Geochronology, geochemistry and petrogenesis of quartz diorite porphyrite from the Sena copper (gold) deposit, Tibet
-
摘要:
色那铜(金)矿床位于西藏班怒成矿带西段的多龙矿集区内东北部,具有良好的找矿潜力。锆石U-Pb测年显示成矿石英闪长玢岩的形成年龄为(118.1±1.4)Ma,与已报道的多龙矿集区内岛弧型含矿斑岩的成岩成矿时代一致。色那石英闪长玢岩属于活动大陆边缘的高钾钙碱性-钙碱性系列准铝质I型花岗岩,富集轻稀土(LREE)和大离子亲石元素(LILE:Th,U,K及Rb),亏损重稀土(HREE)及高场强元素(HFSE:Nb、Ta、Zr及Ti),δEu为基本无异常(0.92~1.04),具备典型岛弧岩浆岩特征。岩石Rb/Sr值(0.143~0.195),Zr/Hf值(31.23~34.14),Nb/Ta值(9.21~11.59),反映出壳幔混合的特点。锆石(176Hf/177Hf)i为0.282707~0.282719,εHf(t)为0.28~11.77,两阶段模式年龄TDMC=424~1159Ma,暗示其可能起源于新生下地壳的部分熔融。综合分析认为,色那矿区石英闪长玢岩是班公湖-怒江特提斯洋壳向北俯冲于羌塘地块之下的背景下,由新生下地壳部分熔融形成,源区内可能有幔源物质混入。早白垩世晚期(约118.1 Ma)班公湖-怒江洋仍然存在向北俯冲消减作用。
Abstract:Located in the northeast of the Duolong ore concentration area in the Bangong Co-Nujiang metallogenic belt, Tibet, the Sena copper (gold) deposit has favorable prospecting potentiality. The quartz diorite porphyrite in the deposit whose zircon U-Pb age is (118.1±1.4) Ma is consistent with the age of reported arc-type ore-bearing porphyry in the Duolong ore concentration area. They belong to high-K calc-alkaline to calc-alkaline and metaluminous I-type felsic rocks. These porphyries are systematically enriched in large-ion lithophile elements (LILE such as Th, U, K, Pb and Rb) and LREE, relatively depleted in high strength elements (HFSE such as Ta, Nb, Ti and Zr) and HREE. And they are slightly rightly-oblique, show the fractionation between LREE and HREE, and display no Eu anomalies (δEu=0.92-1.04). According to the regional tectonic setting, the authors hold that the geochemical characteristics of the quartz diorite porphyrite are consistent with those of arc-type magmas in the world, and the closure time of this ocean should be later than early Cretaceous (118Ma). The Rb/Sr ratios (0.143-0.195), Zr/Hf ratios (31.23-34.14), and Nb/Ta ratios (9.21-11.59) suggest that the melts had characteristics of crust mantle mixing. The zircon (176Hf/177Hf)i, εHf(t) and TDM2 are 0.282707-0.282719, 0.28-11.77 and 424-1159 Ma, respectively, indicating that the rocks probably represent the remelting products of juvenile crust, also impacted by minor mantle-derived mafic melts under the background of northward subduction of Bangong Co-Nujiang Tethys to Qiangtang massif.
