• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

东天山寨北山铜矿区钠质火山岩年代学、地球化学特征及其成因

孙志远, 龙灵利, 王玉往, 罗照华, 赵路通, 解洪晶

孙志远, 龙灵利, 王玉往, 罗照华, 赵路通, 解洪晶. 东天山寨北山铜矿区钠质火山岩年代学、地球化学特征及其成因[J]. 中国地质, 2018, 45(5): 943-962. DOI: 10.12029/gc20180505
引用本文: 孙志远, 龙灵利, 王玉往, 罗照华, 赵路通, 解洪晶. 东天山寨北山铜矿区钠质火山岩年代学、地球化学特征及其成因[J]. 中国地质, 2018, 45(5): 943-962. DOI: 10.12029/gc20180505
SUN Zhiyuan, LONG Lingli, WANG Yuwang, LUO Zhaohua, ZHAO Lutong, XIE Hongjing. Geochronology, geochemistry and genesis of Na-rich volcanic rocks of the Zhaibeishan copper deposit in Eastern Tianshan Mountains[J]. GEOLOGY IN CHINA, 2018, 45(5): 943-962. DOI: 10.12029/gc20180505
Citation: SUN Zhiyuan, LONG Lingli, WANG Yuwang, LUO Zhaohua, ZHAO Lutong, XIE Hongjing. Geochronology, geochemistry and genesis of Na-rich volcanic rocks of the Zhaibeishan copper deposit in Eastern Tianshan Mountains[J]. GEOLOGY IN CHINA, 2018, 45(5): 943-962. DOI: 10.12029/gc20180505

东天山寨北山铜矿区钠质火山岩年代学、地球化学特征及其成因

基金项目: 

国家重点基础发展研究计划项目 2014CB440803

国家自然科学基金项目 41202046

详细信息
    作者简介:

    孙志远, 男, 1989年生, 博士生, 矿产普查与勘探专业; E-mail:sunzhiyuan010@163.com

  • 中图分类号: P597+.3;P595;P588.13+4

Geochronology, geochemistry and genesis of Na-rich volcanic rocks of the Zhaibeishan copper deposit in Eastern Tianshan Mountains

Funds: 

National Basic Research Program of China 2014CB440803

National Natural Science Foundation of China 41202046

More Information
    Author Bio:

    SUN Zhiyuan, male, born in 1989, doctor candidate, majors in mineral resource prospecting and exploration; E-mail:sunzhiyuan010@163.com

  • 摘要:

    寨北山矿区海相火山岩为一套富钠的玄武安山玢岩、安山岩、英安岩、流纹岩组合,属于钙碱性系列岩石,具有低MgO(0.51%~5.93%,平均2.54%)、FeO(0.54%~6.39%,平均2.84%)和钛(TiO2=0.09%~1.10%,平均0.58%),富铝(Al2O3=12.23%~17.75%,平均15.20%,A/CNK=0.79~1.42,平均1.11)以及富钠(Na2O/K2O平均为7.30)、富水的特征。火山岩中斜长石主要为钠长石,少量更长石。轻、重稀土分馏较明显((LREE/HREE)N=3.68~9.00),微量元素显示大离子亲石元素(如Th、U、Rb)、轻稀土的富集和高场强元素(如Nb、Ta、Ti、P)相对亏损的特征。获得矿区雅满苏组钠质玄武安山玢岩SHRIMP锆石U-Pb谐和年龄为(337.6±3.3)Ma,为早石炭世火山活动的产物。火山岩岩石学及地球化学特征表明研究区钠质火山岩可能形成于俯冲带近大陆方向的岛弧构造环境,是早石炭世洋壳俯冲熔融产生的岩浆在海底喷发过程中与海水相互反应后,经低变质相作用产生的。成矿元素在钠长石化过程中可能被淋滤出来进入含矿热液,后期在适当的温压等条件下沉淀形成本区的矿床。

    Abstract:

    Marine Na-rich volcanic rocks of Yamansu Formation belong to calc-alkaline series and are dominated by basaltic andesitic porphyrite, andesite, dacite and rhyolite. These volcanic rocks are characterized by low MgO (0.51%-5.93%, averaging 2.54%), FeO (0.54%-6.39%, averaging 2.84%) and TiO2 (0.09%-1.10%, averaging 0.58%) values, high Al2O3 (12.23%-17.75%, averaging 15.2%; A/CNK=0.79-1.42, averaging 1.11), and Na2O (Na2O/K2O 7.30 on average). A majority of plagioclases in the Narich volcanic rocks consist of albite with less oligoclase. Chondrite-normalized REE patterns show the fractionation between LREE and HREE ((LREE/HREE)N=3.68-9.00). The volcanic rocks are also rich in LILE (Th, U, Rb) and depleted in Nb, Ta, Sr, Ti, P. The SHRIMP zircon U-Pb dating yielded (337.6±3.3) Ma. Based on a comparative study of geochemical characteristics and inherited zircon age, the authors hold that Yamansu Na-rich volcanic rocks were formed in an island arc setting with continental basement and were the products of reaction between erupted magma and convective seawater during the subduction of oceanic plate in Early Carboniferous.

  • 太行山存在重力梯度带是华北克拉通最显著的地质特征之一,该梯度带两侧的地貌、大地热流值、地壳厚度和岩石圈厚度存在明显的差异,造成这种差异的原因是华北岩石圈减薄存在时空不均一性[1]。沿该重力梯度带北东向发育大量的晚中生代侵入-火山岩带,特别是在太行山北段。前人对这些侵入岩开展了大量的年代学和地球化学研究[2-3],取得了重要进展。同时在太行山中北段探明存在多个中小型矽卡岩铜多金属矿[4-5]和石湖大型金矿床[6]。近几年在该地区新探明了木吉村大型斑岩型铜(钼)矿[7]和安妥岭大型斑岩型钼矿[8],暗示太行山北段具有很大的找矿潜力。区域地质工作显示,赤瓦屋岩体是太行山北段南部典型的杂岩体[9],前人虽然对该岩体开展过一些锆石测年工作,但多限于岩体边缘相石英闪长岩的研究[10-13],最近的找矿工作新类型铜钨矿体主要集中于岩体中心相斑状花岗闪长岩。因此,本文对赤瓦屋岩体不同岩相开展详细的锆石U-Pb 测年工作,结合区域含矿岩体的年代学资料,以期对太行山北段中生代金属矿床的成矿规律有更明确的认识。

    研究表明,太行山北段的构造演化大致经历了3 个主要阶段,分别为太古宙变质基底形成阶段、元古宙至古生代稳定发展阶段和中生代活化阶段[14]。阜平杂岩是华北克拉通太古宙变质结晶基底的一部分,现今表现为NE向展布的穹隆状构造,主要岩性为黑云斜长片麻岩、角闪斜长片麻岩、浅粒岩夹斜长角闪岩,该套岩石地层单元普遍遭受强烈区域变质及混合岩化作用[15]。除了阜平杂岩以外,还发育一系列元古宙—侏罗纪沉积地层。岩浆岩是太行山北段中生代活化阶段的产物,沿太行山重力梯度带呈NNE向展布(图 1-a),其分布受东、西两侧分布的NNE 向紫荆关断裂和乌龙沟断裂带控制[5],由NNE向分布的多个岩基(体)和髫髻山组火山岩组成,由北向南依次发育大河南、王安镇岩基和麻棚、赤瓦屋岩体(图 1-b),这些岩体为中酸性高钾钙碱性花岗质岩石[2]。其中王安镇岩基周缘探明了多个斑岩-矽卡岩型多金属矿床,新发现的木吉村大型斑岩铜钼矿和安妥岭大型斑岩型钼矿分别位于该岩基的南缘和北缘;在麻棚岩体西侧1~4 km探明了太行山地区最大的金矿——石湖金矿(图 1-b)。

