• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

滁州地区金牛侵入体的岩石成因:拆沉下地壳熔融还是壳幔混合

陈俊, 王辉, 王丽娟, 关俊朋

陈俊, 王辉, 王丽娟, 关俊朋. 滁州地区金牛侵入体的岩石成因:拆沉下地壳熔融还是壳幔混合[J]. 中国地质, 2018, 45(1): 110-128. DOI: 10.12029/gc20180110
引用本文: 陈俊, 王辉, 王丽娟, 关俊朋. 滁州地区金牛侵入体的岩石成因:拆沉下地壳熔融还是壳幔混合[J]. 中国地质, 2018, 45(1): 110-128. DOI: 10.12029/gc20180110
CHEN Jun, WANG Hui, WANG Lijuan, GUAN Junpeng. Petrogenesis of Jinniu rock mass in Chuzhou area: Melting of delaminated lower crust or mixing of crust and mantle?[J]. GEOLOGY IN CHINA, 2018, 45(1): 110-128. DOI: 10.12029/gc20180110
Citation: CHEN Jun, WANG Hui, WANG Lijuan, GUAN Junpeng. Petrogenesis of Jinniu rock mass in Chuzhou area: Melting of delaminated lower crust or mixing of crust and mantle?[J]. GEOLOGY IN CHINA, 2018, 45(1): 110-128. DOI: 10.12029/gc20180110

滁州地区金牛侵入体的岩石成因:拆沉下地壳熔融还是壳幔混合

基金项目: 

中国地质调查局项目 12120114045701

中国地质调查局项目 12120114007101

详细信息
    作者简介:

    陈俊, 男, 1987年生, 工程师, 矿物学、岩石学、矿床学专业, 长期从事地质勘查工作; E-mail:675827118@qq.com

  • 中图分类号: P588.12+1;P597

Petrogenesis of Jinniu rock mass in Chuzhou area: Melting of delaminated lower crust or mixing of crust and mantle?

Funds: 

China Geological Survey Program 12120114045701

China Geological Survey Program 12120114007101

More Information
    Author Bio:

    CHEN Jun, male, born in 1987, engineer, majors in mineralogy, petrology and mineral deposit geology, engages in geological prospecting work; E-mail: 675827118@qq.com

  • 摘要:

    滁州冶山地区研究程度较低,前人研究认为金牛岩体属于冶山岩体的边缘相,本次对金牛岩体开展独立研究。金牛侵入岩锆石U-Pb定年结果为(129±2)Ma,属于早白垩世早期。锆石原位Hf同位素分析显示,具有较均一的负εHf(t)值(-2.82~-6.52)和较古老的地壳模式年龄tDMC(1360~1600 Ma)。金牛岩体为碱性(σ:5.08~5.74)、准铝质(A/CNK:0.803~0.844)岩石,具有较强的轻重稀土元素分异、无明显-弱负Eu异常、相对富集轻稀土元素、大离子亲石元素,明显亏损重稀土元素和高强场元素的特点,综合对比冶山岩体,认为金牛岩体与冶山岩体同期不同源。结合区域构造演化特征及岩石地球化学、Hf同位素特征,金牛岩体很可能为来源于富集岩石圈地幔的富水底侵基性岩浆与古老下地壳部分熔融形成的岩浆混合的产物,其源动力与太平洋板块的俯冲有关。

    Abstract:

    The research on Lower Yangtze block in Yeshan area of Chuzhou is very insufficient. Previous researchers held that Jinniu rock mass belongs to marginal facies of Yeshan pluton. In this paper, the authors studied Jinniu pluton. Zircon U-Pb dating indicates that The Jinniu pluton of Yeshan area of Lower Yangtze block was formed at 129±2 Ma, suggesting a product of Early Cretaceous. Zircon Hf isotopic composition has relatively uniform negative εHf(t) values(-2.82——6.52) and old Hf isotopic crustal model ages (1360-1600 Ma). The Jinniu pluton is alkaline(σ:5.08-5.74)), metaluminous rock body(A/CNK:0.803-0.844), which is characterized by relatively strong differentiation between light and heavy rare earth elements, indistinct negative Eu anomalies, enrichment of LREE and LILE, and depletion of HREE and HFSE. Comprehensive comparative study of the Yeshan rock mas shows that the Jinniu rock mass and Yeshan rock mass belong to two different sources of the same period. Regional tectonic evolution characteristics and geochemistry of rocks and Hf isotope characteristics indicate that the source of the Jinniu rock mass seems to have been a mixed product of underplating water-rich basic magma from enriched lithospheric mantle and partially melted ancient lower crust due to the subduction of Paleo-Pacific Plate.

  • 巴音戈壁盆地为叠置在克拉通基底与晚古生代褶皱基底接合部位上的伸展断坳复合型盆地(罗毅等,2009; 张成勇等,2015),盆地中南部是古生代滨浅海相基础上发育的盆地建造带,其坳陷的基底为多期富铀花岗岩活化的古克拉通基底,是成熟度高的富铀基底,是铀成矿的有利区。近年来,核工业二〇八大队在盆地中南部开展了一系列的铀矿调查评价与勘查工作,取得突出的找矿成果(申科峰等,2014; 李鹏等,2017; 彭云彪等,2018b)。

    根据水成铀矿理论,砂岩型铀矿是一种产在近地表砂体中的外生铀矿床,是活化的六价铀元素沿含矿含水层运移,遇有机碳、黄铁矿或油气等还原剂,在过渡带被还原成四价铀元素富集沉淀成矿(陈路路等,2014)。盆地(坳陷)内能否铀成矿,取决于其所在地区的大地构造背景及构造-沉积演化特征,并通过影响区域构造、沉积演化、铀(物)源、水动力、氧化还原蚀变等成矿地质条件来控制砂岩型铀矿床的形成。因此,通过研究巴音戈壁盆地中南部构造-沉积演化及其对铀成矿的关系,对盆地内继续寻找铀矿床具有一定的积极作用。

    巴音戈壁盆地位于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北板块的结合部位,是巴尔喀什—天山—兴安岭晚古生代增生碰撞带。以恩格尔乌苏—巴音查干NEE向晚古生代陆-陆碰撞板块缝合线为界,巴音戈壁盆地中南部处于华北板块北缘阴山隆起带与宝音图—锡林浩特火山型被动陆缘的结合带。其北界为宗乃山—沙拉扎山隆起带,南界为巴丹吉林断裂(图 1),属弧间盆地。

    图  1  巴音戈壁盆地中南部构造分区示意图
    1—蚀源区; 2—断裂; 3—一级构造单元界线; 4—二级构造单元界线; 5—矿床; 6—研究区范围
    Figure  1.  Sketch map of tectonic zoning in the south-central part of the Bayin Gobi Basin
    1-Provenance area; 2-Fault; 3-Boundary of primary structural unit; 4-Boundary of secondary structural unit; 5-Deposit; 6-Study area

    根据前人的划分方案,盆地中南部属于中构造域,为西部挤压与东部拉张环境的结合部,构造应力比较复杂(Darby et al., 2005; 陈戴生等,2011; Shi et al., 2015; 苗培森等,2017; 刘波等,2020; Jin et al., 2020; Yu et al., 2021)。区域上自中生代以来先后经历了印支期、燕山期、喜山期共7次构造运动,导致其上覆盖层中形成隆起和坳陷(凹陷)相间出现的局面(表 1)。

    表  1  巴音戈壁盆地中南部主要凹陷特征一览
    Table  1.  Characteristic list of main depressions in the central and southern Bayin Gobi Basin
    下载: 导出CSV 
    | 显示表格

    巴音戈壁盆地中南部基底地层主要为太古界乌拉山群深变质岩,古元古界阿拉善群中深变质岩、寒武系—泥盆系碎屑岩、碳酸盐岩及浅变质岩,石炭系中酸性火山岩、碎屑岩,二叠系碎屑岩、火山岩、碳酸盐岩等组成(张成勇等,2015; 刘波等,2020)。盖层主要为中新生界,主要为侏罗系、下白垩统巴音戈壁组、上白垩统乌兰苏海组,局部见下白垩统苏红图组,其中巴音戈壁组上段为盆地内主要的找矿目的层(何中波等,2010; 丁叶等,2012; 肖国贤等,2017; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020; Liu et al., 2021a)。盆地内岩浆岩主要发育于元古宙、古生代和显生宙,主要分布于宗乃山—沙拉扎山、狼山—巴彦诺尔公地区,主要为花岗岩、花岗闪长岩、花岗闪长玢岩、黑云闪长岩、石英闪长玢岩等(史兴俊等,2015),以花岗岩类最为发育。断裂主要有宗乃山—沙拉扎山南缘断裂和巴丹吉林断裂,基本控制了盆地中南部坳陷带的发育。