-
致谢: 感谢西藏地调院李玉彬工程师在野外工作过程中给予的帮助。感谢中国地质大学(北京)董国臣教授及黄雄飞博士在室内研究及论文成文中提供的建议和帮助,以及匿名审稿老师对稿件提出的修改意见。感谢中国地质科学院矿产资源研究所LA-MC-ICP-MS实验室、核工业北京地质研究院实验室和西北大学大陆动力学国家重点实验室的老师在样品分析测试过程中提供了大量帮助。
-
图 1 西藏多龙矿集区区域地质图(据文献[14]修改)
1-第四系;2-上渐新统康托组;3-下白垩统美日切错组;4-中下侏罗统色哇组;5-下侏罗统曲色组;6-上三叠统日干配错组;7-早白垩世二长花岗斑岩;8-早白垩世花岗闪长斑岩;9-早白垩世石英斑岩;10-早白垩世石英闪长斑岩;11-早白垩世闪长斑岩;12-蛇纹石化橄榄岩;13-枕状玄武岩;14-辉绿岩;15-辉长岩;16-硅帽;17-整合接触界线;18-不整合接触界线;19-断层及编号;20-矿床位置;21-地表蚀变范围;22-遥感影像提取的环形构造;23-工程控制矿体范围;24-取样位置
Figure 1. Regional geological map of the Duolong ore concentration area, Tibet (modified after reference [14])
1-Quaternary; 2-Upper Oligocene Kangtuo Formation; 3-Lower Cretaceous Meiritiecuo Formation; 4-Lower-Middle Jurassic Sewa Formation; 5-Lower Jurassic Quse Formation; 6-Upper Riganpeicuo Formation; 7-Early Cretaceous monzonitic granite porphyry; 8-Early Cretaceous granodiorite porphyry; 9-Early Cretaceous quartz porphyry; 10-Early Cretaceous quartz diorite porphyrite; 11-Early Cretaceous dioritic porphyrite; 12-Serpentinized olivinite; 13-Pillow basalt; 14-Diabase; 15-Gabbro; 16-Silicified cap; 17-Conformity; 18-Unconformity; 19-Fault and its serial number; 20-Positon of ore deposit; 21-Alteration range at surface; 22-The ring structure of remote sensing image; 23-Controlled orebody range; 24-Sampling site
图 2 色那矿区地质图(据文献[30]修改)
1-第四系; 2-中-下侏罗统色哇组二段; 3-中-下侏罗统色哇组一段; 4-早白垩世石英闪长玢岩;5-钻孔位置及编号;6-采样位置;7-矿体范围
Figure 2. Geological map of the Sena deposit (modified after reference[30])
1-Quaternary; 2-Lower-Middle Jurassic Sewa Formation 2nd member; 3-Lower-Middle Jurassic Sewa Formation 1st member; 4-Early Cretaceous quartz diorite porphyrite; 5-Drill hole and its serial number; 6-Sampling site; 7-Controlled orebody range
图 3 多龙矿集区色那矿区石英闪长玢岩岩野外露头与镜下照片
a-野外露头;b-岩石手标本;c-单偏光镜下照片;d-正交偏光镜下照片;Pl-斜长石,Hb-角闪石;Q-石英;Mt-磁铁矿
Figure 3. Field and petrographic photos of quartz diorite porphyrite in the Sena deposit of the Duolong ore concentration area
a-Outcrops; b-Rock specimens; c-Plainlight; d-Crossed nicols; Pl-Plagioclase; Hb-Hornblende; Q-Quartz; Mt-Magnetite
图 4 多龙铜金矿集区色那矿区石英闪长玢岩锆石阴极发光图像(a)、Th-U协变图(b)、LA-ICP-MS U-Pb加权平均年龄图(c)与谐和年龄图(d)
Figure 4. Cathodoluminescence (CL) images (a) and covariant diagram (b) of Th-U, concordia diagrams (c) and weighted ages (d) for zircons from quartz diorite porphyrite in the Sena deposit of the Duolong ore concentration area
图 6 多龙铜金矿集区色那矿区石英闪长玢岩的稀土配分模式(a)和微量元素蛛网图(b)(据文献[41])
Figure 6. Chondrite-normalized rare earth elements patterns (a) and trace element spidergrams (b) from quartz diorite porphyrite in the Sena deposit of the Duolong ore concentration area
图 9 西藏多龙矿集区的成矿模式简图(据文献[87]修改)
Figure 9. Simplified metallogenic model of the Sena deposit of the Duolong ore concentration area
表 1 多龙矿集区色那金矿石英闪长玢岩LA-ICP-MS锆石U-Pb年龄分析数据
Table 1 U-Pb zircon dating results of quartz diorite porphyrite in the Sena deposit of the Duolong ore concentration area
表 2 多龙矿集区色那金矿石英闪长玢岩锆石Lu-Hf同位素组成
Table 2 Zircon Lu-Hf isotopic composition of quartz diorite porphyrite in the Sena deposit of the Duolong ore concentration area
表 3 多龙铜金矿集区色那矿区石英闪长玢岩主量元素(%)、微量元素分析结果(10-6)
Table 3 Major (%) and trace (10-6) element analyzing results of quartz diorite porphyrite in the Sena deposit of the Duolong ore concentration area
表 4 多龙矿集区岩浆岩成岩年龄
Table 4 Ages of magmatic rocks from the Duolong ore concentration area
-
[1] 唐菊兴, 孙兴国, 丁帅, 等.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J].地球学报, 2014, 35(1):6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm Tang Juxing, Sun Xingguo, Ding Shuai, et al. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating Area, Tibet[J]. Acta Geoscientica Sinica, 2014, 35(1): 6-10(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201401002.htm
[2] 宋扬, 唐菊兴, 曲晓明, 等.西藏班公湖-怒江成矿带研究进展及一些新认识[J].地球科学进展, 2014, 29(7):795-809. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201407006.htm Song Yang, Tang Juxing, Qu Xiaoming, et al. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science, 2014, 29(7): 795-809(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201407006.htm
