• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

中国北方砂岩型铀矿成矿作用与油气关系研究

刘武生, 赵兴齐, 史清平, 张梓楠

刘武生, 赵兴齐, 史清平, 张梓楠. 中国北方砂岩型铀矿成矿作用与油气关系研究[J]. 中国地质, 2017, 44(2): 279-287. DOI: 10.12029/gc20170205
引用本文: 刘武生, 赵兴齐, 史清平, 张梓楠. 中国北方砂岩型铀矿成矿作用与油气关系研究[J]. 中国地质, 2017, 44(2): 279-287. DOI: 10.12029/gc20170205
LIU Wusheng, ZHAO Xingqi, SHI Qingping, ZHANG Zinan. Research on relationship of oil-gas and sandstone-type uranium mineralization of northern China[J]. GEOLOGY IN CHINA, 2017, 44(2): 279-287. DOI: 10.12029/gc20170205
Citation: LIU Wusheng, ZHAO Xingqi, SHI Qingping, ZHANG Zinan. Research on relationship of oil-gas and sandstone-type uranium mineralization of northern China[J]. GEOLOGY IN CHINA, 2017, 44(2): 279-287. DOI: 10.12029/gc20170205

中国北方砂岩型铀矿成矿作用与油气关系研究

基金项目: 

国家科技部973项目 2015CB453004

中国核工业地质局科研项目“柴达木盆地北缘铀成矿地质特征与远景评价” 201587

中核集团龙腾二期“北方重点盆地砂岩型铀矿资源扩大与靶区优选”及国土资源部公益性行业科研专项“半干旱沉积盆地铀矿扫面技术示范区地质研究与异常解释” 201511034-3

详细信息
    作者简介:

    刘武生,男,1977年生,高级工程师(研究员级),主要从事沉积型铀矿评价与研究工作;E-mail:lws970815@126.com

  • 中图分类号: P619.14;P611

Research on relationship of oil-gas and sandstone-type uranium mineralization of northern China

Funds: 

National Key Basic Research Program of China (973 Program) 2015CB453004

China Nuclear Industry Geological Survey Program 201587

China National Nuclear Corporation Longteng Phase Ⅱ Program and Public Welfare Industry Scientific Recearch Projects of Ministry of Land and Resources 201511034-3

More Information
    Author Bio:

    LIU Wusheng, male, born in 1977, senior engineer, mainly engages in the sedimengtary type uranium deposit assessment and research work, E-mail: lws970815@126.com

  • 摘要:

    油气与砂岩型铀矿的相互作用关系日益受到地质、特别是铀矿地质学者的重视,单个能源矿产的成矿理论已日趋成熟,但相互作用关系研究却十分薄弱,是亟需探究和解决的关键科学问题之一。本文通过中国北方典型砂岩型铀矿与油气时空分布特征分析、镜下微观分析、化学计算,表明油气主要通过吸附作用、还原作用、供铀作用和保铀作用促使铀的富集成矿。其中,油气的裂解产物沥青、有机酸层对铀有强烈的吸附作用;油气的还原作用主要是通过强还原气体(H2、CH4、CO、H2S等)将高价、活化的铀离子还原成四价、稳定的铀矿物;油气与硫酸根离子相互作用生成的有机酸能够通过酸溶、萃取和金属-有机络合作用将途经围岩的部分铀富集并在成矿部位释放,从而叠加改造铀成矿作用,增加铀的来源;油气逸出的强还原气体H2、CO能使地层产生酸化,形成高岭土化,从而使氧化带呈弱碱性、成矿带呈弱酸性特征。砂岩型铀成矿作用与油气的关系对砂岩型铀矿含矿目的层的厘定、铀矿床定位、补充完善砂岩型铀成矿理论、“烟囱效应”指导找油气等具有重要启示意义。

    Abstract:

    Interaction between oil-gas and sandstone type uranium has aroused much interest among geologists, especially uranium geologists. In spite of rapid development of mineralization theory for single energy mines, the study of interaction is very insufficient. Therefore, this problem should be regarded as the key frontier scientific issue which deserves investigation. Based on an analysis of distribution characteristics of uranium and oil-gas, microscope testing, geochemical calculation, it can be inferred that uranium enrichment can be improved by adsorption, reduction, uranium-supply and preservation of oil-gas, in which asphalt and organic acid, cracked by oil-gas, can adsorb uranium strongly. For reduction of oil-gas, high valence and activated uranium ion can be reduced to +4 valence and form stable uranium minerals by more reducing gas, such as H2, CH4, CO, and H2S. By means of acid dissolving, extraction and metallic-organic complexation, organic acid, produced by the interaction of oil-gas and SO42-, can accumulate partial uranium nearby surrounding rocks. And then this uranium can be released in mineralization location, which can reform mineralization and increase the source of uranium. Besides, more reducing H2, CO, escaping from oil-gas, can cause acidification and kaolinization of the formation, which leads to the feature that the oxidation zone is slightly alkaline and the metallogenic belt is slightly acidic. Therefore, the interaction between oil-gas and uranium can be very important for the determination of uranium-bearing beds, locating of uranium deposits, developing of mineralization theory, and oil-gas exploration guided by 'chimney effect'.

  • 隐爆角砾岩型矿床一般形成于浅成-超浅成(0.5~3 km)封闭或半封闭环境(唐菊兴, 1995; 卿敏和韩先菊, 2002),引发岩石隐蔽爆破的热液流体以岩浆热液为主,且多分布于浅成-超浅成中酸性侵入岩/次火山岩的顶部(Sillitoe, 1985; 卿敏和韩先菊, 2002; 张西社等, 2015),但也可见远离侵入岩的含矿隐爆角砾岩(Ni et al., 2018),该类型矿床的形成实质包括岩石爆破(气爆或者浆爆)和成矿流体注入过程(黄定华等, 1997; 李生元和马小兵, 1999; 马小兵和李生元, 1999)。隐爆角砾岩型矿床与斑岩型矿床或者浅成低温热液型矿床具有紧密联系(Eaton et al., 1993; Pirajno, 1995),有些学者甚至将其作为深部斑岩型矿床的找矿标志(Silltoe et al., 2003;张会琼等, 2012)。

    东南沿海地区属于环太平洋多金属成矿带西南部分,发育许多隐爆角砾岩型Au、Ag、Cu、Pb、Zn、Mo矿床(姜耀辉等, 1994; 濮为民等, 2008; 邓新根和华杰雄, 2010; 陈华, 2011; 林书平等, 2012)。其中,东际金(银)矿床位于闽北政和—建瓯金银矿集区内,具有隐爆角砾岩型矿床特征。2012年储量核实报告表明,该矿床已探明金资源量12.5 t,银资源量135.9 t,为次火山热液型矿床(刘永发, 2011)或者浅成中低温热液型矿床(卢燕等, 2017; 王波涛和严卸平, 2019; 刘日富等, 2019),成矿流体具有中低温(168.4~ 211.4℃)和低盐度(3.22%~ 8.13%NaCleqv)特征(王波涛和严卸平, 2019)。在以往的研究中,该矿床成矿物质来源和成矿时代等问题研究较少,制约了该金矿成矿与区域构造-岩浆事件的关联性研究,不利于进一步探讨此矿床深部找矿潜力。鉴于此,本文开展了黄铁矿硫、铅同位素,电子探针和锆石U-Pb测年等测试分析,试图解决东际金(银)矿床成矿作用方面的问题。

