The formation process and Mo (W) mineralizaton of the skarn in the Nannihu-Sandaozhuang Mo (W) deposit
-
摘要:
通过野外地质、光学显微镜以及背散射(BSE)电子图像的观察,南泥湖-三道庄钼(钨)矿床中矽卡岩的形成过程为:第一期流体首先与靠近岩体的大理岩发生反应生成硅灰石、钙铁榴石、钙铝榴石、钙铁辉石和透辉石,当流体继续向外运移遇到灰岩时,直接将其交代形成透辉石矽卡岩或曲卷纹层状透辉石矽卡岩;第二期流体则沿裂隙向围岩中呈面型分布,叠加交代第一期矽卡岩化过程。据此,石榴子石和辉石可以划分为两个世代,第一世代石榴子石(Gro3-82And15-96)呈斑点状,第一世代辉石(Di18-86Hd13-70Jo0-13)可与斑点状石榴子石共生,也可与斜长石(Ab55-70An30-44)共生;第二世代石榴子石(Gro23-58And37-74)呈面型分布,第二世代辉石(Di0-68Hd28-84Jo3-16)沿裂隙呈面型向围岩中展布。第一世代石榴子石和辉石在空间上分布范围较第二世代广。钼钨矿化在矽卡岩的最早阶段即已开始,贯穿整个矽卡岩的形成过程,引起钼钨沉淀的原因可能是具有较高钼钨含量的流体与围岩发生反应时引起的局部还原性环境。
Abstract:Based on field observation and microscopic and backscattered electron (BSE) images, the authors recognized a two-stage formation process of the skarn in the Nannihu-Sandaozhuang Mo (W) deposit. At the first stage, the fluid reacted with marble to form wollastonite, andradite, grossularite, hedenbergite and diopside. As the fluid migrated outward, the dark limestone was replaced by diopside skarn or wrigglite diopside skarn. At the second stage, the fluid spread into the wall rock along fractures to form new skarn which was superimposed on the earlier skarn. According to these observations, the skarn minerals such as garnet and pyroxene could be divided into two generations. The first generation of garnet GrtI) (Gro3-82And15-96) is spot-like in wollastonite marble or skarn, and the first generation of pyroxene (PxI) (Di18-86Hd13-70Jo0-13) could intergrow with GrtI in wollastonite marble or skarn and with plagioclase (Ab55-70An30-44) in wrigglite diopside skarn. The second generation of garnet (GrtII) (Gro23-58And37-74) and the second generation of pyroxene (PxII) (Di0-68Hd28-84Jo3-16) were superimposed on GrtI and PxI with smaller space area. The mineralization of molybdenite and scheelite commenced at the very beginning of skarnization and covered the whole skarn formation process. The local reducing environment, induced by the reaction between the fluid with adequate concentration of Mo and W elements and the wall rocks might have triggered metal precipitation.
-
Keywords:
- eastern Qinling /
- western Henan Province /
- Sandaozhuang /
- skarn /
- molybdenite
-
致谢: 野外工作得到洛钼集团矿山公司孔海涛、王迪、李亮、徐森民、黄超、杨敬国、王文坤和王洛峰等同志的大力支持与协助, 审稿专家及责任编辑老师对论文提出了宝贵修改意见, 在此表示衷心感谢!