[3] 赵元艺, 刘妍, 崔玉斌, 等.西藏班公湖-怒江成矿带与邻区铟矿化带的发现及意义[J].地质论评, 2010, 56(4):568-578. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201004013.htm Zhao Yuanyi, Liu Yan, Cui Yubin, et al. Discovery and significance of indium mineralization belt in Bangong Lake-Nujiang River metallogenic belt and adjacent regions in Xizang (Tibet)[J]. Geological Review, 2010, 56(4):568-578(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201004013.htm
[4] 曲晓明, 辛洪波.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报, 2006, 25(7):792-799. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm Qu Xiaoming, Xin Hongbo. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China[J]. Geological Bulletin of China, 2006, 25(7):792-799(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200607005.htm
[5] 李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, 24(3):531-543. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm Li Jinxiang, Li Guangming, Qin Kezhang, et al. Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu Belt, Tibet: Constraints on metallogenic tectonic settings[J]. Acta Petrologica Snicia, 2008, 24(3):531-543(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803013.htm
[6] 佘宏全, 李进文, 马东方, 等.西藏多不杂斑岩铜矿床辉钼矿ReOs和锆石U-Pb SHRIMP测年及地质意义[J].矿床地质, 2009, 28(6):737-746. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm She Hongquan, Li Jinwen, Ma Dongfang, et al. Molybdenite ReOs and SHRIMP zircon U-Pb dating of Duobuza porphyry copper deposit in Tibet and its geological implications[J]. Mineral deposits, 2009, 28(6):737-746(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906002.htm
[7] 陈华安, 祝向平, 马东方, 等.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2013, 87(10): 1593-1611. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm Chen Huaan, Zhu Xiangping, Ma Dongfang, et al. Geochronology and geochemisitry of the Bolong porphyry Cu-Au deposit, Tibet and its mineralizing significance[J]. Acta Geologica Sinica, 2013, 87(10): 1593-1611(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310009.htm
[8] Li J X, Li G M, Qin K Z, et al. High-temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, Northern Tibet[J]. Geofluids, 2011, 11(2):134-143. doi: 10.1111/gfl.2011.11.issue-2
[9] Li J X, Qin K Z, Li G M, et al. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenetic belt, Tibet: evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2011, 41(6): 525-536. doi: 10.1016/j.jseaes.2011.03.008
[10] Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics[J]. Lithos, 2013, 160-161, 216-227. doi: 10.1016/j.lithos.2012.12.015
[11] Li J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications[J]. Lithos, 2014, 198-199(1): 77-91. https://www.researchgate.net/publication/261293714_Geochronology_geochemistry_and_zircon_Hf_isotopic_compositions_of_Mesozoic_intermediate-felsic_intrusions_in_central_Tibet_Petrogenetic_and_tectonic_implications
[12] 李光明, 段志明, 刘波, 等.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义[J].地质通报, 2011, 30(8): 1256-1260. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108012.htm Li Guangming, Duan Zhiming, Liu Bo, et al. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang suture zone, Tibet, and its geologic significance[J]. Geological Bulletin of China, 2011, 30(8):1256-1260(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201108012.htm
[13] 段志明, 李光明, 张晖, 等.西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束[J].地质通报, 2013, 32(5): 742-750. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201305007.htm Duan Zhiming, Li Guangming, Zhang Hui, et al. The formation and its geologic significance of late Triassic-Jurassic accretionary complexes and constraints on metallogenic and geological setting in Duolong porphyry copper gold ore concentration area, northern Bangong Co-Nujiang suture zone, Tibet[J]. Geological Bulletin of China, 2013, 32(5):742-750(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201305007.htm
