Geology and metallogenic process of large and super-large gold deposits in South America
-
摘要:
金是南美洲仅次于铜的优势矿种,据美国地质调查局统计,2016年秘鲁金矿储量2800 t,巴西金矿储量2400 t,智利仅公布到2014年金矿储量3900 t。通过对南美安第斯成矿带和南美地台金矿地质背景分析,根据对31个大型-超大型金矿的综合研究,剖析斑岩型、浅成低温热液型、IOCG型、造山型等不同类型金矿床的时空分布、地质特征,梳理重要成矿区特征,摸清区域构造岩浆-成矿作用演化的关系,为以后在南美洲金矿的勘查开发提供科学依据。在安第斯成矿带,金成矿作用与太平洋板块向南美大陆板块的俯冲密切相关,大型-超大型金矿类型主要是以浅成低温热液型,以及与铜共生的斑岩型、IOCG型矿床为主,大规模金成矿作用集中在新生代,形成了众多世界著名的金矿床。南美地台成矿带位于亚马孙陆块边缘,受古元古代(2.5~1.8 Ga)Trans-Amazonian旋回影响,经历了反复俯冲造山运动,大型-超大型金矿以造山带型金矿为主,主要成矿期在太古宙-新元古代。南美的金资源相当丰富,未来具有巨大的勘查开发潜力。
Abstract:Gold is a dominant mineral species in South America, whose importance is only second to that of copper. According to gold reserves statistics from the USGS, the gold reserves were 2800 tons in Peru and 2400 tons in Brazil in 2016, and 3900 tons in Chile in 2014. The main 31 large and superlarge gold deposits were comprehensively studied in this paper on the basis of the geological background analysis of gold deposits in South American Andean metallogenic belt and South American platform. The spatial and temporal distribution and geological characteristics of gold deposits, such as porphyry copper-gold deposits, epithermal gold deposits, IOCG gold deposits, and orogenic gold deposits, were analyzed in detail. The authors rearranged the characteristics of the metallogenic region and found out the relationship between regional tectonic magmatic and mineralization evolution, with the purpose of providing scientific basis for future exploration and exploitation of gold mines in South America. In the Andean metallogenic belt, the gold mineralization was closely related to the subduction of the Pacific plate to the South American Plate. The large and superlarge gold deposits are mainly porphyry copper-gold deposits, epithermal gold deposits, IOCG gold deposits and so on. The main gold mineralization is concentrated in the new generation, forming a number of famous gold deposits in the world. In the South America platform, the gold metallogenic belt is located at the edge of the Amazonian block and was influenced by the Trans-Amazonian cycle in Paleoproterozoic (2.5-1.8 Ga), which had undergone repeated subduction and orogeny. The large and superlarge gold deposits are main orogenic gold deposits. The metallogenic period is mainly the Archean-Late Proterozoic period. The gold resources are quite rich in South America, and it has great potential for exploration and exploitation in the future.
-
Keywords:
- gold deposit /
- South America /
- mineralization /
- superlarge gold deposit /
- Andean metallogenic belt
-
1. 研究目的(Objective)
通过实施2020年四川省自然资源厅省政府性投资地质勘查项目,对沐川地区上二叠统宣威组底部泥岩中赋存的稀有、稀土、稀散元素进行调查评价,了解“三稀”元素含量与找矿前景,希望在“三稀”找矿方面取得突破性进展,为乌蒙山贫困地区脱贫提供技术服务和支撑产业规划、扶贫开发提供资源保障。
2. 研究方法(Method)
主要采用了1∶10000地质填图、1∶500矿化带剖面测量、探槽工程、钻探工程、采样与测试分析等方法,对上二叠统宣威组底部的富镓泥岩进行了初步研究。