    巴音戈壁盆地中南部凹陷的构造样式主要为双断型、单断型与复合型(刘波等,2020)。从凹陷形态及其演化继承性分析,具有两种类型,表现为叠合型和迁移型(陈启林等,2005; 彭云彪等, 2018a, 2018b)。不同的凹陷形态具有不同的构造样式(卫三元等,2006),不同构造样式控制了不同的沉积充填类型(图 2),同时控制了凹陷后期构造反转、流体运移和铀矿化的分布等(刘波等, 2016, 2017a, 2017b, 2018, 2020)。

    图  2  因格井—尚丹坳陷各凹陷构造样式
    a—单断断槽式; b—单断迁移型; c—单断叠置型; d—双断地堑式; 1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—中下侏罗统; 5—地层界线; 6—正断层; 7—性质不明断层; 8—反转断层
    Figure  2.  Structuralstyles of sags in Inger-Shangdan Depression
    a-Single and slot; b-Single fault migration; c-Single fault superimposed; d-Double break graben; 1-Ulansuhai Formation of Upper Cretaceous; 2-Upper Member of Bayin Gobi Formation of Lower Cretaceous; 3- Lower Part of Bayin Gobi Formation of Lower Cretaceous; 4-Middle-Lower Jurassic; 5-Stratigraphic boundary; 6-Normal fault; 7-Unidentified fault; 8-Inversion fault

    单断箕状凹陷在盆地中南部发育规模最广,如因格井凹陷、乌力吉凹陷等。这种凹陷易于在断陷端发育冲积扇—扇三角洲沉积,远离断陷端多为湖泊沉积,扇三角洲平原分流河道和扇三角洲前缘多发育有利砂体,利于成矿流体运移及铀成矿,如塔木素铀矿床砂岩型铀矿体即赋存于因格井凹陷北部扇三角洲砂体中(李鹏等,2017; 彭云彪等,2018b; 刘波等,2020)。复合型凹陷在盆地中南部局部发育,如本巴图矿产地,赋存于单断箕状凹陷的复合部位。该部位因差异性抬升易于遭受剥蚀,继而形成大型剥蚀窗口,而剥蚀窗口有利于后生氧化发育,进而形成铀矿化。

    早中侏罗世,受燕山运动影响,盆地中南部开始局部裂陷,裂陷主要受北东向断裂控制,主要呈箕状和不对称地堑。在晚侏罗世,盆地整体抬升剥蚀,地层剥蚀殆尽,大部分残存于盆地中南部的沉降中心,少量在坳陷边缘局部呈残留体形式存在(罗毅等,2009)。

    早白垩世巴音戈壁期为强烈断陷期,主要发育了下白垩统巴音戈壁组,在坳陷带内具有广泛连通的特征,古构造地貌表现为北高南低,东高西低。在断陷发育扩张的早期,首先沉积了巴音戈壁组下段冲积扇砂砾岩层。巴音戈壁组上段早期湖泊相细粒沉积物不断向盆地外侧超覆沉积,反映出断陷不断扩张。随着断陷继续发育,巴音戈壁组上段沉积物供给<凹陷的可容纳空间,发育扇三角洲—湖沼沉积。这一时期在三角洲平原分流河道和三角洲前缘,既发育了有利的铀储层砂体,又在河道分流间湾沉积了暗色泥岩、粉砂质泥岩,构成了有利于地浸砂岩型铀矿形成的“泥-砂-泥”储层结构,成为本区砂岩型铀矿的主要找矿目的层。此后,盆地中南部差异性隆升,大部分地区沉积滨浅湖与半深湖亚相细碎屑物,表现为退积型沉积特点。

    在苏红图期,延续早白垩世巴音戈壁期北高南低和东高西低的基础上,银根地区发育为沉降沉积中心,发育了一定厚度的苏红图组,而其他大部分地区诸如塔木素、乌力吉地区依旧缓慢隆升,遭受剥蚀。

    在早白垩世苏红图沉积后,银根地区抬升遭受剥蚀,在原有古构造地貌基础上,表现为中央局部隆升,局部遭受剥蚀(He et al., 2015)。

    早白垩世晚期银根期,盆地中南部受滨西太平洋俯冲远程影响(Shi et al., 2014; Zhang et al., 2014; Liu et al., 2019),整体抬升强烈,普遍缺失银根组(图 3)。古构造地貌特征为北东高南西低的特点。

    图  3  巴音戈壁盆地中南部白垩纪地层沉积与剥蚀天窗示意图
    1—乌兰苏海组; 2—巴音戈壁组上段三岩段; 3—巴音戈壁组上段二岩段; 4—地质界线; 5—角度不整合界线; 6—钻孔孔号及标高(m); 7—工业矿孔; 8—矿化孔; 9—无矿孔
    Figure  3.  Schematic diagram of Cretaceous sedimentation and denudation windows in the central and southern Bayin Gobi Basin
    1-Ulansuhai Formation; 2-Third rock section inthe Upper Member of Bayin Gobi Formation; 3-Second rock section in the Upper Member of Bayin Gobi Formation; 4-Geological boundary; 5-Angular unconformity boundary; 6-Borehole number and elevation (m); 7-Industrial ore hole; 8-Mineralization hole; 9-Non ore Hole

    晚白垩世乌兰苏海期,受古亚洲板块俯冲影响,盆地中南部受北西-南东应力作用,整体从北西向南东阶梯式抬升(刘春燕等,2006; Feng et al., 2017; 张建新等,2018),在局部表现为伸展作用,在因格井坳陷、尚丹坳陷的南部,乌兰苏海组坳陷内沉积厚度较大; 在宗乃山—沙拉扎山隆起带边缘表现为缺失乌兰苏海组或厚度较小(图 3),此时古构造地貌表现为北西高-南东低。

    古近纪以来,受印度板块俯冲影响,盆地中南部受南西-北东应力作用影响,使得老构造重新活动和北东向断裂的新生(Tapponnier et al., 2001; 施炜等,2013; Cui et al., 2018; 赵衡等, 2019a, 2019b); 由南向北发育阶梯式抬升,导致在相邻的雅不赖盆地缺失白垩系,盆地内整体缺失古近系,近于直接出露厚层的乌兰苏海组(图 3)。而盆地中南部乌兰苏海组同样遭受抬升剥蚀,表现为厚度较薄或缺失。该时期地貌表现为南高北低,西高东低的特点,垂直高差300~500 m。

    巴音戈壁组在上、下段沉积过程中,其沉积相、沉积体系出现了明显的变化,下段沉积期间,显示相对单一的以重力流沉积为主体的冲积扇沉积和扇三角洲沉积,上段沉积时则演变为相对复杂的以重力流和牵引流沉积并重的多种沉积体系所构成的沉积格局,特别是扇三角洲沉积体系的广泛发育,为巴音戈壁盆地中南部砂岩铀矿的形成提供了最基本的砂体条件。这种沉积体系的演变虽然直接与沉积环境的变化有关,但空间上有规律的分布则明显与构造活动有关(丁叶等,2012; 陈路路等,2014; 彭云彪等, 2018a, b)。

    在巴音戈壁组沉积时,各凹陷虽构造样式不同(因格井凹陷为双断型、新尼乌苏凹陷为单断箕状),但在北东向控盆及控坳断裂控制下,在陡坡快速接受碎屑物沉积。结合气候干旱,流水作用不发育,决定了巴音戈壁组下段在盆地(坳陷)的南北两侧发育冲积扇沉积体系,以及局部地段的扇三角洲沉积体系。至巴音戈壁组上段沉积时,构造沉降作用进一步加剧,同时,气候环境明显改变,流水作用显著增强,湖盆发生快速扩张,除某些地段沉积仍显示陡坡特点形成冲积扇沉积体系与扇三角洲沉积体系外,在其他地段特别是北东向构造的闭合端,由于河流的发育,成为碎屑补给的主要地段,并使沉积坡降进一步降低,在构造交汇处形成由平原亚相逐步入湖的扇三角洲沉积体系(刘波等,2020; Liu et al., 2021b)。

    后期的构造反转,差异的块断升降导致原来形成的沉积格局发生改变。反转断裂以逆冲压性为主要构造性质,构造方向呈北东向,由若干条相互平行的断裂带组成。由于断裂构造的反转,使原有沉积相带在空间上的有序规律发生了变化,即由冲积扇-扇三角洲-湖相组合递变的沉积相带或由冲积扇-辫状河-辫状三角洲-湖相组合递变的沉积相带在空间上出现了错位或缺失,同时也使巴音戈壁组上、下段沉积地层在空间叠置关系上出现了错断和突变(何中波等,2010; 张成勇等,2015; 刘波等,2020)(图 4)。

