• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

内蒙古科尔沁右翼中旗协和尔斯德中生代火山沉积地层时代研究

付俊彧, 那福超, 郑少林, 钟辉, 汪岩, 宋维民, 孙巍, 杨帆

付俊彧, 那福超, 郑少林, 钟辉, 汪岩, 宋维民, 孙巍, 杨帆. 内蒙古科尔沁右翼中旗协和尔斯德中生代火山沉积地层时代研究[J]. 中国地质, 2018, 45(1): 129-140. DOI: 10.12029/gc20180111
引用本文: 付俊彧, 那福超, 郑少林, 钟辉, 汪岩, 宋维民, 孙巍, 杨帆. 内蒙古科尔沁右翼中旗协和尔斯德中生代火山沉积地层时代研究[J]. 中国地质, 2018, 45(1): 129-140. DOI: 10.12029/gc20180111
FU Junyu, NA Fuchao, ZHENG Shaolin, ZHONG Hui, WANG Yan, SONG Weiming, SUN Wei, YANG Fan. A study of geological age of the Mesozoic volcanic-sedimentary strata in Xiehe' rside area, Horqin Right Wing Middle Banner, Inner Mongolia[J]. GEOLOGY IN CHINA, 2018, 45(1): 129-140. DOI: 10.12029/gc20180111
Citation: FU Junyu, NA Fuchao, ZHENG Shaolin, ZHONG Hui, WANG Yan, SONG Weiming, SUN Wei, YANG Fan. A study of geological age of the Mesozoic volcanic-sedimentary strata in Xiehe' rside area, Horqin Right Wing Middle Banner, Inner Mongolia[J]. GEOLOGY IN CHINA, 2018, 45(1): 129-140. DOI: 10.12029/gc20180111

内蒙古科尔沁右翼中旗协和尔斯德中生代火山沉积地层时代研究

基金项目: 

中国地质调查局项目 121201207000171401

中国地质调查局项目 1212011220435

中国地质调查局项目 1212010881212

详细信息
    作者简介:

    付俊彧, 男, 1966年生, 教授级高级工程师, 从事区域地质、矿产研究; E-mail:fjyzxy@163.com

    通讯作者:

    那福超, 男, 1986年生, 硕士, 工程师, 从事区域地质、构造地质学研究; E-mail:350413595@qq.com

  • 中图分类号: P588.14;P597

A study of geological age of the Mesozoic volcanic-sedimentary strata in Xiehe' rside area, Horqin Right Wing Middle Banner, Inner Mongolia

Funds: 

China Geological Survey Program 121201207000171401

China Geological Survey Program 1212011220435

China Geological Survey Program 1212010881212

More Information
    Author Bio:

    FU Junyu, male, born in 1966, senior engineer, bachelor, mainly engages in the study of regional geology and mineral resources survey; E-mail: fjyzxy@163.com

    Corresponding author:

    NA Fuchao, male, born in 1986, engineer, master, mainly engages in the study of regional geology and structural geology survey; E−mail: 350413595@qq.com

  • 摘要:

    内蒙古科尔沁右翼中旗协和尔斯德一带出露一套中生代地层,岩石组合主要为酸性火山碎屑岩、火山碎屑沉积岩夹碎屑沉积岩及酸性火山熔岩。1:50000区调依据在该套地层上部层位发现的木化石组合确定其时代为中—晚侏罗世,结合岩石组合,将该套地层划分为上侏罗统满克头鄂博组。为了准确厘定该套地层时代,为木化石延限研究及区域生物地层划分对比提供依据,本次研究在低于产木化石层位的酸性火山碎屑岩中采取了锆石测年样品(LA-ICP-MS),获得锆石U-Pb年龄(165±1)Ma,时代为中侏罗世。同时采取了侵入该套地层的斑状细晶闪长岩测年样品,获得锆石年龄(131±1)Ma,限定了地层形成的上限年龄。根据岩性组合的区域对比、测年结果、木化石组合时限、地层产状特征,认为该套地层应划为中侏罗统新民组,是突泉火山-沉积盆地充填物的一部分。

    Abstract:

    A suite of Mesozoic strata is exposed in the Xiehe' rside area of Horqin Right Wing Middle Banner, Inner Mongolia. The lithological association is mainly composed of acidic pyroclastic rock and pyroclastic sedimentary rock intercalated with clastic sedimentary rock and acidic volcanic lava. Based on the fossil woods discovered in the upper layer of the strata by 1:50000 regional survey, the authors hold that the formation time is middle-late Jurassic. Combined with the lithological association, the authors assigned the strata to the Upper Jurassic Manketouebo Formation. In order to accurately redefine the stratigraphic age and provide a basis for the study of the age of fossil woods and the regional biostratigraphic.correlation, the authors collected zircon testing samples from the acidic pyroclastic rock in the horizon lower than that of the fossil woods, and determined that the zircon U-Pb age is (165±1) Ma, belonging to middle Jurassic. In addition, the age of the porphyritic fine-crystalline grained diorite which invaded the strata was obtained, and the zircon U-Pb age is (131±1) Ma, which defines the upper age limit of the strata. According to the regional correlation of lithological associations, dating results, time of fossil woods assemblage, and characteristics of attitude of strata, the authors conclude that the strata should be assigned to Middle Jurassic Xinmin Formation and constitute a part of the filler of Tuquan volcanic-sedimentary basin.

  • 巴音戈壁盆地为叠置在克拉通基底与晚古生代褶皱基底接合部位上的伸展断坳复合型盆地(罗毅等,2009; 张成勇等,2015),盆地中南部是古生代滨浅海相基础上发育的盆地建造带,其坳陷的基底为多期富铀花岗岩活化的古克拉通基底,是成熟度高的富铀基底,是铀成矿的有利区。近年来,核工业二〇八大队在盆地中南部开展了一系列的铀矿调查评价与勘查工作,取得突出的找矿成果(申科峰等,2014; 李鹏等,2017; 彭云彪等,2018b)。

    根据水成铀矿理论,砂岩型铀矿是一种产在近地表砂体中的外生铀矿床,是活化的六价铀元素沿含矿含水层运移,遇有机碳、黄铁矿或油气等还原剂,在过渡带被还原成四价铀元素富集沉淀成矿(陈路路等,2014)。盆地(坳陷)内能否铀成矿,取决于其所在地区的大地构造背景及构造-沉积演化特征,并通过影响区域构造、沉积演化、铀(物)源、水动力、氧化还原蚀变等成矿地质条件来控制砂岩型铀矿床的形成。因此,通过研究巴音戈壁盆地中南部构造-沉积演化及其对铀成矿的关系,对盆地内继续寻找铀矿床具有一定的积极作用。

    巴音戈壁盆地位于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北板块的结合部位,是巴尔喀什—天山—兴安岭晚古生代增生碰撞带。以恩格尔乌苏—巴音查干NEE向晚古生代陆-陆碰撞板块缝合线为界,巴音戈壁盆地中南部处于华北板块北缘阴山隆起带与宝音图—锡林浩特火山型被动陆缘的结合带。其北界为宗乃山—沙拉扎山隆起带,南界为巴丹吉林断裂(图 1),属弧间盆地。

    图  1  巴音戈壁盆地中南部构造分区示意图
    1—蚀源区; 2—断裂; 3—一级构造单元界线; 4—二级构造单元界线; 5—矿床; 6—研究区范围
    Figure  1.  Sketch map of tectonic zoning in the south-central part of the Bayin Gobi Basin
    1-Provenance area; 2-Fault; 3-Boundary of primary structural unit; 4-Boundary of secondary structural unit; 5-Deposit; 6-Study area

