋祠泉—平泉段岩溶水δ34S分布图(图 5b),可以看出,岩溶地下水的δ34S值总体较大,接近于石膏的δ34S值范围,说明岩溶地下水中的SO42-主要来源于石膏溶解。
4.4 晋祠—平泉水化学水质监测分析
为了分析晋祠—平泉水力联系的水化学证据,在晋祠难老泉、不老池开展了逐月水化学含量动态监测(Ca2+、Mg2+、K++Na+、Cl-、SO42-、NO3-)。2016年5月至2018年5月共50组水样,如图 6所示晋祠泉与平泉各个离子变化趋势基本一致。说明晋祠与平泉存在紧密的水力联系。平泉Ca2+、Mg2+、SO42-、K++Na+含量显著高于晋祠泉,而Cl-、NO3-含量则低于晋祠泉。
4.5 径流途径水化学演化
反向地球化学反应路径模拟是定量研究水文地球化学演化的重要手段。反应路径模拟的理论基础是沿地下水同一水流路径,终点的水化学成分和同位素的质量等于起点的水化学成分和同位素的质量加上两点间由于水岩作用(如沉淀、溶解、阳离子交换等)、蒸发作用和不同水流的混合作用引起的化学组分和同位素的转移量,通过质量平衡反应模型和同位素质量传输模型,可推测地下水从起点到终点间的水文地球化学反应路径(Plummer et al., 1990; Petalas and Lambrakis, 2006; Han et al., 2011; Cánovas et al., 2016)。
4.5.1 饱和指数与可能矿物相的确定
饱和指数能反映常见的含有碳酸盐类、硫酸盐类和硅酸盐类等矿物与地下水之间所处的溶解平衡状态,这是反向水文地球化学模拟计算的基础。利用Phreeqc计算各矿物饱和指数(表 3),由表 3可以看出:方解石、文石、白云石的饱和指数均大于0,说明它们在地下水中呈饱和状态,具有沉淀趋势;石膏、硬石膏和岩盐的饱和指数均小于0,说明它们在地下水中处于非饱和状态,具有继续溶解趋势。依据饱和指数分析结果,选择石膏、方解石、白云石、NaCl,作为水文地球化学模拟的“可能矿物相”。
表 3 岩溶地下水中矿物饱和指数Table 3. Mineral saturation index in karst groundwater4.5.2 Phreeqc水化学模拟
应用Phreeqc软件确定了水中各种组分和矿物的饱和状态;通过物质平衡模型,来确定岩溶地下水系统径流路径上不同两点之间矿物沉淀或溶解的数量。晋祠—平泉径流路径发生的主要水岩作用为:石膏的溶解,方解石沉淀、岩盐稀释和二氧化碳气体溶解或逸出等。
5. 对晋祠泉复流的贡献
晋祠泉与平泉同属于一个晋祠泉岩溶地下水系统,都位于西山山前边山断裂带的排泄区。晋祠与平泉存在紧密的水力联系。说明晋祠泉与平泉存在一个比较强的导水通道。可以通过在晋祠泉下游导水通道上帷幕灌浆,提高晋祠泉水水位,使晋祠泉出流。此方案的优点:(1)晋祠泉水水质明显优于平泉。(2)降低下游带压煤矿开采突水的风险。(3)晋祠泉水出流以地表水渠形式管理调度,生态人文环境影响较小。
6. 结论
(1) 在1980年前,晋祠泉地下水水位的变化随降水量的大小而变化,呈稳定状态;1980—1992年,地下水水位的变化呈稳定下降趋势,主要原因是大量开采岩溶地下水;2005—2012年,地下水水位呈上升趋势,主要原因是万家寨引黄工程,关井压采,部分工矿企业置换,汾河实施清水复流工程(二库修建),使泉域内岩溶地下水水位有明显回升。
(2) 研究区碳酸盐岩含水岩组地下水主要类型是Ca-SO4型、Ca-SO4·HCO3型。Ca-SO4·HCO3型主要分布在西山断裂带北部。Ca-SO4型主要分布在西山断裂带南部。碎屑岩井地下水主要类型是Ca·Na-HCO3型。晋祠泉、平泉同为Ca-SO4型。
(3) 晋祠泉的δ18O和δD值分别为- 9.39‰,- 68.5‰。平泉的δ18O和δD值分别为- 9.29‰,-71.0‰。其点均散落于太原站大气降水线右下方,表明晋祠泉与平泉的主要补给来源为大气降雨,氢氧同位素值较接近,说明晋祠泉与平泉补给来源与补给途径相近。研究区岩溶地下水的δ34S值总体较大,接近于石膏的δ34S值范围,说明岩溶地下水中的SO42-主要来源于石膏溶解。
(4) 晋祠与平泉存在紧密的水力联系,晋祠泉与平泉存在一个比较强的导水通道。可以通过帷幕灌浆,提高晋祠泉水水位,使晋祠泉出流。
-
图 1 川甘陕地区地应力测量与实时监测钻孔位置
a—研究区及其邻区构造纲要图; b—研究区地形地貌、主要活动构造分布特征以及钻孔位置
Figure 1. Location of borehole in−situ stress measurement and real time supervision site in Sichuan-Gansu-Shaanxi border area and simplified geological map
a-Sketch map of major blocks of study area and adjacent areas; b-Landform and active tectonic characteristics of the study area and location of boreholes for in−situ stress measurement
图 3 水压致裂地应力测量时间-压力曲线
a—天水甘谷县钻孔(GG-1)水压致裂地应力测量时间-压力曲线;b—广元市三堆钻孔(SD-1)水压致裂地应力测量时间-压力曲线
Figure 3. Curves of hydraulic fracturing in-situ stress measurement
a-Curves of hydraulic fracturing in-situ stress measurement in GG-1 borehole; b-Curves of hydraulic fracturing in-situ stress measurement in SD-1 borehole
图 5 主应力随深度变化曲线及钻孔所在位置的地形特征