    闽北政和—建瓯金银矿集区位于华夏造山带北部龙泉—政和俯冲增生杂岩和浙闽沿海岩浆弧交界位置。该矿集区内地层主要为新元古代马面山岩群(变质基底)和燕山期陆相火山-沉积岩系(盖层)(图 1)。基底变质岩原岩是一套浊积特征显著并有中-基性火山物质掺杂的巨厚复理石建造,变质程度为绿片岩相。盖层主要为燕山期酸性—中酸性陆相火山岩建造,其中,晚侏罗世南园组火山岩浆活动表现为裂隙式喷发,构成北东向火山岩带,早白垩世晚期石帽山群火山岩浆活动则为中心式喷发,形成了东坑火山盆地(安山岩Rb- Sr年龄(104.4 ± 23)Ma,ISr= 0.7092;熔结凝灰岩Rb-Sr年龄(105.4±3.1)Ma,ISr= 0.7101,谢家莹等, 1994)和仁山火山盆地。

    图  1  政和—建瓯金矿集区大地构造位置(a)和地质矿产图(b)(图a据张克信等, 2015;图b据冯志文等, 1991
    Figure  1.  Tectonic location (a) and geological and mineral resources map (b) of the Zhenghe-Jianou gold ore concentration area (a after Zhang Kexin et al., 2015; b after Feng Zhiwen et al., 1991)

    区内侵入岩主要有熊山岩体(闪长岩,Sm-Nd等时线年龄为(585.7±30)Ma;任胜利等, 1997)、林屯岩体(石英闪长岩,锆石U-Pb年龄(433±7)Ma,隰弯弯等,2019)、富美岩体(花岗岩,锆石U-Pb年龄为(369±4)Ma,隰弯弯等,2019)、铁山岩体(燕山期大型钾质交代岩,Chen et al., 2017;也有人称石英正长岩和辉石正长岩,锆石U-Pb年龄为(254±4)Ma,Wang et al., 2005)和铜盆庵岩体(二长花岗岩和正长花岗斑岩,锆石U-Pb年龄为(153.5±1.8)Ma和(153.0±0.8)Ma,李亚楠等, 2015),其次是早白垩世岩脉(有~130 Ma和~100 Ma两期,未发表数据),岩石类型从中酸性—酸性—酸偏碱性皆有,以酸性和中酸性岩为主。区域构造以政和—大埔北东向断裂带为主,其次为浦城—三都澳北西向断裂带,二者交汇区域也是政和—建瓯矿集区的主体位置。该区内已发现东际金(银)矿(刘永发, 2011)、王母山金矿(胡荣华, 2009)、大药坑金矿(肖凡等, 2017)、狮子岗铜矿和夏山铅锌矿等,最近又新发现了井后超大型叶蜡石矿床(卢林, 2018),表明矿集区具有很好的成矿地质条件。

    东际金(银)矿床位于东坑火山盆地西缘,矿区出露地层有新元古代马面山岩群、晚侏罗世南园组和早白垩世晚期黄坑组,金(银)矿体均赋存于南园组(图 2)。马面山岩群出露于矿区西南角,岩性以片岩为主。南园组出露于矿区北部,岩性主要为流纹质晶屑凝灰(熔)岩夹晶屑凝灰(熔)岩,不整合于马面山岩群之上。黄坑组出露于矿区东南部,不整合覆盖于南园组及马面山岩群之上,上部为凝灰杂砂质砾岩、含砾砂岩,下部为凝灰质角砾岩、火山角砾岩。

    图  2  东际金(银)矿床地质简图(据刘永发, 2011修改)
    Figure  2.  Simplified geological map of the Dongji Au(Ag) deposit (after Liu Yongfa, 2011)

    矿区构造以夏山—东际北东向断裂带为主,次为前际—地坪北西向断裂带及次级或派生断裂,均为成矿后断裂。夏山—东际断裂带主体走向北东,往南东陡倾,或为岩脉充填切割矿体,或直接错断矿体,东坑火山盆地边界断裂也是其组成部分。前际—地坪断裂带总体走向北西,向南西陡倾,为花岗斑岩和辉绿玢岩充填,多表现为切割矿体。

    矿区侵入岩、次火山岩及脉岩广泛发育,包括中晚志留世细粒花岗岩和燕山晚期花岗斑岩、石英二长斑岩、石英正长斑岩、正长斑岩、闪长玢岩等,沿北东向断裂带及北西向断裂带充填。

    矿区隐爆角砾岩和矿体空间关系紧密,在416 m、450 m、501 m、517 m等中段均有出露。以450 m中段为例,此隐爆角砾岩主要由灰白色晶屑凝灰岩角砾和热液胶结物(石英和黄铁矿)组成,角砾彼此之间可拼贴完整,且遭受了硅化和绢云母化等蚀变,往往靠近围岩,角砾化程度降低,热液胶结物含量减少,而在角砾化程度较高位置,几乎全由灰黑色石英和黄铁矿构成,这样的区域也是金品位最高位置。

    矿区围岩蚀变主要有硅化、黄铁矿化、绢云母化、绿泥石化、绿帘石化和碳酸盐化等,其中,以硅化、黄铁矿化和绢云母化分布最为广泛,与成矿关系最为密切,尤以富铝绢云母带与金、银矿化带空间耦合性最好,可作为成矿流体主通道位置的识别标志(卢燕等, 2017)。

    矿区内共圈定金(银)矿体7个,其中Ⅰ号主矿体占矿床总资源/储量88%。Ⅰ号主矿体赋存于南园组底部,呈似层状产出(图 3),并具有分枝复合特点,矿体沿走向延伸305 m,沿倾向延伸400~500 m,最大为550 m(0#线),矿体走向为北东向(10~60°),倾向南东,倾角25~45°。其他矿体均属于Ⅰ号主矿体顺延伸方向尖灭再现或侧移的小矿体,储存部位及产状特征与Ⅰ号主矿体基本一致。

    图  3  东际金(银)矿0#勘探线地质剖面图(据刘永发, 2011修改)
    Figure  3.  Sketch geological section along 0# geological exploration line of the Dongji Au(Ag) deposit (after Liu Yongfa, 2011)

    矿石中金属矿物以黄铁矿为主,少量毒砂、黄铜矿、方铅矿和闪锌矿,微量自然金、银金矿、自然银和含银矿物等(图 4)。脉石矿物以石英、绢云母、水云母、绿泥石,少量方解石及绿帘石等。其中,金以自然金和银金矿形式存在,自然金呈他形粒状充填于石英晶粒间,金黄色,粒径5~20 μm,属细-微粒金,银金矿也赋存于石英晶粒间,粒径4~15 μm,呈不规则状和似椭球状。此外,银矿物(如辉银矿和深红银矿)沿黄铁矿裂隙生长,或以包体形式赋存于黄铁矿,粒径10~40 μm。