-
图 6 三道庄矿区2009年7月采场斜坡面地质图
1-黑云母长英角岩; 2-石英岩; 3-透辉石斜长石角岩; 4-大理岩; 5-硅灰石大理岩; 6-斑点状石榴子石硅灰石大理岩; 7-条带状石榴子石硅灰石大理岩; 8-硅灰石矽卡岩; 9-石榴子石矽卡岩; 10-辉石矽卡岩; 11-条带状石榴子石矽卡岩; 12-矽卡岩
Figure 6. Geological map of slope surface in the Sandaozhuang mining pit in July 2009
1-Biotite felsic hornfels; 2-Quartzite; 3-Diopside plagioclase hornfels; 4-Marble; 5-Wollastonite marble; 6-Wollastonite marble with dotted garnet; 7-Wollastonite marble with banded garnet; 8-Wollastonite skarn; 9-Garnet skarn; 10-Pyroxene skarn; 11-Garnet skarn with banded pyroxene; 12-skarn
图 7 反映灰岩-大理岩-矽卡岩形成过程的手标本和野外照片
a-灰黑色的大理岩化灰岩发生大理岩化呈残留体出现在大理岩中; b-灰黑色的灰岩发生大理岩化; c-结晶方解石呈团块状残留体被硅灰石包裹, 其中可见斑点状的石榴子石; d-在离岩体露头较远的矿区采场最东端, 可见硅灰石大理岩呈残留体出现在透辉石矽卡岩中, 硅灰石大理岩中网状裂隙发育, 而矽卡岩中裂隙数量明显要少, 两者都被充填有方解石-黄铁矿脉的共轭节理切割; e-钙铁辉石矽卡岩沿裂隙向两侧呈波状伸入含有斑点状石榴子石的硅灰石大理岩中; f-硅灰石岩和灰岩呈残留体出现在纹层状透辉石矽卡岩中, 石榴子石呈面状或脉状切割前两者
Figure 7. Photographs of hand specimen and the field illustrating the evolution process from limestone to marble and then to skarn
a-Marbleized grayish black limestone relics in white marble; b-Marbleized grayish black limestone; c-wollastonite marble as relics in diopside skarn; d-The density of netted fractures in skarn is much smaller than that in wollastonite marble, but both are cut by conjugated joint filled with calcite and pyrite; e-Hedenbergitic pyroxene spreads along fractures and laterally extends into wollastonite marble with dotted garnet; f-Wollastonite and limestone as relic in wrigglite skarn. Garnet as veinlet does not emerge in wrigglite skarn
图 8 反映灰岩-曲卷纹层状矽卡岩-钙铁辉石矽卡岩形成过程的野外照片
a-透辉石矽卡岩沿裂隙向灰岩内部延伸; b-透辉石矽卡岩呈枝杈状沿裂隙向灰岩内部延伸, 含有浸染状辉钼矿化的深色钙铁辉石矽卡岩呈枝杈状伸入浅色透辉石矽卡岩中; c-透辉石矽卡岩沿裂隙延伸入灰岩, 其曲卷纹层与其和灰岩的接触面近平行, 卷曲纹层由透辉石与斜长石呈韵律互层而成; d-曲卷纹层状矽卡岩中可见灰岩的残留体出现, 而钙铁辉石矽卡岩的形成则破坏了这种曲卷纹层状构造, 形成块状构造
Figure 8. Photographs of the field illustrating the evolution process from limestone to wrigglite skarn and then to pyroxene skarn
a-Light colored diopsode skarn extends into limestone alone fractures; b-Light colored diopsode skarn into which dark colored hedenbergite skarn with disseminated molydenite dendritically extends into limestone along ractures. c-Light colored diopsode skarn extends into limestone along fractures. The rhythmical band which is composed of diopside layer and plagioclase layer of wrigglite skarn is nearly parallel to its contact surface with limestone. d-Limestone as relics exists in the wrigglite skarn whose rhythmical band structure is destroyed by massive structure of the hedenbergite skarn which contains disseminated molybenite
图 9 反映石榴子石矽卡岩形成过程的手标本及露头照片
a-斑点状石榴子石硅灰石大理岩, 石榴子石为钙铁榴石, 黄褐色, 呈斑点状, 颗粒大小( < 5 mm)和分布都较均匀; b-当硅灰石和方解石全部被钙铁榴石交代后, 就形成了钙铁榴石矽卡岩; c-斑点状钙铁榴石硅灰石大理岩中的硅灰石和方解石被钙铁辉石交代; d-斑点状石榴子石硅灰石大理岩, 石榴子石为钙铝榴石, 肉红色, 斑点大于10 mm, 分布不均, 当这些斑点逐渐长大连在一起时, 可形成条带状构造; e-斑点状石榴子石硅灰石大理岩中的硅灰石和方解石被钙铁辉石交代, 钙铝榴石则被钙铁榴石交代; f-当Fig. 8e中的硅灰石和大理岩被钙铁辉石完全交代时, 形成矽卡岩, 钙铁榴石呈斑点状; g-当斑点状钙铝榴石逐渐扩大, 可以形成块状石榴子石矽卡岩; h-硅灰石和方解石被辉钼矿取代, 辉钼矿充填斑点状或条带状石榴子石间隙; i-当钙铁榴石呈脉状交代围岩时, 伴随着灰白色透辉石被钙铁辉石交代; j-条带状石榴子石硅灰石大理岩; k-条带状石榴子石硅灰石大理岩中的硅灰石和方解石沿裂隙被钙铁辉石交代, 形成纹层状钙铁辉石矽卡岩; l-纹层状钙铁辉石矽卡岩被交代形成块状石榴子石矽卡岩; m-斑点状石榴子石在硅灰石大理岩中不均匀分布, 含辉钼矿石英脉两侧发育有石榴子石, 石榴子石与硅灰石之间存在一层钙铁辉石; n-伴随着石英脉的侵入, 石榴子石向两侧呈火焰状伸入硅灰石大理岩中; o-若含辉钼矿石英脉侵入, 石榴子石完全交代硅灰石大理岩, 则形成具浸染状辉钼矿化的石榴子石矽卡岩