    根据前人的划分方案,盆地中南部属于中构造域,为西部挤压与东部拉张环境的结合部,构造应力比较复杂(Darby et al., 2005; 陈戴生等,2011; Shi et al., 2015; 苗培森等,2017; 刘波等,2020; Jin et al., 2020; Yu et al., 2021)。区域上自中生代以来先后经历了印支期、燕山期、喜山期共7次构造运动,导致其上覆盖层中形成隆起和坳陷(凹陷)相间出现的局面(表 1)。

    表  1  巴音戈壁盆地中南部主要凹陷特征一览
    Table  1.  Characteristic list of main depressions in the central and southern Bayin Gobi Basin
    下载: 导出CSV 
    | 显示表格

    巴音戈壁盆地中南部基底地层主要为太古界乌拉山群深变质岩,古元古界阿拉善群中深变质岩、寒武系—泥盆系碎屑岩、碳酸盐岩及浅变质岩,石炭系中酸性火山岩、碎屑岩,二叠系碎屑岩、火山岩、碳酸盐岩等组成(张成勇等,2015; 刘波等,2020)。盖层主要为中新生界,主要为侏罗系、下白垩统巴音戈壁组、上白垩统乌兰苏海组,局部见下白垩统苏红图组,其中巴音戈壁组上段为盆地内主要的找矿目的层(何中波等,2010; 丁叶等,2012; 肖国贤等,2017; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020; Liu et al., 2021a)。盆地内岩浆岩主要发育于元古宙、古生代和显生宙,主要分布于宗乃山—沙拉扎山、狼山—巴彦诺尔公地区,主要为花岗岩、花岗闪长岩、花岗闪长玢岩、黑云闪长岩、石英闪长玢岩等(史兴俊等,2015),以花岗岩类最为发育。断裂主要有宗乃山—沙拉扎山南缘断裂和巴丹吉林断裂,基本控制了盆地中南部坳陷带的发育。

    巴音戈壁盆地中南部凹陷的构造样式主要为双断型、单断型与复合型(刘波等,2020)。从凹陷形态及其演化继承性分析,具有两种类型,表现为叠合型和迁移型(陈启林等,2005; 彭云彪等, 2018a, 2018b)。不同的凹陷形态具有不同的构造样式(卫三元等,2006),不同构造样式控制了不同的沉积充填类型(图 2),同时控制了凹陷后期构造反转、流体运移和铀矿化的分布等(刘波等, 2016, 2017a, 2017b, 2018, 2020)。

    图  2  因格井—尚丹坳陷各凹陷构造样式
    a—单断断槽式; b—单断迁移型; c—单断叠置型; d—双断地堑式; 1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—中下侏罗统; 5—地层界线; 6—正断层; 7—性质不明断层; 8—反转断层
    Figure  2.  Structuralstyles of sags in Inger-Shangdan Depression
    a-Single and slot; b-Single fault migration; c-Single fault superimposed; d-Double break graben; 1-Ulansuhai Formation of Upper Cretaceous; 2-Upper Member of Bayin Gobi Formation of Lower Cretaceous; 3- Lower Part of Bayin Gobi Formation of Lower Cretaceous; 4-Middle-Lower Jurassic; 5-Stratigraphic boundary; 6-Normal fault; 7-Unidentified fault; 8-Inversion fault

    单断箕状凹陷在盆地中南部发育规模最广,如因格井凹陷、乌力吉凹陷等。这种凹陷易于在断陷端发育冲积扇—扇三角洲沉积,远离断陷端多为湖泊沉积,扇三角洲平原分流河道和扇三角洲前缘多发育有利砂体,利于成矿流体运移及铀成矿,如塔木素铀矿床砂岩型铀矿体即赋存于因格井凹陷北部扇三角洲砂体中(李鹏等,2017; 彭云彪等,2018b; 刘波等,2020)。复合型凹陷在盆地中南部局部发育,如本巴图矿产地,赋存于单断箕状凹陷的复合部位。该部位因差异性抬升易于遭受剥蚀,继而形成大型剥蚀窗口,而剥蚀窗口有利于后生氧化发育,进而形成铀矿化。

    早中侏罗世,受燕山运动影响,盆地中南部开始局部裂陷,裂陷主要受北东向断裂控制,主要呈箕状和不对称地堑。在晚侏罗世,盆地整体抬升剥蚀,地层剥蚀殆尽,大部分残存于盆地中南部的沉降中心,少量在坳陷边缘局部呈残留体形式存在(罗毅等,2009)。

    早白垩世巴音戈壁期为强烈断陷期,主要发育了下白垩统巴音戈壁组,在坳陷带内具有广泛连通的特征,古构造地貌表现为北高南低,东高西低。在断陷发育扩张的早期,首先沉积了巴音戈壁组下段冲积扇砂砾岩层。巴音戈壁组上段早期湖泊相细粒沉积物不断向盆地外侧超覆沉积,反映出断陷不断扩张。随着断陷继续发育,巴音戈壁组上段沉积物供给<凹陷的可容纳空间,发育扇三角洲—湖沼沉积。这一时期在三角洲平原分流河道和三角洲前缘,既发育了有利的铀储层砂体,又在河道分流间湾沉积了暗色泥岩、粉砂质泥岩,构成了有利于地浸砂岩型铀矿形成的“泥-砂-泥”储层结构,成为本区砂岩型铀矿的主要找矿目的层。此后,盆地中南部差异性隆升,大部分地区沉积滨浅湖与半深湖亚相细碎屑物,表现为退积型沉积特点。

    在苏红图期,延续早白垩世巴音戈壁期北高南低和东高西低的基础上,银根地区发育为沉降沉积中心,发育了一定厚度的苏红图组,而其他大部分地区诸如塔木素、乌力吉地区依旧缓慢隆升,遭受剥蚀。

    在早白垩世苏红图沉积后,银根地区抬升遭受剥蚀,在原有古构造地貌基础上,表现为中央局部隆升,局部遭受剥蚀(He et al., 2015)。

    早白垩世晚期银根期,盆地中南部受滨西太平洋俯冲远程影响(Shi et al., 2014; Zhang et al., 2014; Liu et al., 2019),整体抬升强烈,普遍缺失银根组(图 3)。古构造地貌特征为北东高南西低的特点。

    图  3  巴音戈壁盆地中南部白垩纪地层沉积与剥蚀天窗示意图
    1—乌兰苏海组; 2—巴音戈壁组上段三岩段; 3—巴音戈壁组上段二岩段; 4—地质界线; 5—角度不整合界线; 6—钻孔孔号及标高(m); 7—工业矿孔; 8—矿化孔; 9—无矿孔
    Figure  3.  Schematic diagram of Cretaceous sedimentation and denudation windows in the central and southern Bayin Gobi Basin
    1-Ulansuhai Formation; 2-Third rock section inthe Upper Member of Bayin Gobi Formation; 3-Second rock section in the Upper Member of Bayin Gobi Formation; 4-Geological boundary; 5-Angular unconformity boundary; 6-Borehole number and elevation (m); 7-Industrial ore hole; 8-Mineralization hole; 9-Non ore Hole