[14] 杨超, 唐菊兴, 王艺云, 等.西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究[J].矿床地质, 2014, 33(6): 1287-1305. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406010.htm Yang Chao, Tang Juxing, Wang Yiyun, et al. Fluid and geological characteristics researches of Southern Tiegelong epithemal porphyry Cu-Au deposit in Tibet[J]. Mineral Deposits, 2014, 33(6):1287-1305(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201406010.htm
[15] 方向, 唐菊兴, 宋杨, 等.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义[J].地球学报, 2015, 36(2):168-176. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502006.htm Fang Xiang, Tang Juxing, Song Yang, et al. Formation epoch of the South Tiegelong supelarge epithermal Cu (Au-Ag) deposit in Tibet and its geological implications[J]. Acta Geoscientica Sinica, 2015, 36(2):168-176(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502006.htm
[16] 李兴奎, 李才, 孙振明, 等.西藏赛角铜金矿闪长岩LA-ICP-MS锆石U-Pb年龄、Hf同位素和地球化学特征及成矿意义[J].地质通报, 2015, 34(5):908-918. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201505011.htm Li Xingkui, Li Cai, Sun Zhenming, et al. Zircon U-Pb geochronology, Hf isotope, and whole-rock geochemistry of diorite in the Saijiao Cu-Au deposit, Tibet, and its ore-forming significance[J]. Geological Bulletin of China, 2015, 34(5):908-918(in Chinese with English abstract).. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201505011.htm
[17] 孙振明.西藏班-怒成矿带西段多龙矿集区铜金成矿作用与成矿规律[D].长春:吉林大学, 2015: 1-160. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015593147.htm Sun Zhenming. Copper-gold Mineralization and metallogenic Regularity of Duolong Mineralization area in Western Bangongco-Nujiang Metallogenic Belt, Tibet[D]. Changchun: Jilin University, 2015: 1-160(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-10183-1015593147.htm
[18] 王勤, 唐菊兴, 方向, 等.西藏多龙矿集区铁格隆南铜(金银)矿床荣那矿段安山岩成岩背景:来自锆石U-Pb年代学、岩石地球化学的证据[J].中国地质, 2015, 42(5): 1324-1336. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150511&flag=1 Wang Qin, Tang Juxing, Fang Xiang, et al. Petrogenetic setting of andsites in Rongna ore block, Tiegelong Cu (Au-Ag) deposit, Duolong ore concentration area, Tibet: Evidence from zircon UPb LA-ICP-MS dating and petrogeochemistry of andsites[J]. Geology in China, 2015, 42(5):1324-1336(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20150511&flag=1
[19] 郭硕.西藏改则县多龙矿集区矿床模型与应用[D].中国地质大学(北京). 2013: 1-114. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013265929.htm Guo Shuo. Mineral Deposit Model of the Duolong Deposit Cluster in Gaize County, Tibet and Its Application[D]. A Dissertation Submitted to China University of Geosciences for Master Degree, 2013: 1-114(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-11415-1013265929.htm
[20] 吕立娜.西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型[D].北京:中国地质科学院, 2012: 1-219. http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371246.htm Lv Lina. Metallogenic Model of Rich Iron and Copper (gold) Deposits in Western Part of Bangong Co-Nujiang Metallogenic Belt, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 2012: 1-219(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371246.htm
[21] 丁帅.西藏改则县拿若铜(金)矿地质特征研究[D].成都:成都理工大学, 2014: 1-61. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015535341.htm Ding Shuai. The Study of Geological Characteristics of Naruo Copper (gold) Deposit in Gaize, Tibet[D]. Chengdu: Chengdu University of Technology, 1-61(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-10616-1015535341.htm
[22] 祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报, 2011, 27(7):2159-2164. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htm Zhu Xiangping, Chen Huaan, Ma Dongfang, et al. Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance[J]. Acta Petrologica Sinica, 2011, 27(7):2159-2164(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107024.htm
[23] 祝向平, 陈华安, 马东方, 等.西藏多不杂斑岩铜金矿钾长石40Ar/39Ar年龄及其地质意义[J].现代地质, 2012, 26(4):656-662. Zhu Xiangping, Chen Huaan, Ma Dongfang, et al. 40Ar/39Ar Dating for K-feldspar from Duobuza porphyry copper-gold deposit in Tibet, China and its geological significance[J]. Geoscience, 2012, 26(4):656-662(in Chinese with English abstract).