Figure 9. Photographs of hand specimen and outcrop features illustrating the garnet skarn formation process
a-Andraditic garnet in yellowish brown color, mostly smaller than 5mm is evenly scattered as spots in the wollastonite marble.b-assive garnet skarn is formed whenwollastonite and calcite are largely replaced by dotted andraditic garnet; c-Wollastonite marble with dotted andraditic garnet is replaced by hedenbergitic pyroxene, andgarnet changes little.d-Grossularitic garnet, of flesh-red color, is uneven in grain size or distributed as spots in the wollastonite marble.When some grains becomebigger and join together, the banded structure is formed; e-In wollastonite marble with dotted grossularitic garnet, wollastonite and calcite is replaced by hedenbergiticpyroxene and grossularitic garnet changes to andraditic; f-When wollastonite and calcite in wollastonite marble are completely replaced by hedenbergitic pyroxene, skarnwith dotted andraditic garnet is formed; g-When the dotted grossularitic garnet grains become bigger and join together, massive garnet skarn would form; hWollastonite and calcite in wollastonite marble are replaced by molybdenite, which is the interstitial filling between garnet grains; i-As andraditic garnet veinlet occurs, diopsidic pyroxene with light color is replaced by dark hedenbergitic pyroxene; j-Wollastonite marble with garnet band; k-Wollastonite and calcite in wollastonitemarble with garnet band is replaced by hedenbergitic pyroxene, forming banded skarn; l-Massive garnet skarn replaces banded skarn.m-Dotted garnet grains arescattered unevenly in wollastonite marble.Hedenbergitic pyroxene exists between wollastonite of wall rock and newly formed garnet which develops along themolybdenite-bearing quartz vein within a centimeter; n-As quartz vein cuts into wollastonite marble, garnet develops along the quartz vein and extends into wollastonitemarble in flame-like form; o-When wollastonite marble reacts with molybdenite-bearing quartz vein completely, garnet skarn with disseminated molybdenite is formed
图 10 反映矽卡岩矿物形成过程的透射光下显微照片
a-(正交光下)硅灰石与钙铝榴石、方解石共生, 细粒纤维状硅灰石向各个方向生长并交代方解石, 钙铝榴石具均质性, 其边缘呈圆齿状伸入硅灰石、方解石中。指示如下化学反应的存在: CaCO3[方解石]+SiO2[流体]=CaSiO3[硅灰石]+CO2[流体], 3CaCO3[方解石]+Al2O3· 3SiO2[流体]=Ca3Al2Si3O12[钙铝榴石]+3CO2[流体]; b-(正交光下)放射状硅灰石与钙铝榴石和透辉石共生, 辉石边缘锯齿状被硅灰石包裹, 含有硅灰石矿物残留体的石榴子石呈圆齿状与硅灰石接触。指示如下化学反应的存在: 3CaSiO3[硅灰石]+Al2O3[流体]=Ca3Al2Si3O12[钙铝榴石], CaSiO3[硅灰石]+MgO· SiO2[流体]=CaMgSi2O6 [透辉石]; c-(单偏光下)钙铁辉石交代大理岩的前缘, 方解石与钙铁辉石共生, 方解石晶粒可大于500 μm, 而辉石颗粒多小于50 μm, 与辉石直接接触的方解石边缘呈圆齿状。指示如下化学反应的存在: CaCO3[方解石]+FeO· 2SiO2[流体]=CaFeSi2O6 [钙铁辉石]+CO2[流体]; d-(正交光下)硅灰石与钙铁辉石和钙铁榴石共生, 辉石和石榴子石交代硅灰石。指示如下化学反应的存在: CaSiO3[硅灰石]+FeO· SiO2[流体]=CaFeSi2O6 [钙铁辉石]; 3CaSiO3[硅灰石]+Fe2O3[流体]=Ca3Fe2Si3O12[钙铁榴石].Cal=方解石, Wo=硅灰石, Gro=钙铝榴石, And=钙铁榴石, Di=透辉石, Hd=钙铁辉石
Figure 10. Photomicrographs in transmitted light showing the skarn mineral formation process