    晚白垩世乌兰苏海期,受古亚洲板块俯冲影响,盆地中南部受北西-南东应力作用,整体从北西向南东阶梯式抬升(刘春燕等,2006; Feng et al., 2017; 张建新等,2018),在局部表现为伸展作用,在因格井坳陷、尚丹坳陷的南部,乌兰苏海组坳陷内沉积厚度较大; 在宗乃山—沙拉扎山隆起带边缘表现为缺失乌兰苏海组或厚度较小(图 3),此时古构造地貌表现为北西高-南东低。

    古近纪以来,受印度板块俯冲影响,盆地中南部受南西-北东应力作用影响,使得老构造重新活动和北东向断裂的新生(Tapponnier et al., 2001; 施炜等,2013; Cui et al., 2018; 赵衡等, 2019a, 2019b); 由南向北发育阶梯式抬升,导致在相邻的雅不赖盆地缺失白垩系,盆地内整体缺失古近系,近于直接出露厚层的乌兰苏海组(图 3)。而盆地中南部乌兰苏海组同样遭受抬升剥蚀,表现为厚度较薄或缺失。该时期地貌表现为南高北低,西高东低的特点,垂直高差300~500 m。

    巴音戈壁组在上、下段沉积过程中,其沉积相、沉积体系出现了明显的变化,下段沉积期间,显示相对单一的以重力流沉积为主体的冲积扇沉积和扇三角洲沉积,上段沉积时则演变为相对复杂的以重力流和牵引流沉积并重的多种沉积体系所构成的沉积格局,特别是扇三角洲沉积体系的广泛发育,为巴音戈壁盆地中南部砂岩铀矿的形成提供了最基本的砂体条件。这种沉积体系的演变虽然直接与沉积环境的变化有关,但空间上有规律的分布则明显与构造活动有关(丁叶等,2012; 陈路路等,2014; 彭云彪等, 2018a, b)。

    在巴音戈壁组沉积时,各凹陷虽构造样式不同(因格井凹陷为双断型、新尼乌苏凹陷为单断箕状),但在北东向控盆及控坳断裂控制下,在陡坡快速接受碎屑物沉积。结合气候干旱,流水作用不发育,决定了巴音戈壁组下段在盆地(坳陷)的南北两侧发育冲积扇沉积体系,以及局部地段的扇三角洲沉积体系。至巴音戈壁组上段沉积时,构造沉降作用进一步加剧,同时,气候环境明显改变,流水作用显著增强,湖盆发生快速扩张,除某些地段沉积仍显示陡坡特点形成冲积扇沉积体系与扇三角洲沉积体系外,在其他地段特别是北东向构造的闭合端,由于河流的发育,成为碎屑补给的主要地段,并使沉积坡降进一步降低,在构造交汇处形成由平原亚相逐步入湖的扇三角洲沉积体系(刘波等,2020; Liu et al., 2021b)。

    后期的构造反转,差异的块断升降导致原来形成的沉积格局发生改变。反转断裂以逆冲压性为主要构造性质,构造方向呈北东向,由若干条相互平行的断裂带组成。由于断裂构造的反转,使原有沉积相带在空间上的有序规律发生了变化,即由冲积扇-扇三角洲-湖相组合递变的沉积相带或由冲积扇-辫状河-辫状三角洲-湖相组合递变的沉积相带在空间上出现了错位或缺失,同时也使巴音戈壁组上、下段沉积地层在空间叠置关系上出现了错断和突变(何中波等,2010; 张成勇等,2015; 刘波等,2020)(图 4)。

    图  4  巴音戈壁盆地中南部白垩纪构造-沉积演化模式图
    a—早白垩世巴音戈壁组下段; b—早白垩世巴音戈壁组上段早期; c—早白垩世巴音戈壁组上段晚期; d—早白垩世末期; 1—扇三角洲; 2—冲积扇; 3—扇三角洲平原; 4—扇三角洲前缘; 5—湖泊相; 6—基底; 7—亚相界线; 8—正断层; 9—逆断层
    Figure  4.  Cretaceous tectonic-sedimentary evolution model diagram in the central and southern Bayin Gobi Basin
    a-The lower part of Bayin Gobi Formation in Early Cretaceous; b-Early upper member of Bayin Gobi Formation in Early Cretaceous; c-Late upper member of Bayin Gobi Formation in Early Cretaceous; d-Late Early Cretaceous; 1-Fan delta; 2-Alluvial fan; 3-Fan delta plain; 4-Fan delta front; 5-Lake facies; 6-Basement; 7-Subfacies boundary; 8-Normal fault; 9-Reverse fault

    巴音戈壁盆地中南部地下水的水动力方向和状态的改变,主要受构造隆升或掀斜构造的影响,而地下水的水动力条件改变,会使铀成矿作用产生变化。巴音戈壁盆地中南部在早白垩世巴音戈壁组上段沉积期,地势比较开阔,巴音戈壁组上段地层呈水平沉积; 巴音戈壁组沉积后,巴音戈壁盆地中南部受古亚洲造山带和滨西太平洋的双向挤压,北部宗乃山—沙拉扎山隆起抬升明显,使得下白垩统巴音戈壁组上段抬升剥蚀,形成早白垩世巴音戈壁期—晚白垩世长期的沉积间断,形成大型的剥蚀窗口。巴音戈壁盆地中南部内的含铀含氧水顺剥蚀窗口向盆地内运移,在巴音戈壁组上段的“泥-砂-泥”储层结构的约束下,与砂体内本身的有机质、还原(流)性介质发生作用,形成铀矿体(图 5)。在晚白垩世乌兰苏海期,巴音戈壁盆地中南部进入坳陷期,在坳陷(凹陷)内沉积了乌兰苏海组,形成了区域盖层。在古近纪,受喜山运动的影响,巴音戈壁盆地中南部由南西向北东发生掀斜式抬升,巴音戈壁盆地中南部地层整个抬升翘起,巴音戈壁组形成微向斜,含铀含氧水继续呈“C”型或者“U”型沿着剥蚀窗口向盆地内运移。在新近纪,受喜山运动影响,巴音戈壁盆地中南部受到由南西向北东掀斜的整体剧烈抬升,使得古近系、上白垩统在南部遭受剥蚀,宗乃山隆起被大量剥蚀改造,造山带和盆地的高差减小。由于剥蚀抬升,使得含铀含氧水向盆地内继续运移。由于受巴彦诺尔公隆起的影响,巴音戈壁盆地中南部内地下水由径流—弱径流,转为滞水。该时期由于气候持续干旱炎热,水岩作用强烈,NaCl型高矿化度地下水中的Na+替换了斜长石中的Ca2+,后者与地下水中的CO32-、HCO3-和Mg2+形成白云石等碳酸盐矿物,促使地下水中以[UO2(CO3)3]4-、[UO2(CO3)3]2-等碳酸铀酰络合离子及MgCO3·NaUO2(CO3)2复盐发生分离而形成了铀的沉淀(王凤岗等,2018; 刘波等,2020)。

    图  5  巴音戈壁盆地中南部下白垩统巴音戈壁组上段岩性-岩相示意图
    1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—侏罗系; 5—上石炭统; 6—盆地边界; 7—岩相界线; 8—扇三角洲平原; 9—扇三角洲前缘; 10—滨浅湖; 11—花岗岩; 12—矿床/矿产地; 13—乌兰苏海组剥蚀界线; 14—铀矿体; 15—断裂; 16—示意剖面
    Figure  5.  Lithology-lithofacies sketch map of upper member of lower Cretaceous Bayin Gobi Formation in south-central Bayin Gobi Basin
    1-Ulansuhai formation of upper Cretaceous; 2-Upper member of Bayin Gobi Formation of Lower Cretaceous; 3-Lower part of Bayin Gobi Formation of Lower Cretaceous; 4-Jurassic; 5- Upper Carboniferous; 6-Basin boundary; 7-Lithofacies boundary; 8-Fan delta plain; 9-Fan delta front; 10-Shore-shallow lake; 11-Granite/Orefield; 12-Deposit; 13-Denudation boundary of Wulansuhai Formation; 14-Uranium ore body; 15-Fault; 16-Schematic section