[24] 祝向平, 陈华安, 马东方, 等.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄值及其地质意义[J].矿床地质, 2013, 32(5):954-962. http://www.cqvip.com/qk/93610x/201305/47673887.html Zhu Xiangping, Chen Huaan, Ma Dongfang, et al. 40Ar/39Ar dating of hydrothermal K-feldspar and hydrothermal sericite from Bolong porphyry Cu-Au deposit in Tibet[J]. Mineral Deposits, 2013, 32(5):954-962(in Chinese with English abstract). http://www.cqvip.com/qk/93610x/201305/47673887.html
[25] 祝向平, 陈华安, 刘鸿飞, 等.西藏拿若斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J].地质学报, 2015, 89(1): 109-128. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm Zhu Xiangping, Chen Huaan, Liu Hongfei, et al. Geochronology and geochemistry of porphyries copper deposit, Tibet and their metallogenic significance[J]. Acta Geologica Sinica, 2015, 89(1): 109-128(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201501009.htm
[26] 西藏自治区地质调查院.改则县色那铜金矿24号勘探线剖面图, 2010. Geological Survey Institute of Tibet Autonomous Region. No. 24 Exploration Line Profile Of Copper and Gold Deposit in Gaize County[R]. 2010(in Chinese)
[27] Shi R D. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin, 2007, 52(7):936-941. doi: 10.1007/s11434-007-0134-z
[28] Yin A, Harrison T M. Geologic evolution of the HimalayanTibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
[29] 潘桂棠, 朱弟成, 王立全, 等.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘, 2004, 11(4):371-382. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404005.htm Pan Guitang, Zhu Dicheng, Wang Liquan, et al. Bangong LakeNu River suture zone--the northern boundary of Gondwanaland: Evidence from geology and geophysics[J]. Earth Science Frontiers, 2004, 11(4):371-382(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404005.htm
[30] 西藏五队地质队.西藏班公湖-怒江成矿带西段铜多金属资源调查[R].成都:成都地质调查中心, 2009. No.5 Geological Party of Geological Prospecting Bureau of Tibet Autonomous Region. Copper Polymetallic Resources Survey of Tibet Bangong Lake Nu River Metallogenic Belt[R]. 2010(in Chinese)
[31] Qu X M, Hou Z Q, Li Y G. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau[J]. Lithos, 2004, 74(3/4):131-148. http://www.academia.edu/14455616/Melt_components_derived_from_a_subducted_slab_in_late_orogenic_ore-bearing_porphyries_in_the_Gangdese_copper_belt_southern_Tibetan_plateau
[32] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32(3):247-265. doi: 10.1111/ggr.2008.32.issue-3
[33] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2):537-571. doi: 10.1093/petrology/egp082
[34] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm Hou Kejun, Li Yanhe, Tian Yourong. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4):481-492(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
[35] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1/2):100-118. http://www.oalib.com/references/19246876
[36] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews of Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027
[37] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4):215-224. https://www.researchgate.net/publication/223901164_Naming_materials_in_the_magmaigneous_rock_system
[38] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic-rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
[39] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[40] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5):523-548. doi: 10.1139/e71-055
[41] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[42] Patchett P J, Kouvo O, Hedge C E, et al. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopic[J]. Contributions to Mineralogy and Petrology, 1982, 78(3):279-297. doi: 10.1007/BF00398923
[43] Knudsen T L, Criffin W, Hartz E, et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeted crustal reworking[J]. Contributions to Mineralogy and Petrology, 2001, 141(1):83-94. doi: 10.1007/s004100000220
[44] Kinny P D. Lu-Hf and Sm-Nd isotope systems in zircon[J]. Review Mineralogy Geochemistry, 2003, 53(1):327-341. doi: 10.2113/0530327
[45] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf isotopic systematic and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[46] 李世民.班公湖-怒江特提斯洋北向俯冲过程:西羌塘地块晚侏罗世岩浆岩约束[D].中国地质大学(北京), 2015:1-92. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015389785.htm Li Shiming. Northward Subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic Magmatic Rocks in Western Qiangtang Terrane[D]. Beijing: China University of Geosciences, 2015:1-92(in Chinese with English abstract). http://cdmd.cnki.com.cn/Article/CDMD-11415-1015389785.htm
[47] Gill J B. Orogenic Andesites and Plate Tectonics[M]. Mineral and Rocks, 1981, 16(339):277-278.