    图  4  东际金(银)矿床主要金属矿物特征
    a—自形—半自形粒状结构黄铁矿;b, c—黄铁矿被毒砂交代,黄铜矿沿毒砂颗粒边缘或者微裂隙生长,指示矿物生成顺序由早到晚依次为黄铁矿→毒砂→黄铜矿;d—黄铜矿、方铅矿交代他形粒状黄铁矿;e—银矿物沿黄铁矿裂隙生长(BSE图像);f—银矿物呈包裹体形式产于黄铁矿中(BSE图像);g, h—金矿物生长于石英颗粒间(BSE图像)。矿物代号:Py—黄铁矿;Ccp—黄铜矿;Apy—毒砂;Gn—方铅矿
    Figure  4.  Characteristics of main metal minerals of the Dongji Au(Ag) deposit
    a-Euhedral-subhedral texture pyrite; b, c-Pyrite replaced by arsenopyrite and chalcopyrite, which suggests that the sequence of metal minerals is pyrite, arsenopyrite and chalcopyrite; d-Anhedral texture pyrite replaced by chalcopyrite and galena; e-Ag-bearing mineral growing in the fracture of pyrite (BSE image); f- Ag-bearing mineral occurring as a inclusion in the pyrite (BSE image); g, h-Au-bearing mineral growing in the quartz. Mineral abbreviation: Py-Pyrite; Ccp-Chalcopyrite; Apy-Arsenopyrite; Gn-Galena

    矿石结构主要有粒状结构、压碎结构、交代残余结构和包含结构(图 4),矿石构造主要有角砾状构造、块状构造、脉状构造和稀疏浸染状构造(图 5),其中角砾状构造最为常见,当角砾变少时可变为块状构造,金品位明显增加,故两种矿石类型在空间上可同时出现,局部可见二者渐变过渡关系。

    图  5  东际金(银)矿床矿化特征
    a—黄铁矿-石英细脉;b—网脉状黄铁矿细脉;c, d, e—角砾状矿化,其中角砾已发生强烈硅化,胶结物为热液成因石英和黄铁矿;f—角砾状矿化,当岩石角砾变小和变少时,可变化为块状矿石,金含量也随之升高
    Figure  5.  Mineralization characteristics of the Dongji Au(Ag) deposit
    a-Pyrite-bearing quartz vein; b-Stockwork pyrite; c, d, e, f -Breccia mineralization, silicification breccias cemented by hydrothermal quartz and pyrite. The breccias become smaller and less in the breccia zone, whereas the Au grade is higher

    锆石年龄样品为矿区450 m中段角砾状矿石晶屑凝灰岩角砾和穿插矿体的花岗斑岩。晶屑凝灰岩主要由石英晶屑组成,少量岩屑,大小为0.1~ 0.4 mm,大者可至1mm,基质为隐晶质物质,发生了绢云母化蚀变(图 6abc)。花岗斑岩穿插矿(化)体,后者被氧化后呈特征“铁锈色”,花岗斑岩的斑晶矿物为石英、斜长石和黑云母等,含量分别可至20%、35%和5%,大小一般在0.4~0.8 mm,基质由斜长石和微细晶石英组成,总体含量40%(图 6def)。上述样品经人工破碎至80~100目后,按常规重液和电磁方法分选,并在双目镜下挑选锆石。将锆石颗粒置于环氧树脂制靶,固化抛光,用于阴极发光(CL)照相,并从中选取环带清晰的锆石进行LA-ICP-MS U-Pb定年测试分析,实验测试单位为中国冶金地质总局山东局测试中心。激光剥蚀系统为美国Conherent公司生产的GeoLasPro 193 nm Arf准分子系统,ICP-MS为Thermo X2。激光剥蚀采样过程以氦气作为载气,束斑直径为30 μm、频率为10Hz、能量密度约为10J/cm3。采样方式为单点剥蚀、跳峰采集。采用Plesovice(年龄为(337 ± 0.4)Ma,Slama et al., 2008)和GJ-1标准锆石作为外标进行基准校正。数据处理采用ICPMSDATACAL软件,锆石U-Pb年龄谐和图、年龄分布频率图和加权平均年龄计算采用Isoplot/Exver 3(Ludwig, 2003)完成。

    图  6  晶屑凝灰岩(a, b, c)和花岗斑岩(d, e, f)产状及矿物组成
    Q—石英;Pl—斜长石;Bt—黑云母;γπ—花岗斑岩
    Figure  6.  Geological characteristics and minerals of crystal tuff and granite porphyry
    Q-Quartz; Pl-Plagioclase; Bt-Biotite; γπ-Granite porphyry

    电子探针实验样品取自450 m中段,分别选取了块状矿石、角砾状矿石、细脉状矿石和稀疏浸染状矿石。切制探针片之后,首先进行黄铁矿岩相学观察,选取生成顺序清晰的黄铁矿作为目标点位,然后送至中国地质大学(武汉)地质过程与矿产资源国家重点实验室电子探针实验室进行表面喷碳处理,进而利用配备4道波谱仪的JEOL JXA-8100电子探针完成分析测试,工作加速电压20 kV,加速电流20 nA,束斑直径<1 μm,所有测试数据均进行了ZAF校正处理。

    硫、铅同位素样品为富Au角砾状矿石,采样位置为450 m中段和416 m中段1#穿脉位置。首先将矿石粉碎,使用双目镜,挑选黄铁矿单矿物,保证纯度在99%以上。然后使用超声波清洗掉矿物表面粘附粉尘,用玛瑙钵研磨至200目,送澳实分析检测(广州)有限公司实验室测试。其中,硫同位素使用S-ISTP01方法,元素分析仪配套硫同位素质谱仪测δ34S,数据经V-CDT即陨硫铁标准物质标准化。铅同位素使用Pb-IRM01方法,试样加入硝酸、盐酸和氢氟酸,微波消解,然后用扇形磁场等离子体质谱(HR-ICP-SFMS)测试,数据经内标(TI同位素比率)和外部校准(自然铅物质标样)标准化,206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值相对偏差RSD<0.2%。

    当成矿流体fO2较低时,硫主要呈低价态HS-和S2-存在,基本都富集于硫化物中;当成矿流体fO2较高时,硫主要呈高价态SO42-存在,并富集于硫酸盐矿物中,此时硫化物δ34S值低于成矿热液中总δ34S值(Ohmoto, 1972)。通过光薄片观察,东际金(银)矿床不发育硫酸盐矿物,含硫矿物主要为黄铁矿、毒砂、黄铜矿和方铅矿等,说明成矿过程中未发生不同价态含硫矿物之间硫同位素分馏,故本文研究的黄铁矿δ34S值可以反映成矿流体δ34SΣ的特征。东际金(银)矿床角砾状矿石金含量较高,故开展此类矿石中黄铁矿硫、铅同位素示踪,最能反映成矿物质来源。实验结果表明(表 1),416m中段黄铁矿δ34S为-1.8‰,450m中段黄铁矿δ34S为-0.7‰~-6.6‰,不同深度黄铁矿δ34S值相差不大。总体来看。东际金(银)矿床黄铁矿δ34S值为-0.7‰~-6.6‰,极差5.8‰,除一件样品较高外(450 CM0-1),其余样品δ34S值较集中,平均值为-2.03‰。