3. 研究结果(Results)
沐川地区位于扬子陆块西缘(图 1a),峨眉山大火成岩省中带(图 1b)。研究区位于五指山背斜核部,其核部地层为上二叠统峨眉山玄武岩(P3e),两翼向两侧依次出露上二叠统宣威组(P3x)、三叠系(T)、侏罗系(J)等(图 1c)。镓矿层产出于峨眉山玄武岩组(P3e)顶部、宣威组(P3x)底部的紫红色铁质泥岩、灰白色铝质泥岩、浅灰绿色泥岩、灰色泥岩、浅灰绿色泥岩及深灰色炭质泥岩中,呈层状分布,层位稳定(图 1d);找矿标志:峨眉山玄武岩组与宣威组(P3x)的平行不整合界线之上,具“成矿界面”特征,颜色上有明显的紫红色、灰白色、灰色及深灰色等,特别是具有特征的紫红色,宏观上易识别;根据地球化学图解判别显示,其成矿物质来源有可能来源于峨眉山玄武岩及峨眉山地幔柱演化末期喷发的火山灰。
采集钻孔岩心1/2切分样品,送样至自然资源部成都矿产资源监督检测中心采用电感耦合等离子体质谱仪(ICP-MS)进行测试分析,结果显示ZK01钻孔镓(Ga)平均品位104 μg/g,矿层厚度6.27 m;ZK02钻孔镓(Ga)平均品位68.1 μg/g,矿层厚度8.67 m;ZK03钻孔镓(Ga)平均品位55.3 μg/g,矿层厚度13.87 m;三个工程的镓(Ga)平均品位为75.8 μg/g,平均厚度9.60 m。可以看出,沐川地区宣威组底部的泥岩中镓(Ga)品位较高,厚度较大,达到了中国现行的Ga矿资源工业指标要求(30 μg/g)。
4. 结论(Conclusion)
经初步估算沐川地区镓(Ga)资源量可达数万吨到数十万吨,有望找到超大型镓矿床(>2000 t) 的潜力。沐川地区峨眉山玄武岩分布面积较广,为镓的富集成矿提供了丰富的物源。经地质填图及工程取样显示,宣威组底部富镓泥岩层厚度大,分布面积广泛,镓元素含量较高,具有巨大的找矿潜力。研究宣威组底部“三稀”元素成矿特征有助于中国在战略性关键矿产找矿方面取得重大突破,对地方国民经济发展具有重要意义。
5. 基金项目(Fund support)
本文为四川省自然资源厅2020年省政府性投资地质勘查项目(DZ20 2002)和四川省自然资源厅科技项目(kj-2022-6)资助成果。
致谢: 在成文过程中,与中国地质调查局发展研究中心邱瑞照研究员、陈秀法教授级高级工程师、张潮博士进行了有益的讨论;非常感谢审稿专家提出了宝贵建议,使本文表述更加严谨,内容更加充实,在此一并表示衷心感谢。 -
图 1 南美地质构造分区略图(转张潮,2017)
Figure 1. Sketch map showing division of tectonics in South America
图 2 南美大型-超大型典型金矿床分布示意图
1-乔科;2-梅里安;3-罗斯贝尔;4-古鲁皮;5-卡拉加斯;6-塞拉佩拉达;7-索西戈;8-莫罗韦洛;9-诺瓦利马;10-马尔托尔;11-波特沃勒;12-加莱诺;13-亚纳科查;14-北拉古纳斯;15-皮里纳;16-夸霍内;17-塞拉戈达;18-埃尔佩尼翁;19-拉科伊帕;20-隆伯马尔特;21-坎德拉利亚;22-马里昆加;23-坎佩切;24-塞罗卡塞尔;25-帕斯卡拉玛;26-帕斯卡;27-埃尔印迪奥;28-洛斯佩拉姆布雷斯;29-埃尔特尼恩特;30-阿伦布雷拉;31-贝拉德罗
Figure 2. Sketch map of distribution of typical large and superlarge gold deposits in South America
1-Choco; 2-Merian; 3-Rosebel; 4-Gurupi; 5-Carajás; 6-Serra Pelada; 7-Sossego; 8-Morro Velho; 9-Novalima; 10-Marmato; 11-Portovelo; 12-Galeno; 13-Yanacocha; 14-Lagunas Norte; 15-Pierina; 16-Cuajone; 17-Sierra Gorda; 18-El Penon; 19-La Coipa; 20-Lobo-Marte; 21-Candelaria; 22-Maricunga; 23-Caspiche; 24-Cerro Casale; 25-Pascua Lama; 26-Pascua; 27-El Indio; 28-Los Pelambres; 29-El Teniente; 30-Alumbrera; 31-Veladero
图 3 莫罗韦洛(Morro Velho)金矿区域地质图(据Vial et al., 2007)
Figure 3. Regional geological map of Morro Velho gold mine (after Vial et al., 2007)
图 4 莫罗韦洛(Morro Velho)矿区第25号水平开采面截面图(据Vial et al., 2007)
Figure 4. Horizontal section of level 25 of the Morro Velho gold mine (after Vial et al., 2007)
图 6 波特沃勒地区岩石构造图(Thournout et al., 1996)
1-酸性熔岩及碎屑岩;2-流纹岩;3-安山岩类;4-变质岩类;5-环状构造;6-断裂;7-矿化带
Figure 6. Petrologic-tectonic map of Portovelo district(after Thournout et al., 1996)
1-Acid lava and clastic rocks; 2-Rhyolite; 3-Andesite; 4-Metamorphic rocks; 5-Circular structures; 6-Fault; 7-Mineralized zone
图 7 波特沃勒地区地质剖面图(Thournout et al., 1996)
1-酸性熔岩流和火山碎屑岩;2-流纹岩体;3-三叠纪安山岩;4-塞里克组;5-变质岩;6-断裂;7-矿化带;8-主要蚀变带界线
Figure 7. Geological section of Portovelo district(after Thournout et al., 1996)