    图  1  太行山北段地质简图(显示主要岩体和重要矿床分布,据文献[3, 6]修改)
    Figure  1.  Sketch geological map of Northern Taihang Mountain,showing the distribution of major plutons and deposits (modified after references [3, 6])

    赤瓦屋岩体位于太行山北段北东向岩浆带的南端,该岩体平面上呈近圆状,直径约5 km,面积约63 km2。根据前人资料和本次野外地质考察,该岩体由不同岩相组成(图 2),自岩体中部向外呈同心圆状展布: 中心相为斑状花岗闪长岩,中粗粒斑状结构,向外过渡为细中粒花岗闪长岩; 边缘相为细粒石英闪长岩(图 3)。不同岩相的黑云母和角闪石含量不同[9],边缘相的黑云母和角闪石含量分别为15%和10%,过渡相分别为10%和5%~10%,中心相角闪石少见,黑云母含量为5%,由边部向内部暗色矿物逐渐减少,暗示岩浆9 演化程度越来越高。除此以外,还发育大量的南北向花岗闪长斑岩脉。

    图  2  太行山北段赤瓦屋地区地质简图
    Figure  2.  Sketch geological map of Chiwawu area in Northern Taihang Mountain
    图  3  太行山北段赤瓦屋地区4 种不同岩性的手标本照片
    Figure  3.  Photo for four different petrologic characters of granitoids in Chiwawu area of Northern Taihang Mountain

    此次野外观察可见,大小为2~10 m的黑色闪长质包体呈椭圆体和透镜状普遍发育于花岗闪长岩中,与寄主岩体边缘清楚。前人对太行山北段岩体开展过成矿潜力评价,赤瓦屋岩体的岩浆分异指数(DI)为75.04,轻重稀土元素比值(LREE/HREE)均较高,为20.2,黑云母MgO为12.80%~14.28%,石英Ti 含量为17×10-6,全岩的氧同位素为8.89%,暗示赤瓦屋岩体具有较大的成矿潜力[9]。早期资料显示该岩体有铜矿化,最近地勘队发现中心相斑状花岗闪长岩中发育铜钨多金属矿化,可见早阶段NE 向石英黄铁矿白钨矿脉和晚阶段SN 向黄铜矿脉,辉钼矿呈细脉浸染状产于岩体中,多与黄铜矿、黄铁矿共生。

    本次测年工作采集4 个不同岩性的样品,分别为石英闪长岩(CWW14)、花岗闪长岩(CWW2)、斑状花岗闪长岩(CWW12) 和花岗闪长斑岩脉(CWW1),具体采样位置见图 2。将测年样品破碎后,经常规重力和磁选方法分选出锆石,在双目镜下挑纯。将待测锆石颗粒置于环氧树脂中制靶,然后磨至一半用于后期测试。锆石阴极发光在中国地质科学院地质研究所离子探针室HITACHIS3000-N型扫描电子显微镜上完成。在透射光、反射光显微镜观察及阴极发光研究的基础上,选择合适的锆石颗粒进行锆石U-Pb定年测试。

    LA-MC-ICPMS 锆石U-Pb 定年测试分析在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,定年分析所用仪器为Finnigan Neptune型MC-ICPMS及与之配套的Newwave UP 213 激光剥蚀系统。所用激光剥蚀斑束直径为25 μm,频率为10 Hz,能量密度约为2.5 J/cm2,以He 为载气。信号较小的207Pb、206P、204Pb(+204Hg)、202Hg 用离子计数器(multi-ion-counters)接收,208Pb、232Th、238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收,并且不同质量数的峰基本上都是平坦的,可以获得高精度的数据。均匀锆石颗粒207Pb/206Pb、206Pb/238U、207Pb/235U的测试精度(2σ )均为2%左右,对锆石标准样品的定年精度和准确度在1%(2σ )左右。LA-MC-ICPMS 激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1 调试仪器,使之达到最优状态,锆石U-Pb 定年以锆石GJ-1 为外标,U、Th含量以锆石M257(U: 923×10-6; Th: 439×10-6; Th/U:0.475)[16]为外标进行校正。测试过程中每测定5~7个样品前后重复测定2 个锆石标准样品,对样品进行校正,并测量一个锆石标准Plesovice,观察仪器的状态以保证测试精确度。数据处理采用ICPMSDataCal 程序,测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb 由离子计数器检测,204Pb 含量异常高的分析点可能受包体等普通Pb 的影响,在计算时予以剔除,锆石年龄谐和图用Isoplot 3.0 程序获得。样品分析过程中,Plesovice 标样作为未知样品的分析结果为(337.3±1.1)Ma(n=5,2σ),对应的年龄推荐值为(337.13±0.37)Ma(2σ[17],两者在误差范围内完全一致,测试数据精度较好。

    赤瓦屋不同岩相花岗质岩石的锆石U-Pb 分析测试结果见表 1,锆石U-Pb 谐和图见图 4。由图 4可知,石英闪长岩样品CWW14 锆石多呈长柱状,长为80~250 μm,宽为40~120 μm。本文对石英闪长岩中15 颗锆石进行年代学测试,Th 和U含量分别为100×10-6~306×10-6和150×10-6~347×10-6,其Th/U为0.4~1.5(表 1),谐和年龄为(134±1)Ma,MSWD=3.4; 加权平均年龄为(134±2)Ma,MSWD=0.62(图 4-a)。

    表  1  太行山北段赤瓦屋铜钨矿区不同岩相的花岗质岩石的锆石U-Pb年龄测年结果
    Table  1.  LA-ICPMS zircon U-Pb data of different petrofacies of granitoids in Chiwawu area,Northern Taihang Mountain
    下载: 导出CSV 
    | 显示表格
    图  4  太行山北段赤瓦屋地区不同岩相花岗质岩体锆石U-Pb谐和图
    Figure  4.  Zircon LA-ICPMS U-Pb concordia diagrams for different petrofacies of granitoids in the Chiwawu area of NorthernTaihang Mountain

    花岗闪长岩样品CWW2 锆石多呈长柱状,锆石长20~320 μm,宽40~120 μm。本文分析了花岗闪长岩中23 颗锆石,Th 和U 含量分别为59.2×10-6~197×10-6 和105×10-6~289×10-6,其Th/U 为0.4~1.0(表 1),谐和年龄为(133±1)Ma,MSWD=2.3; 加权平均年龄为(133±2)Ma,MSWD=0.37(图 4-b)。

    斑状花岗闪长岩样品CWW12锆石多呈长柱状,锆石长120~500 μm,宽80~100 μm。本文分析了斑状花岗长岩中12 粒锆石,Th 和U含量分别为88.6×10-6~492×10-6和227×10-6~596×10-6,其Th/U为0.3~0.8(表 1),谐和年龄为(131±2)Ma,MSWD=2.6; 加权平均年龄为(132±4)Ma,MSWD=0.68(图 4-c)。

    花岗闪长斑岩脉样品CWW1锆石多呈长柱状,锆石长200~360 μm,宽10~100 μm。本文分析了斑状花岗长岩中28 粒锆石,Th和U含量分别为45.6×10-6~1303×10-6和83.1×10-6~775×10-6,其Th/U比值为0.4~1.7(表 1),谐和年龄为(128 ±1)Ma,MSWD=6.2; 加权平均年龄为(128±1)Ma,MSWD=2.4(图 4-d)。