    表  1  东际金(银)矿床黄铁矿硫、铅同位素特征
    Table  1.  Sulfur and lead isotope data of pyrites from the Dongji Au(Ag) deposit
    下载: 导出CSV 
    | 显示表格

    由于金属硫化物U、Th元素含量低,在其结晶以后,通过衰变作用所产生的放射性成因铅含量非常低,对铅同位素组成的影响可以忽略,故硫化物铅同位素是示踪成矿物质来源的有效方法之一(张乾等, 2000)。东际金(银)矿床角砾状矿石黄铁矿206Pb/204Pb为17.9801~18.4303,207Pb/204Pb为15.2689~15.9397,208Pb/204Pb为37.9052~38.7871(表 1),与矿集区内大药坑金矿和邻区金矿矿石铅具有很好线性关系(图 7),与矿区周边马面山岩群变质岩、晚侏罗世南园组晶屑凝灰岩、晚侏罗世石英闪长岩和二长斑岩(发育于东坑火山盆地内,穿切早白垩世晚期火山岩,推测成岩时代为早白垩世晚期或者晚白垩世早期)等岩石的铅同位素相比,该矿床矿石铅与燕山期火山-侵入杂岩的岩石铅更加接近,也与马面山岩群中某些变质岩的铅同位素相似。

    图  7  东际金(银)矿床208Pb/204Pb-206Pb/204Pb和207Pb/204Pb-206Pb/204Pb图解
    (大药坑数据肖凡等, 2017, 邻区金矿、晶屑凝灰岩、二长斑岩和石英闪长岩铅同位素数据冯志文等, 1991, 马面山岩群绿片岩、石英片岩、灰绿色片岩铅同位素数据丰成友等, 2007
    Figure  7.  Plot of 208Pb/204Pb versus 206Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb of the Dongji Au(Ag) deposit
    (Dayaokeng Au deposit data after Xiao Fan et al., 2017; adjacent Au deposits, crystal tuff, monzonite porphyry and quartz diorite data after Feng Zhiwen et al., 1991; Mamianshan Group metamorphic rock data after Feng Chengyou et al., 2007)

    依据矿石构造类型、黄铁矿产出状态和晶形特征,黄铁矿可划分出5种类型(分别以Py1、Py2、Py3、Py4和Py5表示)。角砾状矿石黄铁矿有两种形态,Py1颗粒大,粒径0.1~0.4 mm,半自形结构,Py2颗粒小,粒径<0.1 mm,他形结构(图 8a)。浸染状矿石黄铁矿(Py3)颗粒小,粒径0.05~0.1 mm,它形结构,矿物集合体零星分布于晶屑凝灰岩中(图 8b)。细脉浸染状矿石黄铁矿(Py4)颗粒小,粒径<0.05 mm,常与毒砂矿物共生,矿物集合体呈放射状产出(图 8c)。块状矿石黄铁矿(Py5)颗粒大,粒径0.4~0.8 mm,半自形-自形结构,含金、银矿物(图 8d)。

    图  8  东际金(银)矿床中不同类型黄铁矿岩相学特征
    Figure  8.  Petrographic characteristics of different types of pyrites from the Dongji Au(Ag) deposit

    东际金(银)矿床黄铁矿S含量为50.89% ~ 53.42%,平均52.57%,Fe含量为44.38%~46.54%,平均45.83%(表 2),均低于黄铁矿S和Fe的理论含量(分别为53.45%和46.55%,一般沉积型黄铁矿接近理论值),但黄铁矿S/Fe值(原子数比值)为1.99~ 2.02(均值2.01),略高于理论值,说明东际金(银)矿床黄铁矿总体具有富硫贫铁特征。

    表  2  东际金(银)矿床黄铁矿电子探针数据(%)
    Table  2.  EPMA data of pyrites from the Dongji Au(Ag) deposit(%)
    下载: 导出CSV 
    | 显示表格

    不同类型黄铁矿具有相似微量元素变化曲线(图 9),表明它们形成于同一热液体系。黄铁矿Au/ Ag比值总体在0.9~5.5,均值2.6,表现出富金贫银特征,但不同类型黄铁矿Au元素含量存在差异,如晶屑凝灰岩中浸染状黄铁矿含有相对均匀的Au含量,而角砾状矿石中黄铁矿含有不均匀的Au含量,这可能反映成矿热液体系物化条件不稳定。研究表明,低温条件下不利于Se元素类质同象置换黄铁矿中S元素(刘英俊等, 1984),Py2贫Se元素且富集低温元素Sb,表明Py2形成温度最低,是角砾状矿石晚期黄铁矿,与岩相学观察基本一致(图 8a),这说明角砾状矿石是多阶段热液流体作用的产物,其金元素富集或许归因于这个地质过程。

    图  9  东际金(银)矿床不同类型黄铁矿微量元素变化曲线
    Figure  9.  Plot of trace elements of different kinds of pyrites in the Dongji Au(Ag) deposit

    晶屑凝灰岩中锆石颗粒较大,自形程度高,粒径在100~150 μm,成分环带清晰,Th/U值在0.55~ 2.29,均值为0.92,表明岩浆成因锆石。其中,18个锆石点落在谐和线范围,锆石206Pb/238U表面年龄加权平均值为(154±2)Ma(MSWD=2.1,N=18)(图 10表 3),说明晶屑凝灰岩形成于晚侏罗世。此外,1颗锆石发育“核-边”二元结构,核部锆石206Pb/238U表面年龄为506.6 Ma,发育岩浆成分环带,为岩浆锆石,边部锆石无震荡环带,可能是变质成因,其206Pb/238U表面年龄为402.1 Ma。另一颗锆石发育“核-幔”二元结构,核部锆石呈浑圆状且无岩浆成分环带,可能是变质锆石,其207Pb/206Pb表面年龄为2613 Ma,幔部锆石因较窄而无法进行实验。上述锆石的出现,反映了基底构造演化历史之复杂,可能经历了泛非期、加里东期乃至新太古代等时期的构造-岩浆运动。

    图  10  东际金(银)矿床晶屑凝灰岩锆石CL图和U-Pb谐和图
    Figure  10.  Zircon CL images and U-Pb concordia diagram of crystal tuff from the Dongji Au(Ag) deposit
    表  3  东际金(银)矿床晶屑凝灰岩和花岗斑岩锆石U-Pb数据
    Table  3.  Zircon U-Pb data of crystal tuff and porphyry granite of the Dongji Au(Ag) deposit
    下载: 导出CSV 
    | 显示表格