a-(crossed nicols) Wollastonite intergrows with calcite and grossularitic garnet.Fine grained wollastonite grows in different directions and replacescalcite.Grossularitic garnet is homogeneous and its margin is of scalloped shape extending into calcite and wollastonite.The reaction is as follows:CaCO3[calcite]+SiO2[fluid]=CaSiO3[wollastonite]+CO2[fluid], 3CaCO3[calcite]+Al2O3· 3SiO2[fluid]=Ca3Al2Si3O12[grossularite]+3CO2[fluid].b-(crossed nicols) Radial wollastonite coexists with grossularitic garnet and hedenbergitic pyroxene.Pyroxene with serrate margin is wrapped bywollastonite, and garnet with minor wollastonite relics is of scalloped margin contacting with wollastonite.The reaction is as follows:3CaSiO3[wollastonite]+Al2O3[fluid]=Ca3Al2Si3O12[grossularite], CaSiO3[wollastonite]+MgO· SiO2[fluid]=CaMgSi2O6 [hedenbergite].c-(plainlighttransmitted light) The replacing front of hedenbergitic pyroxene in which calcite co-exists with pyroxene.Calcite grain is mostly larger than 500μm, whereas pyroxene grain is mostly smaller than 50μm.Calcite at the front is of scalloped margin.The reaction is as follows: CaCO3[calcite]+FeO·2SiO2[fluid]=CaFeSi2O6 [hedenbergite]+CO2[fluid].d-(crossed nicols) Wollastonite coexists with and is replaced by hedenbergitic pyroxene andandraditic garnet.The reaction is as follows: CaSiO3[wollastonite]+FeO· SiO2[fluid]=CaFeSi2O6 [hedenbergite]; 3CaSiO3[wollastonite]+Fe2O3[fluid]=Ca3Fe2Si3O12[andradite]
图 11 反映石榴子石形成过程的背散射电子图像(矿物名称缩写同图 10)
11a-自形硅灰石与他形钙铁榴石、方解石和石英共生, 指示了如下化学反应的存在:CaCO3[方解石]+SiO2[流体]→CaSiO3[硅灰石]+CO2[流体]; 3CaCO3[方解石]+(Al, Fe)2O3· 3SiO2[流体] → Ca3(Al, Fe)2Si3O12[钙铝-钙铁榴石固溶体系列]+3CO2[流体]; b-钙铝榴石边缘呈锯齿状伸入硅灰石中, 硅灰石也呈残留体出现在石榴子石中, 指示了如下化学反应的存在。3CaSiO3[硅灰石]+(Al, Fe)2O3[流体] → Ca3(Al, Fe)2Si3O12[钙铝-钙铁榴石固溶体系列]; c-石榴子石边缘呈锯齿状伸入方解石中, 石榴子石外层钙铁榴石分子含量较其内部要明显增多, 钙铝榴石中包裹有透辉石, 指示了如下化学反应的存在:3CaCO3[方解石]+(Al, Fe)2O3· 3SiO2[流体] → Ca3(Al, Fe)2Si3O12[钙铝-钙铁榴石固溶体系列]; d-钙铝榴石具环带结构, 与透辉石共生
Figure 11. BSE images revealing the garnet formation process (mineral name abbreviations as for Fig.10)
a-Intergrowth of euhedral wollastonite and anhedral grossularitic garnet, calcite and quartz.The reactions are as follows: CaCO3[calcite]+SiO2[fluid]→CaSiO3[wollastonite]+CO2[fluid], 3CaCO3[calcite]+(Al, Fe)2O3· 3SiO2[fluid] → Ca3(Al, Fe)2Si3O12[grossular-andradite solid solution]+3CO2[fluid]; b-Grossularitic garnet with dentate margin extends into wollastonite which is also included in garnet as relics.The reaction is asfollows: 3CaSiO3[wollastonite]+(Al, Fe)2O3[fluid] → Ca3(Al, Fe)2Si3O12[grossular-andradite solid solution].c-Grossularitic garnet with dentatemargin extends into calcite, and the andradite composition is much more enriched in the outer zone of garnet than that in the inner zone.The reactionis as follows: 3CaCO3[calcite]+(Al, Fe)2O3· 3SiO2[fluid] → Ca3(Al, Fe)2Si3O12[grossular-andradite solid solution].d-Grossularitic garnet withzone texture intergrows with diopsidic pyroxene
图 12 反映辉石形成过程的背散射电子图像(矿物名称缩写同图 10)
a-透辉石呈树枝状向硅灰石内部生长, 暗示了化学反应CaSiO3[硅灰石]+(Fe, Mg) O· SiO2[流体]=Ca (Fe, Mg) Si2O6[透辉石-钙铁辉石固溶体系列]的存在; b-钙铁辉石与石英、方解石共生, 暗示了化学反应CaCO3 [方解石]+(Mg, Fe, Mn) O· 2SiO2 [流体]=Ca (Mg, Fe, Mn) Si2O6 [透辉石-钙铁辉石-锰钙辉石固溶体系列]+CO2 [流体]的存在; c-钙铁辉石分子含量较高的透辉石呈树枝状向较纯的透辉石中生长并与钾长石紧密共生, 暗示了CaMgSi2O6 [透辉石]+FeO[流体]=CaFeSi2O6[钙铁辉石]+MgO[流体]的存在, 钾长石的出现说明流体富钾; d-辉石边缘呈锯齿状伸入与之共生的硅灰石中, 辉石具有环带结构, 随着颜色从深灰色向浅灰色转变, 透辉石中的钙铁辉石分子含量和锰钙辉石分子含量逐渐增加, 指示了化学反应CaSiO3[硅灰石]+(Mg, Fe, Mn) O· SiO2[流体]=Ca (Mg, Fe, Mn) Si2O6 [透辉石-钙铁辉石-锰钙辉石固溶体系列]的存在
Figure 12. BSE images revealing the pyroxene formation process