    赤瓦屋岩体位于太行山北段中生代岩浆带的南部(图 1-b),其形成时代受到高度关注。喻学惠等[5]提出该岩体由同心环状的不同岩相带(石英闪长岩、花岗闪长岩和斑状花岗闪长岩)组成,全岩Rb-Sr 等时线年龄为135.2 Ma;刘阳等[10] 利用SHRIMP测年获得该岩体北部和西部边缘相石英闪长岩的锆石U-Pb 年龄分别为(134.0±5.3)Ma 和(139.8±3.1)Ma;李林林等[12]获得该岩体西部边缘相石英闪长岩的LA-ICPMS 锆石U-Pb 年龄为(126.4±2.4) Ma。该岩体北部边缘相花岗闪长岩和闪长岩包体的LA-ICPMS 锆石U-Pb 年龄分别为(130±1.0) Ma和(128.2±1.5) Ma[13]

    如前文所述,赤瓦屋岩体除边缘相石英闪长岩外,还存在过渡相花岗闪长岩、中心相斑状花岗闪长岩和后期酸性岩脉,已有的锆石U-Pb 测年工作主要集中于边缘相[10, 12-13]。本文获得赤瓦屋岩体边缘相石英闪长岩、边缘相花岗闪长岩、中心相斑状花岗闪长岩和后期花岗闪长岩岩脉的锆石LAICPMS谐和年龄分别为(134 ±1)Ma、(133±1)Ma、(131±2)Ma和(128±1)Ma,其中本次边缘相的锆石U-Pb 年龄与前人获得的锆石U-Pb 年龄在误差范围内基本一致,表明本次测年数据是可靠的。本文测年数据表明,赤瓦屋岩体不同岩相体形成时代(134~131 Ma)在识差范围内基本一致,暗示岩浆经历了快速侵位、快速冷却结晶的地质过程,类似于邻区的麻棚岩体[12]。据野外实地观察,赤瓦屋岩体形成时代(134~131 Ma)略早于花岗闪长斑岩脉(128Ma),这些与地质穿插关系观察一致。因此,赤瓦屋杂岩体形成于早白垩世,与太行山北段岩基和岩体的时代基本一致(见下文讨论)。

    图 1-a 可知,NE向太行山北段岩浆带位于重力梯度带附近,其侵入岩的年龄一直受到高度关注,该带已有的晚中生代岩浆岩锆石U-Pb 年龄数据见表 2。由表 2 可知,太行山北段大河南岩基的石英二长岩的锆石U-Pb 年龄为127 Ma[18];王安镇岩基中酸性岩浆和包体形成于132~126 Ma,东南部辉石闪长岩的锆石U-Pb 年龄为138 Ma[3, 18-19];赤瓦屋岩体中酸性岩和包体形成于132~126 Ma[10, 12-13];麻棚中酸性岩体和包体形成于131~124 Ma[6, 10, 12, 20]。除此之外,木吉村斑岩铜矿含矿岩体-闪长玢岩的锆石U-Pb 年龄为144.7 Ma[7]和144.1 Ma[21],石湖金矿区石英闪长岩脉的锆石U-Pb 年龄为130 Ma[6]。由此可见,太行山北段晚中生代侵入岩存在2 期岩浆事件,分别为144~138 Ma和132~124 Ma,其中以第二期岩浆事件形成大面积的中酸性岩基和岩体为显著特征,而第一期岩浆事件形成的侵入岩规模相对较小,主要有集中分布于王安镇岩基东南部的辉石闪长岩和木吉村与斑岩铜矿成矿密切相关的闪长玢岩。最近研究表明:木吉村斑岩铜矿区的闪长玢岩是髫髻山火山旋回晚阶段次火山岩相的产物[7],最新测年资料显示,太行山北段和燕山东部北东向发育的髫髻山组火山岩形成于晚侏罗世—早白垩世(151~131 Ma)[22],这些火山岩可能是太行山北段第一期岩浆事件的产物。

    表  2  太行山北段晚中生代侵入岩的锆石U-Pb年龄
    Table  2.  Compilation of isotopic ages for important Late Mesozoic intrusions in Northern Taihang Mountain
    下载: 导出CSV 
    | 显示表格

    太行山北段与晚中生代岩浆事件密切相关的成矿作用存在2 期矿化事件,第一期主要为与髫髻山组火山作用相关的斑岩铜钼多金属矿床,如木吉村大型斑岩铜钼矿(图 1-b),其辉钼矿Re-Os 模式年龄为(138.5±1.9) ~(142.7±2.0) Ma[21],5 个辉钼矿Re-Os 样品等时线年龄为(142.5±1.4) Ma[7];在其南侧10 km处的中型大湾斑岩型锌钼矿(图 1-b)的辉钼矿Re-Os模式年龄为(144.4 ± 7.4) Ma[23]。位于大河南与王安镇岩基之间大型安妥岭斑岩钼矿(图 1-b)的5 个辉钼矿Re-Os 样品等时线年龄为(147.3±3.7) Ma[8]或(147.8 ± 0.95) Ma[24]

    在第二期王安镇岩基周围发现了多个铜金矿床,如在木吉村矿区北侧的浮图峪矿田发现60 余处铜矿床(或矿点)(图 1-b),金矿床和矿点更是星罗棋布,遍及全区[5],这些铜矿多为矽卡岩铜铁矿[4]。目前还缺少对这些中小型矽卡岩铜矿成矿时代的精确测年数据,根据含矿岩体的年龄推测,它们可能为第二期的产物。本次野外实地观察发现,赤瓦屋地区早阶段钨矿和晚阶段铜矿呈脉状产于岩体内部相的斑状花岗闪长岩中((131 ±2)Ma),暗示钨铜矿化形成时代不早于131 Ma,赤瓦屋铜钨矿化是第二期成矿事件的产物。另外,在麻棚岩体南缘探明了与岩体密切相关的石英脉状金矿(石湖大型金矿)、隐爆角砾岩型银矿和斑岩钼矿[20],石湖金矿区石英闪长岩脉的锆石U-Pb 年龄为130 Ma,石湖金矿热液钾长石K-Ar 年龄为132~120 Ma[6],麻棚岩体周缘金银钼矿是第二期成矿事件的产物。由此可见,太行山北段晚中生代至少存在两期岩浆-成矿事件,具有较大的找矿潜力。与第一期斑岩型铜钼矿床相比,第二期成矿事件具有成矿类型多样性,晚中生代两期成矿事件特征类似于华南地区[25]

    (1)赤瓦屋岩体边缘相石英闪长岩、过渡相花岗闪长岩、中心相斑状花岗闪长岩和后期花岗闪长岩岩脉形成时代分别为(134 ± 1) Ma、(133 ±1) Ma、(131 ±2) Ma和(128 ±1) Ma,这些数据表明该岩体形成于早白垩世。

    (2)太行山北段晚中生代存在两期岩浆-成矿事件,具有较大的找矿潜力。

    致谢: 野外工作中得到鑫汇公司宁福泉工程师的大力帮助;实验过程中得到张迪和毛骞老师的指导和帮助;成稿完善过程中承蒙审稿人对本文的仔细审阅和提出的宝贵修改意见,笔者在此表示诚挚的感谢。
  • 图  1   中亚造山带构造简图(a,据Jahn et al., 2000)和东天山地区地质矿产简图(b,据王京彬等,2006改编)