    花岗斑岩锆石较粗大,自形程度高,粒径在150~250 mm,具有清晰成分环带,Th/U值在0.82~ 2.12,均值为1.27,是岩浆成因锆石。其中,30个锆石点落在谐和线范围,锆石206Pb/238U表面年龄加权平均值为(96.7±0.8)Ma(MSWD=0.65,N=30)(图 11表 4),说明此斑岩形成于晚白垩世早期。此外,有1颗锆石发育明显“核-幔”二元结构,“核部”锆石呈浑圆状,具有溶蚀残留特征,颜色发黑,但仍可见岩浆成分环带,故认为此锆石也为岩浆成因,其206Pb/238U表面年龄为148 Ma,“幔部”锆石具有清晰岩浆成分环带,也是岩浆成因锆石,其206Pb/238U表面年龄为98 Ma,这种锆石的出现可能是晚白垩世早期岩浆侵位时,捕获了围岩中较老锆石,并以此为核重新结晶生长而成。

    图  11  东际金(银)矿床花岗斑岩锆石CL图和U-Pb谐和图
    Figure  11.  Zircon CL images and U-Pb concordia diagram of granite porphyry of the Dongji Au(Ag) deposit
    表  4  典型金矿床黄铁矿Fe、As、S和Fe/(As+S)含量
    Table  4.  Content of Fe, As, S and Fe/(As+S) of pyrites from typical gold deposits
    下载: 导出CSV 
    | 显示表格

    黄铁矿Fe常被其同族元素Co和Ni类质同象置换,高温热液条件下,Co比Ni更易替代Fe2+,故不同成因黄铁矿Co/Ni值不一样(Yuan et al., 2018),一般沉积型Co/Ni值小于1且Co含量<100×10-6,变质热液型接近1,岩浆热液型Co/Ni值在1~5,且Co含量>400×10-6,火山热液型Co/Ni值大于5,同时Co含量>500 ×10-6且Ni含量<100 ×10-6王奎仁, 1987)。东际金(银)矿床黄铁矿Co/Ni值介于3~94,平均值23,Co含量在500×10-6~1070×10-6(均值799×10-6),Ni含量在10×10-6~240×10-6(均值104× 10-6),在黄铁矿Co-Ni图解中(图 12a),落在火山成因区域和岩浆热液成因区域,并以前者为主,与紫金山铜金矿中黄铁矿投点区域重叠,表明东际金(银)矿床中黄铁矿主体为火山作用相关的热液成因,与紫金山铜金矿中黄铁矿成因相同。在黄铁矿As-Co-Ni图解中(图 12b),东际金(银)矿床黄铁矿落在岩浆或火山热液成因区域,与Co-Ni图解中判断一致,成矿热液是与火山作用相关的热液,相对紫金山铜金矿床黄铁矿更富As,一般深循环低温大气水混入较多时,热液体系将更加富As(李红兵和曾凡志, 2005; 曹素巧等, 2014),故东际金(银)矿床成矿热液中含有一定量的大气水。

    图  12  东际金(银)矿床黄铁矿Co-Ni图解和As-Co-Ni图解
    (紫金山铜金矿黄铁矿数据张文媛等,2014)
    Figure  12.  Plot of Co-Ni and As-Co-Ni of pyrites from the Dongji Au(Ag) deposit
    (Zijinshan Cu-Au deposit data after Zhang Wenyuan et al., 2014)

    Au/Ag比值可以指示成矿温度,中低温热液型黄铁矿Au/Ag值>0.5(周学武等, 2005)。东际金(银)矿床黄铁矿Au/Ag值介于0.9~5.5,均值为2.6,说明黄铁矿形成于中低温条件,与王波涛和严卸平(2019)流体包裹体研究结果一致。邻区一些金矿床也具有类似特征,如前际金矿床均一温度为250~ 280℃,小坑金矿床为240~260℃,后坑—翁坑金矿区为260~280℃(冯志文等, 1991)。浅成中低温热液型矿床成矿温度大多在300℃以内(Hedenquist et al., 2000; Pirajno, 2009),如紫金山铜金矿(120~ 240℃)和团结沟金矿(170~230℃)等(毛景文等,2003)。因此,包含东际、前际、小坑等金(银)矿床在内的政和—建瓯金矿集区可能是一个中低温热液型金矿田。

    黄铁矿Fe/(S+As)比值与其形成深度具有相关性(周学武等, 2005; 彭丽娜等, 2009; 曹素巧等, 2014;张文媛等, 2014)。东际金(银)矿床黄铁矿Fe/(S+As)值为0.853~0.867(表 4),高于紫金山铜金矿床下部铜矿体中黄铁矿(Fe/(S+As)值平均0.848,张文媛等, 2014, 成矿深度0.5~1.5 km,高天钧, 1999),低于浙东南怀溪铜金矿中黄铁矿(Fe/(S+As)值平均0.881,彭丽娜等, 2009, 成矿压力126.25 × 105~ 295.5×105 Pa,属浅成环境,陶奎元等, 1998),说明东际金(银)矿床成矿深度具有浅成特征。王波涛和严卸平(2019)流体包裹体研究后,也认为该矿床主体成矿深度较浅(0.4~1.1 km)。此外,东际矿区热液蚀变类型以绢云母化和绿泥石化为主,缺失蒙脱石带,金、银矿化主要赋存在以伊利石为主的绢云母化带中,也佐证该矿床形成于浅成热液环境(卢燕等, 2017)。

    一般认为自然界有地幔硫、现代海洋硫和沉积(还原)硫三种不同硫来源(郑永飞等, 2000),地幔硫与陨石硫同位素变化于0‰附近,受地壳再循环组分影响,会在-6‰~+6‰变化(Denies, 1995),典型浅成低温热液型铜、金、银矿床δ34S值大都在此范围之内,如紫金山高硫型铜金矿金属硫化物的δ34S值峰值介于-5‰~-1‰(梁清玲等, 2015),悦洋低硫型银矿金属硫化物δ34S值介于- 6.8‰ ~ -1.0‰,平均值-4‰(梁清玲等, 2015),阿希低硫型金矿的黄铁矿δ34S值为-4‰~3.1‰,均值-0.45‰ (翟伟等, 2010)。因此,深源岩浆是浅成低温热液型铜、金、银矿床主要成矿物质来源,可以通过围岩淬取、深源岩浆期后热液或者火山喷气等方式富集。东际金(银)矿床黄铁矿δ34S在-0.7‰~-6.6‰,除样品450 CM0-1的δ34S值为-6.6‰外,其余δ34S值在-0.7‰~-2.3‰(平均值-2.03‰),与同一矿集区内锦屏金矿床(δ34S为0.5‰~2.6‰)和小坑—翁坑金矿化带(δ34S平均值为3.05‰)十分相似,均与幔源硫相似(0±3‰,Chaussidon et al., 1990),指示东际金(银)矿床和相邻金矿床硫源为深部岩浆硫。样品450 CM0-1的δ34S值(-6.6‰)与浙闽地区中生代火山岩中黄铁矿δ34S(4.6‰~6.8‰)和毫石银矿黄铁矿δ34S值(5‰~7‰,此矿床为地热水循环成因,成矿物质主要来源于晚侏罗世火山岩围岩;徐步台等, 1994)十分相近,表明火山岩围岩也是东际金(银)矿床成矿物质来源之一。