a-Wollastonite is changing to be dioposidic pyroxene indicating the reaction of CaSiO3[wollastonite]+(Fe, Mg) O· SiO2[fluid]=Ca (Fe, Mg) Si2O6[diopside-hedenbergite solid solution]; b-Strongly hedenbergitic pyroxene intergrows with quartz and calcite indicating the reaction processCaCO3 [calcite]+(Mg, Fe) O[fluid]+2SiO2 [quartz]=Ca (Mg, Fe) Si2O6 [diopside-hedenbergite solid solution]+CO2 [fluid]; c-Diopsidic pyroxeneof more hedenbergitic composition dendritically intergrows into strongly diopsidic pyroxene indicating the reaction CaMgSi2O6 [diopside]+FeO[fluid]=CaFeSi2O6[hedenbergite]+MgO[fluid].K-feldspar is the indicative of K-rich fluid; d-Pyroxene with indented margin intergrows withwollastonite, and the pyroxene is of zone texture in which diopsidic compositon is changing to hedenbergitic composition with increase ofjohannsenitic composition, gradually, as color changing from dark gray to light gray.The reaction CaSiO3[wollastonite]+(Mg, Fe, Mn) O·SiO2[fluid]=Ca (Mg, Fe, Mn) Si2O6 [diopside-hedenberdite-johannsenite solid solution] is used to explain this image
图 14 曲卷纹层状矽卡岩样品及其背散射电子图像(矿物名称缩写同图 10)
a-曲卷纹层状矽卡岩手标本, 纹层由透辉石-钙铁辉石和斜长石呈韵律互层构成; b-背散射电子图像, 方解石、斜长石和辉石共生, 白钨矿被钙铁辉石包裹, 斜长石与方解石之间还可见黄铁矿出现; c-背散射电子图像, 辉石与斜长石共生, 辉石和斜长石呈乳滴状互相镶嵌于对方, 辉钼矿多分布于斜长石中
Figure 14. Wrigglite skarn and its BSE images
a-Wrigglite skarn hand specimen; the rhythmic layers are dominately composed of plagioclases and dioposide (Di)-hedenbergite (Hd) solidsolution, respectively; b-BSE image showing the intergrowth of calcite (Cal), plagioclase (Ab68An33) and pyroxene.Pyrite is present betweencalcite and plagioclase, while sheelite is included in pyroxene; c-BSE image showing the plagioclase and pyroxene are mosaically scattered in eachother.Molybdenite (Mo) is mainly present in plagioclase
图 13 反映白钨矿和辉钼矿与进变质阶段矽卡岩矿物共生关系的背散射电子图像(矿物名称缩写同图 10)
a-白钨矿与方解石、透辉石和钙铁榴石紧密共生, 白钨矿中可见方解石矿物包裹体, 辉钼矿呈环带分布于白钨矿的白钨矿颗粒边缘; b-白钨矿与透辉石紧密共生, 白钨矿中可见辉钼矿矿物包裹体, 石英呈他形充填于透辉石晶粒之间; c-辉钼矿和白钨矿与钙铝榴石紧密共生; d-辉钼矿与钙铁榴石和透辉石共生
Figure 13. BSE images revealing the relationship between scheelite (Sch)-molybdenite (Mo) and prograde skarn minerals
a-Intergrowth of scheelite, calcite, dioposidic pyroxene and andraditic garnet.Some calcites are included in scheelite, in which the gray zonesrepresent molybdenite; b-Intergrowth of scheelite and dioposidic pyroxene.Molybdenite is included in scheelite and quartz fills the dioposidicpyroxene interstitial; c-Molybenite and scheelite intergrow with grossularic garnet; d-Molybdenite intergrows with andraditic garnet and dioposidicpyroxene
表 1 硅灰石电子探针分析数据(wt%)、离子数(以6个氧原子为基准)及端元组分(mol.%)
Table 1 Electron microprobe analyses (wt%), ion proportions (on the basis of 6 atoms of oxygen) of the wollastonite from different generations in the Sandaozhuang mining area
表 2 三道庄矿区不同世代石榴子石电子探针分析数据(wt%)、离子数(以12个氧原子为基准)及端元组分(mol.%)
Table 2 Electron microprobe analyses (wt%), ion proportions (on the basis of 12 atoms of oxygen) and end members (mole fraction, %) of the garnet from different generations in the Sandaozhuang mining area
表 3 辉石电子探针分析数据(wt%)、离子数(以6个氧原子为基准)及端元组分(mol.%)