    1—新生代沉积盖层;2—二叠纪陆相火山-沉积岩系;3—石炭纪火山沉积岩系;4—奥陶—泥盆纪火山沉积岩系;5—前寒武纪变质岩;6—花岗岩类;7—金矿床;8—铜矿床;9—铜镍矿床;10—铁矿床;11—铜铁矿床;12—银多金属矿床;13—铜多金属矿床;14—铅锌矿床;15—大型矿床;16—中型矿床;17—小型矿床;18—断裂;19—推测断裂;20—剪切带;21—铁路;22—研究区. ①—康古尔断裂;②—雅满苏—苦水断裂;③—阿奇克库都克—沙泉子断裂

    Figure  1.   Tectonic sketch map of the Central Asia Orogenic Belt (a, after Jahn et al., 2000) and geological map and deposits distribution in Eastern Tianshan Mountains (b, modified from Wang et al., 2006)

    1-Meso-Cenozoic sedimentary cover; 2-Permian continental volcanic-sedimentary rocks; 3-Carboniferous volcanic-sedimentary rocks; 4-Ordovician-Devonian volcanic-sedimentary rocks; 5-Precambrian metamorphic rocks; 6-Granitoids; 7-Au deposits; 8-Cu deposits; 9-Cu-Ni sulfide deposits; 10-Fe deposits; 11-Fe-Cu deposits; 12-Ag-polymetallic deposits; 13-Cu-polymetallic deposits; 14-Pb-Zn deposits; 15-Large mineral deposits; 16-Middle mineral deposits; 17-Small mineral deposits; ; 18-Faults; 19-Inferred faults; 20-Shear zone; 21-Railway; 22-Study area ①-Kangguer Fault; ②-Yamansu Fault; ③-Aqikekuduke-Shaquanzi Fault

    图  2   东天山寨北山铜矿区地质图

    Figure  2.   Geological map of the Zhaibeishan copper deposit in Eastern Tianshan Mountains

    图  3   寨北山铜矿岩石标本和矿物镜下特征

    a—侵染状矿石;b—脉状矿石;c—石英+黄铜矿脉, 黄铜矿交代黄铁矿呈交代残余结构;Ccp—黄铜矿;Qz—石英;Py—黄铁矿;Spe—镜铁矿

    Figure  3.   Characteristics of the rocks and microscope photographs of the Zhaibeishan copper deposit

    a-disseminated ore; b-vein ore; c-quartz+chalcopyrite vein; d-quartz+chalcopyrite+pyrite vein. Pyrite replaced by chalcopyrite as metasomatic relict structure. Abbreviation:Ccp-chalcopyrite; Qz-quartz; Py-pyrite; Spe-specularite

    图  4   雅满苏组钠质火山岩显微照片

    a—单偏光,钠质玄武安山玢岩(Z4728-23),杏仁构造,钠质斜长石中空骸晶结构;b—正交偏光,钠质玄武安山玢岩(Z4728-23),角闪石边部具有钠长石蚀变反应边,中心被钠长石交代溶蚀呈包含结构;c—正交偏光,钠质安山岩(Z4728-3),钠长石交代早期斜长石,基质碳酸盐化;d—正交偏光,钠质英安岩(Z4728-39),钠长石聚片双晶,石英蚀变呈浑圆状;e—正交偏光,钠质英安岩(Z4728-39),钠长石具简单双晶结构,斑晶边部被熔蚀;f—正交偏光,钠质流纹岩(Z4728-16),钠长石斑晶被溶蚀成浑圆状。照片中缩写符号:Ab—钠长石;Qz—石英;Hbl—角闪石;Chl—绿泥石

    Figure  4.   Microphotographs for textures of the Na-rich volcanic rocks from Yamansu Formation

    a-Plainlight, Na-Richbasaltic andesitic porphyrite (Z4728-23), almond texture, central absent skeleton crystal texture in plagioclase; b-crossedpolarized light, Na-rich basaltic andesitic porphyrite (Z4728-23), The rim of the hornblende was albite alteration and the center was dissolved into poikilitic texture; c-crossed-polarized light, Na-rich andesite(Z4728-3), albite altered the early stage plagioclase, groundmass were carbonated; d-crossed-polarized light, Na-rich dacite (Z4728-39), polysynthetic twin, quartzs were resorbed into round shapes; e-Crossed nicols, Na-rich dacite (Z4728-39), albite twins, the rim of the phenocrysts experienced corrosion; f-Crossed nicols, Na-rich rhyolite (Z4728-16), albite phenocrysts altered into round shapes. Abbreviation: Ab-Albite; Qz-Quartz; Hbl-Hornblende; Chl-Chlorite

    图  5   寨北山钠质火山岩长石(a,底图据Smith, 1974)和角闪石(b,底图据Leake et al., 1997)分类图解

    Figure  5.   Classification of the feldspar (a, after Smith, 1974) and hornblende (b, after Leake et al., 1997) in the Zhaibeishan Na-rich volcanic rocks

    图  6   雅满苏组钠质火山岩中锆石CL图像及SHRIMP测试点

    Figure  6.   Zircon CL images and the sites of SHRIMP data in Yamansu Formation

    图  7   寨北山矿区钠质火山岩锆石U-Pb年龄直方图和谐和曲线图

    Figure  7.   Zircon U-Pb data histogram and concordia diagram of Na-rich volcanic rock in the Zhaibeishan copper deposit

    图  8   寨北山铜矿区火山岩TAS图(a,底图据Le Bas et al., 1986)与FAM图(b,底图据Irvine and Baragar, 1971

    Figure  8.   Total alkali silica diagram (a, after Le Bas et al., 1986) and AFM diagram (b, after Irvine and Baragar, 1971) of Na-rich volcanic rocks in the Zhaibeishan copper deposit

    图  9   雅满苏组钠质火山岩主要氧化物含量与SiO2含量变异图解

    Figure  9.   Major oxides versus SiO2 variability diagram of Na-rich volcanic rocks from Yamansu Formation

    图  10   雅满苏组钠质火山岩球粒陨石标准化稀土元素配分图(a)与原始地幔标准化微量元素配分图(b)(球粒陨石与原始地幔数据Sun and McDonough, 1989

    Figure  10.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergram (b) (chondrite and primitive mantle data from Sun and McDonough, 1989) for Na-rich volcanic rocks from Yamansu Formation

    图  11   雅满苏组钠质火山岩构造环境判别图

    (a、b底图据Muller et al., 1922, Muller and Groves, 1977;c底图据Wood, 1980;d底图据Pearce, 1982

    Figure  11.   Discrimination diagrams for tectonic setting of Na-rich volcanic rocks from Yamansu Formation

    (a, b after Muller et al., 1922, Muller and Groves, 1977; c after Wood, 1980; d after Pearce, 1982)

    表  1   寨北山矿区钠质火山岩斜长石电子探针分析结果(%)

    Table  1   Electron microprobe analyses of plagioclase from the Na-rich volcanic rocks in the Zhaibeishan copper deposit

    下载: 导出CSV

    表  2   寨北山矿区钠质火山岩角闪石电子探针分析结果(%)

    Table  2   Electron microprobe analyses of hornblende from the Na-rich volcanic rocks in the Zhaibeishan copper deposit

    下载: 导出CSV

    表  3   寨北山矿区钠质玄武安山玢岩锆石SHRIMPU-Pb同位素分析结果

    Table  3   SHRIMP zircon U-Pb isotopic data of basaltic andesitic porphyrite from the Zhaibeishan copper deposit

    下载: 导出CSV

    表  4   寨北山矿区钠质火山岩主量(%)、微量元素(10-6)地球化学数据

    Table  4   Major element (%) and trace element (10-6) compositions of the volcanic rocks in the Zhaibeishan copper deposit

    下载: 导出CSV
  • Amstutz B A. 1974.Spilite and spilitic rocks[M]. Berlin, Hieceberg. New York.