1-Acidic lava flows and pyroclastic rocks; 2-Rhyolitic rocks; 3-Triassic andesite; 4-Celica formation; 5-Metamorphic rocks; 6-Fault; 7-Mineralized zone; 8-Boundary of main alteration zone
图 8 坎德拉利亚区域地质简图(据毛景文等,2102)
Figure 8. Regional geological sketch map of Candelaria (after Mao et al., 2012)
图 9 坎德拉利亚剖面示意图(据毛景文等,2102)
Figure 9. Sketch map of geological section of Candelaria (after Mao et al., 2012)
图 10 埃尔特尼恩特铜-金矿床地质简图(据王佳新等,2015)
Figure 10. Geological sketch map of the El Teniente Cu-Au mine (after Wang et al., 2015)
图 11 巴西卡拉加斯地区Sossego/Sequerinho矿区地质图(a)及地质剖面图(b)(据曾勇等,2013)
1-辉长岩;2-环斑花岗岩;3-花岗岩;4-长英质变质火山岩;5-铁镁质变质火山岩;6-混合花岗岩-片麻岩杂岩;7-矿化带投影区;8-矿化角砾岩带;9-阳起石(角闪石-绿帘石相)矿化蚀变带;10-磁铁矿矿化蚀变带;11-黑云糜棱岩;12-石英脉;13-断层
Figure 11. Geological sketch map (a) and geological section (b) of the Sossego/Sequerinho mine in Carajás (after Zeng et al., 2013)
1-Gabbro; 2-Rapakiwi granite; 3-Granite; 4-Felsic metavolcanics; 5-Mafic metavolcanics; 6-Migmatitic granite and gneiss complex; 7-Mineralized zone projection area; 8-Mineralized breccia belt; 9-Actinolite(amphibolite -epidote facies)mineralization alteration zone; 10-Magnetic mineralization alteration zone; 11-Biotite mylonite; 12-Quartz vein; 13-fault
表 1 南美大型-超大型典型金矿床(储量大于100 t)
Table 1 List of typical large and superlarge gold deposits in South America
-
Arenson L U, Jakob M, Wainstein P. 2014. Effects of dust deposition on Glacier Ablation and Runoff at the Pascua-Lama Mining Project, Chile and Argentina[C]. Engineering Geology for Society and Territory, 27-32.
Behn G, Camus F, Carrasco P, Ware H. 2001. Aeromagnetic signature of porphyry copper systems in northern Chile and its geologic implications[J]. Economic Geology, 96:239-248. doi: 10.2113/gsecongeo.96.2.239
Bernasconi A. 1985. Archaean gold mineralization in central eastern Brazil:a review[J]. Mineralium Deposita, 20(4):277-283. doi: 10.1007/BF00196076
Bissig T, Cooke D R. 2014. Introduction to the special issue devoted to alkalic porphyry Cu-Au and epithermal Au deposits[J]. Economic Geology, 109(4):819-825. doi: 10.2113/econgeo.109.4.819
Bouzari F, Clark A H. 2002. Anatomy, evolution, and metallogenic significance of the supergene orebody of the cerro Colorado porphyry copper deposit, I Region, Northern Chile[J]. Economic Geology, 97:1701-1740. doi: 10.2113/gsecongeo.97.8.1701
Cabello J. 1986. Precious metals and cenozoic volcanism in the Chilean Andes[J]. Journal of Geochemical Exploration, 25(1-2):1-19. http://linkinghub.elsevier.com/retrieve/pii/037567428690004X
Cabral A R, Lehmann B, Kwitko R, Costa C H C. 2002. The Serra Pelada Au-Pd-Pt Deposit, Carajas Mineral Province, Northern Brazil:Reconnaissance mineralogy and chemistry of very high grade Palladian gold mineralization[J]. Economic Geology & the Bulletin of the Society of Economic Geologists, 97(5):1127-1138. https://www.researchgate.net/publication/240301604_The_Serra...