Table 3 Electron microprobe analyses (wt%), ion proportions (on the basis of 6 atoms of oxygen) and end members (mole fraction, %) of the pyroxene from different generations in the Sandaozhuang mining area
表 4 矽卡岩中斜长石电子探针分析数据(wt%)、离子数(以8个氧原子为基准)和端员组分(mol.%)
Table 4 Electron microprobe analyses (wt%), ion proportions (on the basis of 8 atoms of oxygen) and end members (mole fraction, %) of the plagioclase from the skarn in the Sandaozhuang mining area
-
[1] 胡受奚, 林潜龙, 等.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社, 1988, 489. Hu Shouxi, Lin Qianlong, et al. The Geology and Metallogeny of the Amalgamation Zone between Ancient North China and South China Plate (Taking Qinling-Tongbai as an example)[M]. Nanjing: Nanjing University Press, 1988: 1-489(in Chinese with English abstract).
[2] 罗铭玖, 张辅民, 董群英, 等.中国钼矿床[M].郑州:河南科学技术出版社, 1991, 408. Luo Mingjiu, Zhang Fumin, Dong Qunying, et al. Molybdenum Deposits in China[M]. Zhengzhou: Henan Science and Technology Press, 1991: 1-408(in Chinese).
[3] Mao J W, Pirajno F, Xiang J F, et al. Mesozoic molybdenum Deposits in the east Qinling-Dabie orogenic belt: Characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43(1): 264-293. doi: 10.1016/j.oregeorev.2011.07.009
[4] 刘孝善, 吴澄宇, 严正富, 等.河南栾川南泥湖-三道庄铂(钨)矿床围岩蚀变的地质地球化学研究[J].地质找矿论丛, 1986, 1(4): 27-39. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK198604002.htm Liu Xiaoshan, Wu Chengyu, Yan Zhengfu, et al. Studies on geological geochemistry of wall-rock alteration of molybdenum (Tungsten) deposit from Nannihu-Sandaozhuang, Luanchuan County, Henan Province, China[J]. Contributions to Geology and Mineral Resources Research, 1986, 1(4): 27-39. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK198604002.htm
[5] 徐兆文, 任启江, 邱检生.河南省奕川三道庄和黄背岭矿区含矿矽卡岩的对比研究[J].矿物学报, 1995, 15(1): 88-97. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199501014.htm Xu Zhaowen, Ren Qijiang, Qiu Jiansheng. A comparative investigation of ore-bearing skarns in Sandaozhuang and Huangbeiling, Luanchuan County, Henan Province[J]. Acta Mineralogical Sinica, 1995, 15(1): 88-97(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199501014.htm
[6] 张国伟, 张本仁, 袁学诚, 等.秦岭造山带与大陆动力学[M].北京:科学出版社, 2001, 855 Zhang Guowei, Zhang Benren, Yuan Xuecheng, et al. Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 2001: 1-855(in Chinese with English abstract).
[7] Peng P, Zhai M G, Ernst R E, et al. A 1.78 Ga large igneous province in the North China Craton: the Xiong'er Volcanic Province and the North China Dyke Swarm[J]. Lithos, 2008, 101: 260-280. doi: 10.1016/j.lithos.2007.07.006
[8] Mao J W, Xie G Q, Bierlein F, et al. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt[J]. Geochimica et Cosmoschimica Acta, 2008, 72: 4607-4626. doi: 10.1016/j.gca.2008.06.027
[9] Han Yigui, Zhang Shihong, Pirajno F, et al. New 40Ar-39Ar age constraints on the deformation along the Machaoying fault zone: Implications for Early Cambrian tectonism in the North China Craton[J]. Gondwana Research, 2009, 16(2): 255-263. doi: 10.1016/j.gr.2009.02.001
[10] 毛景文, 李晓峰, 张荣华, 等.深部流体成矿系统[M].北京:中国大地出版社, 2005, 365. Mao Jingwen, Li Xiaofeng, Zhang Ronghua, et al. MantleDerived Fluid-Relate Ore-forming System[M]. Beijing: China Land Publishing House, 2005: 1-365(in Chinese with English abstract).