a—甘谷钻孔(GG-1)主应力随深度变化曲线及地形特征;b—三堆钻孔(SD-1)主应力随深度变化曲线及地形特征(黄色区域表示主应力受地形地貌影响范围)
Figure 5. Curve of the stress versus depth of GG-1 and SD-1 borehole and landform characteristics around boreholes
a-Curve of the stress versus depth in GG-1 borehole and landform characteristics around boreholes; b-Curve of the stress versus depth in SD-1borehole and landform characteristics around boreholes(Yellow square patterns represent the range of principal stresses affected by topography)
图 6 川甘陕交汇部位及邻区现今构造应力场特征
①—阿尔金断裂带;②—海原断裂带;③—西秦岭北缘断裂带;④—东昆仑断裂带;⑤—鲜水河断裂带;⑥—甘孜—玉树断裂带;⑦—龙门山断裂带;⑧—虎牙断裂带;⑨—临潭—宕昌断裂带;⑩—青海南山—循化断裂带;???—大柴旦—宗务隆山断裂带a—川甘陕交汇部位现今构造应力场特征;b—天水甘谷钻孔(GG-1)水平最大水平主压力方向,n 为水压破裂定向印模试验获得的最大主应力方位的数量;c—广元三堆钻孔(SD-1)水平最大水平主压力方向,n 为水压破裂定向印模试验获得最大主应力方位的数量;d—川甘陕交汇部位相对欧亚板块的GPS速度场[48]
Figure 6. Characteristics of recent tectonic stress field in Sichuan-Gansu-Shaanxi border area and its adjacent areas
①-Altyn Tagh fault belt; ②-Haiyuan fault belt; ③-West Qingling fault belt;④-East Kunlun fault belt; ⑤-Xianshuihe fault belt; ⑥-Garze-Yushu fault belt; ⑦-Longmenshan fault belt;⑧-Huya fault belt; ⑨-Lintan-Dangchang fault belt; ⑩-Qinghainanshan-Xunhua fault belt; ???-Dachaidan-Zongwulong fault belta-Characteristics of recent tectonic stress field of Sichuan-Gansu-Shaanxi border area and its adjacent areas; b-Azimuth of maximum horizontalprincipal stress of the GG-1 borehole,n= Number of the result of the direction of hydraulic fracture impression; c-Azimuth of maximum horizontalprincipal stress of the SD-1 borehole,n= Number of the result of the direction of hydraulic fracture impression; d-Movement direction of Sichuan-Gansu-Shaanxi border area and the vicinities relative to Eurasia plate from 2009 to 2011[48]
图 7 川甘陕交汇地区最大有效应力、最小有效应力以及临界摩擦系数的关系
a—天水甘谷最大有效应力、最小有效应力及临界摩擦系数;b—广元三堆最大有效应力、最小有效应力及临界摩擦系数
Figure 7. The effective maximum and minimum horizontal principal stress and critical friction coefficient
a-The effective maximum and minimum horizontal principal stress in Gangu and critical friction coefficient; b-The effective maximum andminimum horizontal principal stress in Sandui and critical friction coefficient
表 1 水压致裂地应力测量结果
Table 1 Results of in-situ stress measurement
-
[1] 李四光.论地震[M].北京:地质出版社,1977. Li Siguang.The earthquake[M].Beijing:Geological Publishing House,1977.(in Chinese)
[2] 丰成君,陈群策,谭成轩,等.龙门山断裂带东北段现今地应力环境研究[J].地球物理学进展,2013,28(3):1109-1121. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303001.htm Feng Chengjun,Chen Qunce,Tan Chengxuan,et al.Analysis on current in-situ stress state in northern segment of Longmenshan Fault belt[J].Progress in Geophysics,2013,28(3):1109-1121(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303001.htm
