Dingqing ophiolite chromite in the eastern segment of Bangong Co-Nujiang suture zone, Tibet:Occurrence characteristics and classifications
-
摘要:
丁青蛇绿岩体位于班公湖—怒江缝合带东段,该缝合带与雅鲁藏布江缝合带并列,是寻找我国铬铁矿床的重要地区。该蛇绿岩体呈近南东向展布,总面积近600 km2,主要由地幔橄榄岩、辉石岩、辉长岩、辉绿岩、玄武岩、斜长花岗岩、硅质岩和泥质岩组成。根据空间分布,丁青蛇绿岩分为东、西两个岩体。在前人工作基础上,通过地质填图、实测剖面、探槽和钻孔编录,共发现豆荚状铬铁矿矿点83处,其中东岩体27处,西岩体56处。根据铬铁矿产出和围岩特征,丁青铬铁矿可分为4种产出类型。类型Ⅰ:矿体呈脉状产出,围岩为条带状或透镜状纯橄榄岩和块状方辉橄榄岩;类型Ⅱ:矿体呈透镜状、豆荚状或不规则团块状产出,围岩为薄壳状纯橄榄岩和斑杂状或块状方辉橄榄岩;类型Ⅲ:矿体呈浸染状弥散分布于纯橄榄岩中,围岩为条带状纯橄榄岩和块状或斑杂状方辉橄榄岩;类型Ⅳ:矿体呈条带状产出,围岩为条带状或透镜状纯橄榄岩和具定向结构的方辉橄榄岩。根据矿石构造特征,主要分为块状、脉状、浸染状、浸染条带状4种类型。块状和脉状铬铁矿为矿石的主要类型,少量为浸染状和浸染条带状,局部纯橄榄岩中发育极少量瘤状或豆状构造。本研究选择了13处代表性铬铁矿点开展了详细的岩石学、矿相学、矿物学和矿物化学等工作。根据矿石中铬尖晶石的矿物化学特征,可将丁青铬铁矿矿体分为高铬(Cr#=78~86)、中高铬(Cr#=60~74)、中铬(Cr#=30~51)和低铬(Cr#=9~14)4种类型(Cr#=100×Cr/(Cr+Al))。丁青东岩体赋存有中高铬型和中铬型铬铁矿,缺少高铬型铬铁矿;西岩体赋存有高铬型和中铬型铬铁矿,缺少中高铬型铬铁矿。同时在丁青东、西岩体内均发现存在一种Cr#极低的铬铁矿,暂定为“低铬型铬铁矿”。这些不同类型的铬铁矿体与野外产出有一定的对应关系,也可能后者制约了它们的成因。与罗布莎岩体中的典型高铬型铬铁矿对比,丁青豆荚状铬铁矿在矿物组合和矿物化学成分等方面具有许多相似性,认为存在较大的找矿空间。
Abstract:The Dingqing ophiolite is located in the eastern segment of the Bangong Co-Nujiang suture zone which is juxtaposed with the Yarlung Zangbo suture zone, and is an important area for finding chromite deposits in China. The ophiolite body is distributed in the southeast direction, with a total area of nearly 600 km2. It is mainly composed of mantle peridotite, pyroxenite, gabbro, diabase, basalt, plagiogranite, siliceous rock and argillaceous rock. According to the spatial distribution, the Dingqing ophiolite is divided into east and west ophiolite bodies. On the basis of previous work, 83 chromite ore spots were discovered through geological mapping, measured sections, trench recording and drilling, including 27 in the east ophiolite body and 56 in the west ophiolite body. According to the production characteristics of the chromite spots and types of wall rock, Dingqing chromite can be divided into four types:Type Ⅰ:chromite orebodies are vein-like, the wall rock is stripe-like or lenticular dunite and massive harzburgite; Type Ⅱ:chromite orebodies are lenticular, podiform or irregularly agglomerated, the wall rock is thin-shelled dunite and porphyry or massive harzburgite; Type Ⅲ:chromite is diffusely distributed in dunite, and the wall rock is stripe-shaped dunite and massive or porphyry harzburgite; Type Ⅳ:chromite orebodies are produced in stripes, and the wall rock is