    总体来看,巴音戈壁盆地中南部在白垩纪—古近纪以来,北部地下水一直保持由北向南的径流趋势,南部地下水总体流向一直保持由南向北的径流趋势,在不同的次级凹陷中略呈分散状。地下水流向与当时的沉积物迁移和地层相带展布方向长期保持一致,这对铀的稳定迁移、层间氧化带的稳定发育及铀在氧化带前锋线一带沉积成矿是非常有利的。

    巴音戈壁盆地中南部主要经历了3次大规模的铀成矿作用,主要为第一期早白垩世中晚期(109.7±1.5)Ma ~(115.5±1.5)Ma,第二期为晚白垩世晚期—古近纪(45.4±0.6)Ma ~(70.9±1.0)Ma和第三期为新近纪(12.3±0.2)Ma ~(2.5±0.0)Ma(刘波等,2020)。在早白垩世中晚期,伴随着恩格尔乌苏断裂的活动,宗乃山隆起发生抬升,使得含铀含氧水向盆地内运移,发育层间氧化作用。从塔木素铀矿床的赤铁矿化发育情况看,该期氧化作用强烈,可能为主要成矿期。在晚白垩世晚期65~80 Ma(韩进等,2015; 刘溪等,2017),盆地经历了由北向南的强烈的推覆作用,这与巴音戈壁盆地中南部内典型矿床的第二期成矿年龄相对应。伴随着盆地晚白垩世晚期—古近纪盆地由北向南的推覆抬升,盆地内在原有基础上发育有叠加的黄色褐铁矿化层间氧化作用,该期盆地抬升较第一期弱,故层间氧化带的规模较上期小,表现为盆地内褐铁矿化分布较赤铁矿化分布范围小。但是该时期盆地古气候炎热干旱,盆地蒸发量增强,使得表生盐度高卤水向内入渗,在巴音戈壁组上段二岩段层间破碎、裂陷、微孔隙充填发育了大量石膏和碳酸盐(李鹏等,2017)。同时,斜长石因水岩作用(溶解、溶蚀等),在解理面及表面形成了次生的缝隙及孔洞等,为铀沉淀提供了空间。此外,含CO32-、SO42-等的酸性地表水沿层间下渗,溶解了砂岩中碳酸盐胶结物而形成了溶洞,为后期再次迁移的铀提供了沉淀空间,并形成了铀的进一步叠加、富集(王凤岗等,2018)。受盆地挤压抬升影响,后期近地表成矿流体促进了大规模潜水氧化与层间氧化的发育,深部有机流体(还原气体)上侵与SO42-发生反应生成黄铁矿。正是黄铁矿和植物炭屑的还原作用导致了渗入型含氧含铀地下水中矿质的沉淀,形成铀矿体。

    早白垩世巴音戈壁期,巴音戈壁盆地断陷发育; 早白垩世苏红图—银根期,在太平洋俯冲远程效应下,巴音戈壁盆地发生断坳转换,发育走向北东的断裂与线性褶皱,致使地层发生差异性掀斜式抬升; 晚白垩世乌兰苏海期为坳陷期,沉积物以“填平补齐”的形式覆盖在早期的地质单元上,同时受喜山运动的影响,发育走向北西的断裂; 古近纪至今,受印度板块向北俯冲的影响,北东向构造活化与新生,区内差异性抬升更为明显,地层多被剥蚀(卫三元等,2006; 肖国贤等,2017; 彭云彪等,2018a; 赵衡等, 2019a, b; 刘波等,2020)。多期次构造叠加使得因格井—尚丹坳陷的地质体形成不同的块体。受早白垩世晚期至古近纪时期断续构造运动影响,白垩纪地层受北东向与北西向构造活动影响,形成大小不一的块体,在本巴图、乌力吉和塔木素地区比较明显,在不断抬升与剥蚀过程中局部形成剥蚀天窗(图 6),为后期铀成矿提供了有利条件,控制着层间氧化带由凹陷边缘向凹陷中心发育,加之(滨-浅)湖相地层中富含有机质,在氧化还原障附近形成铀矿化(表 2)。简言之,巴音戈壁盆地中南部内铀成矿在有利的构造背景下,主要受沉积相控制与层间氧化带制约。

    图  6  尚丹坳陷银根地区构造形迹示意图
    a—乌力吉—本巴图地区; b—沙拉扎山北侧; c—银根地区; 1—盆地边界; 2—正断层; 3—逆断层; 4—性质不明断层; 5—向斜; 6—复式褶皱; 7—地质界线; 8—剥蚀天窗
    Figure  6.  Structural trace map of Yingen area in Shangdan depression
    a-Wuliji-Benbatu area; b-The north side of the Salazha Mountain; c-Yingen area; 1-Basin boundary; 2-Normal fault; 3-Reverse fault; 4-Unknown fault; 5-Syncline; 6-Compound fold; 7-Geological boundary; 8-Denudation windows
    表  2  巴音戈壁盆地构造-沉积演化与铀成矿作用的关系
    Table  2.  Relationship between tectonic-sedimentary evolution and uranium mineralizationin in the Bayin Gobi Basin
    下载: 导出CSV 
    | 显示表格

    因格井坳陷内扇三角洲物源主要为自北向南,自早白垩世以来继承性发育。岩心及测井资料显示砂砾岩层累计厚度大,多表现出叠加正韵律岩性序列,反映出物源补给比较充足、强烈; A/S值虽然发生变化,但总体较小(林畅松,2015)。尚丹坳陷内扇三角洲继承性发育不良,岩石颗粒较细,细砂岩含量相对要高,累计厚度较薄,三角洲前积特征不明显,反映了物源供给的阶段性和微弱性,A/S值主体较大。

    现代分析认为,层序地层学和“源-汇”体系研究具有内在紧密关联性。断陷湖盆扇三角洲的分布特征与A/S值密切相关(刘磊等,2015; 吴冬等,2015; 刘波等,2020)。“A”实际上对应着巴音戈壁盆地中南部的“汇”,“S”对应着巴音戈壁盆地中南部的“源”,“源-汇”体系直接控制着沉积扇体的类型和特征。“源-汇”体系主导下的断陷湖盆扇三角洲通常具备两种形态,即“锥状”扇三角洲与“片状”扇三角洲(吴冬等,2015)。所谓“锥状”扇三角洲外形呈锥形,纵向厚度较大,平面分布相对较窄,在地震剖面上,扇根多呈现杂乱、弱振幅、差连续反射特征,扇端多呈现弱振幅、中连续前积特征,横截面为丘状或透镜状; “片状”扇三角洲厚度较薄,平面分布范围较大,呈层堆积,地震反射上难以看出三角洲前积特征(李佳鸿等,2012; 刘磊等,2015)。从能量守恒与转化的角度来看,在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,在某一或者诸多节点处可以形成多种形态的复合扇三角洲,据此可进行扇三角洲垛体的定性预测(图 7)。