    图  4  巴音戈壁盆地中南部白垩纪构造-沉积演化模式图
    a—早白垩世巴音戈壁组下段; b—早白垩世巴音戈壁组上段早期; c—早白垩世巴音戈壁组上段晚期; d—早白垩世末期; 1—扇三角洲; 2—冲积扇; 3—扇三角洲平原; 4—扇三角洲前缘; 5—湖泊相; 6—基底; 7—亚相界线; 8—正断层; 9—逆断层
    Figure  4.  Cretaceous tectonic-sedimentary evolution model diagram in the central and southern Bayin Gobi Basin
    a-The lower part of Bayin Gobi Formation in Early Cretaceous; b-Early upper member of Bayin Gobi Formation in Early Cretaceous; c-Late upper member of Bayin Gobi Formation in Early Cretaceous; d-Late Early Cretaceous; 1-Fan delta; 2-Alluvial fan; 3-Fan delta plain; 4-Fan delta front; 5-Lake facies; 6-Basement; 7-Subfacies boundary; 8-Normal fault; 9-Reverse fault

    巴音戈壁盆地中南部地下水的水动力方向和状态的改变,主要受构造隆升或掀斜构造的影响,而地下水的水动力条件改变,会使铀成矿作用产生变化。巴音戈壁盆地中南部在早白垩世巴音戈壁组上段沉积期,地势比较开阔,巴音戈壁组上段地层呈水平沉积; 巴音戈壁组沉积后,巴音戈壁盆地中南部受古亚洲造山带和滨西太平洋的双向挤压,北部宗乃山—沙拉扎山隆起抬升明显,使得下白垩统巴音戈壁组上段抬升剥蚀,形成早白垩世巴音戈壁期—晚白垩世长期的沉积间断,形成大型的剥蚀窗口。巴音戈壁盆地中南部内的含铀含氧水顺剥蚀窗口向盆地内运移,在巴音戈壁组上段的“泥-砂-泥”储层结构的约束下,与砂体内本身的有机质、还原(流)性介质发生作用,形成铀矿体(图 5)。在晚白垩世乌兰苏海期,巴音戈壁盆地中南部进入坳陷期,在坳陷(凹陷)内沉积了乌兰苏海组,形成了区域盖层。在古近纪,受喜山运动的影响,巴音戈壁盆地中南部由南西向北东发生掀斜式抬升,巴音戈壁盆地中南部地层整个抬升翘起,巴音戈壁组形成微向斜,含铀含氧水继续呈“C”型或者“U”型沿着剥蚀窗口向盆地内运移。在新近纪,受喜山运动影响,巴音戈壁盆地中南部受到由南西向北东掀斜的整体剧烈抬升,使得古近系、上白垩统在南部遭受剥蚀,宗乃山隆起被大量剥蚀改造,造山带和盆地的高差减小。由于剥蚀抬升,使得含铀含氧水向盆地内继续运移。由于受巴彦诺尔公隆起的影响,巴音戈壁盆地中南部内地下水由径流—弱径流,转为滞水。该时期由于气候持续干旱炎热,水岩作用强烈,NaCl型高矿化度地下水中的Na+替换了斜长石中的Ca2+,后者与地下水中的CO32-、HCO3-和Mg2+形成白云石等碳酸盐矿物,促使地下水中以[UO2(CO3)3]4-、[UO2(CO3)3]2-等碳酸铀酰络合离子及MgCO3·NaUO2(CO3)2复盐发生分离而形成了铀的沉淀(王凤岗等,2018; 刘波等,2020)。

    图  5  巴音戈壁盆地中南部下白垩统巴音戈壁组上段岩性-岩相示意图
    1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—侏罗系; 5—上石炭统; 6—盆地边界; 7—岩相界线; 8—扇三角洲平原; 9—扇三角洲前缘; 10—滨浅湖; 11—花岗岩; 12—矿床/矿产地; 13—乌兰苏海组剥蚀界线; 14—铀矿体; 15—断裂; 16—示意剖面
    Figure  5.  Lithology-lithofacies sketch map of upper member of lower Cretaceous Bayin Gobi Formation in south-central Bayin Gobi Basin
    1-Ulansuhai formation of upper Cretaceous; 2-Upper member of Bayin Gobi Formation of Lower Cretaceous; 3-Lower part of Bayin Gobi Formation of Lower Cretaceous; 4-Jurassic; 5- Upper Carboniferous; 6-Basin boundary; 7-Lithofacies boundary; 8-Fan delta plain; 9-Fan delta front; 10-Shore-shallow lake; 11-Granite/Orefield; 12-Deposit; 13-Denudation boundary of Wulansuhai Formation; 14-Uranium ore body; 15-Fault; 16-Schematic section

    总体来看,巴音戈壁盆地中南部在白垩纪—古近纪以来,北部地下水一直保持由北向南的径流趋势,南部地下水总体流向一直保持由南向北的径流趋势,在不同的次级凹陷中略呈分散状。地下水流向与当时的沉积物迁移和地层相带展布方向长期保持一致,这对铀的稳定迁移、层间氧化带的稳定发育及铀在氧化带前锋线一带沉积成矿是非常有利的。

    巴音戈壁盆地中南部主要经历了3次大规模的铀成矿作用,主要为第一期早白垩世中晚期(109.7±1.5)Ma ~(115.5±1.5)Ma,第二期为晚白垩世晚期—古近纪(45.4±0.6)Ma ~(70.9±1.0)Ma和第三期为新近纪(12.3±0.2)Ma ~(2.5±0.0)Ma(刘波等,2020)。在早白垩世中晚期,伴随着恩格尔乌苏断裂的活动,宗乃山隆起发生抬升,使得含铀含氧水向盆地内运移,发育层间氧化作用。从塔木素铀矿床的赤铁矿化发育情况看,该期氧化作用强烈,可能为主要成矿期。在晚白垩世晚期65~80 Ma(韩进等,2015; 刘溪等,2017),盆地经历了由北向南的强烈的推覆作用,这与巴音戈壁盆地中南部内典型矿床的第二期成矿年龄相对应。伴随着盆地晚白垩世晚期—古近纪盆地由北向南的推覆抬升,盆地内在原有基础上发育有叠加的黄色褐铁矿化层间氧化作用,该期盆地抬升较第一期弱,故层间氧化带的规模较上期小,表现为盆地内褐铁矿化分布较赤铁矿化分布范围小。但是该时期盆地古气候炎热干旱,盆地蒸发量增强,使得表生盐度高卤水向内入渗,在巴音戈壁组上段二岩段层间破碎、裂陷、微孔隙充填发育了大量石膏和碳酸盐(李鹏等,2017)。同时,斜长石因水岩作用(溶解、溶蚀等),在解理面及表面形成了次生的缝隙及孔洞等,为铀沉淀提供了空间。此外,含CO32-、SO42-等的酸性地表水沿层间下渗,溶解了砂岩中碳酸盐胶结物而形成了溶洞,为后期再次迁移的铀提供了沉淀空间,并形成了铀的进一步叠加、富集(王凤岗等,2018)。受盆地挤压抬升影响,后期近地表成矿流体促进了大规模潜水氧化与层间氧化的发育,深部有机流体(还原气体)上侵与SO42-发生反应生成黄铁矿。正是黄铁矿和植物炭屑的还原作用导致了渗入型含氧含铀地下水中矿质的沉淀,形成铀矿体。

    早白垩世巴音戈壁期,巴音戈壁盆地断陷发育; 早白垩世苏红图—银根期,在太平洋俯冲远程效应下,巴音戈壁盆地发生断坳转换,发育走向北东的断裂与线性褶皱,致使地层发生差异性掀斜式抬升; 晚白垩世乌兰苏海期为坳陷期,沉积物以“填平补齐”的形式覆盖在早期的地质单元上,同时受喜山运动的影响,发育走向北西的断裂; 古近纪至今,受印度板块向北俯冲的影响,北东向构造活化与新生,区内差异性抬升更为明显,地层多被剥蚀(卫三元等,2006; 肖国贤等,2017; 彭云彪等,2018a; 赵衡等, 2019a, b; 刘波等,2020)。多期次构造叠加使得因格井—尚丹坳陷的地质体形成不同的块体。受早白垩世晚期至古近纪时期断续构造运动影响,白垩纪地层受北东向与北西向构造活动影响,形成大小不一的块体,在本巴图、乌力吉和塔木素地区比较明显,在不断抬升与剥蚀过程中局部形成剥蚀天窗(图 6),为后期铀成矿提供了有利条件,控制着层间氧化带由凹陷边缘向凹陷中心发育,加之(滨-浅)湖相地层中富含有机质,在氧化还原障附近形成铀矿化(表 2)。简言之,巴音戈壁盆地中南部内铀成矿在有利的构造背景下,主要受沉积相控制与层间氧化带制约。