Cannell J, Cooke D R, Walshe J L, Stein H. 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100:979-1003. doi: 10.2113/gsecongeo.100.5.979
Cerpa L M, Bissig T, Kyser K, McEwan C, Macassi A, Rios H W. 2013. Lithologic controls on mineralization at the Lagunas Norte high-sulfidation epithermal gold deposit, northern Peru[J]. Mineralium Deposita, 48(5):653-673. doi: 10.1007/s00126-013-0455-6
Charchaflie D, Tosdal R M, Mortensen J K. 2007. Geologic framework of the Veladero high-sulfidation epithermal deposit area, Cordillera Frontal, Argentina[J]. Economic Geology, 102(2):171-192. doi: 10.2113/gsecongeo.102.2.171
Chouinard A, Paquette J, Williams-Jones A E. 2005. Crystallographic controls on trace-element incorporation in Auriferous pyrite from the Pascua epithermal high-sulfidation deposit, ChileArgentina[J]. Canadian Mineralogist, 43(3):951-963. doi: 10.2113/gscanmin.43.3.951
Daoust C, Voicu G, Brisson H, Gauthier M. 2011. Geological setting of the Paleoproterozoic Rosebel gold district, Guiana Shield, Suriname[J]. Journal of South American Earth Sciences, 32(3):222-245. doi: 10.1016/j.jsames.2011.07.001
Davies R C, Williams P J. 2005. The El Galeno and Michiquillay porphyry Cu-Au-Mo deposits:geological descriptions and comparison of Miocene porphyry systems in the Cajamarca district, northern Peru[J]. Mineralium Deposita, 40(5):598-616. doi: 10.1007/s00126-005-0026-6
De Oliveira C G, de Oliveira F B, Della Giustina M E S, Marques G C, Dantas E L, Pimentel M M, Buhn B M. 2016. The Chapada CuAu deposit, Mara Rosa magmatic arc, Central Brazil:Constraints on the metallogenesis of a Neoproterozoic large porphyry-type deposit[J]. Ore Geology Reviews, 72, 1-21. doi: 10.1016/j.oregeorev.2015.06.021
Deyell C L, Leonardson R, Rye R O, Thompson J F H, Bissig T, Cooke D R. 2005. Alunite in the Pascua-Lama High-Sulfidation Deposit:Constraints on Alteration and Ore Deposition Using Stable Isotope Geochemistry[J]. Economic Geology, 100(1):131-148. doi: 10.2113/100.1.0131
Dong Yongguan, Zeng Yong, Yao Chunyan, Gao Weihua, Guo Weimin. 2015. Geological tectonic evolution and mineralization of metallic minerals in the South America platform[J]. Resources Survey and Environment, 36(2):116-122(in Chinese with English abstract).
Fang weixuan, Li jianxu. 2012. The distribution, control factors and mineralization evolution of iron-oxide copper gold deposits in Chile[C]//Conference on Intelligence Professional Committee of Science and Technology, Geological Society of China (in Chinese).
Fifarek R H, Rye R O. 2005. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru:influence of hydrodynamics on SO42-H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments[J]. Chemical Geology, 215(1):253-279. http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1010&context=usgsrye
Gair J E. 1962. Geology and ore deposits of the Nova Lima and Rio Acima quadrangles, Minas Gerais, Brazil[M]. Washington:Vsgovt. Print. Off.
Gao Qianlan. 1991. Metallogenic characteristics and types of low temperature hydrothermal gold deposits in Chile[J]. Gold Science and Technology, (7):20-21 (in Chinese with English abstract).
Goldie M. 2002. Self-potentials associated with the Yanacocha highsulfidation gold deposit in Peru[J]. Geophysics, 67(3):684-689. doi: 10.1190/1.1484511
Goyzueta C J S. 2015. O pórfiro de Cu Cuajone, Perú:geoquímica, petrologia e evolução da alteração hidrotermal e sua relação com a fase fluída[J]. Biblioteca Digital De Teses E Dissertações Da Universidade De São Paulo. Grainger C J, Groves D I, Tallarico F H B, Fletcher I R. 2008. https://www.researchgate.net/profile/Carmen_Sucapuca
Metallogenesis of the carajás mineral province, southern amazon craton, brazil:varying styles of archean through paleoproterozoic to neoproterozoic base-and precious-metal mineralisation[J]. Ore Geology Reviews, 33(3):451-489. https://www.researchgate.net/publication/223327061_Metallogenesis...