[3] 陈群策,安其美,孙东生,等.山西盆地现今地应力状态与地震危险性分析[J].地球学报,2010,31(4):541-548. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004007.htm Chen Qunce,An Qimei,Sun Dongsheng,et al.Current In-situ Stress State of Shanxi Basin and Analysis of Earthquake Risk[J].Acta Geoscientica Sinica,2010,31(4):541-548(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004007.htm
[4] 丰成君,陈群策,吴满路,等.四川省大凉山腹地当前地应力状态分析[J].河南理工大学学报(自然科学版),2010,29(4):468-474. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201004007.htm Feng Chengjun,Chen Qunce,Wu Manlu,et al.Analysis of the present stress state in the hinterland of Daliang Mountain in Sichuan province[J].Journal of Henan Polytechnic University (Natural Science),2010,29(4):468-474(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201004007.htm
[5] 丰成君,陈群策,谭成轩,等.广州核电站地应力测量及其应用[J].岩土力学,2013,34(6):1745-1752. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306034.htm Feng Chenjun,Chen Qunce,Tan Chengxuan,et al.In-situ stress measurement and its application to Guangdong nuclear power stations[J].Rock and Soil Mechanics,2013,34(6):1745-1752(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306034.htm
[6] 丰成君,张鹏,孙炜峰,等.日本Mw9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨[J].地学前缘,2013,20(6):123-140. http://youxian.cnki.com.cn/yxdetail.aspx?filename=DXQY20140731002&dbname=CAPJ2014 Feng Chenjun,Zhang Peng,Sun Weifeng,et al.A discussion the impact of Japan Mw9.0 earthquake on the main active fault zone in north and northeast-China continent and the seismic risk[J].Earth Science Frontiers,2013,20(6):123-140(in Chinese with English abstract). http://youxian.cnki.com.cn/yxdetail.aspx?filename=DXQY20140731002&dbname=CAPJ2014
[7] 孟文,陈群策,吴满路,等.龙门山断裂带现今构造应力场特征及分段性研究[J].地球物理学进展,2013,28(3):1150-1160. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303005.htm Meng Wen,Chen Qunce,Wu Manlu,et al.Research on segmentation and characteristic of tectonic stress field of Longmenshan Fault Zone[J].Progress in Geophysics,2013,28(3):1150-1160(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303005.htm
[8] 秦向辉,陈群策,谭成轩,等.龙门山断裂带西南段现今地应力状态与地震危险性分析[J].岩石力学与工程学报,2013,32(1):2870-2876. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1037.htm Qin Xianghui,Chen Qunce,Tan Chengxuan,et al.Analysis of current geostress state and seismic risk in southwest segment of Longmenshan fracture belt[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(1):2870-2876(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S1037.htm