    图  6  尚丹坳陷银根地区构造形迹示意图
    a—乌力吉—本巴图地区; b—沙拉扎山北侧; c—银根地区; 1—盆地边界; 2—正断层; 3—逆断层; 4—性质不明断层; 5—向斜; 6—复式褶皱; 7—地质界线; 8—剥蚀天窗
    Figure  6.  Structural trace map of Yingen area in Shangdan depression
    a-Wuliji-Benbatu area; b-The north side of the Salazha Mountain; c-Yingen area; 1-Basin boundary; 2-Normal fault; 3-Reverse fault; 4-Unknown fault; 5-Syncline; 6-Compound fold; 7-Geological boundary; 8-Denudation windows
    表  2  巴音戈壁盆地构造-沉积演化与铀成矿作用的关系
    Table  2.  Relationship between tectonic-sedimentary evolution and uranium mineralizationin in the Bayin Gobi Basin
    下载: 导出CSV 
    | 显示表格

    因格井坳陷内扇三角洲物源主要为自北向南,自早白垩世以来继承性发育。岩心及测井资料显示砂砾岩层累计厚度大,多表现出叠加正韵律岩性序列,反映出物源补给比较充足、强烈; A/S值虽然发生变化,但总体较小(林畅松,2015)。尚丹坳陷内扇三角洲继承性发育不良,岩石颗粒较细,细砂岩含量相对要高,累计厚度较薄,三角洲前积特征不明显,反映了物源供给的阶段性和微弱性,A/S值主体较大。

    现代分析认为,层序地层学和“源-汇”体系研究具有内在紧密关联性。断陷湖盆扇三角洲的分布特征与A/S值密切相关(刘磊等,2015; 吴冬等,2015; 刘波等,2020)。“A”实际上对应着巴音戈壁盆地中南部的“汇”,“S”对应着巴音戈壁盆地中南部的“源”,“源-汇”体系直接控制着沉积扇体的类型和特征。“源-汇”体系主导下的断陷湖盆扇三角洲通常具备两种形态,即“锥状”扇三角洲与“片状”扇三角洲(吴冬等,2015)。所谓“锥状”扇三角洲外形呈锥形,纵向厚度较大,平面分布相对较窄,在地震剖面上,扇根多呈现杂乱、弱振幅、差连续反射特征,扇端多呈现弱振幅、中连续前积特征,横截面为丘状或透镜状; “片状”扇三角洲厚度较薄,平面分布范围较大,呈层堆积,地震反射上难以看出三角洲前积特征(李佳鸿等,2012; 刘磊等,2015)。从能量守恒与转化的角度来看,在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,在某一或者诸多节点处可以形成多种形态的复合扇三角洲,据此可进行扇三角洲垛体的定性预测(图 7)。

    图  7  断陷盆地斜坡带扇三角洲发育模式图(吴东,2015)
    1—断裂; 2—断距; 3—剥蚀区; 4—沉积区
    Figure  7.  Development model of fan delta in slope zone of faulted basin(Wu Dong, 2015)
    1-Fault; 2-Fault distance; 3-Denudation area; 4-Sedimentary area

    此外,按相邻的相分类,巴音戈壁盆地中南部扇三角洲又可以分为靠山型与靠扇型扇三角洲。靠山型扇三角洲往往发育于盆缘断层下降盘坡度较陡的斜坡区,并且紧邻高地物源区; 而靠扇型扇三角洲多形成于坡度相对平缓的盆缘斜坡区,它与相邻高地物源区之间通常存在明显可识别的冲积扇相(陈景山等,2007; 刘磊等,2015)。其次,由于构造控制下的斜坡坡度不同,导致这两种扇三角洲的沉积水动力条件有所差别(表 3)。换句话说,巴音戈壁盆地中南部内盆地边缘斜坡较陡和湖泛面较高, 有利于靠山型扇三角洲相的发育; 当盆地边缘斜坡较平缓和湖泛面相对较低时,则有利于靠扇型扇三角洲相的发育。事实上,两种扇三角洲可以交替、叠加演化,在进行扇三角洲垛体定性预测的同时,要对已知扇三角洲铀成矿属性进行判别。

    表  3  靠山型与靠扇型扇三角洲特征对比表(据陈景山,2007)
    Table  3.  Characteristic comparison table between hillside fan delta and fan delta(after Chen Jingshan, 2007)
    下载: 导出CSV 
    | 显示表格

    巴音戈壁盆地中南部在早白垩世中晚期((109.7±1.5)Ma~(115.5±1.5)Ma)、晚白垩世晚期—古近纪((45.4±0.6)Ma~(70.9±1.0)Ma)和新近纪((12.3±0.2)Ma~(2.5±0.0)Ma),经受了南东、北西与南西方向的应力改造作用(刘波等,2020; Liu et al., 2021a)。目的层巴音戈壁组上段发育的扇三角洲平原亚相及前缘亚相砂体,长时间暴露地表,使得含铀含氧水沿砂体向盆地(坳陷)内运移,形成较大规模的层间氧化带型铀矿化(李鹏等,2017; 刘波等,2020): 在氧化砂岩与灰色砂岩界面、氧化还原过渡带中多形成砂岩型铀矿体(图 8); 在扇三角洲分流河道砂岩与分流间湾泥岩结合的部位(同时作为氧化还原障),形成砂泥混合型矿体,在泥岩一侧发育微弱氧化作用; 垂向河道之间的分流间湾、河道间、晚期洪泛平原泥质粉砂岩中形成后生泥岩型铀矿体,尤其是溶蚀孔洞和裂隙充填黄铁矿、褐铁矿比较发育的地段。

    图  8  断陷湖盆背景下的扇三角洲成矿模式图
    a—铀矿体产于氧化砂岩中; b—铀矿体产于氧化砂岩与灰色砂岩界面上; c—铀矿体产于灰色砂岩中; d、e—铀矿体产于氧化砂岩与灰色泥岩界面上; f—铀矿体产于氧化砂岩中的泥岩; 1—剥蚀区; 2—扇三角洲; 3—基底; 4—扇三角洲平原; 5—扇三角洲前缘; 6—滨浅湖; 7—砂岩; 8—泥岩; 9—褐铁矿化; 10—赤铁矿化; 11—炭化植物碎屑; 12—黄铁矿; 13—槽状交错层理; 14—正粒序; 15—平行层理; 16—水平层理; 17—流体方向; 18—铀矿体; 19—断裂; 20—裂隙; 21—高岭土化; 22—碳酸盐化; 23—电阻率测井曲线; 24—γ测井曲线
    Figure  8.  Metallogenic model of fan delta underthe background of faulted lacustrine basin
    a-Uranium ore body occurs in oxidized sandstone; b-Uranium ore body occurs at the interface between oxidized sandstone and grey sandstone; c-Uranium ore body occurs in grey sandstone; d/e-Uranium ore bodies occur at the interface between oxidized sandstone and grey mudstone; f-Uranium ore body occurs at mudstone in oxidized sandstone; 1-Denudation area; 2-Fan delta; 3-Basement; 4-Fan delta plain; 5-Fan delta front; 6-Shore shallow lake; 7-Sandstone; 8-Mudstone; 9-Limonition; 10-Hematite mineralization; 11-Carbonized plant debris; 12 -Pyrite; 13-Trough cross bedding; 14-Normal grain sequence; 15-Parallel bedding; 16-Horizontal bedding; 17 -Fluid direction; 18-Uranium ore body; 19 -Fracture; 20-Cranny; 21- Kaolinite; 22-Carbonation; 23-Resistivity logging curve; 24 -Gamma logging curve

    综合巴音戈壁盆地中南部内铀成矿要素与典型铀矿床成矿特征(李晓翠等,2014; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020),确定主要成矿要素为: ①找矿层位为下白垩统巴音戈壁组上段; ②扇三角洲平原亚相的辫状分流河道与前缘亚相的水下分流河道、河口坝是砂岩型铀矿的有利成矿部位,而分流间湾是泥岩型铀矿的有利成矿部位; ③目的层具有稳定的“泥-砂-泥”结构; ④层间氧化还原转换带控矿—单个黄色氧化舌外侧或两个黄色氧化舌之间还原砂体内,以及氧化砂体内部灰色残留体; ⑤盆缘构造斜坡带控制成矿地质体的发育,同时控制含氧含铀水在目的层砂体中的运移; ⑥多期次构造活动形成“剥蚀天窗”,影响层间氧化带发育规模。因此,定位扇三角洲垛体是找矿预测的基础。

    巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块。目前已知的塔木素铀矿床、本巴图矿产地均是位于此类有利构造部位(图 5图 6)。进一步对比分析巴音戈壁盆地中南部内铀矿床与铀矿化(异常点)的分布可以发现,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。这些地段受不同程度的构造抬升影响,目的层巴音戈壁组上段遭受不同程度的剥蚀,如本巴图地区巴音戈壁组上段较塔木素地区剥蚀深度大于100 m,造成事实上的“剥蚀天窗”,有利于成矿流体的运移以及铀成矿。因此,在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部内铀矿重点找矿预测方向,诸如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。

    由于巴音戈壁盆地中南部内构造-沉积演化的不均一性,小型凹陷以及凸起比较发育,现有工作程度比较低,制约着我们的认识。从现有钻孔的揭遇情况来看,沉积间断面附近通常发育较强的氧化还原作用,具有明显的γ异常与增高。因此定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。

    (1) 巴音戈壁盆地中南部凹陷的构造样式主要为双断型和单断型; 从凹陷形态及其演化继承性分析,又可以分为叠合型和迁移型。

    (2) 不同的凹陷构造样式控制着巴音戈壁组上段不同的沉积相组合,多期次构造叠加使得目的层逐步形成剥蚀天窗,控制着层间氧化带由凹陷边缘向凹陷中心发育,在氧化还原障附近形成铀矿化。

    (3) 在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,据此可进行扇三角洲垛体的定性预测,同时要对已知扇三角洲铀成矿属性进行判别,进而对矿化类型进行预判与识别。

    (4) 巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部铀矿重点找矿预测方向,如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。

    (5) 由于巴音戈壁盆地中南部构造-沉积演化的不均一性,定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。

    致谢: 野外工作得到了南京钢铁集团冶山矿业有限公司王科宁、赵博工程师的大力支持和帮助,室内工作得到了江苏省地质调查研究院魏邦顺高级工程师、张少琴工程师和南京大学武兵老师的热心帮助,特别感谢审稿专家的宝贵意见。
  • 图  1   冶山地区构造分区图(a)和冶山地区基岩地质图(b)

    Figure  1.   Tectonic division of Yeshan area (a) and bed rock geological map of Yeshan area (b)

    图  2   金牛岩体、冶山岩体手标本和显微照片

    a—冶山岩体花岗闪长岩;b—花岗闪长岩显微照片(正交偏光);c—花岗闪长岩显微照片(正交偏光);d—金牛岩体辉石二长岩;e—辉石二长岩显微照片(正交偏光);f—辉石二长岩显微照片(正交偏光).矿物缩写:Qtz—石英;Pl—斜长石;Kf—钾长石;Fs—长石;Bt—黑云母;Amp—角闪石;Chl—绿泥石

    Figure  2.   Representative samples and microscope photos of Jinniu rock mass, Yeshan rock mass

    a-Granodiorite of Yeshan rock mass; b-Microscope photos of granodiorite (crossed nicols); c-Microscope photos of granodiorite(crossed nicols); d-Pyroxene-monzonite of Jinniu rock mass; e-Microscope photos of pyroxene-monzonite(crossed nicols); f-Microscope photos of pyroxenemonzonite (crossed nicols).Abbreviations: Qtz -Quartz; Pl-Plagioclase; Kf-K-feldspar; Fs-Feldspar; Bt-Biotite; Amp-Amphibole; Chl-Chlorite

    图  3   冶山岩体(a)、金牛岩体(b)锆石阴极发光图像及U-Pb年龄协和图

    Figure  3.   Zircon CL images and U-Pb dating results of Jinniu rock mass

    图  4   冶山岩体和金牛岩体锆石年龄-εHf(t)

    Figure  4.   Zircon age-εHf(t) diagrams of Yeshan rock mass and Jinniu rock mass

    图  5   SiO2-(Na2O+K2O)图解

    Figure  5.   SiO2-(Na2O+K2O) diagram

    图  6   A/NK-A/CNK图解

    Figure  6.   A/NK versus A/CNK diagrams of Yeshan rock mass

    图  7   K2O-SiO2图解

    Figure  7.   K2O versus SiO2 diagrams of Yeshan rock mass

    图  8   稀土元素球粒陨石标准化图

    Figure  8.   Chondrite-normalized REE patterns of Yeshan rock mass

    图  9   微量元素原始地幔标准化蛛网图

    Figure  9.   Primitive mantle-normalized trace element diagrams of Yeshan rock mass

    图  10   (La/Yb)N-YbN图解和Sr/Y-Y图解

    Figure  10.   LaN/YbN versus YbN and Sr/Y versus Y diagrams of Yeshan rock mass

    图  11   冶山地区物探推断图

    Figure  11.   Geophysical prospecting of Yeshan area

    图  12   金牛岩体和冶山岩体主量元素图解

    Figure  12.   Diagrams of major elements of Jinniu rock mass and Yeshan rock mass

    图  13   金牛岩体和冶山岩体微量元素图解

    Figure  13.   Diagrams of trace elements of Jinniu rock mass and Yeshan rock mass

    图  14   花岗岩构造环境R1-R2判别图

    Figure  14.   R1-R2 tectonic environment discrimination diagram

    图  15   (Yb+Nb) -Rb构造环境判别图

    Figure  15.   (Yb+Nb) -Rb discrimination diagrams of tectonic setting

    表  1   冶山岩体(YSB-1)、金牛岩体(YST-1)锆石U-Pb定年结果

    Table  1   Zircon U-Pb dating results of Jinniu rock mass, Yeshan rock mass

    下载: 导出CSV

    表  2   冶山岩体(YSB-1)、金牛岩体(YST-1)锆石Hf同位素组成

    Table  2   Zircon Hf isotopic data of Jinniu rock mass, Yeshan rock mass

    下载: 导出CSV

    表  3   金牛岩体、冶山岩体全岩主量元素(%)及微量元素(10-6)分析结果

    Table  3   Major(%) and trace element (10-6) concentrations of Jinniu rock mass, Yeshan rock mass

    下载: 导出CSV
  • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology, 192(1/2):59-79.. https://eurekamag.com/research/018/637/018637186.php

    Annen C, Blundy J D, Sparks R S J. 2005.The genesis of intermediate and sicic magmas in deep crustal hot zones[J]. Journal of Petrology, 47(3):505-539.

    Blichert-Toft J, Albarede F. 1997.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet Sci.Lett., 148:243-258. doi: 10.1016/S0012-821X(97)00040-X

    Bureau of Geology and mineral resources of Jiangsu Province.1984.Monograph on the Regional Geology of Jiangsu Province and Shanghai City[M].Beijing:Geological Publishing House (in Chinese with English abstract).

    Chang Yinfo, Liu Xiangpei, Wu Yanchang. 1991. Copper and iron metallogenic belt in the middle and lower reaches of the Yangtze River[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Chen J, Jahn B M. 1998. Crustal evolution of southeastern China:Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1/2):101-133. http://www.sciencedirect.com/science/article/pii/S0040195197001868

    Duan Chao, Mao Jingwen, LI Yanhe, Yuan Shunda, Zhang Cheng, Liu Jialin. 2011. Zircon U-Pb geochronology of the gabbro-diorite porphyry and granodiorite porphyry from the Washan iron deposit in Ningwu Basin, and its geological significance[J]. Acta Geologica Sinica, 85(7):1159-1171 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201107010.htm

    Du Jianguo, Chang Danyan. 2011.Consideration on the Deep-iron Ore Deposits Prospecting in the Middle-Lower Yangtze Metallogenic Belt[J]. Acta Geologica Sinica, 85(5):687-698 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105008.htm

    Fan Yu, Liu Yinan, Zhou TaoFa, Zhang Lejun, Yuan Feng, Wang Wencai. 2014. Geochronology of the Nihe deposit and in the LuZong basin and its metallogenic significances[J]. Acta Petrologica Sinica, 30(5):1369-1381 (in Chinese with English abstract). https://www.scholarmate.com/pubweb/outside/details?des3Id=alhqCHHPOZz4gkiYkedyyg%3D%3D¤tDomain=/pubweb&pubFlag=1

    Fan Yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang.2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 26(09):2715-2728 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ysxb98201009016

    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X. 2002. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3), 237-269. https://www.sciencedirect.com/science/article/pii/S0024493702000828

    Gan Guoliang. 1993. Mineral-melt element partition coefficients:data and major variation regularities[J]. Acta Petrologica et Mineralogica, 12(2):144-181(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ198803014.htm

    Hou Kejun, Yuan Shunda. 2010.Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implicationsl[J]. Acta Petrologica Sinica, 26(3):888-902 (in Chinese with English abstract). doi: 10.1007/s11434-014-0358-7

    Hu Jinping, Jiang Shaoyong. 2010. Zircon U-Pb Dating and Hf isotopic compositions of porphyrites from the Ningwu basin and their geological implications[J]. Geological Journal of China Universities, 16(3):294-308(in Chinese with English abstract).