    图  7  断陷盆地斜坡带扇三角洲发育模式图(吴东,2015)
    1—断裂; 2—断距; 3—剥蚀区; 4—沉积区
    Figure  7.  Development model of fan delta in slope zone of faulted basin(Wu Dong, 2015)
    1-Fault; 2-Fault distance; 3-Denudation area; 4-Sedimentary area

    此外,按相邻的相分类,巴音戈壁盆地中南部扇三角洲又可以分为靠山型与靠扇型扇三角洲。靠山型扇三角洲往往发育于盆缘断层下降盘坡度较陡的斜坡区,并且紧邻高地物源区; 而靠扇型扇三角洲多形成于坡度相对平缓的盆缘斜坡区,它与相邻高地物源区之间通常存在明显可识别的冲积扇相(陈景山等,2007; 刘磊等,2015)。其次,由于构造控制下的斜坡坡度不同,导致这两种扇三角洲的沉积水动力条件有所差别(表 3)。换句话说,巴音戈壁盆地中南部内盆地边缘斜坡较陡和湖泛面较高, 有利于靠山型扇三角洲相的发育; 当盆地边缘斜坡较平缓和湖泛面相对较低时,则有利于靠扇型扇三角洲相的发育。事实上,两种扇三角洲可以交替、叠加演化,在进行扇三角洲垛体定性预测的同时,要对已知扇三角洲铀成矿属性进行判别。

    表  3  靠山型与靠扇型扇三角洲特征对比表(据陈景山,2007)
    Table  3.  Characteristic comparison table between hillside fan delta and fan delta(after Chen Jingshan, 2007)
    下载: 导出CSV 
    | 显示表格

    巴音戈壁盆地中南部在早白垩世中晚期((109.7±1.5)Ma~(115.5±1.5)Ma)、晚白垩世晚期—古近纪((45.4±0.6)Ma~(70.9±1.0)Ma)和新近纪((12.3±0.2)Ma~(2.5±0.0)Ma),经受了南东、北西与南西方向的应力改造作用(刘波等,2020; Liu et al., 2021a)。目的层巴音戈壁组上段发育的扇三角洲平原亚相及前缘亚相砂体,长时间暴露地表,使得含铀含氧水沿砂体向盆地(坳陷)内运移,形成较大规模的层间氧化带型铀矿化(李鹏等,2017; 刘波等,2020): 在氧化砂岩与灰色砂岩界面、氧化还原过渡带中多形成砂岩型铀矿体(图 8); 在扇三角洲分流河道砂岩与分流间湾泥岩结合的部位(同时作为氧化还原障),形成砂泥混合型矿体,在泥岩一侧发育微弱氧化作用; 垂向河道之间的分流间湾、河道间、晚期洪泛平原泥质粉砂岩中形成后生泥岩型铀矿体,尤其是溶蚀孔洞和裂隙充填黄铁矿、褐铁矿比较发育的地段。

    图  8  断陷湖盆背景下的扇三角洲成矿模式图
    a—铀矿体产于氧化砂岩中; b—铀矿体产于氧化砂岩与灰色砂岩界面上; c—铀矿体产于灰色砂岩中; d、e—铀矿体产于氧化砂岩与灰色泥岩界面上; f—铀矿体产于氧化砂岩中的泥岩; 1—剥蚀区; 2—扇三角洲; 3—基底; 4—扇三角洲平原; 5—扇三角洲前缘; 6—滨浅湖; 7—砂岩; 8—泥岩; 9—褐铁矿化; 10—赤铁矿化; 11—炭化植物碎屑; 12—黄铁矿; 13—槽状交错层理; 14—正粒序; 15—平行层理; 16—水平层理; 17—流体方向; 18—铀矿体; 19—断裂; 20—裂隙; 21—高岭土化; 22—碳酸盐化; 23—电阻率测井曲线; 24—γ测井曲线
    Figure  8.  Metallogenic model of fan delta underthe background of faulted lacustrine basin
    a-Uranium ore body occurs in oxidized sandstone; b-Uranium ore body occurs at the interface between oxidized sandstone and grey sandstone; c-Uranium ore body occurs in grey sandstone; d/e-Uranium ore bodies occur at the interface between oxidized sandstone and grey mudstone; f-Uranium ore body occurs at mudstone in oxidized sandstone; 1-Denudation area; 2-Fan delta; 3-Basement; 4-Fan delta plain; 5-Fan delta front; 6-Shore shallow lake; 7-Sandstone; 8-Mudstone; 9-Limonition; 10-Hematite mineralization; 11-Carbonized plant debris; 12 -Pyrite; 13-Trough cross bedding; 14-Normal grain sequence; 15-Parallel bedding; 16-Horizontal bedding; 17 -Fluid direction; 18-Uranium ore body; 19 -Fracture; 20-Cranny; 21- Kaolinite; 22-Carbonation; 23-Resistivity logging curve; 24 -Gamma logging curve

    综合巴音戈壁盆地中南部内铀成矿要素与典型铀矿床成矿特征(李晓翠等,2014; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020),确定主要成矿要素为: ①找矿层位为下白垩统巴音戈壁组上段; ②扇三角洲平原亚相的辫状分流河道与前缘亚相的水下分流河道、河口坝是砂岩型铀矿的有利成矿部位,而分流间湾是泥岩型铀矿的有利成矿部位; ③目的层具有稳定的“泥-砂-泥”结构; ④层间氧化还原转换带控矿—单个黄色氧化舌外侧或两个黄色氧化舌之间还原砂体内,以及氧化砂体内部灰色残留体; ⑤盆缘构造斜坡带控制成矿地质体的发育,同时控制含氧含铀水在目的层砂体中的运移; ⑥多期次构造活动形成“剥蚀天窗”,影响层间氧化带发育规模。因此,定位扇三角洲垛体是找矿预测的基础。

    巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块。目前已知的塔木素铀矿床、本巴图矿产地均是位于此类有利构造部位(图 5图 6)。进一步对比分析巴音戈壁盆地中南部内铀矿床与铀矿化(异常点)的分布可以发现,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。这些地段受不同程度的构造抬升影响,目的层巴音戈壁组上段遭受不同程度的剥蚀,如本巴图地区巴音戈壁组上段较塔木素地区剥蚀深度大于100 m,造成事实上的“剥蚀天窗”,有利于成矿流体的运移以及铀成矿。因此,在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部内铀矿重点找矿预测方向,诸如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。

    由于巴音戈壁盆地中南部内构造-沉积演化的不均一性,小型凹陷以及凸起比较发育,现有工作程度比较低,制约着我们的认识。从现有钻孔的揭遇情况来看,沉积间断面附近通常发育较强的氧化还原作用,具有明显的γ异常与增高。因此定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。

    (1) 巴音戈壁盆地中南部凹陷的构造样式主要为双断型和单断型; 从凹陷形态及其演化继承性分析,又可以分为叠合型和迁移型。

    (2) 不同的凹陷构造样式控制着巴音戈壁组上段不同的沉积相组合,多期次构造叠加使得目的层逐步形成剥蚀天窗,控制着层间氧化带由凹陷边缘向凹陷中心发育,在氧化还原障附近形成铀矿化。

    (3) 在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,据此可进行扇三角洲垛体的定性预测,同时要对已知扇三角洲铀成矿属性进行判别,进而对矿化类型进行预判与识别。

    (4) 巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部铀矿重点找矿预测方向,如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。

    (5) 由于巴音戈壁盆地中南部构造-沉积演化的不均一性,定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。