[9] 谭成轩,孙叶,王连捷.地应力测量值得注意的若干问题[J].地质力学学报,2003,9(3):276-280. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200303010.htm Tan Chengxuan,Sun Ye,Wang Lianjie.Some problems of in-situ crustal stress measurements[J].Journal of Geomechanics,2003,9(3):276-280(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200303010.htm
[10] 谭成轩,孙炜锋,孙叶,等.地应力测量及其地下工程应用的思考[J].地质学报,2006,80(10):1627-1632. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200610032.htm Tan Chengxuan,Sun Weifeng,Sun Ye,et al.A consideration on in-situ crustal stress measuring and its underground engineering application[J].Acta Geologica Sinica,2006,80(10):1627-1632(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200610032.htm
[11] 谭成轩,孙叶,吴树仁,等."5.12"汶川Ms8.0大地震后关于我国区域地壳稳定性评价的思考[J].地质力学学报,2009,15(2):142-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200902004.htm Tan Chengxuan,Sun Ye,Wu Shuren,et al.A consideration on regional crustal stability assessment after Ms8.0 Wenchuan strong earthquake in China[J].Journal of Geomechanics,2009,15(2):142-150(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200902004.htm
[12] 吴满路,张岳桥,廖椿庭,等.汶川Ms8.0地震后龙门山裂断带地应力状态研究[J].地球物理学进展,2013,28(3):1122-1130. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303002.htm Wu Manlu,Zhang Yueqiao,Liao Chuanting,et al.Reasearch on the stress state along the Longmenshan fault belt after the Wenchuan Ms8.0 earthquake[J].Progress in Geophysics,2013,28(3):1122-1130(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201303002.htm
[13] 张鹏,秦向辉,丰成君,等.郯庐断裂带山东段深孔地应力测量及其现今活动性分析[J].岩土力学,2013,34(8):2329-2335. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308042.htm Zhang Peng,Qin Xianghui,Feng Chengjun,et al.In-situ stress measurement of deep borehole in Shandong segment of Tan-Lu fracture belt and analysis on its activity[J].Rock and Soil Mechanics,2013,34(8):2329-2335(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308042.htm
[14] 张培震,徐锡伟,闻学泽,等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,51(4):1066-1073. Zhang Peizhen,Xu Xiwei,Wen Xueze,et al.Slip rates and recurrence intervals of the active fault zone and tectonic implications for the mechanism of the Ms8.0 Wenchuan earthquake,2008,Sichuan,China[J].Chinese Journal of Geophysics,2008,51(4):1066-1073(in Chinese with English abstract).
[15] 李海兵,王宗秀,付小方,等.2008年5月12日汶川地震(MS8.0)地表破裂带的分布特征[J].中国地质,2008,35(5):803-813. Li Haibing,Wang Zongxiu,Fu Xiaofang,et al.The surface rupture zone distribution of the Wenchuan earthquake (Ms8.0) happened on May 12th,2008[J].Geology in China,2008,35(5):803-813(in Chinese with English abstract).