    除416 m中段黄铁矿,东际金(银)矿床矿石铅μ值在9.27~9.54,均值9.41,位于地幔(8.92)和造山带(10.87)(Doe et al., 1979)之间,ω值为36.22~38.21,均值37.2,超出正常铅范围(35.55±0.59),说明成矿物质具有壳幔混源特征。研究表明,放射性铅同位素“铀铅”(206Pb,207Pb)和“钍铅”(208Pb)含量不同,与物质来源紧密相关,一般化学沉积岩和花岗岩富“铀铅”(206Pb/204Pb>18,207Pb/204Pb>15.3)贫“钍铅”(208Pb/204Pb<39),变质岩铅贫“铀铅”(陈华勇等, 2000)。东际金(银)矿床矿石铅总体富“铀铅”贫“钍铅”型(除样品416 CM1-3外,206Pb/204Pb均值18.335,207Pb/204Pb均值15.565,208Pb/204Pb均值38.584),个别矿石铅贫“铀铅”(样品416 CM1-3的206Pb/204Pb为17.98,207Pb/204Pb为15.269),因此,东际金(银)矿成矿物质具有多源性。在与东际矿区周边马面山岩群变质岩、侵入岩、火山岩和邻区金矿床的铅同位素对比上(图 7),发现东际金(银)矿与邻区金矿矿石铅具有线性关系,与燕山期火山-侵入杂岩接近,也与个别变质岩铅同位素值相似,说明矿集区内金矿床的成矿物质来源相似,主要来自于燕山晚期火山-侵入岩系,变质岩次之。

    东际金(银)矿床角砾状矿石晶屑凝灰岩角砾锆石U-Pb年龄为(154±2)Ma,与德化地区东洋金矿床容矿围岩年龄相近(158~162 Ma,Xu et al., 2018),穿插矿体的花岗斑岩锆石U-Pb年龄为(96.7±0.8)Ma,因此,该矿床成矿年龄应在上述两个年龄之间。在政和—建瓯金矿集区内,东际金(银)矿与邻区金矿具有相似成矿物质来源,可能反映它们形成于相同成矿构造环境,东坑盆地主体由早白垩世晚期石帽山群火山-沉积岩系构成(安山岩Rb-Sr年龄(104.4±23)Ma,ISr=0.7092;熔结凝灰岩Rb-Sr年龄(105.4±3.1)Ma,ISr=0.7101,谢家莹等, 1994),上山岗金矿、东坑金矿和马仑头金矿等赋存于此地层中,这表明区域金矿化时间应晚于上述时期,据此可进一步约束东际金(银)矿床形成时间为早白垩世晚期。

    从区域上来讲,浙闽交界地区三都澳—浦城北西向断裂带是一条铜钼金银多金属成矿带,主要由浦城铜多金属矿集区、政和—建瓯金矿集区和周宁—(福安)铜钼铅锌银矿集区等构成,成矿时代大都集中于100~105 Ma(张克尧等, 2009; 王登红等, 2010),同时也是早白垩世晚期(或称石帽山期)火山盆地分布区域,如东坑盆地、仁山盆地、香炉山盆地等,故该构造-岩浆带是一条早白垩世晚期成岩成矿带,矿床具有相似成矿地质背景和成矿物质来源(冯志文等, 1991),只是因成矿热液物理化学条件不一致,形成了不同成矿类型。因此,将东际金(银)矿床成矿时代限定为早白垩世晚期是可行的,它是区域强烈火山岩浆活动背景下的产物,也是该区大规模成矿的一个缩影。

    (1)黄铁矿微量元素特征指示东际金(银)矿床成矿热液具有多阶段性特征,形成于浅成中低温热液条件,成矿热液中含有一定量大气降水。

    (2)此矿床黄铁矿硫、铅同位素特征反映成矿物质主要来源于壳幔混源型花岗质岩浆,在岩浆-热液体系演化过程中,活化萃取了变质基底和火山岩围岩中金属元素。

    (3)东际金(银)矿区赋矿围岩晶屑凝灰岩锆石U-Pb年龄为(154±2)Ma,穿切矿体的花岗斑岩锆石U-Pb年龄为(96.7±0.8)Ma,结合区域性资料对比分析,可以限定东际金(银)矿床成矿年龄为早白垩世晚期。

    致谢: 感谢审稿专家及编辑部老师提出的建设性意见和建议。
  • 图  1   与油气有关的典型砂岩型铀矿床成矿模式

    A—二连盆地赛汉高毕铀矿床成矿模式;B-塔里木盆地巴什布拉克铀矿床成矿模式;C—鄂尔多斯盆地东胜铀矿床成矿模式;D—松辽盆地钱家店铀矿床成矿模式;1—第四系;2—新近系;3—古近系;4—上白垩统;5—下白垩统;6—中侏罗统7—元古宇;8—燕山期花岗岩;9—砂岩层;10—泥岩层;11—砾岩层;12—黄色氧化带;13—灰绿色古氧化带;14—红色;15—浅灰色;16—暗灰色;17—铀矿体;18—断裂;19—油气渗出方向

    Figure  1.   Typical sandstone type uranium deposits metallogenic model of related to the oil-gas

    A-Metallogenic model of Saihangaobi uranium deposits form the Erlian basin; B-Metallogenic model of Bashibulake uranium deposits form the Tarim basin; C-Metallogenic model of Dongsheng uranium deposits form the Ordos basin; D-Metallogenic model of Qianjiadian uranium deposits form the Songliao basin; 1-Quaternary; 2-Neogene; 3-Paleogene; 4-Upper Cretaceous; 5-Lower Cretaceous; 7-Middle Jurassic; 7-Proterozoic; 8-Yanshannian granite; 9-Sandstone formation; 10-Mudstone formation; 11-Conglomerate formation; 12-Yellow oxidation zone; 13-Sage green oxidation zone; 14-red; 15-Light grey; 16-Dark gray; 17-Uranium ore body; 18-Fracture; 19-Exudation direction of oil and gas

    图  2   典型砂岩型铀矿化与油气空间配置关系图

    A—二连盆地赛汉高毕铀矿床;B—塔里木盆地巴什布拉克铀矿床;C—鄂尔多斯盆地东胜铀矿床;D—松辽盆地钱家店铀矿床;1—第四系;2—新近系;3—古近系;4—上白垩统;5—下白垩统;6—上侏罗统;7—中侏罗统;8—黄色氧化砂体;9—灰绿色古氧化砂体;10—灰色砂体;11—油气藏;12-泥岩层;13—铀矿体;14—岩性接触界面;15—钻孔

    Figure  2.   The spatial configuration diagram of typical sandstone type uranium mineralization and oil-gas

    A-Saihangaobi uranium deposits of the Erlian basin; B-Bashibulake uranium deposits of the Tarim basin; C-Dongsheng uranium deposits of the Ordos basin; D-Qianjiadian uranium deposits of the Songliao basin; 1-Quaternary; 2-Neogene; 3-Paleogene; 4-Upper Cretaceous; 5-Lower Cretaceous; 6-Upper Jurassic; 7-Middle Jurassic; 8-Yellow oxidation sandstone; 9-Grayish green oxidation sandstone; 10-Grey sandstone; 11-Oil and gas reservoirs; 12-Mudstone formation; 13-Uranium ore body; 14-Lithological contact interface; 15-Drill hole