stripe-like or lenticular dunite and directional harzburgite. According to the structural characteristics of chromitites, they are mainly divided into four types:massive, vein, disseminated and disseminated stripe. Massive and veined chromitites are the main types of chromitites, a small amount is disseminated and disseminated stripe, with a small amount of nodular or bean-like structure developed in local dunite. In this study, 13 representative chromite ore spots were selected for detailed studies of petrology, mineralogy, and mineral chemistry. According to the mineral chemistry characteristics of chrome spinel in the chromitites, the chromite bodies can be divided into four types, i.e., high chromium (Cr#78-85), medium-high chromium (Cr#60-74), medium chromium (Cr#30-51) and low chromium (Cr#9-14)(Cr#=100×Cr/(Cr+Al)). The east ophiolite body contains medium-high chromium and medium chromium type chromitite, with the lack of high chromium type chromitite; the west ophiolite body contains high chromium and medium chromium type chromitite, and lacks medium-high chromium type chromitite. At the same time, there is a very low Cr# chromitite in the east rock mass and the west rock mass, which is tentatively assigned to "low chromium type chromitite". These different types of chromitites have a certain correspondence with the field output, and may also restrict their geneses. This content will be expanded in subsequent articles. A comparison with Luobusa podiform chromitite and peridotite in mineral assemblages and mineral chemistry shows that they have many similar characteristics, even with the probable existence of a good prospecting space.
-
1. 引言
稀土(Rare earth)是元素周期表中镧系元素和钪、钇共17种金属元素的总称。稀土是重要的自然资源,更是宝贵且关键的战略资源,在民用和军事方面用途十分广泛,同时也是先进装备制造业、新能源、新兴产业等高新技术产业不可或缺的原材料。在全球范围内,稀土资源分布不均,其主要分布于美国、俄罗斯、中国、印度、巴西等国家。中国稀土储量约占世界总储量的23%,却承担了世界90%以上的市场供应(中华人民共和国国务院新闻办公室, 2012)。经半个多世纪的过度开采,中国稀土资源保有储量及保障年限不断下降,鉴于此,发现和利用新类型稀土矿,可有效提高中国稀土资源储量,有力保障国家稀土资源供给安全。
稀土矿床按成因分类主要有碱性岩—碱性超基性岩型、碳酸岩型、花岗岩型、砂矿型以及风化壳型(徐光宪, 1995);按工业类型分类主要有稀土-磁铁矿矿床、含稀土碳酸岩矿床、花岗岩风化壳型稀土矿床、含稀土伟晶岩矿床、含稀土磷块岩矿床以及独居石砂矿床(矿产资源工业要求手册, 2014)。近年来,多位学者报道在贵州威宁地区二叠系宣威组一段黏土岩中富含稀土元素,但是由于该稀土资源的综合利用技术多年来未取得突破(黄训华, 1997; 张震和戴朝辉, 2010; 周灵洁, 2012),稀土元素的赋存状态、富集机理以及稀土矿床成因类型等方面存在较大争议。2018年以来,笔者在滇东—黔西地区开展地质调查,发现研究区内广泛发育的二叠系宣威组富稀土黏土岩系属沉积成因,有别于Wang et al.(2018)提及的南方离子吸附型稀土矿,而类似于文俊等(2021)报道的川南沐川地区宣威组底部古风化壳-沉积型铌、稀土矿,该新类型稀土矿具有矿石禀赋好、矿层厚度大且较连续、“关键稀土元素(Critical rare earth element; Pr, Nd, Tb, Dy)”占比较高等特点,并伴生有铌、锆、镓等有价元素,其中镓的平均品位高达70.5×10-6,高于工业品位(Zhang et al., 2010)。另外,在稀土资源开发利用方面取得了重大突破,针对该稀土资源研发了“选择性浸出”新工艺(徐璐等, 2020),使稀土回收率可达90%以上,该新类型稀土资源有望实现规模化工业利用。滇东—黔西地区沉积型稀土资源的发现与利用,将有力支撑国家关键稀土资源战略储备。