    Carmichael I S E, Turner F J, Verhoogen J. 1974. Igneous Petrology[M]. McGraw-Hill Book Company.

    Cann J R. 1969. Spilites from the Carlsberg Gidge, Indian Ocean[J]. Journal of Petrology, 10:1-19. doi: 10.1093/petrology/10.1.1

    Compston W, Williams I S, Krischvink J L, Zhang Z, Guogan M A. 1992.Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 149(2):171-184. doi: 10.1144/gsjgs.149.2.0171

    Condie K C. 1982. Plate tectonics and crustal evolution(Second Edition)[M]. Pergamon Press.

    Coombs D S, Horodysky R J, Naylor R S. 1970. Occurrence of prehnite-pumpellyite facies metamorphism in north marine[J]. American Journal of Science, 268:141-156. http://adsabs.harvard.edu/abs/1970AmJS..268..142C

    Deng Erxin. 1986. The petrological and petrochemical characteristics of spilitic rocks and their origin in Zhonggao, Zhejiang Province[J]. Earth Science——Journal of China University of Geosciences, 11(5):507-515(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198605008.htm

    Dong Lianhui, Feng Jing, Zhuang Daoze, Li Fengming, Qu Xun, Liu Dequan. 2011. Discussion of metallogenic models, mineralization characteristic and main type of rich iron ore of Xinjiang[J]. Xinjiang Geology, 29(4):416-422 (in Chinese with English abstract).

    Doyle M G, Allen R L. 2003. Subsea-floor replacement in volcanichosted massive sulfide deposits[J]. Ore Geology Review, 23(3/4):183-222. http://www.sciencedirect.com/science/article/pii/S0169136803000350

    Engvik A K, Putnis A, Gerald J D F, Austrheim H. 2008. Albitization of granitic rocks:the mechanism of replacement of oligoclase by albite[J]. Canadian Mineralogist, 46(6), 1401-1415. doi: 10.3749/canmin.46.6.1401

    Fang Weixuan, Gao Zhenquan, Jia Runxing, Liu Zhengtao, Li Fengshou, Xu Guoduan. 2006a. Geological exploration potentials and geochemical study on rocks and ores in Shaquanzi copper and copper-iron deposits, east Xinjiang[J]. Acta Petrologica Sinica, 22(5):1413-1424 (in Chinese with English abstract).

    Fang Weixuan, Gao Zhenquan, Jia Runxing, Huang Zhuanying, Liu Zhengtao, Li Fengshou, Xu Guoduan. 2006b. Metallogenic background and geochemical characteristics of Lower Carboniferous volcanic rocks in No. 371-Xibeipo copper-gold mineralization belt in the Yaxi area, eastern Xinjiang[J]. Acta Petrologica Sinica, 22(1):215-224.

    Galley A G, 1993. Semi Conformable alteration zones in volcanogenic massive sulphide districts[J]. Journal of Geochemical Exploration, 48:175-200. doi: 10.1016/0375-6742(93)90004-6

    Gao Zhenquan. 2002. copper-gold Polymetal Metallogeny and Prospecting Systematic Engineering of East Tianshan, Xinjiang, China[D]. Central South University for Degree of Doctor, 1-189(in Chinese with English abstract).

    Gill J B. 1981. Orogenic Andesites and Plate Tectonics[M]. SpringerVerlag, New York, 1-390.

    Guo Yuansheng, Wang Jinrong, Xie Xianli, Meng Guisheng, Yang Yongjun, Tian Yuxuan. 2000. Geochemical characteristics and genetic analysis of the early and middle Cambrian volcanic rocks in Baiyin mining field[J]. Acta Petrologica Sinica, 16(3):337-344(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200003003.htm

    Hajash A, Archer P. 1980. Experimental seawater/basalt interaction:effect of cooling[J]. Contribution to Mineralogy & Petrology, 75:1-13. doi: 10.1007/BF00371884

    Han Chunming, Xiao Wenjiao, Zhao Guochun, Mao Jingwen, Li Sanzhong, Yan Zhen, Mao Qigui. 2005. Major types, characteristics and geodynamic mechanism of Upper Paleozoic copper deposits in northern Xinjiang, northwestern China[J]. Ore Geology Reciews, 28(3):308-328. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001044.htm

    Hawkins J W. 2003. Geology of supra-subduction zones-implications for the origin of ophiolites[C]//Dilek Y and Newcomb S (eds.). Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper, 373: 227-268.

    He Guoqi, Li Maosong, Liu Dequan, Tang Yanling, Zhou Ruhong. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China[M]. Urumqi:Xinjiang People's Publication House, 1-437(in Chinese with English abstract).

    Hou Tong, Zhang Zhaochong, Santosh M, John Encarnacion, Zhu Jiang, Luo Wenjuan. 2014. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China:Constraints on the metallogenesis[J]. Ore Geology Review, 56:487-502. doi: 10.1016/j.oregeorev.2013.03.008

    Huang Xiaowen, Qi Liang, Wang Yichang, Liu Yingying. 2014. ReOs dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Science China:Earth Sciences, 44(4):605-616 (in Chinese with English abstract). doi: 10.1007/s11430-013-4660-z

    Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8:523-548. doi: 10.1139/e71-055

    Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic belt and continental growth in the phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh:Earth Sciences, 91:181-193. doi: 10.1017/S0263593300007367

    Jiang Fuzhi. 2001. Bimodal Volcanic Association and Massive Sulfide Deposits[J]. Mineral Deposits, 20(4):331-338 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kcdz200104006

    Jiang Fuzhi, Qin Kezhang, Fang Tonghui, Wang Shulai. 2002. Types, geological characteristics, metallogenic, regularity and exploration target of irondeposits in Eastern Tianshan Mountains[J]. Xinjiang Geology, 20(4):379-383 (in Chinese with English abstract).

    Jiang Fuzhi, WangYuwang. 2005. Marine Volcanic Rocks and Related Metallic Ore Deposits[M]. Beijing:Metallurgical Industry Press, 1-248 (in Chinese with English abstract).

    Ji Jinsheng, Tao Hongxiang, Zeng Zhangren, Yang Xingke. 1994. Geology and Mineralization of the Kangguertage Gold Metallogenic Belt inEastern Tianshan[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne E, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Youzhi G. 1997. Nomenclature of amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names[J]. European Journal Mineralogy, 9(3):623-651. doi: 10.1127/ejm/9/3/0623

    Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin P. 1986. A chemical classification of volcanic rocks based on the total alkalisillica diagram[J]. Journal of Petrology, 27:745-750. doi: 10.1093/petrology/27.3.745

    Lei Ruxiong, Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Li Guangrong. 2013. Geochronology, geochemistry and tectonic significances ofthe Yamansubei pluton in eastern Tianshan, Northwest China[J]. Acta Petrologica Sinica, 29(8):2653-2664 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201308003.htm

    Lentz DR. 1998. Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulphide systems:The role of extensional geodynamics[J]. Ore Geology Review, 12(5):289-327. doi: 10.1016/S0169-1368(98)00005-5

    Li Houmin, Ding Jianhua, Li Lingli, Yao Tong. 2014. The genesis of the skarn and the genetic type of the Yamansu iron deposit, Eastern Tianshan, Xinjiang[J]. Acta Geologica Sinica, 88(12):2477-2489(in Chinese with English abstract). http://www.cqvip.com/QK/95783X/2015S1/75878866504849538349555151.html

    Liu Dequan, Tang Yanling, Zhou Ruhong. 1996. Metallogenic series types of ore deposits in Xinjiang[J]. Mineral Deposits, 15(3):207-215(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ603.001.htm

    Ludwig K R. 2003. Using ISOPLOT/Ex:A Geochronological toolkit forMicrosoft excelversion 3.0[J]. Berkeley Geochronology Center, Special Publication, 1-40.