[16] Wu M,Zhang Y,Liao C,et al.Preliminary results of in-situ stress measurements along the Longmenshan fault zone after Wenchuan Ms8.0 earthquake[J].Acta Geologica Sinica,2009,83(4):746-753. doi: 10.1111/j.1755-6724.2009.00098.x
[17] 孙叶,谭成轩,苗培实,等.地震地质与地震预报[M].北京:地质出版社,2012. Sun Ye,Tan Chengxuan,Miao Peishi,et al.Some Tentative Ideas about Seismo-Geoligical Work[M].Beijing:Geological Publishing House,2012(in Chinese).
[18] 陈群策,丰成君,孟文,等.汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报,2012,55(12):3923-3932. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201212006.htm Chen Qunce,Feng Chenjun,Meng Wen,et al.Analysis of in situ measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J].Chinese Journal of Geophysics,2012,55(12):3923-3932(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201212006.htm
[19] 张岳桥,李海龙.龙门山断裂带西南段晚第四纪活动性调查与分析[J].第四纪研究,2010,30(4):699-710. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201004007.htm Zhang Yueqiao,Li Hailong.Late Quaternary active faulting along the SW segment of the Longmenshan fault zone[J].Quaternary Sciences,2010,30(4):699-710(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201004007.htm
[20] 谭成轩,秦向辉,王瑞江,等.中国大陆中东部Ms≥8.0级特大地震发震背景初步分析[J].岩石力学与工程学报,2010,29(2):3598-3607. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2025.htm Tan Chengxuan,Qin Xianghui,Wang Ruijiang,et al.Preliminary analysis of earthquake occurrence backgrounds of Ms≥8.0 catastrophic earthquakes in middle and east parts of Chinese continent[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(2):3598-3607(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2025.htm
[21] 张培震,王琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-441. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202034.htm Zhang Peizhen,Wang Qi,Ma Zongjin.GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J].Earth Science Frontiers,2002,9(2):430-441(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202034.htm
[22] 王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘,2002,9(2):415-429. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202033.htm Wang Qi,Zhang Peizhen,Ma Zongjin.GPS datebase and velocity field of contemporary tectonic deformation in continental China[J].Earth Science Frontiers,2002,9(2):415-429(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202033.htm
[23] 许志琴,李海兵,吴忠良.汶川地震和科学钻探[J].地质学报,2008,82(12):1613-1622. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200812003.htm Xu Zhiqin,Li Haibing1,Wu Zhongliang.Wenchuan Earthquake and Scientific Drilling[J].Acta Geologica Sinica,2008,82(12):1613-1622(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200812003.htm
[24] Zhang P Z,Shen Z K,Wang M,et al.Continuous deformation of the Tibetan Plateau from global positioning system data[J].Geology,2004,32(9):809-812. doi: 10.1130/G20554.1
[25] 谢富仁,陈群策,崔效锋,等.中国大陆地壳应力环境研究[M].北京:地质出版社,2003. Xie Furen,Chen Qunce,Cui Xiaofeng,et al.Study of Crustal Stress Environment in China[M].Beijing:Geological Publishing House,2003(in Chinese).