[48] Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1):175-204. doi: 10.1146/annurev.ea.21.050193.001135
[49] Tatsumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from a subducted lithosphere and the origin of arc magmas: Evidence from high-pressure experiments and natural rocks[J]. Journal of Volcanology and Geothermal Research, 1986, 29(1/4):293-309.
[50] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1):251-285. doi: 10.1146/annurev.ea.23.050195.001343
[51] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
[52] Pearce J A, Harris N B W, Tigdle A G. Trace element discrimination diagram for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
[53] Castillo P R. Adakite petrogenesis[J]. Lithos, 2012, s134-135(3): 304-316.
[54] Allegre C J, Minster J F. Quantitative models of trace element behaviour in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1):1-25. doi: 10.1016/0012-821X(78)90123-1
[55] Morrison G W. Characteristics and tectonic setting of the shoshonite rock association[J]. Lithos, 1980, 13(1):97-108. doi: 10.1016/0024-4937(80)90067-5
[56] Müllker D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: Apilot study[J]. Mineralogy and Petrology, 1992, 46(4):259-289. doi: 10.1007/BF01173568
[57] Batchlor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using muticationic parameters[J]. Chemical Geology, 1985, 48(1/4):43-55.
[58] Condie K C, Bowling G P, Allen P. Origin of granites in an Archean high-grade terrane, southern India[J]. Contributions to Mineralogy and Petrology, 1986, 92(1): 93-103. doi: 10.1007/BF00373967
[59] Boztug D, Harlavan Y, Arehart G B. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Diverigi-Sivas region, eastern-central Anatolia, Turkey[J]. Lithos, 2007, 97(1-2):193-218. doi: 10.1016/j.lithos.2006.12.014
[60] Kemp A I, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 2007, 315(5814): 980-983. doi: 10.1126/science.1136154
[61] Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos, 2014, 205(9): 284-297. https://www.researchgate.net/profile/Di-Cheng_Zhu/publication/264124028_Northward_subduction_of_Bangong-Nujiang_Tethys_Insight_from_Late_Jurassic_intrusive_rocks_from_Bangong_Tso_in_western_Tibet/links/53e4c0a10cf25d674e94e571.pdf
[62] Ratajeski K, Sisson T W, Glazner A F. Experimental and geochemical evidence for derivation of the El Capitan Granite, California, by partial melting of hydrous gabbroic lower crust[J]. Contributions to Mineralogy and Petrology, 2005, 149(6): 713-734. doi: 10.1007/s00410-005-0677-4
[63] McCarron J J, Smellie J L. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica[J]. Journal of the Geological Society, 1998, 155(2):269-280. doi: 10.1144/gsjgs.155.2.0269
[64] 董申保.近代花岗岩研究的回顾[J].高校地质学报, 1995, 1(2): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.000.htm Dong Shenbao. A general review on the recent studies of granite[J]. Geological Journal of China Universities, 1995, 1(2):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX502.000.htm
[65] DePaolo D J, Wasserburg G J. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd[J]. Geophysical Research Letters, 1976, 3(12):743-746. doi: 10.1029/GL003i012p00743
[66] Jacobson S B and Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155. doi: 10.1016/0012-821X(80)90125-9
[67] 莫宣学, 邓晋福, 董方浏, 等.西南三江造山带火山岩-构造组合及其意义[J].高校地质学报, 2001, 7(2): 121-138. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200102000.htm Mo Xuanxue, Deng Jinfu, Dong Fangliu, et al. Volcanic petrotectonic assemblages in Sanjiang Orogenic Belt, SW China and implication for tectonics[J]. Geological Journal of China Universities, 2001, 7(2):121-138(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200102000.htm
[68] 董国臣, 莫宣学, 赵志丹, 等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息[J].岩石学报, 2008, 24(2):203-210. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802004.htm Dong Guogong, Mo Xuanxue, Zhao Zhidan, et al. Gabbros from southern Gangdese: implication for mass exchange between mantle and crust[J]. Acta Petrologica Sinica, 2008, 24(2):203-210(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802004.htm