    Li Jianwei, Zhao Xinfu, Zhou Meifu, Paulo Vasconcelos, Ma Changqian, Deng Xiaodong, Zorano Sérgio Souza, Zhao Yongxin, Gang Wu. 2008. Origin of the Tongshankou porphyry-skarn CuMo deposit, eastern Yangtze craton, Eastern China:Geochronological, geochemical, and Sr-Nd-Hf isotopic constraints[J]. Mineralium Deposita, 43(3):315-336. doi: 10.1007/s00126-007-0161-3

    Li Shuguang, Xiao Yilin, Liou Deliang, Chen Yizhi, Ge Ningjie, Zhang Zongqing, Sun Shensu, Cong Bolin, Zhang Ruyuang, Stanley R. Hart, Wang Songshan. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites:Timing and processes[J]. Chemical Geology, 109(1-4):89-111. doi: 10.1016/0009-2541(93)90063-O

    Li Xianhua, Li Wuxian, Wang Xuance, Wu Fuyuan. 2010. SIMS UPb zircon geochronology of porphyry Cu-Au-(Mo)deposits in the Yangtze River Metallogenic Belt, eastern China:Magmatic response to early Cretaceous lithospheric extension[J]. Lithos, 119:427-438. doi: 10.1016/j.lithos.2010.07.018

    Liu Haiquan, Yan Jun, Zhao Jianxin, An Yajun. 2010. Origin of Cenozoic lithospheric mantle in several areas of eastern China:Constraints from major and trace elements[J]. Acta Petrologica Sinica, 26 (9):2850-2868 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201009027.htm

    Liu Shengao. 2011. Geochemical Studies on Petrogenesis of Mesozoic Adakitic Rocks in Central-eastern China and High-temperature Magnesium Isotope Fractionation[D]. University of Science and Technology of China (in Chinese with English abstract).

    Lu Fengxiang, Zheng Jianping, Hou Qingye, Li Fanglin. 2006. Zones of crust-mantle and lithosphere-asthenosphere interaction in eastern China:Characteristics and timing of transformation[J]. Geology in China, 33(4):773-781(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI200604007.htm

    Ludwig K R. 2001. ISOPLOT:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Centre:Special Publication. 1:1-58.

    Ma Licheng, Dong Shuwen, Zhong Yubin, Zhang Qianming, Gao Changsheng. 2011. Metallogenic Epoch of the Longqiao Iron deposits at the Lujiang-Zongyang ore concentrated area in the Middle and Lower Reaches of Yangtze River, China[J]. Acta Geologica Sinica, 85(7):1206-1214(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201107013.htm

    Mei Lianfu, Dai Shaowu, Shen Chuanbo, Tang Jiguang. 2008.Formation and disintegration of ramp zone in Middle MesozoicCenozoic intra-continental and Lower Yangtze region[J]. Geological Science and Technology Information, 2008(4):1-7 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dzkjqb200804001.aspx

    Möller A, O' Brien P. J, Kennedy A, Kröner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society, 220, 65-81. doi: 10.1144/GSL.SP.2003.220.01.04

    Richards J P, Boyce A J, Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile:A model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology, 96(2):126-131. https://pubs.geoscienceworld.org/segweb/economicgeology/article-abstract/96/2/271/22053/geologic-evolution-of-the-escondida-area-northern

    Sun Qian. 2013. Mineralogy of borate minerals in the Yeshan skarntype boron deposit, Jiangsu[D]. Nanjing University (in Chinese with English abstract).

    Scherer E, Munker C, Mezger K. 2001.Calibration of the lutetiumhafnium clock[J]. Science, 293:683-687. doi: 10.1126/science.1061372

    Song Chuanzhong, Zhang Hua, Ren Senglian, Li Jiahao, Tu Wenchuan, Zhang Yan, Wang Zhong. 2011. Transform tectonic node of the Middle and Lower Reaches of the Yangtze River and analysis of regional metallogenic settings[J]. Acta Geologica Sinica, 85(5):778-788.(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX201402002.htm

    Sun Weidong, Ling Mingxing, Wang Fangyue, Ding Xing, Hu Yanhua, Zhou Jibin, Yang Xiaoyong. 2008. Pacific Plate subduction and Mesozoic geological event in eastern China[J]. Bulletin of Mineralogy Petrology and Geochemistry, 27(3):218-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200803003.htm

    Sun Weidong, Ling Mingxing, Yang Xiaoyong, Fan Weiming, Ding Xing, Liang Huaying. 2010. Ridge subduction and porphyry copper-gold mineralization:An overview[J]. Science China Series, 53(4), 475-484. doi: 10.1007/s11430-010-0024-0

    Tang Jiafu. 2003. Geological Tectonic Features and its Formation and Evolution in the Dabie Mountains and its Adjacent Areas[M]. Geological Publishing House, (in Chinese).

    Tao Kuiyuan, Mao Jianren, Xing Guangfu, Yang Zhuliang, Zhao Yu.1999. Strong Yanshanian volcanic-magmatic explosion in east China[J]. Mineral Deposits, 18(4):316-322 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ199904004.htm

    Vervoort J D, Blichert-Toft J. 1999.Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time[J]. Geochim Cosmo-chim. Acta, 63:533-556. doi: 10.1016/S0016-7037(98)00274-9

    Wang Hongzhen. 1990. Structure of Ancient Geography and Biology in China and its Adjacent Areas[M]. Wuhan:China University of Geoscience Press (in Chinese).

    Wang Kai, Liu Shaofeng, Jiang Chengxin, Wang Ping, Zhang Yan, Meng Yong. 2005. Structural style and superposed relationship of Multi-period folds in the Middle segment of Northern Yangtze Block[J]. Geotectonica et Metallogenia, (2):231-240(in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ddgzyckx201502003

    Wang Lijuan, Wang Rucheng, Yu Jinhai, Yang Yinhe, Huang Jianping, Zhang Shaoqin. 2014. Geochrology, geochemistry of volcanicintrusive rocks in the Ningwu Basin and its geological Implications[J]. Acta Geologica Sinica, 88(07):1247-1272 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136816303985

    Wang Lijuan, Huang Jianping, Yu Jinhai, Griffin W L, Wang Rucheng, Zhang Shaoqin, Yang Yinhe. 2014. Zircon U-Pb dating and Lu-Hf isotope study of intermediate-mafic sub-volcanic and intrusive rocks in the Lishui Basin in the middle and lower reaches of Yangtze River[J]. Chin. Sci. Bull., (14):1305-1317(in Chinese with English abstract). doi: 10.1007/s11434-014-0358-7.pdf

    Wang Lijuan, Yang Yinhe, Zhang Shaoqin, Wei Bangshun. 2015.Research Report on the relationship of Ningwu Lishui volcano rock basin tectonic magmatic evolution and mineralization in Jiangsu Province[R]. Nanjing:Geological Survey of Jiangsu Province (in Chinese).

    Wang Qiang, Wyman Derek A, Xu Jifeng, Zhao Zhenhua, Jian Ping, Xiong Xiaolin, Bao Zhiwei, Li Chaofeng, Bai Zhenghua. 2006.Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization[J]. Lithos, 89(3/4):424-446. https://www.sciencedirect.com/science/article/pii/S0024493706000302

    Wang Yuanlong, Zhang Qi, Wang Yan. 2001. Geochemical characteristics of volcanic rocks from Ningwu area, and its significance[J]. Acta Petrologica Sinica, 17(04):565-575 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200104006.htm

    Wu Fuyuan, Ge Wenchuan, Sun Deyou, Guo Chuanli. 2003.Discussions on the Lithospheric thinning in eastern China.[J]. Earth Science Frontiers, 10(3):51-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200303005.htm

    Wu Fuyuan, Sun Deyou. 1999. The Mesozoic magmatism and lithospheric thinning in eastern China[J]. Journal of Jilin Unviersity:Earth Science Edition, (4):313-318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ199904000.htm

    Wu Yuanbao, Zheng Yongfei. 2004.Gensis of zircon and its constrints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):1555-1569(in Chinese with English abstract). doi: 10.1007/BF03184122

    Xiao Qinghui, Qiu Ruizhao, Wu Guangying, Xing Zuoyun, Zhang Yu, Tong Jinsong. 2006. Mesozoic asthenospheric upwelling orogeny in eastern China[J]. Geology in China, 33(4):730-750(in Chinese with English abstract).