[26] 李勇,曹叔尤,周荣军,等.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J].地质学报,2005,79(1):28-37. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501003.htm Li Yong,Cao Shuyou,Zhou Rongjun,et al.Late Cenozoic Min river incision rate and its constraint on the uplift of the eastern margin of the Tibetan plateau[J].Acta Geologica Sinica,2005,79(1):28-37(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501003.htm
[27] Liao C T,Zhang C S,Wu M L,et al.Stress change near the Kunlun fault before and after the Ms8.1 Kunlun earthquake[J].Geophysical Research Letters,2003,30(20):2027-2030. https://www.researchgate.net/publication/241061058_Stress_change_near_the_Kunlun_fault_before_and_after_the_Ms_81_Kunlun_earthquake
[28] 卜玉菲,万永革,张元生.甘肃及邻近地区构造应力场[J].地震地质,2013,35(4):833-841. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201304012.htm Bu Yufei,Wan Yongge,Zhang Yuansheng.Tectonic stress analysis in Gansu and its adjacenet areas[J].Seismology and Geology,2013,35(4):833-841(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201304012.htm
[29] Beck R A,Burbank D W,Sercombe W J,et al.Stratigraphic evidence for an early collision between northwest India and Asia[J].Nature,1995,373:55-58. doi: 10.1038/373055a0
[30] Lee T Y,Lawver L A.Cenozoic plate reconstruction of Southeast Asia[J].Tectonophysics,1995,251:85-138. doi: 10.1016/0040-1951(95)00023-2
[31] Patzel A,Li H M,Wang J D,et al.Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet:evidence for the extent of the northern margin of India prior to the collision with Eurasia[J].Tectonophysics,1996,259:259-284. doi: 10.1016/0040-1951(95)00181-6
[32] Tapponnier P,Xu Z,Roger F,et al.Oblique Stepwise Rise and Growth of the Tibet Plateau[J].Science,2001,1671-1677. http://cn.bing.com/academic/profile?id=2041774199&encoded=0&v=paper_preview&mkt=zh-cn
[33] 王成善,戴紧根,刘志飞,等.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘,2009,16(3):1-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903003.htm Wang Chengshan,Dai Jingen,Liu Zhifei,et al.The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques:A review[J].Earth Science Frontiers,2009,16(3):1-30(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903003.htm
[34] 康来迅.西秦岭北缘断裂带晚更新世晚期以来断裂运动的基本特征及运动机理[J].中国地震,1990,6(3):53-61. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199003006.htm Kang Laixun.A study on movement characteristics and mechanism of the fault zone along the north edge of west Qinling Mountains since late Epipleistocene epoch[J].Earthquake Research in China,1990,6(3):53-61(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199003006.htm
[35] 郑文俊,袁道阳,何文贵,等.甘肃东南区构造活动与2013年岷县-漳县Ms6.6级地震孕育机制[J].地球物理学报,2013,56(12):4058-4071. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312011.htm Zheng Wenjun,Yuan Daoyang,He Wengui,et al.Geometric pattern and active tectonics in southeastern Gansu Province:Discussi on seismogenic mechanism of the Minxian-Zhangxian Ms6.6 earthquake on July 22,2013[J].Chinese Journal of Geophysics,2013,56(12):4058-4071(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201312011.htm
[36] 邵延秀,袁道阳,王爱国,等.西秦岭北缘断裂破裂分段与地震危险性评估[J].地震地质,2011,33(1):79-90. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101010.htm Shao Yanxiu,Yuan Daoyang,Wang Aiguo,et al.The segmentation of rupture and estimate of earthquake risk along the north margin of western Qinling fault zone[J].Seismology and Geology,2011,33(1):79-90(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201101010.htm