Harris A C, Allen C M, Bryan S E, Campbell I H, Holcombe R J, Palin J M. 2004. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit:implications for porphyry-related mineralization[J]. Mineralium Deposita, 39(1):46-67. doi: 10.1007/s00126-003-0381-0
Holley E A. 2012. The Veladero High-sulfidation Epithermal Au-Ag Deposit, Argentina:Volcanic Stratigraphy, Alteration, Mineralization, and Quartz Paragenesis[M]. Dissertations & Theses-Gradworks.
Hou Zengqian, Mo Xuanxue, Gao Yongfeng, Gu Xiaoming, Meng Xiangjin. 2003. Adakite, A Possible Host Rock for Porphyry Copper deposits:Case studies of Porphyry Copper belts in Tibetan Plateau and in Northern Chile[J]. Mineral Deposits, 22(1):1-12(in Chinese with English abstract). doi: 10.1007/s00126-015-0602-3
Jannas R R, Beane R E, Ahler B A, Brosnahan D R. 1990. Gold and copper mineralization at the El Indio deposit, Chile[J]. Journal of Geochemical Exploration, 36(1):233-266. https://www.sciencedirect.com/science/article/pii/037567429090057H
Kerrich R, Goldfarb R, Groves D, Garwin S, Jia Y. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Chinese Science:Earth Science, 43(s1), 1-68. doi: 10.1007/BF02911933
Klein E L, Harris C, Giret A, Moura C A V, Angélica R S. 2005. Geology and stable isotope (O, H, C, S) constraints on the genesis of the Cachoeira gold deposit, Gurupi Belt, northern Brazil[J]. Chemical Geology, 221(3/4):188-206. https://www.sciencedirect.com/science/article/pii/S0009254105002081
Kuyumjian R M. 1995. Diversity of fluids in the origin of the Chapada Cu-Au deposit, Goias[J]. Brazilian Journal of Geology, 25(3):203-205. http://rbg.sbgeo.org.br/index.php/rbg/article/download/528/221
Lapoint D. 2012. Gold exploration methods in deeply weathered environments:A comparison of southeastern US and suriname[C]//2012 GSAAnnual Meeting in Charlotte.
Li shangsen. 1996. Gold deposit in Precambrian iron formation, Brazil[J]. Precambrian Geology Abroad, (4):32-36 (in Chinese).
Liao weidong. 1993. Marte porphyry gold deposit in northern Chile[J]. World Nuclear Geoscience, (03):99(in Chinese with English abstract).
Lobato L M, Vieira F W R, Ribeiro-Rodrigues L C, Pereira L M M, Menezes M G, Junqueiraet P A, Pereira S L M. 1998. Styles of hydrothermal alteration and gold mineralization associated with the Nova Lima Group of the Quadrilátero Ferrífero:Part I, description of selected gold deposits[J]. Revista Brasileira De Geociencias, 28(3):339-354. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.476.886
Lobato L M, Santos J O S, Mcnaughton N J, Fletcher I R, Noce C M. 2007. U-Pb Shrimp monazite ages of the giant morro velho and cuiabá gold deposits, rio das velhas greenstone belt, quadrilátero ferrífero, minas gerais, brazil[J]. Ore Geology Reviews, 32(3), 674-680. https://www.researchgate.net/publication/229091895_The_geology_of...
Longo A A, Dilles J H, Grunder A L, Duncan R. 2010. Evolution of calc-alkaline volcanism and associated hydrothermal gold Deposits at Yanacocha, Peru[J]. Economic Geology, 105(7):1191-1241. doi: 10.2113/econgeo.105.7.1191
Longo A A, Teal L. 2005. A summary of the volcanic stratigraphy and the geochronology of magmatism and hydrothermal activity in the Yanacocha gold district, northern Peru[C]. Symposium, 797-808.
Lu minjie, Zhu xiaosan, Guo weimin. 2016. Division of Andean metallogenic domain in South America[J]. Mineral Deposits, 35(5):1073-1083(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201605014.htm
Mao jingwen. 2012. Major foreign odeposit types, characteristics and prospecting exploration[M]. Beijing:Geological Publishing House(in Chinese with English abstract).
Marinov D. 2011. Re-Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú[C]. Biennial Meeting, Sga 2011 Antofagasta, Chile.