    Xie Shiwen, Xie Hangqiang, Liu Shoujie, Dong Chunyan. 2016.Archean crustal formation and evolution of the Lushan area in the southern margin of the North China Craton[J]. Geology in China, (6):1884-1893(in Chinese with English abstract). doi: 10.1007%2F978-3-662-47885-1_2.pdf

    Xu Wenliang, Gao Shan, Wang Qinghai, Wang Dongyan, Liu Yongsheng. 2006. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications[J]. Geology, 34(9):721. doi: 10.1130/G22551.1

    Xu Jifeng, Shinjo, Ryuichi, Defant, Marc J, Wang Qiang, Rapp, Robert P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust[J]. Geology, 30(12):1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    Xu Yigang. 1999. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning[J]. Bulletin of Mineralogy Petrology and Geochemistry, 18(01):3-7 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S187257910760013X

    Xue Huaimin, Dong Shuwen, Ma Fang. 2010. Zircon U-Pb SHRIMP ages of sub-volcanic bodies related with porphyritic Fe-deposits in the Luzong and Ningwu basins, Middle and Lower Yangtze River Reaches, Central China[J].Acta Petrologica Sinica, 26(9):2653-2664 (in Chinese with English abstract). http://www.oalib.com/paper/1472927

    Xue Huaimin, Ma Fang, Cao Guangyue. 2015. Late Mesozoic shoshonotic volcanic rocks in the Middle and Lower Yangtze River Reaches:Ages, geochemical and genesis[J]. Acta Geologica Sinica, 89(8):1380-1401(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dizhixb201508004.aspx

    Yan Jun, Peng Ge, Liu JianMin, Li Quanzhong, Chen Zhihong, Shi Lei, Liu Xiaoqiang, Jiang Zichao.2002. Petrogenesis of granites from Fanchang district, the Lower Yangtze region:Zircon geochronology and Hf-O isotopes constrains[J]. Acta Petrologica Sinica, 28 (10):3209-3227 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98201210012.aspx

    Yang Yinghe, Wang Lijuan, Zhang Shaoqin. 2015. Zircon U-Pb dating and Lu-Hf isotopic analysis Nanjing-Wuhu Basin in volcanism of volcanic rocks from the peak period[J]. Jiangsu Geology, 39(4):556-566 (in Chinese with English abstract). doi: 10.1007/s11434-014-0358-7

    Ye Zhou, Ma Li, Liang Xing, Wu Genyao, Xu Keding, Zhang Tingshan. 2006. The indeoendent lower Yangtze block and Mesozoic reformed residual basins[J]. Chinese Journal of Geology, 41(1):81-101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200601008.htm

    Yin An, Nie Shangyou. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia[J]. Tectonics, 12(4), 801-813. doi: 10.1029/93TC00313

    Yu Jinhai, Xu Xisheng, Y O'Reilly Suzanne, Griffin W L. Zhang Ming. 2003. Granulite xenoliths from Cenozoic basalts in se China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks[J]. Lithos, 67(1/2):77-102. https://www.sciencedirect.com/science/article/pii/S0024493702002530

    Yuan Feng, Zhou Taofa, Fan Yu, Zhang Lejun, Ma Liang, Qiab Bing. 2011. Zircon U-Pb ages and isotopic characteristics of the granitoids in the Ningwu basin, China, and their significance[J]. Acta Geologica Sinica, 85(5):821-833 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105018.htm

    Zhang Benren, Gao Shan, Zhang Hongfei. 2002. Geochemistry of the Qinling Mountains Orogenic belt[M]. Beijing:Science Press, 1-87(in Chinese with English abstract).

    Zhang Fuxin, Du Xiaohua, Wang Weitao, Qi Yalin. 2004.Mineralization responded to Mesozoic geological evolution of the Qinling orogeny and its environs[J]. Chinese Journal of Geology, 39(4):486-495 (in Chinese with English abstract). http://www.dzkx.org/EN/abstract/abstract9491.shtml

    Zhang Guowei. 2001. Qinling Orogene and Continental Dynamics[M]. Beijing:Science Press (in Chinese).

    Zhang Qi, Jin Weijun, Li Chengdong, Wang Yuanlong.2009.Yanshanian large-scale magmatism and lithosphere thinning in Eastern China:Relation to large igneous province[J]. Earth Science Frontiers, (2):21-51 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy200902003.htm

    Zhang Shaoqin, Wang Lijuan, Yang Yinghe. 2015. Geochronology and geochemistry of volcanic rocks in the Lishui basin in the Middle and Lower Reaches of Yangtze River and its geological implications[J]. Geological Journal of China Universities, 21(1):15-30 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GXDX201501002.htm

    Zhou Taofa, Song Mingyi, Fan Yu, Yuan Feng, Liu Jun, Wu Mingan, Qian Cunchao, Lu Sanming. 2007. Chronology of the Bajiatan intrusion in the Luzong basin, Anhui, and its significance[J]. Acta Petrologica Sinica, 23(10):583-591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200710007.htm

    Zhou TaoFa, Fan Yu, Yuan Feng. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 24(8):1665-1678 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200808001.htm

    Zhou Taofa, Fan Yu, Yuan Feng, Zhang Lejun, Ma Liang, Qian Bing, Xie Jie. 2011. Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt[J]. Acta Geologica Sinica, 85(5):712-730 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105010.htm

    Zhou Taofa, Fan Yu, Yuan Feng, Zhong Guoxiong. 2012. Progress of geological study in the Middle-Lower Yangtze River Valley metallogenic belt[J]. Acta Petrologica Sinica, 28(10):3051-3066(in Chinese with English abstract). http://www.oalib.com/paper/1475605

    Zhou Xinlong. 2007. Analysis of geological properties of boron ore in Yeshan mining area[J]. Mining Engineering, 5(1):5-8 (in Chinese with English abstract). https://www.scientific.net/AMR.146-147.475

    Zi Feng, Wang Qiang, Liu Xinhua, Qiu Huaning. 2011.Geochronology and geochemistry of the Yeshan and Shanlichen Adakitic intrusive rocks in the Eastern Yangtze Block:Petrogenesis and its geodynamic implications[J]. Acta Mineralogica Sinica, 31(2):185-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201102006.htm

    Zhou Xinmin, Li Wuxian. 2000.Origin of Late Mesozoic igneous rocks in Southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326, 269-287. doi: 10.1016/S0040-1951(00)00120-7

    Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liang, Niu Yaoling. 2006.Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 29 ⑴:26-33. http://www.doc88.com/p-9925786347461.html