[37] 腾瑞增,金瑶泉,李西候,等.西秦岭北缘断裂带新活动特征[J].西北地震学报,1994,16(2):85-90. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ402.011.htm Teng Ruizeng,Jin Yaoquan,Li Xihou,et al.Recent activity characteristics of the fault zone at northern edge of western Qinling Mountains[J].Northwest seismological Journal,1994,16(2):85-90(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ402.011.htm
[38] 雷中生,袁道阳,葛伟鹏,等.734年天水7级地震考证与发震构造分析[J].地震地质,2007,29(1):51-62. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200701004.htm Lei Zhongsheng,Yuan Daoyang,Ge Weipeng,et al.Textual research on the Tianshui 7 earthquake in 734 AD and analysis of its causative structure[J].Seismology and Geology,2007,29(1):51-62(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200701004.htm
[39] 袁道阳,雷中生,葛伟鹏,等.对143年甘谷西7级地震史料的新见解[J].西北地震地质,2007,29(1):58-63. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200701011.htm Yuan Daoyang,Lei Zhongsheng,Ge Weipeng,et al.A new opinion about the west of Gansu M7.0 earthquake in 143 A.D.in Gansu Province[J].Northwest seismological Journal,2007,29(1):58-63(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200701011.htm
[40] 王全伟,梁斌,谢启兴,等.青川地区青川断裂带的显微构造及其变形条件研究[J].矿物岩石,2000,20(1):87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200001015.htm Wang Quanwei,Liang Bin,Xie Qixing,et al.Research on microstructures and deformation conditions of the Qingchuan fault zone[J].Journal of Mineralogy and Petrology,2000,20(1):87-90(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200001015.htm
[41] 樊春,王二七,王刚,等.龙门山断裂带北段晚新近纪以来的右行走滑运动及其构造变换研究——以青川断裂为例[J].地质科学,2008,43(3):417-433. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803002.htm Fan Chun,Wang Erqi,Wang Gang,et al.Dextral strike-slip and tectonic transformation of the northern Longmen Shan fault belt from Late Neogene-A case study from the Qingchuan fault[J].Chinese Journal of Geology,2008,43(3):417-433(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200803002.htm
[42] 彭华,马秀敏,姜景捷.龙门山北端青川断层附近应力测量与断层稳定性[J].地质力学学报,2009,15(2):114-130. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200902002.htm Peng Hua,Ma Xiumin,Jiang Jingjie.Stability and stress measurement near the Qingchuan fault in the northern Longmen Mountains[J].Journal of Geomechanics,2009,15(2):114-130(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200902002.htm
[43] Haimson B C,Cornet F H.ISRM suggested methods for rock stress estimation-Part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J].International Journal of Rock Mechanics & Mining Sciences,2003(40):1011-1020. http://cn.bing.com/academic/profile?id=2083560579&encoded=0&v=paper_preview&mkt=zh-cn
[44] 丰成君,陈群策,吴满路,等.水压致裂应力测量数据分析——对瞬时关闭压力ps的常用判读方法讨论[J].岩土力学,2012,33(7):2149-2159. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207036.htm Feng Chengjun,Chen Qunce,Wu Manlu,et al.Analysis of hydraulic fracturing stress measurement data——discussion of methods frequently used to determine instantaneous shut-in pressure[J].Rock and Soil Mechanics,2012,33(7):2149-2159(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207036.htm
[45] Zoback M D,Healy J H.In-situ stress measurements to 3.5km depth in the Cajon.Pass Scientific research borehole:implications for the mechanics of crustal faulting[J].Journal of Geophysical research.1992,97(B4):5039-5057. doi: 10.1029/91JB02175
[46] Tan C X,Wang R,Sun Y,et al.Numerical modelling estimation of the ‘tectonic stress plane’(TSP) beneath topography with quasi-U-shaped valleys[J].International Journal of Rock Mechanics & Mining Sciences,2004,41:303-310. http://cn.bing.com/academic/profile?id=2007709678&encoded=0&v=paper_preview&mkt=zh-cn