    图  3   铀矿床中铀矿物与沥青相伴生

    puc—复成分磷钙铀矿;C—沥青;U—微粒状铀矿物;Py—草莓状黄铁矿

    Figure  3.   Uranium mineral associated with asphalt in the uranium deposit

    puc-Complex composition of phosphorus calcium uranium deposit; C-Asphalt; U-Particles of uranium ore; Py-Framboidal pyrite

    图  4   铀矿床中油气的次生蚀变作用特征

    a—钱家店铀矿床中含油斑铀矿石表面见灰白色高岭土化酸性褪色蚀变;b—鄂尔多斯盆地原生氧化岩石遭受油气二次还原后呈现白色高岭土化酸性褪色蚀变;c—二连盆地哈达图铀矿床中大量黄铁矿(暗灰)周边共生有沥青铀矿(亮斑);d—鄂尔多斯盆地东胜铀矿床中矿石中心为黄铁矿(暗灰)表面及周边覆盖有沥青铀矿(亮点)

    Figure  4.   Secondary alteration effect characteristics of oil-gas in the uranium deposit

    a-Oil spot-bearing uranium ore surface with gray kaolin acid fading alteration in Qianjiadian uranium deposit; b-Native oxide rock after secondary reduction of oil and gas exhibiting white kaolin acid fading alteration of Ordos Basin; c-Lots of pyrite (dark gray) surrounding the associated pitchblende (sparkling spot) of Hadatu uranium deposit in the Erlian Basin; d-The ore center for pyrite ore (dark gray), surface and the surrounding rock covered with pitchblende (bright spot) of Dongsheng uranium deposit in the Ordos Basin

    图  5   铀矿床中油气与铀矿物作用证据

    a—塔里木盆地巴什布拉克铀矿床;b—二连盆地赛汉高毕铀矿床;C—沥青;U—微粒状铀矿物;Py—草莓状黄铁矿;puc—复成分磷钙铀矿

    Figure  5.   Effect of evidence from uranium minerals and oil-gas in the uranium deposit

    a-Bashibulake uranium deposit of Tarim Basin; b-Saihangaobi uranium deposit of Erlian Basin; C-Asphalt; U-Particles of uranium ore; Py-Framboidal pyrite; puc-Complex composition of phosphorus calcium uranium deposit

    图  6   油气藏放射性异常综合模式图(据刘建军等, 2006, 修改)

    1—油气藏;2—铀富集区;3—镭富集区;4—氡富集区;5—油气运移方向;6—地表含氧含铀水运移方向;7—铀子体运移方向

    Figure  6.   The integrated model of radioactive anomalies above oil and gas accumulation (modified from Liu et al. 2006)

    1-Oil and gas accumulation; 2-Uranium rich domain; 3-Radium rich domain; 4-Radon rich domain; 5-Migration direction of oil/gas; 6-Migration direction of oxygenic and uranic fluid media; 7-Daughter activity

    表  1   中国典型与油气有关的砂岩型铀矿床后生蚀变带中二氧化碳含量

    Table  1   The carbon dioxide content of the epigenetic alteration belt from the typical sandstone type uranium deposit

    下载: 导出CSV
  • Chen Hongbin, Xu Gaozhong. 2007. Direct evidences for reduction of pitchblende by pitch in the Sawapuqi uranium deposit, Xinjiang[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 26(3):245-248 (in Chinese with English abstract). https://www.researchgate.net/publication/292372631_Direct_evidences_for_reduction_of_pitchblende_by_pitch_in_the_Sawapuqi_uranium_deposit_Xinjiang

    Chen Zuyi, Guo Qingying. 2007. Mechanism of U-reduction and concentration by sulphides at sandstone type uranium deposits[J]. Uranium Geology, 23(6):321-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200706000.htm

    Jin Ruoshi, Zhang Chengjiang, Feng Xiaoxi, Tang Chao, Zhu Qiang, Li Guangyao. 2014. The influence of fluid mixing on the mineralization of sandstone type uranium deposits[J]. Geological Bulletin of China, 33(2/3):354-358 (in Chinese with English abstract). https://www.researchgate.net/publication/297425215_The_influence_of_fluid_mixing_on_the_mineralization_of_sandstone_type_uranium_deposits

    Li Shengfu, Wang Cheng. 2008. Metallogenic mechanism and its prospecting guides of Bashibulake uranium deposite[J]. World Nulear Geoscience, 25(3):143-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWYD200803008.htm

    Li Ziying, Fang Xiheng, Chen Aaping, Ou Guangxi, Xiao Xinjian, Sun Ye, Liu chiyang, Wang Yi. 2007. Oringin of gray-green sandstone in ore bed of sandstone type Uranium deposit in north Ordos Basin[J]. Science in China (Series D):Earth Sciencse, 50(Supp.2):165-173. https://www.researchgate.net/publication/248120929_Origin_of_gray-green_sandstone_in_ore_bed_of_sandstone_type_uranium_deposit_in_north_Ordos_Basin

    Liu Chiyang, Mao Guangzhou, Qiu Xinwei, Wu Bolin, Zhao Hongge, Wang Jianqiang. 2013. Organic-inorganic energy minerals interactions and the accumulation and mineralization in the same sedimentary basins[J]. Chinese Journal of Nature Progress, 35(1):47-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZZ201301006.htm

    Liu Chiyang, Zhao Hongge, Tan Chengqian, Wang Jianqiang. 2006.Occurrences of multiple energy mineral deposits and mineralization reservoiring system in the basin[J]. Oil & Gas Geology, 27(2):131-141 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT200602000.htm

    Liu Jianjun, Li Huanyuan, Chen Guosheng. 2006. To prospect for ISLamenable sandstone-type uranium deposit by using the association of uranium with oil[J]. Uranium Geology, 22(1):29-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ200601004.htm

    Liu Wusheng, Jia Licheng, Liu Hongxu. 2012. The potential evaluation of sandstone type uranium resources in China[J]. Uranium Geology, 28(6):349-354 (in Chinese with English abstract).

    Liu Zhangyue, Qin Mingkuan, Cai Genqing, Liu Hongxu Geng Yingying. 2015. Organic geochemical characteristics and its control on uranium mineralization of Bashibulake area in xinjiang[J]. Earth Science Frontiers, 22(4):212-222 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201504025.htm

    Luo Yi, Ma Hanfeng, Xia Yuliang, Zhang Zegui. 2007. Geologic characteristics and metallogenic model of Qianjiandian uranium deposite in Songliao basin[J]. Uranium Geology, 23(4):193-199(in Chinese with English abstract).

    Ou Guangxi, Guo Qingying, Zhang Jianfeng. 2009. The Relationship of Hydrocarbon-bearing Fluid and Juvenile Fluid and Sandstonetype Uranium Mineralization in the North Ordos Basin[C]. Chinese Geophysical, 761-762 (in Chinese with English abstract).