[69] Weaver B L, Tarney J. Empirical approach to estimating the composition of the continental crust[J]. Nature, 1984, 310(5978): 575-577. doi: 10.1038/310575a0
[70] Taylor S R and Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262
[71] 邱瑞照, 周肃, 邓晋福, 等.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定--兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 2004, 31(3):262-268. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20040304&flag=1 Qiu Ruizhao, Zhou Su, Deng Jinfu, et al. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangong CoNujiang ophiolite belt, Tibet--with a discussion of the age of the Bangong Co-Nujiang ophiolite belt[J]. Geology in China, 2004, 31(3):262-268(in Chinese with English abstract). http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20040304&flag=1
[72] Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe district of western Tibet[J]. Tectonics, 2003, 22(4): 3-1, 3-25. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200312002056.htm
[73] Girardeau J, Marcoux J, Allegre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao Ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307(5946):27-31. doi: 10.1038/307027a0
[74] Pearce J A, Deng W. The ophiolites of the Tibet geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986)[J]. Philosophical Transactions of the Royal Society, 1988, 327(1594): 215-238. doi: 10.1098/rsta.1988.0127
[75] Hsu K J, Pan G T, Sengor A M C. Tectonic evolution of the Tibetan plateau:a working hypothesis based on the archipelago model of orogenesis[J]. International Geology Review, 1995, 37(6):473-508. doi: 10.1080/00206819509465414
[76] Matte P, Taponnie P, Arnaud N, et al. Tectonics of western Tibet, between the Taeirns and the Indus[J]. Earth and Planetary Science Letters, 1996, 142(3):311-320. http://www.docin.com/p-941007269.html
[77] Murphy M A, Harrison T M, Durr S B, et al. Significant crustal shortening in south-central Tibet prior to the Indo-Asian collision[J]. Geology, 1977, 25(8):719-722.
[78] Guynn J H, Kapp P, Pellen A, et al. Tibetan basement rocks near Amdo reveal 'missing' Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34(6):505-508. doi: 10.1130/G22453.1
[79] Ding L, Kapp P, Zhong D L, et al. Early Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10):1833-1865. doi: 10.1093/petrology/egg061
[80] 朱弟成, 潘桂棠, 莫宣学, 等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报, 2006, 80(9):1312-1328. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. Identification of the Mesozoic OIB-type basalts in central Qinghai-Tibetan plateau: geochronology, geochemistry and their tectonic setting[J]. Acta Geologica Sinica, 2006, 80(9):1312-1328(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609008.htm
[81] 朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2006, 22(3): 534-546. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: new insights from volcanic rocks[J]. Acta Petrologica Sinica, 2006, 22(3):534-546(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
[82] 任纪舜, 肖黎薇. 1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J].地质通报, 2004, 23(1):1-11. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401002.htm Ren Jishun, Xiao Liwei. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250000 geological mapping[J]. Geological Bulletin of China, 2004, 23(1):1-11(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200401002.htm
[83] Shi R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone[J]. Journal of Asian Earth Sciences, 2008, 32(5-6):438-457. doi: 10.1016/j.jseaes.2007.11.011
[84] Cooke D, Hollings P, Walshen J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818 doi: 10.2113/gsecongeo.100.5.801
[85] Hildreth W. and Moorbath S. Crustal contributions to arc magmatism in the Andes of Central Chile[J]. Contributions to Mineralogy and Petrology, 1988, 98(4):455-489. doi: 10.1007/BF00372365
[86] Wilkinson J J. Triggers for the formation of porphyry ore deposits in magmatic arcs[J]. Nature Geoscience, 2013, 6: 917-925. doi: 10.1038/ngeo1940
[87] Richards J P. Tectono-magmatic precursors for porphyry Cu (MoAu) deposit formation[J]. Economic Geology, 2003, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515