[47] 卜玉菲,张元生,万永革,等.P波极性揭示的甘东南地区构造应力场特征[J].地震工程学报,2013b,35(1):160-165. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301024.htm Bu Yufei,Zhang Yuansheng,Wan Yongge,et al.The tectonic stress field in southeastern area of Gansu Province deduced from P wave polarity data[J].China Earthquake Engineering Journal,2013,35(1):160-165(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301024.htm
[48] 陈长云,任金卫,孟国杰,等.巴颜喀拉块体北东缘主要断裂现今活动性分析[J].大地测量与地球动力学,2012,32(3):27-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201203006.htm Chen Changyun,Ren Jinwei,Meng Guojie,et al.Analysis of modern activity of major faults in northeast margin of Baryan-Har Block[J].Journal of Geodesy and Geodynamics,2012,32(3):27-30(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201203006.htm
[49] 王卫民,赵连锋,李娟,等.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(5):1403-1410. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805014.htm Wang Weimin,Zhao Lianfeng,Li Juan,et al.Rupture process of the Ms8.0 Wenchuan earthquake of Sichuan,China[J].Chinese Journal of Geophysics,2008,51(5):1403-1410(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200805014.htm
[50] Zhang Y,Ma H S,Lü J,et al.Source mechanism of strong aftershocks (Ms≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics[J].Science in China Series D:Earth Sciences,2009,52(6):739-753. doi: 10.1007/s11430-009-0074-3
[51] 代建全.四川省青川断裂的特征及形成的物理条件[J].四川地质学报,1992,12(4):311-319. http://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199204007.htm Dai Jianquan.The features and deformation conditions of Qingchuan fracture,Sichuan[J].Acta Geologica Sichuan,1992,12(4):311-319(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-SCDB199204007.htm
[52] 童亨茂.岩石圈脆性断层作用力学模型[J].自然杂志,2013,35(1):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201301008.htm Dong Hengmao.Mechanical model of brittle faulting in lithosphere[J].Chinese Journal of Nature,2013,35(1):56-63(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201301008.htm
[53] Byerlee J D.Friction of rocks[J].Pure and Applied Geophysics,1978,116(4-5):615-626. doi: 10.1007/BF00876528
[54] 刘晓红,方亚如,蔡戴恩,等.中国六条断裂断层泥的摩擦系数[J].东北地震研究,1987,3(1):23-26. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ198701004.htm Liu Xiaohong,Fang Yaru,Cai Daien,et al.Study on the friction coefficient of fault gouge for six faults in China[J].Northeastern Seismological Research,1987,3(1):23-26(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DDYJ198701004.htm
[55] 张伯崇.孔隙压力、断层滑动准则和水库蓄水的影响[C]//苏恺之,李方全,张伯崇,等主编.长江三峡坝区地壳应力与孔隙水压力综合研究.北京:地震出版社,1996. Zhang Bochong.Pore pressure,fault slip criterion and influence of reservoir impounding[C]//Su Kaizhi,Li Fangquan,Zhang Bochong,et al.(eds.).Integrated Research on the Stress Field and Pore Pressure at the Gorges Site.Beijing:Seismological Press,1996(in Chinese).
-
期刊类型引用(7)
1. 陈玲玉,解建建,刘恋. ERT在晋祠泉复流工程地下水勘查中的应用. 工程地球物理学报. 2024(04): 621-627 . 百度学术
2. 姜宝良,李志超,王秀明,刘宇,余晨. 新乡百泉泉水复流与保护措施. 能源与环保. 2023(02): 46-52+57 . 百度学术
3. 唐春雷,申豪勇,赵春红,王志恒,谢浩,赵一,梁永平. 古堆泉域岩溶地下水水化学特征及成因. 环境科学. 2023(09): 4874-4883 . 百度学术
4. 赵春红,梁永平,王志恒,唐春雷,申豪勇. 山西省阳泉山底河流域煤矿“老窑水”动态特征、演化机理及对娘子关泉域的环境效应. 中国地质. 2023(05): 1471-1485 . 本站查看
5. 唐春雷,梁永平,晋华,申豪勇,赵春红,王志恒,谢浩,赵一,王士娜. 山西娘子关泉群及其水的来源. 中国岩溶. 2022(02): 174-182 . 百度学术
6. 王焰新. 我国北方岩溶泉域生态修复策略研究——以晋祠泉为例. 中国岩溶. 2022(03): 331-344 . 百度学术
7. 唐春雷,梁永平,晋华,赵春红,申豪勇,王志恒,赵一,谢浩,梁琛. 山底河流域煤矿酸性矿井水野外监测. 中国岩溶. 2022(04): 522-531 . 百度学术
其他类型引用(4)