Monteiro L V S, Xavier R P, Carvalho E R D, Hitzman M W, Johnson C A, Souza C R D, Torresi F. 2008. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil:paragenesis and stable isotope constraints[J]. Mineralium Deposita, 43(2):129-159. doi: 10.1007/s00126-006-0121-3
Monteiro L V S, Xavier R P, Carvalho E R D, Hitzman M W, Juliani C, Filho C R D S, Carvalhoa E D R. 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-coppergold deposit, Carajás Mineral Province, Brazil[J]. Ore Geology Reviews, 34(3):317-336. doi: 10.1016/j.oregeorev.2008.01.003
Montgomery A T. 2012. Metallogenetic controls on miocene highsulphidation epithermal gold mineralization, Alto Chicama district, La Libertad, northern Perú.[J]. http://hdl.handle.net/1974/7047
Moroni M, Girardi V A, Ferrario A. 2001. The Serra Pelada Au-PGE deposit, Serra dos Carajás (Pará State, Brazil):geological and geochemical indications for a composite mineralising process[J]. Mineralium Deposita, 36(8):768-785. doi: 10.1007/s001260100201
Muntean J L. 2000. Porphyry gold deposits of the Refugio District, Maricunga Belt, Northern Chile[J]. Economic Geology, 95(7):1445-1472. doi: 10.2113/gsecongeo.95.7.1445
Netunovillas R, Santos M. 2001. Gold deposits of the carajás mineral province:deposit types and metallogenesis[J]. Mineralium Deposita, 36(3/4):300-331. https://www.researchgate.net/publication/226569386_Gold_deposits...
Noble D C, and McKee E H. 1999. The Miocene metallogenic belt of central and northern Peru[M]. Society of Economic Geologists Special Publication, 7:155-193.
Oviedo L, Fuster N, Tschischow N, Ribba L, Zuccone A, Grez E, Aguilar A. 1991. General geology of La Coipa precious metal deposit, Atacama, Chile[J]. Economic Geology, 86(6):1287-1300. doi: 10.2113/gsecongeo.86.6.1287
Padoan M, Rossetti P, Rubatto D. 2014. The Choco 10 gold deposit (El Callao, Bolivar State, Venezuela):Petrography, geochemistry and U-Pb geochronology[J]. Precambrian Research, 252(5):22-38. https://openresearch-repository.anu.edu.au/handle/1885/74169?mode=full
Palacios C, Herail G, Townley B, Maksaev V, Sepulveda F, Parseval D P, Rivas P, Lahsen A, Parada M. 2001. The composition of gold in the cerro casale gold-rich porphyry deposit, maricunga belt, Northern Chile[J]. Canadian Mineralogist, 39(3):907-915. doi: 10.2113/gscanmin.39.3.907
Petersen U. 1970. Metallogenic provinces in south America[J]. Geologische Rundschau, 59(3):834-897. doi: 10.1007/BF02042275
Proffett J M. 2003. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Economic Geology, 98(8):1535-1574. doi: 10.2113/gsecongeo.98.8.1535
Qu Hongyin, Pei Rongfu, Mei Yanrong, Wang Haolin, Li Jinwen, Wang Yonglei. 2013. Metallogenic characteristics of superlarge and exceptional superlarge Cu deposit abroad[J]. Geology in China, 40(2):371-390 (in Chinese). https://www.researchgate.net/publication/281475224_Mantle-derived...
Rainbow A, Clark A H, Kyser T K, Gaboury F, Hodgson C J. 2005. The Pierina epithermal Au-Ag deposit, Ancash, Peru:Paragenetic relationships, alunite textures, and stable-isotope geochemistry[J]. Chemical Geology, 215(1):235-252. https://www.sciencedirect.com/science/article/pii/S0009254104004073
Reich M, Parada M A, Palacios C, Dietrich A, Schultz F, Lehmann B. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications[J]. Mineralium Deposita, 38(7):876-885. doi: 10.1007/s00126-003-0369-9
Richardson S V, Jones L M, Kesler S E. 1988. Strontium isotopic geochemistry of Pan-African/Brasiliano rocks, Chapada copper deposit, Goiás, Brazil[J]. Geologische Rundschau, 77(3):763-770. doi: 10.1007/BF01830182
Ryan P J, Lawrence A I, Jenkins R A, Matthews J P, Zamora J C, Marino E, Urqueta I. 1994. The Candelaria copper-gold deposit, Chile:Congreso Geológico Chileno, 7 th, Concepción[J]. Actas, 2:1616-1617.
Ryan P J. 1996. The Candelaria copper-gold deposit, Chile[M]. University of the Witwatersrand, Economic Geology Research Unit.