    致谢: 野外调查工作得到刘世伟教授级高级工程师的指导及项目组成员的密切协作;成文过程中承蒙张武研究员的悉心指导;匿名审稿专家对论文修改完善提出宝贵意见建议,在此一并表示衷心的感谢。
  • 图  1   研究区地质略图

    a—区域地质背景图;b—研究区地质略图;c—区域大地构造图 1—第四系;2—下白垩统;3—上侏罗统;4—中侏罗统新民组;5—中侏罗统万宝组;6—上二叠统;7—下中二叠统;8—下寒武统;9—斑状细晶闪长岩;10—侏罗纪花岗岩;11—中侏罗世二长花岗岩;12—晚三叠世二长花岗岩;13—晚二叠世英云闪长岩;14—超镁铁质岩;15—英安岩;16—流纹岩;17—流纹质晶屑凝灰岩;18—含角砾流纹质晶屑凝灰岩;19—流纹质火山灰球凝灰岩;20—细砂岩;21—凝灰质砂岩;22—砂砾岩;23—岩层产状/板理产状;24—断层;25—剖面位置;26—化石产地;27—测年样品采集地;28—研究区范围

    Figure  1.   Sketch geological map of the study area

    a-Reginal geological backgranf map; b-Sketch geological map of the study area; c-Reginal geotectonic map 1-Quaternary; 2-Lower Cretaceous; 3-Upper Jurassic; 4-Middle Jurassic Xinmin Formation; 5-Middle Jurassic Wanbao Formation; 6-Upper Permian; 7-Middle-Lower Permian; 8-Lower Cambrian; 9-Porphyritic fine-crystalline grained diorite diorite; 10-Jurassic granites; 11-Middle Jurassic adamellite; 12-Late Triassic adamellite; 13-Late Permian tonalite; 14-Ultramafic rocks; 15-Dacite; 16-Rhyolite; 17-Rhyolitic crystal tuff; 18-Brecciated rhyolitic crystal tuff; 19-Rhyolitic volcanic ash balls tuff; 20-Fine sandstone; 21-Tuffaceous sands; 22-Sandy conglomerate; 23-Bedding; 24-Fault; 25-Profile position; 26-Fossil locality; 27-Isotope sampling; 28-Scope of research area

    图  2   中侏罗统新民组实测剖面图

    1—下寒武统杜尔基组;2—中侏罗统新民组;3—早白垩世斑状细晶闪长岩;4—木化石;5—样品采集位置及编号;6—粉砂质板岩;7—沉流纹质晶屑凝灰岩;8—含砾中细砂岩;9—流纹质含角砾晶屑凝灰岩;10—凝灰质细砂岩;11—流纹质含集块角砾晶屑凝灰岩

    Figure  2.   Cross section of Middle Jurassic Xinmin Formation

    1-Lower Cambrian Duerji Formation; 2-Middle Jurassic Xinmin Formation; 3-Early Cretaceous porphyritic fine-crystalline grained diorite; 4-Fossil wood; 5-Sampling location and its serial number; 6-Silty slate; 7-Sedimentary rhyolitic crystal fragment tuff; 8-Gravel-bearing mid-fine grained sandstone; 9-Rhyolitic dust-bearing crystal fragment tuff; 10-Tuffaceous fine sandstone; 11-Dust (agglomerate) -bearing crystal fragment tuff

    图  3   样品手标本及显微照片

    a, b—BY1301流纹质含角砾晶屑凝灰岩, 野外照片、显微照片(正交偏光); c, d—BY1302斑状细晶闪长岩, 野外照片、显微照片(正交偏光)

    Figure  3.   The filed and microscopic photographs of samples

    a, b-BY1301 brecciated rhyolitic crystal tuff, field photographs, microphotographs (crossed nicols); c, d-BY1302 porphyritic fine-crystalline grained diorite, field photographs, microphotographs (crossed nicols)

    图  4   样品锆石CL图像及U-Pb年龄协和曲线图

    a—BY1301流纹质含角砾晶屑凝灰岩;b—BY1302斑状细晶闪长岩

    Figure  4.   CL images and concordia diagrams of analyzed zircon grains of the samples

    a-BY1301 brecciated rhyolitic crystal tuff; b-BY1302 porphyritic fine-crystalline grained diorite

    表  1   BY1301 LA-ICP-MS锆石U-Pb同位素测定数据

    Table  1   The zircon LA-ICP-MS U-Pb data from BY1301

    下载: 导出CSV

    表  2   BY1302 LA-ICP-MS锆石U-Pb同位素测定数据

    Table  2   The zircon LA-ICP-MS U-Pb data from BY1302

    下载: 导出CSV
  • Cheng Yinhang, Liu Yongshun, Teng Xuejian, Yang Junquan, Li Yanfong, Peng Lina, Li Ying, Liu Yang. 2013. Geochronology and Geochemistry of Middle-Late Jurassic volcanic rocks in the Mohe'ertu area, Inner Mongolia and their Geological significance[J]. Acta Geologica Sinica, 87(7):943-956 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201307005.htm

    Chang C Y. 1929. A new Xenoxylon from North China[J]. Bulletin of the Geological Society of China, 8(3):243-255. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE192903005.htm

    Claesson S, Vetrin V, Bayanova T. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 51(1/2):95-108. https://www.sciencedirect.com/science/article/pii/S0024493799000766

    Ding Qiuhong. 2000a. Study on the fossil woods from Yixian Formation in Western Liaoning Province[J]. Acta Palaeontologica Sinica, 39(supp.):209-219 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200401008.htm

    Ding Qiuhong, Zheng Shaolin, Zhang Wu. 2000b. Mesozoic fossil woods of genus Xenoxylon from Northeast China and its Palaeoecology[J]. Acta Palaeontologica Science, 39(2):237-249(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200002007.htm

    Ding Qiuhong, Zhang Wu, Zheng Shaolin. 2004. Growth rings observation on fossil woods and their implication from Yixian formation of Lower Cretaceous in Western Liaoning Province[J]. Geological Science and Technology Information, 23(1):38-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200401008.htm

    Ding Qiuhong, Li Xiaohai, Yao Yulai, Wang Jie, Zong Wenming, Gao Xiaoyong, Li Wenbo. 2015. Revision of the Jurassic Tamulangou Formation in the Jarud Qi area, Inner Mongolia[J]. Geology and Resources, 24(5):402-407 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200702003.htm

    Duan Shuying. 1986. A petrified forest from Beijing[J]. Acta Botanica Sinica, 28(3):331-335. http://en.cnki.com.cn/Article_en/CJFDTotal-GSWX201501007.htm

    Duan Shuying. 2000. Several fossil woods from Mesozoic of western Liaoning Province, Northeast, China[J]. Acta Botanica Sinica, 42 (2):207-213 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/334727

    Fernando C, John M H, Paul W H, Peter K. 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53(1):469-500. doi: 10.2113/0530469

    Fu Junyu, Song Weimin, Tao Nan, Pang Xuejiao, Bian Xiongfei, Wu Tong, Zhang Zhibin. 2012. The new material of Upper Jurassic fossil woods found in the Manketouebo Formation of Horqin Right Wing Middle Banner, Inner Mongolia[J]. Geological Bulletin of China, 31(5):653-661 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201205003.htm

    Ge Wenchun, Lin Qiang, Sun Deyou, Wu Fuyuan, Li Xianhua. 2000.Geochemical research into origins of two types of Mesozoic rhyolites in Daxing'anling[J]. Earth Science——Journal of China University of Geosciences, 25(2):172-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200002012.htm

    Jin Ling, Yang Weihong, Yang Deming, He Zhonghua, Ma Rui, Wang Jianguo. 2014. Geochronology and geological significance of andesites from Meiletu Formation in Keyouzhongqi, Inner Mongolia[J]. Geobal Geology, 33(1):48-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJDZ201401005.htm

    Li Huaikun, Geng Jianzhen, Hao Shuang, ZhangYongqing, Li Huimin. 2009. Study on determination of zircon U-Pb isotopic age with Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS)[J]. Journal of Minerals, 29(supp.):600-601 (in Chinese with English abstract).