    常印佛, 刘湘培, 吴言昌.1991.长江中下游铜铁成矿带[M].北京:地质出版社, 35-40.
    段超, 毛景文, 李延河, 侯可军, 袁顺达, 张成, 刘佳林.2011.宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义[J].地质学报, 85(7):1159-1171. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201107009
    杜建国, 常丹燕.2011.长江中下游成矿带深部铁矿找矿的思考[J].地质学报, 85(5):687-698. http://www.cqvip.com/QK/95080X/201105/38046844.html
    范裕, 刘一男, 周涛发, 张乐骏, 袁峰, 王文财.2014.安徽庐枞盆地泥河铁矿床年代学研究及其意义[J].岩石学报, 30(5):1369-1381. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140513&journal_id=ysxb&year_id=2014
    范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J].岩石学报, 26(9):2715-2728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009016
    干国樑.1993.矿物-熔体间元素分配系数资料及主要变化规律[J].岩石矿物学杂志, 12(2):144-181. http://www.wenkuxiazai.com/doc/c29692ee5ef7ba0d4a733b03.html
    侯可军, 袁顺达.2010.宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报, 26(3):888-902. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201003020
    胡劲平, 蒋少涌.2010.宁芜盆地浅成侵入岩的锆石U-Pb年代学和Hf同位素研究及其地质意义[J].高校地质学报, 16(3):294-308. http://www.cqvip.com/QK/90539X/2010003/35354551.html
    江苏省地质矿产局. 1984.江苏省及上海市区域地质志[M].北京:地质出版社, 5-45.
    刘海泉, 闫峻, 赵建新, 安亚军.2010.中国东部部分地区新生代岩石圈地幔的成因:主量和微量元素制约[J].岩石学报, 26(9):2850-2868. https://espace.library.uq.edu.au/view/UQ:265514
    刘盛遨. 2011. 中国中东部中生代埃达克质岩成因及高温镁同位素分馏的地球化学研究[D]. 合肥: 中国科学技术大学, 19-75.
    路凤香, 郑建平, 侯青叶, 李方林.2006.中国东部壳-幔、岩石圈-软流圈之间的相互作用带:特征及转换时限[J].中国地质, 33(4):773-781. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20060407&flag=1
    梅廉夫, 戴少武, 沈传波, 汤济广. 2008.中、下扬子区中、新生代陆内对冲带的形成及解体[J].地质科技情报, 27(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200804001
    马立成, 董树文, 仲玉斌, 张千明, 高昌生. 2011.长江中下游庐江-枞阳矿集区龙桥铁矿成矿时代研究[J].地质学报, 85(7):1206-1214. http://www.oalib.com/paper/4875692
    闫峻, 彭戈, 刘建敏, 李全忠, 陈志洪, 史磊, 刘晓强, 姜子朝.2012.下扬子繁昌地区花岗岩成因:锆石年代学和Hf-O同位素制约[J].岩石学报, 28 (10):3209-3227. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201210014.htm
    孙浅. 2013. 江苏冶山矽卡岩型硼矿床中硼酸盐矿物学特征研究[D]. 南京大学, 10-45.
    宋传中, 张华, 任升莲, 李加好, 涂文传, 张妍, 王中.2011.长江中下游转换构造结与区域成矿背景分析[J].地质学报, 85(5):778-788. http://d.wanfangdata.com.cn/Periodical_dizhixb201105012.aspx
    孙卫东, 凌明星, 汪方跃, 丁兴, 胡艳华, 周继彬, 杨晓勇.2008.太平洋板块俯冲与中国东部中生代地质事件[J].矿物岩石地球化学通报, 27(03):218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002
    汤加富.2003.大别山及邻区地质构造特征与形成演化[M].北京:地质出版社, 20-100.
    陶奎元, 毛建仁, 邢光福, 杨祝良, 赵宇. 1999.中国东部燕山期火山_岩浆大爆发[J].矿床地质, 18(4):316-322. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz199904004&dbname=CJFD&dbcode=CJFQ
    吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    吴福元, 孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄[J].吉林大学学报(地球科学版), (4):313-318. http://www.cqvip.com/qk/91256a/1999004/3681465.html
    吴福元, 葛文春, 孙德有, 郭春丽. 2003.中国东部岩石圈减薄研究中的几个问题[J].地学前缘, 10(3):51-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200303004
    王鸿桢. 1990.中国及邻区构造古地理和生物古地理[M].武汉:中国地质大学出版社, 40-85.
    王凯, 刘少峰, 姜承鑫, 王平, 张岩, 孟勇. 2015.扬子板块北缘中段多期褶皱构造的变形特征及叠加关系[J].大地构造与成矿学, (02):231-240. doi: 10.3969/j.issn.1001-1552.2015.02.003
    王丽娟, 王汝成, 于津海, 杨颍鹤, 黄建平, 张少琴.2014.宁芜盆地火山-侵入岩的时代、地球化学特征及其地质意义[J].地质学报, 88(7):1247-1272. http://mall.cnki.net/magazine/Article/DZXE201407004.htm
    王丽娟, 黄建平, 于津海, GRIFFIN W L, 王汝成, 张少琴, 杨颍鹤. 2014.长江中下游溧水盆地中基性次火山岩-侵入岩的锆石UPb定年和Lu-Hf同位素[J].科学通报, (14):1305-1317. https://wuxizazhi.cnki.net/qikan-DZXE201105010.html
    王丽娟, 杨颖鹤, 张少琴, 魏邦顺. 2015. 江苏省宁芜溧水火山岩盆地岩浆构造演化与成矿作用关系研究报告[R]. 南京: 江苏省地质调查研究院, 95-211.
    王元龙, 张旗, 王焰. 2001.宁芜火山岩的地球化学特征及其意义[J].岩石学报, 17(4):565-575. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201407004.htm
    谢士稳, 颉颃强, 刘守偈, 董春艳. 2016.华北克拉通南缘鲁山太古宙基底的形成和演化[J].中国地质, (6):1884-1893. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20160604&flag=1
    薛怀民, 薰树文, 马芳. 2010.长江中下游地区庐(江)枞(阳)和宁(南京)一芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石UPb年龄[J].岩石学报, 26 (9):2653-2664. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201009013.htm
    薛怀民, 马芳, 曹光跃. 2015.长江中下游地区晚中生代橄榄玄粗岩系列火山岩:年代学格架、地球化学特征及成因讨论[J].地质学报, 89(8):1380-1401. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201508004.htm
    徐义刚. 1999.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报, 18(1):3-7. http://www.bmpg.ac.cn/CN/abstract/abstract9819.shtml
    肖庆辉, 邱瑞照, 伍光英, 邢作云, 张昱, 童劲松.2006.中国东部中生代软流层上涌造山作用[J].中国地质, 33(4):730-750. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20060404&flag=1
    叶舟, 马力, 梁兴, 吴根耀, 徐克定, 张廷山. 2006.下扬子独立地块与中生代改造型残留盆地[J].地质科学, 41(1):81-101. http://www.doc88.com/p-559559656163.html
    袁峰, 周涛发, 范裕, 张乐骏, 马良, 钱兵.2011.宁芜盆地花岗岩类的锆石U-Pb年龄、同位素特征及其意义[J].地质学报, 85(5):821-833. http://d.wanfangdata.com.cn/Periodical_dizhixb201105016.aspx
    杨颍鹤, 王丽娟, 张少琴. 2015.宁芜盆地火山作用峰期锆石U-Pb定年和Lu-Hf同位素研究[J].地质学刊, 39(4):556-566. http://mall.cnki.net/magazine/Article/DZXE201105018.htm
    张国伟. 2001. 秦岭造山带与大陆动力学[M]. 科学出版社.
    张复新, 杜孝华, 王伟涛, 齐亚林. 2004.秦岭造山带及邻区中生代地质演化与成矿作用响应[J].地质科学, 39(4):486-495. http://d.wanfangdata.com.cn/Periodical_dzkx200404004.aspx
    周涛发, 宋明义, 范裕, 袁峰, 刘珺, 吴明安, 钱存超, 陆三明. 2007.安徽庐枞盆地中巴家滩岩体的年代学研究及其意义[J].岩石学报, 23(10):2379-2386. doi: 10.3969/j.issn.1000-0569.2007.10.006
    周涛发, 范裕, 袁峰.2008.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报, 24(8):1665-1678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200808001
    周涛发, 范裕, 袁峰, 张乐骏, 马良, 钱兵, 谢杰.2011.长江中下游成矿带火山岩盆地的成岩成矿作用[J].地质学报, 85(5):712-730. https://wuxizazhi.cnki.net/qikan-DZXE201105010.html
    周涛发, 范裕, 袁峰, 钟国雄.2012.长江中下游成矿带地质与矿产研究进展[J].岩石学报, 28(10):3051-3066. http://d.old.wanfangdata.com.cn/Periodical/hqrwdl201516058
    周鑫龙. 2007.冶山矿业公司硼矿床地质特征分析[J].矿业工程, 5(1):5-8. http://www.cnki.com.cn/Article/CJFDTOTAL-GWKS200701002.htm
    资锋, 王强, 刘新华, 邱华宁.2011.扬子东部冶山和山里陈埃达克质侵入岩年代学与地球化学:岩石成因和动力学意义[J].矿物学报, 31(2):185-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201102005
    张少琴, 王丽娟, 杨颍鹤. 2015.长江中下游溧水盆地火山岩的时代、地球化学特征及其地质意义[J].高校地质学报, 21(1):15-30. http://www.cqvip.com/QK/90539X/201501/665511158.html
    张本仁, 高山, 张宏飞. 2002.秦岭造山带地球化学[M].北京:科学出版社, 1-87.
    张旗, 金惟俊, 李承东, 王元龙. 2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J].地学前缘, (2):21-51. http://mall.cnki.net/magazine/Article/DXQY200902003.htm
  • 期刊类型引用(2)

    1. 孙砚泽,李世臻,刘卫彬,刘岩,柯昌炜,徐耀辉. 大兴安岭西缘贺斯格乌拉凹陷白垩系烃源岩生烃潜力与天然气成因. 地质通报. 2021(09): 1484-1492 . 百度学术
    2. Shi-zhen Li,Wei-bin Liu,Dan-dan Wang,Wen-hao Zhang,Yan-hua Lin,Shu Tao,Yao-hui Xu. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology. China Geology. 2019(04): 439-457 . 必应学术

    其他类型引用(0)

图(15)  /  表(3)
计量
  • 文章访问数:  2995
  • HTML全文浏览量:  466
  • PDF下载量:  4962
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2017-03-12
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2018-02-24

目录

/

返回文章
返回
x 关闭 永久关闭