Sanematsu K. 2011. Caspiche porphyry Au-Cu deposit in the Maricunga belt, northern Chile[J]. Resource Geology, 61:Ⅶ-Ⅷ. http://ci.nii.ac.jp/naid/10031141201/en
Shaver S A. 2009. The Sierra Gorda porphyry Cu-Mo(Au) deposit, region Ⅱ, northern Chile, part 2:intrusive relations and 40Ar/39Ar and Re-Os molybdenite geochronology of the Catalina and 281-zone mineralization centers.[J]. Portland GSA Annual Meeting. Paper:No. 26-7. http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_161192.htm
Siddeley G, Araneda R, Tian shuwen. 1989. El Indio gold mine, Chile[J]. Geological Survey and Research, (1):61-74 (in Chinese).
Sillitoe R H, Perello J. 2005. Andean Copper Province:Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery[J]. Economic Geology, 100:845-890. https://www.researchgate.net/publication/318721739_The_Productora...
Sillitoe R H, Tolman J, Kerkvoort G V. 2013. Geology of the Caspiche Porphyry Gold-copper deposit, Maricunga belt, northern Chile[J]. Economic Geology, 108(4):585-604. doi: 10.2113/econgeo.108.4.585
Sillitoe R H. 1973. Geology of the Los Pelambres Porphyry Copper Deposit, Chile[J]. Economic Geology, 68(1):1-10. doi: 10.2113/gsecongeo.68.1.1
Sillitoe R H. 1988. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 67:184-197. https://www.researchgate.net/publication/247861477_A_Plate...
Sillitoe R H.1991. Gold metallogeny of Chile-an introduction[J]. Economic Geology, 86(6):1187-1205. doi: 10.2113/gsecongeo.86.6.1187
Stump N, Fang Jiansheng, Gui Yuli. 1998. Alumbrera Cu-Au deposit[J]. Mineral Engineering Research, (6):12-14 (in Chinese).
Tassinari C C G, Pinzon F D, Ventura J B. 2008. Age and sources of gold mineralization in the marmato mining district, nw colombia:A miocene-pliocene epizonal gold deposit[J]. Ore Geology Reviews, 33(3), 505-518. https://www.sciencedirect.com/science/article/pii/S0169136807000698
Tazava E, de Oliveira C G. 2000. The Igarape Bahia Au-Cu (REE-U) deposit, Caraja mineral province, Northan Brazil, geochemistry and monazite geochronology[J]. Mineralogical Magazine, 71:347-363. doi: 10.1007/s00126-011-0352-9
Teixeira J B G, Misi A., da Silva M D G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America[J]. Gondwana Research, 11(3):346-361. doi: 10.1016/j.gr.2006.05.009
Thournout F V, Salemink J, Valenzuela G, Merlyn M, Boven A, Muchez P. 1996. Portovelo:a volcanic-hosted epithermal veinsystem in Ecuador, South America[J]. Mineralium Deposita, 31(4):269-276. doi: 10.1007/BF02280791
U.S. Geological Survey. 2017. Mineral Commodity Summaries[R].
Vial D S, Dewitt E, Lobato L M, Thorman C H. 2007. The geology of the Morro Velho gold deposit in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil[J]. Ore Geology Reviews, 32(32):511-542. http://www.academia.edu/26416413/The_geology_of_the_Morro_Velho_gold...
Vila T, Sillitoe R H, Betzhold J, Viteri E. 1991. The porphyry gold deposit at Marte, northern Chile[J]. Economic Geology, 86(6):1271-1286. doi: 10.2113/gsecongeo.86.6.1271
Vry Helen V. 2010. Geological and Hydrothermal Fluid Evolution at El Teniente, Chile[D]. Imperial College London.
Wang Jiaxin, Nie Fengjun, Zhang Xueni, Liu Chunhua, Song Chongyu, Duan Peixin, Yu Miao. 2015. El Teniente porphyry CuMo deposit in Chile[J]. Mineral Deposits, 34(1):200-203(in Chinese with English abstract).
Warren I, Archibald D A, Simmons S F. 2008. Geochronology of epithermal Au-Ag mineralization, magmatic-hydrothermal alteration, and supergene weathering in the el penon district, northern chile[J]. Economic Geology, 103(4):851-864. doi: 10.2113/gsecongeo.103.4.851
Warren P I. 2005. Geology, geochemistry, and genesis of the El Peñón epithermal Au-Ag deposit, northern Chile:Characteristics of a bonanza-grade deposit and techniques for exploration[J]. Health Technology Assessment, 9(7):1-238, ⅲ-ⅳ. https://www.researchgate.net/publication/36363240_Geology...
Zappettini E O. 2005. Metallogeny of South America[M]. Beenos Aires:Servico Geologico Minero Argentino, 1-274.