    Li Wenguo, Jiang Wande, Wang Hui, Li Qingfu, Liu Yinlin, Li Shulong, Sun Xilin, Guo Liangtian, Wang Aishun, Liang Jinquan. 1996. Inner Mongolia Autonomous Region Rock Formation[M]. Wuhan:China University of Geosciences Press, 245-264.

    Li Shengzhi, Wang Jixing, Wang Xifu, Deng Shaoying, Lu Xueliang, Tian Yanping, Xu Hongcai, Li Xiang, Chen Yinggong, Yang Youshi, Zhang Chongshan, Xu Guilin. 1996. Hebei Province Rock Formation[M]. China University of Geosciences Press, 79-80.

    Lin Qiang, Ge Wenchun, Sun Deyou, Wu Fuyuan, Yuan Zhongkuan, Min Gengde, Chen Mingzhi, Li Wenyuan, Quan Zhichun, Yin Chengxiao. 1998. Tectonic significance of Mesozoic volcanic rocks in Northeastern China[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 33(2):129-139 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX802.000.htm

    Lin Qiang, Ge Wenchun, Sun Deyou, Wu Fuyuan. 1999.Geomechanical significance of the mesozoic volcanics in Northeast Asia[J]. Chinese Journal of Geophysics, 42(supp.):75-84 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912010001835

    Lin Qiang, Ge Wenchun, Cao Lin, Sun Deyou, Lin Jinguo. 2003.Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling:The bimodal vocanic rocks[J]. Geochemica, 32(3):208-222 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200303001.htm

    Liu Jian, Zhao Yue, Liu Xiaoming. 2006. Age of the Tiaojishan Formation volcanics in the Chengde Basin, northern Hebei Province[J]. Acta Petrologic Sinica, 22(11):2617-2630 (in Chinese with English abstract). http://www.oalib.com/paper/1471319

    Qu Guangsheng, Pu Quansheng, Hang Songshan, Sui Liancheng, Zhao Wufeng. 1997. Lithostratigraphic of Heilongjiang Province[M]. Wuhan:China Universtry of Geosciences Press, 142-152.

    She Hongquan, Li Jinwen, Xiang Anping, Guan Jidong Yang Xuncheng, Zhang Dequan, Tan Gang, Zhang Bin. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2):571-594 (in Chinese with English abstract). http://www.oalib.com/paper/1475427

    Shao Jidong, Wang Hui, An Cunjie, Xu Zongpei. 2005. A discussion on the late Jurassic-early Cretaceous stratigraphic divisiion of the northern area of the Da Hinggan Mountains[J]. Journal of Stratigraphy, 29(supp.):573-578 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dcxz2005s1021.htm

    Si Xingjian, Li Xingxue. 1963. Fossil Plants of China, Mesozoic Plants from China[M]. Beijing:Science Press, 1-429 (in Chinese).

    Wu Yuanbao, Zheng Yongfei. 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1007/BF03184122

    Zhao Zhonghua, Sun Deyou, Gou Jun, Ren Yunsheng, Fu Changliang, Zhang Xueyuan, Wang Xi, Liu Xiaoming. 2011. Chronology and geochemistry of volcanic rocks in Tamulangou Formation from Southern Manchuria, Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition), 41(6):1865-1880 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201106017.htm

    Zhang Hong, Wang Mingxin, Liu Xiaoming. 2008. Constrains on the upper boundary age of the Tiaojishan Formation volcanic rocks in west Liaoning-North Hebei by LA-ICP-MS dating[J]. Chinese Science Bulletin, 53(15):1815-1824 (in Chinese). doi: 10.1007/s11434-008-0287-4

    Zhang Jiheng, Gao Shan, Ge Wenchun, Fu Yuan, Yang Jinhua, Wilde S A, Li Ming. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing' an Rang, north-eastern China:Implications for subduction-induced delanmination[J]. Chemical Geology, 276(3-4):144-165. doi: 10.1016/j.chemgeo.2010.05.013

    Zhang Wu, Zheng Shaolin, Ding Qiuhong. 2000. Early Jurassic coniferous woods from Liaoning, China[J]. Liaoning Geology, 17(2):88-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD200002001.htm

    Zhang Wu, Li Yong, Zheng Shaolin, Li Nan, Wang Yongdong, Yang Xiaoju, Yang Jiaju, Yi Tiemei, Fu Xiaoping. 2006. Fossil woods of China[M]. Beijing:China Forestry Press, 1-356.

    Zhang Yuqing. 2012. The Meiletu Formation in the Abagaqi area, Inner Mongolia[J]. Journal of Stratigraphy, 36(1):71-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX802.000.htm

    Zheng Shaolin, Zhang Wu, Ding Qiuhong. 2001. Discovery of fossil plants from Middle-Upper Jurassic Tuchengzi Formation in Western Liaoning, China[J]. Acta Palaeontologica Sinica, 40(1):67-85 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gswx200101006.htm

    Zheng Yuejuan, Zheng Shaolin, Chen Shuwang, Kou Linlin, Zhang Jian, Huang Xin. 2013. A new permineralized taxodiaceous cone from the Upper Jurassic of Inner Mongolia(in Chinese)[J]. Chinese Science Bulletin, 58(supp.):178-184 (in Chinese). https://www.sciencedirect.com/science/article/pii/0034666793900815

    Zhong Hui, Han Yandong, Fu Junyu, Li Yangchun. Zhang Yu. 2008.Controlling factors and significance of Early Cretaceous volcanostratigraphic framework in Northern Daxinganling region:A case study of Kuxi volcanotectonic depression[J]. Geology and Resources, 17(1):1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ704.001.htm

    Zhong Hui, Gao Xiaoyong, Wu Yue, 2016. Discussion on petrology and genesis of the pisolitic tuff in Xinmin formation in Arlu Horqin Qi, Inner Mongolia[J]. Geology and Resources, 25(2):121-124 (in Chinese with English abstract).