    Qi Fucheng, Qin Mingkuan, Liu Wusheng, Xiao Shuqing, Wang Zhiming, Zou Shungen, Huang Jingbai. 2007. Time space configuration of uranium mineralization, sedimengtary facies and oil & gas induced alteration zone in Zhiluo formation, Ordos basin[J]. Uranium Geology, 23(2):66-70 (in Chinese with English abstract).

    Tan Chengqian, Liu Chiyang, Zhao Junlong, Zhang Rongrong. Feature of high natural gamma anomaly and its geological implication of the typical area in Ordos basin[J]. Science in China(Series D:Earth Science), 2007, 37 (S1):147-156(in Chinese).

    Zhang Jindai, Xu Gaozhong, Lin Jinrong, Peng Yunbiao, Wang Guo. 2010. The implication of six kinds of new sandstone-type uranium deposits to uranium resources potential in North China[J]. Geology in China, 37(5):1434-1449 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201005023.htm

    Zhang Jinglian. On the Inorganic Cause of Oil[M]. Beijing:Petroleum Industry Press, 2001.

    Zhang Zhenqiang, Dong Wenming, She Xinmin, Jing Jianan. 2008.Primary studies on the role of oil gas in sandstone type uranium mineralization of Yaojia Formation in south Songliao basin[J]. Uranium Geology, 24(1):43-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YKDZ200801007.htm

    Zhang Zuhuan, Zhao Yiying, Zhang Xintong.1984. Uranium Geochemistry[M]. Beijing:Atomic Energy Press (in Chinese with English abstract).

    Zhou Yuqi, Yi Ronglong, Shu Wenpei. 2004. Oil and Gas Resources in China[M]. China University of Geosciences Press(in Chinese with English abstract).

    陈宏斌, 徐高中. 2007.新疆萨瓦莆齐铀矿床沥青还原沥青铀矿的直接证据[J].矿物岩石地球化学通报, 26(3):245-248. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200703009.htm
    陈祖伊, 郭庆银. 2007.砂岩型铀矿床硫化物还原富集铀的机制[J].铀矿地质, 23(6):321-334. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200706000.htm
    金若时, 张成江, 冯晓曦, 汤超, 朱强, 李光耀. 2014.流体混合对砂岩型铀矿成矿作用的影响[J].地质通报, 33(2/3):354-358. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2014Z1025.htm
    李盛富, 王成. 2008.巴什布拉克铀矿床形成机理及其找矿标志[J].世界核地质科学, 25(3):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200803008.htm
    刘池洋, 赵红格, 谭成仟, 王建强.2006.多种能源矿产赋存与盆地成藏(矿)系统[J].石油与天然气地质, 27(2):131-141. doi: 10.11743/ogg20060201
    刘池洋, 毛光周, 邱欣卫, 吴柏林, 赵红格, 王建强. 2013.有机-无机能源矿产相互作用及其共存成藏(矿)[J].自然杂志, 35(1):47-55. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201301006.htm
    刘建军, 李怀渊, 陈国胜. 2006.利用铀油关系寻找可地浸砂岩型铀矿[J].铀矿地质, 22(1):29-37. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200601004.htm
    刘武生, 贾立城, 刘红旭. 2012.全国砂岩型铀矿资源潜力评价[J].铀矿地质, 28(6):349-354. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201206008.htm
    刘章月, 秦明宽, 蔡根庆, 刘红旭, 耿英英. 2015.新疆巴什布拉克地区有机地球化学特征及其对铀成矿的控制[J].地学前缘, 22(4):212-222. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504025.htm
    罗毅, 马汉峰, 夏毓亮, 张泽贵. 2007.松辽盆地钱家店铀矿床成矿作用特征及成矿模式[J].铀矿地质, 23(4):193-199. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200704000.htm
    欧光习, 张敏, 张建锋. 2009. 鄂尔多斯盆地北部含烃流体-深源流体与砂岩型铀矿化关系[C]. 中国地球物理, 761-762. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200910002676.htm
    漆富成, 秦明宽, 刘武生, 肖树青, 王志明, 邹顺根, 黄净白. 2007.鄂尔多斯盆地直罗组赋铀沉积相与油气蚀变带的时空配置[J].铀矿地质, 23(2):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200702000.htm
    谭成仟, 刘池洋, 赵军龙, 张蓉蓉.鄂尔多斯盆地典型地区放射性异常特征及其地质意义[J].中国科学D辑:地球科学, 2007, 37(增刊):147-156. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1016.htm
    张金带, 徐高中, 林锦荣, 彭云彪, 王果. 2010.中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J].中国地质, 37(5):1434-1449. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20100520&flag=1
    张景廉. 2001.论石油的无机成因[M].北京:石油工业出版社.
    张振强, 董文明, 佘新民, 景建安. 2008.浅析油气对松辽盆地南部姚家组砂岩型铀矿成矿的作用[J].铀矿地质, 24(1):43-47. http://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200801007.htm
    张祖还, 赵懿英, 章新桐. 1984.铀地球化学[M].北京:原子能出版社.
    周玉琦, 易荣龙, 舒文培. 2004.中国石油与天然气资源[M].武汉:中国地质大学出版社.
  • 期刊类型引用(7)

    1. 王利,梁天意. 内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义. 西北地质. 2025(01): 68-80 . 百度学术
    2. 魏巍,黄行凯,徐巧,蒋斌斌,刘孜,祝新友,巫锡勇. 大兴安岭中南段哈力黑坝岩体的年代学、地球化学及其构造拆沉作用. 中国地质. 2024(03): 978-994 . 本站查看
    3. 赵利刚,王文龙,高学生,王树庆,许雅雯,胡晓佳. 内蒙古达茂旗北部包尔汉图群时代及中早-中三叠世变质锆石年龄的启示. 华北地质. 2024(02): 1-15+37 . 百度学术
    4. 何鹏,郭硕,苏航. 大兴安岭南段昌图锡力地区白音高老组火山岩年代学、地球化学及构造环境. 华北地质. 2024(02): 16-27 . 百度学术
    5. 杨海星,赵胜金,柳志辉,隋海涛,高利东,高玉石,于海洋,张猛. 大兴安岭中南段满克头鄂博组正层型剖面火山岩年代学及地球化学特征. 世界地质. 2023(02): 213-229 . 百度学术
    6. 程泽宇,边伟华,陈崇阳,杨卓龙,高航,王璞珺. 海拉尔盆地嵯岗隆起侏罗系火山岩年代学、地球化学特征及其地质意义. 世界地质. 2022(03): 451-464 . 百度学术
    7. 赵强,汤静如,周青,舒广龙,马鹏,姜迎久,孙振江. 大兴安岭北段满克头鄂博组火山岩形成时代、地球化学特征与大地构造环境. 桂林理工大学学报. 2021(03): 497-509 . 百度学术

    其他类型引用(2)

图(6)  /  表(1)
计量
  • 文章访问数:  3385
  • HTML全文浏览量:  484
  • PDF下载量:  6560
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-10-04
  • 修回日期:  2017-04-07
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2017-04-24

目录

/

返回文章
返回
x 关闭 永久关闭