    Luo Guichang, Yang Xingke, Cheng Hongbin. 1999. Establish of lower Carboniferous Aqishan Formation in Jueluoyage zone of Xinjiang[J]. Journal of Xi'an engineering University, 21:39-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX1999S1010.htm

    Luo Ting, Liao Qunan, Chen Jiping, Zhang Xionghua, Guo Dongbao, Hu Zaochu. 2012. LA-ICP-MS zircon U-Pb dating of the Volcanic Rocks from Yamansu Formation in the Eastern Tianshan, and its geological significance[J]. Earth Science——Journal of China University of Geoscience, 37(6):1338-1352 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024

    Mengel K, Borsuk A M, Gurbanov A G, Wedepohl K H, Baumann A, Hoefs J. 1987. Origin of spilitic rocks from the southern slope of the Greater Caucasus[J]. Lithos, 20(2):115-133. doi: 10.1016/0024-4937(87)90002-8

    Muller D, Rock N M S, Groves D I. 1922. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic setting:a plot study[J]. Mine. Petrology, 46:259-289. doi: 10.1007/BF01173568

    Muller D, Groves D I. 1997. Pottassic Igneous Rocks and Associated Gold-copper Mineralization[M]. Berlin: Springer, 11-40.

    Oliver N H S, Cleverley J S, Mark G, Pollard P J, Fu B, Marshall L J, Bastrakov E N, Williams P, Nemchin A A, Baker T. 2004. Modeling the role of sodic alteration in the genesis of iron oxidecopper-gold deposits, eastern mount Isa block, Australia[J]. Economic Geology, 99(99), 1145-1176. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=econgeo&resid=99/6/1145

    Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S, Andesits. Chichester: Wiley, 525-548.

    Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifeng, Xiu Qunye. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan Mountains, NW China[J]. Xinjiang Geology, 20(4):302-308 (in Chinese with English abstract).

    Seyfried W E, Bischoff J E. 1979. Low temperature basalt alteration by seawater, an experimental study at 70℃ and 150℃[J]. Geochem. Cosmochim. Acta, 43:1937-1947. doi: 10.1016/0016-7037(79)90006-1

    Sheibi M. 2014. Chemistry of minerals and mass changes of elements during sodic-calcicalteration of the Panj-Kuh intrusive body(Damghan, Iran)[J]. Jour. Geope., 4(1):87-102.

    Smith D J, Petterson M G, Saunders A D, Millar I L, Jenkin G R T, Toba T, Naden J, Cook J M. 2009. The petrogenesis of sodic island arc magmas at savo volcano, solomon islands[J]. Contributions to Mineralogy & Petrology, 158(6), 785-801. doi: 10.1007/s00410-009-0410-9

    Smith JV. 1974.Feldspar mineral 2: Chemical and Textural Properties[M]. Berlin, Springer, 1-690.

    Smith R E. 1968. Zone of progressive regional burial metamorphism in part of Tasman geosyncline, eastern Australia[J]. Journal of Petrology, 10:143-163. https://www.researchgate.net/publication/31178460_Zones_of_Progressive_Regional_Burial_Metamorphism_in_Part_of_the_Tasman_Geosyncline_Eastern_Australia

    Song Anjiang, Zhu Zhixin, Shi Ying, Li Shenghu. 2006. SHRIMP UPb dating of zircons from the Tugutu Bulak Formation in the western segment of the Aqikkuduk fault in the East Tianshan, Xinjiang, China[J]. Geological Bulletin of China, 25(8):953-956(in Chinese with English abstract).

    Song Zhigao, Jia Qunzi. 1987. On the fabric, mineral assemblages and metamorphic origin of spilite[J]. Bulletin of Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 19:31-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBFK198705001.htm

    Song Ziji, Zhang Weiji, An Sanyuan. 1988. On the characteristic of volcanic rocks and its environment formed in graben zone of northern part of the north Qinling mountains in Early Cenozoic era[J]. Bulletin of Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 24:5-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBFK198824002.htm

    Su Chunqian, Jiang Chaiyi, Xia Mingzhe, Wei Wei, Pan Rong. 2009. Geochemistry and zircons SHRIMP U-Pb age of volcanic rocks of Aqishan Formation in the eastern area of north Tianshan, China[J]. Acta Petrologica Sinica, 25(4):901-915 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200904014.htm

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematicof oceanic basalts:Implications for mantle composition and processes[J]. In Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sun Zhiyuan, Long Lingli Wang Yuwang, Wang Jingbin, Du Yangsong, Zhao Lutong, Xie Hongjing, Li Dedong, Shi Yu. 2016. Geochemical characteristics of the volcanic rocks of Zhaibeishan Copper deposit in eastern Tianshan, Xinjiang and its geological implication[J]. Mineral Exploration, 7(2):248-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS201602003.htm

    Tang Junhua, Gu Lianxing, Zhang Zunzhong, Wu Changzhi, San Jinzhu, Wang Chuansheng, Liu Sihai, Li Guangrong. 2008. Peraluminous granite in Huangshan-Jingerquan area of eastern Tianshan:Geochemistry, mineralogy and geochronology[J]. Acta Petrologica Sinica, 24(5):921-946(in Chinese with English abstract).

    Vallance T G. 1974. Spilitic Degradation of a Tholeiitic Basalt[J]. Journal of Petrology, 15(1):79-96. doi: 10.1093/petrology/15.1.79

    Wang Jingbin, Wang Yuwang, He Zhijun. 2006. Ore deposits as a guide to the tectonic evolution in the East Tianshan Mountains, NW China[J]. Geology in China, 33(3):461-469 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603001.htm

    Wang Longsheng, Li Huaqin, Chen Yuchuan, Liu Dequan. 2005a. Geological feature and mineralization epoch of Bailingshan iron deposit, Hami, Xinjiang, China[J]. Mineral Deposits, 24(3):264-269 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200503004.htm

    Wang Longsheng, Li Huaqin, Liu Dequan, Chen Yuchuan. 2005b. Geological characteristics and mineralization epoch of Weiquan silver (copper) deposit, Hami, Xinjiang, China[J]. Mineral Deposits, 24(3):280-284 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200503006.htm

    Wang Yan, Qian Qing, Liu Liang, Zhang Qi. 2000. Major geochemical characteristics of bimodal volcanic rocks in different geochemical environments[J]. Acta Petrologica Sinica, 16(2):169-173(in Chinese with English abstract). http://www.oalib.com/paper/1471494

    Williams I S. 1998. U-Th-Pb geochronology by ionmicroprobe[C]//McKibben M A, Shanks W C, Ridley W I (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes.Reviews in Economic Geology, 7: 1-35.

    Wilson M. 1989. Igneous Petrogenssis[J]. London:Unwin Hyman. https://www.springer.com/la/book/9780412750809

    Windley BF, Alexeiev D, Xiao WJ, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society of London, 164:31-47. doi: 10.1144/0016-76492006-022

    Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonic magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 50:11-13. doi: 10.1016/0012-821X(80)90116-8

    Wu Changzhi, Zhang Zunzhong, Zaw K, Della-Pasque F, Tang Junhua, Zheng Yuanchuan, Wang Chuansheng, San Jinzhu. 2006. Geochronology, geochemistry and tectonic significances of Hongyuntan granitoids in the Qoltag area, Eastern Tianshan[J]. Acta Petrologica Sinica, 22(5):1121-1134 (in Chinese with English abstract).