    Zhou Qilin, Wang Xianzhong, Ji Feng, Liu Zhijie, Liu Tao, Zhao Bingxin, Li Dexin, Biao Shanghu. 2013. Corresponding relations of Mesozoic volcanic Formations in the Da Hinggan Mountains[J]. Geological Review, 59(6):1077-1084 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dzlp201306008.aspx

    程银行, 刘永顺, 滕学建, 杨俊泉, 李艳锋, 彭丽娜, 李影, 刘洋. 2013.内蒙古莫合尔图中-晚侏罗世火山岩年代学、地球化学研究及其意义[J].地质学报, 87(7):943-956. http://www.doc88.com/p-6146104456720.html
    丁秋红. 2000a.辽宁西部义县组木材化石的研究[J].古生物学报, 39(增刊):209-219. http://www.oalib.com/paper/4899528
    丁秋红, 郑少林, 张武. 2000b.东北地区中生代化石木异木属及其古生态[J].古生物学报, 39(2):237-249. http://cqvip.com/QK/90074X/200002/4550288.html
    丁秋红, 张武, 郑少林. 2004.辽西下白垩统义县组化石木年轮的观察及其意义[J].地质科技情报, 23(1):38-41. http://mall.cnki.net/magazine/Article/ZWXB801.010.htm
    丁秋红, 李晓海, 姚玉来, 王杰, 宗文明, 郜晓勇, 李文博. 2015.内蒙古扎鲁特旗地区中侏罗统塔木兰沟组的厘定[J].地质与资源, 24(5):402-407. http://mall.cnki.net/magazine/magadetail/GJSD201505.htm
    段淑英. 1986.北京硅化木[J].植物学报, 28(3):331-335. http://d.wanfangdata.com.cn/Periodical_hbgtzy201206012.aspx
    段淑英. 2000.中国东北辽宁省西部几种中生代化石木[J].植物学报, 42(2):207-213. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB200002016.htm
    付俊彧, 宋维民, 陶楠, 庞雪娇, 卞雄飞, 吴桐, 张志斌. 2012.内蒙古科尔沁右翼中旗上侏罗统满克头鄂博组木化石新资料[J].地质通报, 31(5):653-661. http://www.cqvip.com/QK/95894A/201205/41948028.html
    葛文春, 林强, 孙德有, 吴福元, 李献华. 2000.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学, 25(2):172-178. http://d.wanfangdata.com.cn/periodical_cckjdxxb200004003.aspx
    金玲, 杨伟红, 杨德明, 和钟铧, 马瑞, 王建国. 2014.内蒙古科右中旗地区梅勒图组安山岩年代学特征及其地质意义[J].世界地质, 33(1):48-58. http://mall.cnki.net/magazine/Article/SJDZ201603004.htm
    刘健, 赵越, 柳小明. 2006.冀北承德盆地髫髻山组火山岩的时代[J].岩石学报, 22(11):2617-2630. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=2006011282&journal_id=ysxb
    林强, 葛文春, 孙德有, 吴福元, 元钟宽, 闵庚德, 陈明植, 李文远, 权致纯, 尹成孝. 1998.东北地区中生代火山岩的大地构造意义[J].地质科学, 33(2):129-139. http://www.doc88.com/p-1896812031269.html
    林强, 葛文春, 孙德有, 吴福元. 1999.东北亚中生代火山岩的地球动力学意义[J].地球物理学报, 42(增刊):75-84. http://www.cqvip.com/QK/94718X/1999S1/4000776794.html
    林强, 葛文春, 曹林, 孙德有, 林经国. 2003.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 32(3):208-222. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201403004.htm
    李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 29(增刊):600-601. http://mall.cnki.net/magazine/Article/KWXB2009S1311.htm
    李文国, 姜万德, 王惠, 李庆富, 刘印琳, 李淑龙, 孙希林, 郭良畋, 王挨顺, 梁金全. 1996.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 245-264.
    李声之, 王继兴, 王喜富, 邓绍颖, 卢学良, 田燕平, 许洪才, 李翔, 陈英功, 杨有世, 张崇山, 徐桂林. 1996.河北省岩石地层[M].武汉:中国地质大学出版社, 79-80.
    曲关生, 浦全生, 韩松山, 隋连成, 赵武峰. 1997.黑龙江省岩石地层[M].武汉:中国地质大学出版社, 142-152.
    佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 28(2):571-594. http://www.doc88.com/p-693135230298.html
    邵积东, 王惠, 安存杰, 徐宗培. 2005.大兴安岭北部地区晚侏罗世-早白垩世地层划分有关问题的讨论[J].地层学杂志, 29(增刊):573-578. http://edu.wanfangdata.com.cn/Periodical/Detail/gjsdz201403003
    斯行建, 李星学. 1963.中国植物化石, 中国中生代植物:中国各门类化石, 中国植物化石第二册[M].北京:科学出版社, 1-429.
    吴元保, 郑永飞. 2004.锆石成因矿物研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    赵忠华, 孙德有, 苟军, 任云生, 付长亮, 张学元, 王晰, 柳小明. 2011.满洲里南部塔木兰沟组火山岩年代学与地球化学[J].吉林大学学报(地球科学版), 41(6):1865-1880. http://www.cqvip.com/QK/91256A/201106/40358064.html
    张宏, 王明新, 柳小明. 2008. LA-ICP-MS测年对辽西-冀北地区髫髻山组火山岩上限年龄的限定[J].科学通报, 53(15):1815-1824. doi: 10.3321/j.issn:0023-074X.2008.15.012
    张武, 郑少林, 丁秋红. 2000.辽宁早侏罗世化石木材[J].辽宁地质, 17(2):88-95. http://www.cqvip.com/qk/97227X/200002/4527481.html
    张武, 李勇, 郑少林, 李楠, 王永栋, 杨小菊, 杨家驹, 扆铁梅, 傅晓平. 2006.中国木化石[M].北京:中国林业出版社, 2006:1-356.
    张玉清. 2012.内蒙古阿巴嘎旗的梅勒图组[J].地层学杂志, 36(1):71-76. http://www.cnki.com.cn/Article/CJFDTotal-KYKB201501034.htm
    郑少林, 张武, 丁秋红. 2001.辽西中上侏罗统土城子组植物化石的新发现[J].古生物学报, 40(1):67-85. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200808004.htm
    郑月娟, 郑少林, 陈树旺, 寇林林, 张健, 黄欣. 2013.内蒙古晚侏罗世一个新的杉科球果[J].科学通报, 58(增刊):178-184. http://www.oalib.com/paper/4281187
    钟辉, 韩彦东, 付俊彧, 李仰春, 张昱. 2008.大兴安岭北段早白垩世光华期火山地层格架控制因素及意义——以根河市库西火山构造洼地为例[J].地质与资源, 17(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200801002.htm
    钟辉, 郜晓勇, 伍月. 2016.内蒙古阿鲁科尔沁旗新民组"豆状"凝灰岩岩石学特征及成因探讨[J].地质与资源, 25(2):121-124. http://www.doc88.com/p-9062886501942.html
    周其林, 王献忠, 吉峰, 刘智杰, 刘涛, 赵炳新, 怀宝峰, 李德新, 表尚虎. 2013.大兴安岭中生代火山岩地层对比[J].地质论评, 59(6):1077-1084. http://d.wanfangdata.com.cn/Periodical_dzlp201306008.aspx
  • 期刊类型引用(2)

    1. 孙砚泽,李世臻,刘卫彬,刘岩,柯昌炜,徐耀辉. 大兴安岭西缘贺斯格乌拉凹陷白垩系烃源岩生烃潜力与天然气成因. 地质通报. 2021(09): 1484-1492 . 百度学术
    2. Shi-zhen Li,Wei-bin Liu,Dan-dan Wang,Wen-hao Zhang,Yan-hua Lin,Shu Tao,Yao-hui Xu. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology. China Geology. 2019(04): 439-457 . 必应学术

    其他类型引用(0)

图(4)  /  表(2)
计量
  • 文章访问数:  2920
  • HTML全文浏览量:  541
  • PDF下载量:  4675
  • 被引次数: 2
出版历程
  • 收稿日期:  2016-04-13
  • 修回日期:  2017-11-09
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2018-02-24

目录

/

返回文章
返回
x 关闭 永久关闭