Zeng Yong, Guo Weimin, Xiang Hongli, Yao Chunyan, Dong Yongguan. 2015. Massive Fe-Cu-Au polymetallic deposits metallogenesis in Carajás mineral province of Brazil[J]. Mineral Deposits, 34(4):828-841(in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=...
Zeng Yong, Guo Weiming, Yao Chunyan, Xiang Hongli, Xing Guangfu, Dong Yongguan. 2013. Research Progress on Iron Oxide-Cu-Au Deposit in Carajás, Brazil[J]. Geological Science and Technology Information, (05):72-78(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201305013.htm
Zhang Chao. 2017. Division of Metallogenic Units and Geological Characteristics in South America[D]. Postdoctor Report, 1-147(in Chinese with English abstract).
Zhou Dean. 1993. Hydrothermal exhalation genesis of Chapada CuAu deposit[J]. World Nuclear Geoscience, (2):140-142(in Chinese with English abstract). https://pubs.geoscienceworld.org/economicgeology/article-lookup/81/...
Zuo Tengxinping, Bai Hua. 1984. El intao gold deposit, in Andes Mountains, Central Chile[J]. Geological Science and Technology Information, (1):104-107 (in Chinese with English abstract).
曾勇, 郭维民, 姚春彦, 项红莉, 邢光福, 董永观. 2013.巴西卡拉加斯地区氧化铁型铜-金矿床研究进展[J].地质科技情报, (5):72-78. http://www.wenkuxiazai.com/doc/ce548c9ea58da0116c1749ba.html 曾勇, 郭维民, 项红莉, 姚春彦, 董永观.2015.巴西卡拉加斯地区大规模铁-铜-金多金属矿床的成矿作用[J].矿床地质, 34(4):828-841. doi: 10.16111/j.0258-7106.2015.04.012.html 董永观, 曾勇, 姚春彦, 高卫华, 郭维民. 2015.南美地台地质构造演化与主要金属矿产成矿作用[J].资源调查与环境, 36(2):116-122. http://www.cnki.com.cn/Article/CJFDTotal-HSDZ201502006.htm 方维萱, 李建旭. 2012. 智利铁氧化物铜金矿床分布规律、控制因素与成矿演化[C]. 中国地质学会科技情报专业委员会学术研讨会. 高乾兰. 1991.智利低温热液金矿床的成矿特征及类型[J].黄金科学技术, (7):20-21. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ199107003.htm 候增谦, 莫宣学, 高永丰, 曲晓明, 孟详金. 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质, 22(1):1-12. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=... 李上森. 1996.巴西前寒武纪含铁建造中的金矿床[J].国外前寒武纪地质, (4):32-36. http://www.cqvip.com/QK/92480X/199604/2399241.html 卢民杰, 朱小三, 郭维民. 2016.南美安第斯地区成矿区带划分探讨[J].矿床地质, 35(5):1073-1083. http://mall.cnki.net/magazine/Article/KCDZ201605004.htm 毛景文. 2012.国外主要矿床类型、特点及找矿勘查[M].北京:地质出版社. 缪卫东. 1993.智利北部Marte斑岩金矿床[J].世界核地质科学, (03):99. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gwyd199303020&dbname=CJFD&dbcode=CJFQ 瞿泓滢, 裴荣富, 梅燕雄, 王浩琳, 李进文, 王永磊. 2013.国外超大型-特大型铜矿床成矿特征[J].中国地质, 40(02):371-390. doi: 10.3969/j.issn.1000-3657.2013.02.002 斯顿普N, 房俭生, 硅誉漓. 1998.阿伦布雷拉铜金矿[J].矿业工程, (6):12-14. http://www.cqvip.com/qk/60118X/201135/39198668.html Siddeley G, Araneda R, 田书文. 1989.智利的埃尔印第奥-坦博金矿床[J].地质调查与研究, (1):61-74. 王佳新, 聂凤军, 张雪旎, 刘春花, 宋崇宇, 段培新, 于淼. 2015.智利埃尔特尼恩特斑岩型铜-钼矿床[J].矿床地质, 34(1):200-203. http://www.oalib.com/paper/4572381 张潮.2017.南美洲成矿区带划分及其地质矿产特征.博士后出站报告.1-147. 周德安. 1993.巴西Chapada铜-金矿床热液喷气成因[J].世界核地质科学, (02):140-142. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gwyd199302007&dbname=CJFD&dbcode=CJFQ 佐藤兴平, 白桦. 1984.安第斯山中部智利的埃尔印第奥金矿床[J].地质科技情报, (01):104-107. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ198604000.htm