    Xia Linqi, Xia Zuchun. 1989. Newly evidences of magma originating of spilite-pristine Na-rich magma inclusions are found in the clinopyroxene phenocryst in pyroxene-bearing spilite porphyrite from the Low Paleozoic Erathem in northern Qilianshan[J]. Chinese Science Bulletin, 13:1010-1013(in Chinese with English abstract).

    Xiao Xuchang, Tang Yaoqing, Feng Yimin, Zhu Baoqing, Li Jinyi, Zhao Min. 1992. Tectonic Evolution of the Northern Xinjiang and Its Adjacent Regions[M]. Beijing:Geological Publishing House, 1-167(in Chinese with English abstract).

    Xiao Yu. 2003. The geological characteristics and prospecting orientation in Shaquanzi copper deposit of Hami, Xinjiang[J]. Mineral Resources and Geology, 97(17):345-347 (in Chinese with English abstract).

    Xu Lulu, Chai Fengmei, Li Qiang, Zeng Hong, Geng Xinxia, Xia Fang, Denggang. 2014.Geochemistry and zircon U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu deposit in East Tianshan Mountains and their geological significance[J]. Geology in China, 41(6):1771-1790 (in Chinese with English abstract).

    Xu Shiqi, Zhao Tongyang, Feng Jing, Gao Yongfeng, Tian Jiangtao, Yang Zaifeng, Liu Dequan. 2011. Study on regional metallogenic regularity of marine volcanic type iron ore in the East Tianshan of Xinjiang[J]. Xinjiang Geology, 29(2):173-177 (in Chinese with English abstract).

    Yang Xingke, Ji Jinsheng, Zhang Lianchang, Zeng Zhangren. 1998. Basic features and gold prognosis of the regional ductile shear zone in eastern Tianshan[J]. Geotectonica et Metallogenia, 22(3):209-218 (in Chinese with English abstract).

    Yorder H S, Tilley C E. 1962. Origin of basalt magama:Aexperimental study of natural and synthetic system[J]. J. Petrol, 3:43-530. doi: 10.1093-petrology-3.3.342/

    Yuan Feng, Zhou Taofa, Zhang Dayu, Fan Yu, Liu Shuai, Peng Mingxing, Zhang Jiandian. 2010. Source, evolution and tectonic setting of the basalts from the native copper mineralization area in eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 26(2):533-546 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb201002017.htm

    Zhang Dayu. 2012. Petrogenesis, Mineralization and Geodynamic Evolution in Jueluotage Area, Eastern Tianshan, Northwest China[D]. Hefei University of Technology for Degree of Doctor, 1-217 (in Chinese with English abstract).

    Zhao Zhenhua. 2007. How to use the trace element diagrams to discriminate tectonic setting[J]. Geotectonica et Metallogenia, 31(1):92-103(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200701012.htm

    Zheng Renqiao. 2015. Geological Characteristics and Genesis of Hongyuntan Iron Deposits in the Eastern Tianshan, Xinjiang[D]. Beijing: China University of Geosciences for Master Degree, 1-102(in Chinese with English abstract).

    Zhou Jiyuan, Zhang Bin, Zhang Chaowen, Wei Guanyi, Lu Yan, Xia Jun, Cui Bingfang, Wang Chongyun, Li Baohua. 1996. Geology of the Silver, Rhenium-Molybedum, Gold and Copper Deposits in the Eastern Tianshan and Its Adjacent Regions[M]. Beijing:Geological Publishing House, 62-63 (in Chinese with English abstract).

    Zhou Taofa, Yuan Feng, Zhang Dayu, Fan Yu, Liu Shuai, Peng Mingxing, Zhang Jiandian. 2010. Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, Eastern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 26(2):478-502 (in Chinese with English abstract). http://www.oalib.com/paper/1471237