[11] 李永峰.豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用(博士论文)[D].北京:中国地质大学(北京), 2005, 135. http://www.oalib.com/references/17344420 Li Yongfeng. The Temporal-spital Evolution of Mesozoid Granitoids in the Xiong' ershan Area and their Relationships to Molybdenum-gold Mineralization[D]. Beijing:China University of Geosciences, 2005, 135(in Chinese with English abstract). http://www.oalib.com/references/17344420
[12] 叶会寿.华北陆块南缘中生代构造演化与铅锌银成矿作用(博士论文)[D].北京:中国地质科学院, 2006, 217. http://www.oalib.com/references/17381751 Ye Huishou. Mesozoic Tectonic Evolution and Pb-Zn-Ag Metallogeny in the South Margin of North China Craton[D]. Beijing: Ph. D Thesis, Chinese Aeademy of Geologieal Scienees, 2006, 217(in Chinese with English abstract). http://www.oalib.com/references/17381751
[13] 朱赖民, 张国伟, 郭波, 等.东秦岭金堆城大型斑岩钼矿床LAICP-MS锆石U-Pb定年及成矿动力学背景[J].地质学报, 2008, 82(2): 204-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200802006.htm Zhu Laimin, Zhang Guowei, Guo Bo, et al. U-Pb (LA-ICP-MS) zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling, China, and its metallogenetic geodynamical setting[J]. Acta Geologica Sinica, 2008, 82(2): 204-218(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200802006.htm
[14] Mao J W, Xie G Q, Pirajno F, et al. Late Jurassic-Early Cretaceous granitoid magmatism in East Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57: 51-78. doi: 10.1080/08120090903416203
[15] 韩以贵.豫西地区构造、岩浆作用与金成矿的关系--同位素年代学的新证据(博士论文)[D].北京:中国地质大学(北京). 2007, 119. Han Yigui. Structural and Magmatic Evolution in Western Henan Provice and their Implications to Gold Mineralization: New Geochronological Evidence[D] Ph. D Thesis, Beijing: China University of Geosciences, Beijing, 2007, 119(in Chinese with English abstract).
[16] 王团华, 毛景文, 王彦斌.小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究-秦岭造山带岩石圈拆沉的证据[J].岩石学报, 2008, 24(6): 1273-1287. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806011.htm Wang Tuanhua, Mao Jingwen, Wang Yanbin. Research on SHRIMP U-Pb chronology in Xiaoqinling-Xionger'shan area: The evidence of delamination of lithosphere in Qinling orogenic belt[J]. Acta Peotrlogica Sinica, 24(6): 1273-1287(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806011.htm
[17] 谢桂青, 毛景文, 李瑞玲, 等.东秦岭宝丰盆地大营组火山岩SHRIMP定年及其意义[J].岩石学报, 2007, 23(10): 2387-2396. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710008.htm Xie Guiqing, Mao Jingwen, Li Ruiling, et al. SHRIMP zircon UPb dating for volcanic rocks of the Daying Formation from Baofeng basin in eastern Qinling, China and its implications[J]. Acta Petrologica Sinica, 2007, 23(10): 2387-2396(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710008.htm
[18] 汪江河.河南三道庄钨钼矿区深部下层矿的找矿意义[J].地质调查与研究, 2009, 32(4): 291-296. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200904011.htm Wang Jianghe. Significance of the deep ore prospecting in Henan Sandaozhuang W-Mo deposit[J]. Geologica Survey and Research, 2009, 32(4): 291-296(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200904011.htm
[19] Meinert L D, Dipple G M, Nicolescu S. World skarn deposits[J]. Economic Geology, 2005, 100: 299-336. http://www.academia.edu/5078886/World_Skarn_Deposits
[20] Ferry J M, Sorensen S S, Rumble III D. Structurally controlled fluid flow during contact metamorphism in the Ritter Range pendant, California, USA[J]. Contribution of Mineralogy and Petrology, 1998, 130: 358-375. doi: 10.1007/s004100050371
[21] 石英霞, 李诺, 杨艳.河南省栾川县三道庄钼钨矿床地质和流体包裹体研究[J].岩石学报, 2009, 25(10): 2575-2587. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910022.htm Shi Yingxia, Li Nuo, Yang Yan. Ore geology and fluid inclusion geochemistry of the Sandaozhuang Mo-W deposit in Luanchuan county, Henan Province[J]. Acta Petrologica Sinica, 2009, 25(10): 2575-2587(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910022.htm
[22] Kerrick D M. The genesis of zoned skarns in the Sierra Nevada, California[J]. Journal of Petrology, 1971, 18: 144-181. https://www.researchgate.net/publication/270843042_The_Genesis_of_Zoned_Skarns_in_the_Sierra_Nevada_California