    邓尔新. 1986.浙江省中岙细碧岩类岩石学、岩石化学特征及其成因[J].地球科学——武汉地质学院学报, 11(5):507-515. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198605008.htm
    董连慧, 冯京, 庄道泽, 李凤鸣, 屈迅, 刘德权. 2011.新疆富铁矿成矿特征及主攻类型成矿模式探讨[J].新疆地质, 29(4):416-422. doi: 10.3969/j.issn.1000-8845.2011.04.012
    方维萱, 高珍权, 贾润幸, 刘正桃, 李丰收, 徐国端.2006a.东疆沙泉子铜和铜铁矿床岩(矿)石地球化学研究与地质找矿前景[J].岩石学报, 22(5):1413-1424. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605030
    方维萱, 高珍权, 贾润幸, 黄转盈, 刘正桃, 李丰收, 徐国端. 2006b.东疆雅西371-西北坡铜金矿化带下石炭统火山岩地球化学特征与成矿背景[J].岩石学报, 22(1):215-224. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601021
    高珍权. 2002.东天山铜金多金属成矿学及找矿系统工程学[D].博士学位论文, 长沙: 中南大学, 1-189. http://cdmd.cnki.com.cn/article/cdmd-10533-2004116213.htm
    郭原生, 王金荣, 谢宪丽, 孟桂生, 杨永军, 田玉轩. 2000.白银厂矿田早中寒武世火山岩地球化学及成因分析[J].岩石学报, 16(3):337-344. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200003004
    何国琦, 李茂松, 刘德权, 唐延龄, 周汝洪. 1994.中国新疆古生代地壳演化与成矿[M].乌鲁木齐:新疆人民出版社, 1-437.
    黄小文, 漆亮, 王怡昌, 刘莹莹.2014.东天山沙泉子铜铁矿床磁铁矿Re-Os定年初探[J].中国科学:地球科学, 44(4):606-616. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201404004&dbname=CJFD&dbcode=CJFQ
    姜福芝. 2001.双峰式火山岩与块状硫化物矿床[J].矿床地质, 20(4):331-338. doi: 10.3969/j.issn.0258-7106.2001.04.006
    姜福芝, 秦克章, 方同辉, 王书来. 2002.东天山铁矿类型、地质特征成矿规律与找矿方向[J].新疆地质, 20(4):379-383. doi: 10.3969/j.issn.1000-8845.2002.04.019
    姜福芝, 王玉往. 2005.海相火山岩与金属矿床[M].北京:冶金工业出版社, 1-248.
    姬金生, 陶洪祥, 曾章仁, 杨兴科.1994.东天山康古尔塔格金矿带地质与成矿[M].北京:地质出版社.
    雷如雄, 吴昌志, 张遵忠, 顾连兴, 唐俊华, 黎广荣. 2013.东天山雅满苏北岩体的年代学、地球化学及其构造意义[J].岩石学报, 29(8):2653-2664. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308003
    李厚民, 丁建华, 李立兴, 姚通. 2014.东天山雅满苏铁矿床矽卡岩成因及矿床成因类型[J].地质学报, 88(12):2477-2489. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412024
    刘德权, 唐延龄, 周汝洪. 1996.中国新疆矿床系列类型[J].矿床地质, 15(3):207-215. http://www.cqvip.com/qk/93610X/19961503/2144710.html
    罗桂昌, 杨兴科, 程宏宾. 1999.新疆觉罗塔格地区下石炭统阿奇山组的确立[J].西安工程学院报, 21:39-44. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb1999Z1011
    罗婷, 廖群安, 陈继平, 张雄华, 郭东宝, 胡兆初. 2012.东天山雅满苏组火山岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].地球科学, 37(6):1338-1352. http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024
    秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002.东天山板块构造分区、演化与成矿地质背景研究[J].新疆地质, 20(4):302-308. doi: 10.3969/j.issn.1000-8845.2002.04.002
    宋安江, 朱志新, 石莹, 李生虎. 2006.东天山阿其克库都克断裂带西段土古土布拉克组锆石SHRIMP U-Pb测年[J].地质通报, 25(8):953-956. doi: 10.3969/j.issn.1671-2552.2006.08.010
    宋子季, 张维吉, 安三元. 1988.北秦岭北部早古生代断陷带古海相火山岩特征及其形成环境[J].西北地质科学, (4):4-63. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800007004.htm
    宋志高, 贾群子. 1987.论细碧岩的岩石组构、矿物组合和变质成因[J].中国地质科学院西安地质矿产研究所所刊, 19:31-46. http://www.cnki.com.cn/Article/CJFDTOTAL-XBFK198705001.htm
    苏春乾, 姜常义, 夏明哲, 魏巍, 潘荣. 2009.北天山东段阿奇山组火山岩的地球化学特征及锆石U-Pb年龄[J].岩石学报, 25(4):901-915. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904014
    孙志远, 龙灵利, 王玉往, 王京彬, 杜杨松, 赵路通, 解洪晶, 李德东, 石煜. 2016.新疆东天山寨北山铜矿区火山岩地球化学特征及地质意义[J].矿产勘查, 7(2):248-260. doi: 10.3969/j.issn.1674-7801.2016.02.002
    唐俊华, 顾连兴, 张遵忠, 吴昌志, 三金柱, 汪传胜, 刘四海, 黎广荣. 2008.东天山黄山-镜儿泉过铝花岗岩矿物学、地球化学及年代学研究[J].岩石学报, 24(5):921-946. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200805001
    王京彬, 王玉往, 何志军. 2006.东天山大地构造演化的成矿示踪[J].中国地质, 33(3):461-469. doi: 10.3969/j.issn.1000-3657.2006.03.002
    王龙生, 李华芹, 陈毓川, 刘德权. 2005a.新疆哈密百灵山铁矿地质特征及成矿时代[J].矿床地质, 24(3):264-269. http://d.old.wanfangdata.com.cn/Periodical/kcdz200503005
    王龙生, 李华芹, 刘德权, 陈毓川.2005b.新疆哈密维权银(铜)矿床地质特征和成矿时代[J].矿床地质, 24(3):280-284. http://d.old.wanfangdata.com.cn/Periodical/kcdz200503007
    王焰, 钱青, 刘良, 张旗. 2000.不同构造环境中双峰式火山岩的主要特征[J].岩石学报, 16(2):169-173. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200002004
    吴昌志, 张遵忠, Zaw K, Della-PasqueF, 唐俊华, 郑远川, 汪传胜, 三金柱. 2006.东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义[J].岩石学报, 22(5):1121-1134. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605006
    夏林圻, 夏祖春. 1989.细碧岩岩浆成因的最新证据——北祁连山下古生代辉石细碧玢岩单斜辉石斑晶中发现原生富钠质岩浆包裹体[J].科学通报, 34(13):1010-1013. http://www.cnki.com.cn/Article/CJFDTotal-KXTB198913015.htm
    肖序常, 汤耀庆, 冯益民, 朱宝清, 李锦轶, 赵民. 1992.新疆北部及邻区大地构造[M].北京:地质出版社, 1-167.
    肖昱. 2003.新疆哈密市沙泉子铜矿地质特征及找矿方向[J].矿产与地质, 97(17):345-347. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KCYD2003S1023&dbname=CJFD&dbcode=CJFQ
    徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚.2014.东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].中国地质, 41(6):1771-1790. doi: 10.3969/j.issn.1000-3657.2014.06.002
    徐仕琪, 赵同阳, 冯京, 高永峰, 田江涛, 杨在峰, 刘德权. 2011.东天山海相火山岩型铁矿区域成矿规律研究[J].新疆地质, 29(2):173-177. doi: 10.3969/j.issn.1000-8845.2011.02.011
    杨兴科, 姬金生, 张连昌, 曾章仁. 1998.东天山大型韧性剪切带基本特征与金矿预测[J].大地构造与成矿学, 22(3):209-218. http://www.cqvip.com/Main/Detail.aspx?id=3153888
    袁峰, 周涛发, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇. 2010.东天山自然铜矿化带玄武岩的起源、演化及成岩构造背景[J].岩石学报, 26(2):533-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002015
    张达玉. 2012.新疆东天山觉罗塔格地区成岩成矿作用及地球动力学过程[D].博士学位论文, 合肥: 合肥工业大学, 1-217. http://cdmd.cnki.com.cn/Article/CDMD-10359-1013259645.htm
    张招崇, 柴凤梅, 谢秋红. 2016.热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成[J].中国地质, 43(2):367-379. doi: 10.3969/j.issn.1000-3657.2016.02.001
    赵振华. 2007.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 31(1):92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011
    郑仁乔. 2015.新疆东天山红云滩铁矿床地质特征与矿床成因研究[D].博士学位论文, 北京: 中国地质大学(北京), 1-102. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391527.htm
    周济元, 张斌, 张朝文, 卫管一, 陆彦, 夏军, 崔炳芳, 王崇云, 李保华.1996.东天山古大陆及其边缘银、铼钼、金和铜矿地质[M].北京:地质出版社, 62-63.
    周涛发, 袁峰, 张达玉, 范裕, 刘帅, 彭明兴, 张建滇. 2010.新疆东天山觉罗塔格地区花岗岩类年代学、构造背景及其成矿作用研究[J].岩石学报, 26(2):478-502. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002012
  • 期刊类型引用(7)

    1. 孙杨,谢远云,迟云平,康春国,吴鹏. 大兴安岭东麓龙江县白土山组地层特征:化学风化、沉积循环、源-汇体系和沉积环境. 山地学报. 2022(01): 14-28 . 百度学术
    2. 仲米山,吕东霖,王岐,张化南,敖光,吴子杰,杨运来,王艺龙,谭超. 大兴安岭中段索伦地区林西组岩石地球化学特征与沉积构造环境. 中国地质调查. 2022(05): 89-96 . 百度学术
    3. 张海华,李晓海,张健,郑月娟,陈树旺,张德军,苏飞,卞雄飞,孙雷. 松辽盆地北部上二叠统林西组古生物年代学、地球化学特征及地质意义. 现代地质. 2021(02): 568-578 . 百度学术
    4. 张健,张海华,陈树旺,郑月娟,张德军,苏飞,黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义. 吉林大学学报(地球科学版). 2020(02): 518-530 . 百度学术
    5. 张德军,张健,郑月娟,陈树旺,苏飞,黄欣,张海华,甄甄. 内蒙古自治区兴安盟突泉盆地TD-2井晚二叠世孢粉的发现及其油气地质意义. 中国地质. 2020(03): 798-809 . 本站查看
    6. 邢作昌,张忠涛,林畅松,张博,洪方浩,张正涛. 珠江口盆地荔湾凹陷上渐新统—早中新统物源特征及其对沉积充填的影响. 中国地质. 2020(05): 1577-1588 . 本站查看
    7. 陈兴,彭成龙,陈建书,吴开彬,张德明,王文明,龚桂源,邓贵标,骆珊. 右江盆地中三叠世碎屑岩地球化学特征及其物源分析∶以贵州册亨地区为例. 高校地质学报. 2020(06): 639-655 . 百度学术

    其他类型引用(2)

图(11)  /  表(4)
计量
  • 文章访问数:  3168
  • HTML全文浏览量:  543
  • PDF下载量:  4562
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-07-15
  • 修回日期:  2018-02-27
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2018-10-24

目录

/

返回文章
返回
x 关闭 永久关闭