[23] Grammatikopoulos T A, Clark A H A comparative study of wollastonite skarn genesis in the Central Metasedimentary Belt, southeastern Ontario, Canada[J]. Ore Geology Reviews, 2006, 29: 146-161 doi: 10.1016/j.oregeorev.2005.11.007
[24] Heinrich W. Fluid infiltration through metachert layers at the contact aureole of the Bufa del Diente intrusion, northeast Mexico: Implications for wollastonite formation and fluid immiscibility[J]. American Mineralogist, 1993, 78: 804-818 http://cat.inist.fr/?aModele=afficheN&cpsidt=11332992
[25] Trommsdorff V, Skippen G. Vapour loss ("boiling") as a mechanism for fluid evolution in metamorphic rocks[J]. Contributions to Mineralogy and Petrology, 1986, 94: 316-322. https://www.researchgate.net/publication/227204846_Vapour_loss_boiling_as_a_mechanism_for_fluid_evolution_in_metamorphic_rocks
[26] 赵斌, 李统锦, 李昭平.矽卡岩形成的物理化学条件实验研究[J].地球化学, 1983, (3): 256-268. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198303004.htm Zhao Bin, Li Tongjin, Li Zhaoping. Experimental study of physico-chemical conditions of the formation of skarns[J]. Geochimica, (3): 256-268(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198303004.htm
[27] 梁祥济.钙铝-钙铁系列石榴子石的特征及其交代机理[J].岩石矿物学杂志, 1994, 13(4): 342-352. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.007.htm Liang Xiangji. Garnets of grossular-andradite series: Their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica, 1994, 13(4): 342-352(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW404.007.htm
[28] 郭吉保.柿竹园矽卡岩中钙铝-钙铁榴石系列石榴子石形成条件的实验研究[J].矿物学报, 1987, 7(4): 372-380. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198704014.htm Guo Jibao. An experimental study of the formation conditions of grossular-andradite series garents in Shizhuyuan skarn[J]. Acta Mineralogica Sinica, 1987, 7(4): 372-380(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198704014.htm
[29] 林文蔚.矽卡岩矿床中共生单斜辉石-石榴子石酸度计及矽卡岩矿床的酸度相[J].地质学报, 1990, (1): 53-61. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199003000.htm Lin Wenwei. The acidometer of paragenetic clinopyroxenegarnet in skarn deposits and acidity facies of skarn deposits[J] Acta Geologica Sinica, 1990, (1): 53-61(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199003000.htm
[30] 赵一鸣, 张轶男, 林文蔚.中国矽卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J].矿床地质, 1997, 16(4): 318-329. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.003.htm Zhao Yiming, Zhang Tienan, Lin Wenwei. Characteristics of pyroxenes and pyroxenoids in skarn deposits of China and their relationship with metallization[J]. Mineral Deposits, 1997, 16(4): 318-329(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.003.htm
[31] Salvi S. Mineral and fluid equilibria in Mo-bearing skarn at the Zenith deposit, Southwestern Grenville Province, Renfrew area, Ontario, Canada[J]. The Canadian Mineralogist, 2000, 38: 937-950 doi: 10.2113/gscanmin.38.4.937
[32] Kudrin A V. The solubility of tugarinovite MoO2 in aqueous solutions at elevated temperatures[J]. Geochemistry International, 1986, 23(9): 126-138. https://www.researchgate.net/publication/283869273_The_solubility_of_tugarinovite_MoO2_in_aqueous_solutions_at_elevated_temperatures
[33] Kudrin A V. Behavior of Mo in aqueous NaCl and KCl solutions at 300-450℃[J]. Geochemistry International, 1989, 28: 87-99. https://www.researchgate.net/publication/281091102_Behavior_of_Mo_in_aqueous_NaCl_and_KCl_solutions_at_300-450C
[34] Wood S A, Crerar D A, Borcsik M P. Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argentite-molybdenite in H2O-NaClCO2 solutions from 200℃ to 350℃[J]. Economic Geology, 1987, 82: 1864-1887. doi: 10.2113/gsecongeo.82.7.1864
[35] Lu Changsheng, Reed M H, Misra K C. Zinc-lead skarn mineralization at Tin Creek, Alaska: Fluid inclusions and skarnforming reactions[J]. Geochimica et Cosmochimica Acta, 1992, 56: 109-119. doi: 10.1016/0016-7037(92)90120-8