2. 区域地质背景
滇东—黔西地区大地构造位置位于扬子板块西缘(潘桂棠等, 2009),以北西向康定—水城断裂、北东向弥勒—师宗深大断裂带以及近南北向小江断裂所挟持的三角形地带(图 1)。区内地层属华南地层大区的扬子地层区之上扬子地层分区,主体位于黔西北地层小区,部分涉及到云南的昭通地层小区及曲靖地层小区。晚中生代以前主要是海相碳酸盐岩及陆源硅质碎屑岩,以后则主要为陆相沉积。火成岩主要为海西晚期陆相溢流的峨眉山玄武岩及同源异相的浅成侵入岩。
①—怒江断裂;②—金沙江—红河断裂;③—鲜水河断裂;④—龙门山山前断裂;⑤—小金河断裂;⑥—箐河—程海断裂;⑦—安宁河—绿汁江断裂;⑧—小江断裂;⑨—康定—水城断裂;⑩—弥勒—师宗断裂Figure 1. Sketch map showing geotectonic position of the research area (after Luo Yaonan, 1985; Zhang Zhibin et al., 2006)①-Nujiang fault; ②-Jinsha River—Red River fault; ③-Xian Shui River fault; ④-Longmen Mountain piedmont fault; ⑤-Xiao Jian River fault; ⑥-Jing River—Chenghai fault; ⑦-Anning River—Lü zhi River fault; ⑧-Xiao River fault; ⑨-Kang ding—Shui cheng fault; ⑩-Mile—Shizong fault3. 测试分析方法
在研究区内采集了186件宣威组一段沉积型稀土矿石样品,正样经破碎研磨至200目,取缩分样50 g/件,送至中国地质科学院矿产综合利用研究所分析测试中心,利用电感耦合等离子体质谱仪(Perkinelmer Optima Nexion 350X)测得稀土配分数据;再取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点缩分样20 g/件,送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用X射线衍射仪(日本理学Ultima Ⅳ)测得主要矿物成分。选取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点矿石副样,块样用切割机(MecatomeT330)切成3 cm×1 cm×2 cm样品,用环氧树脂镶嵌制光片坯样;松散样经研磨至40目,用环氧树脂镶嵌制砂片坯样。以上坯样用自动磨抛机(EcomeT300)制得直径为3.5 cm圆柱形待测样品,将待测样品送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用英国蔡司(ZEISS)Sigma 500型场发射扫描电镜及配套的德国布鲁克能谱仪(EDS)获取数据,并应用矿物特征自动定量分析软件(AMICS)进行矿物参数全自动定量分析。
4. 稀土资源特征
4.1 富稀土岩系特征
研究区内富稀土岩系发育于二叠系宣威组一段(P3x1)。宣威组出露面积较广(图 2),北至昭通金阳—大关一带,向南经昭通、威宁一直延伸至宣威—六盘水等地,呈北窄南宽的形态展布。宣威组平行不整合于二叠系峨眉山玄武岩组(P2-3em)之上、整合于三叠系东川组(T1dc)之下,是一套乐平世滨岸及湖沼相与同期曲流河相伴生产出的沉积地层,并且多出现在河泛平原背景上,无独立的大型湖泊沉积体系(戴传固, 2017)。
据笔者对威宁县哲觉镇小箐沟(东经103°59′ 08″,北纬26°36′37″)二叠系宣威组一段典型地层剖面(Pm201)研究,查明宣威组一段富稀土岩系主要为灰白色铝土质黏土岩与粉砂质黏土岩互层(图 3a、b),偶见植物碎屑,中部夹砾屑砂岩(图 3f),砾屑呈次圆状,粒度2~4 mm不等,由下往上砾屑粒度表现出粗—细—粗的渐变特征;岩石碎裂呈砂状、松散片状(图 3c),局部可见层理构造;稀土含量较高的岩石主要为铝土质黏土岩(图 3d、e)、粉砂质黏土岩(⑨~⑪层,⑬~⑮层)。
图 3 贵州威宁哲觉镇宣威组一段(P3x1)剖面-柱状图a—宣威组一段典型剖面;b—宣威组一段柱状图;c、d、e—铝土质黏土岩;f—砾屑砂岩Figure 3. Typical profile and histogram of the first part of Xuanwei Group (P3x1) in the Zhejue town of Weining area, Guizhou Provincea-Typical section of the first part of Xuanwei Group; b-Histogram of the first passage of Xuanwei Group; c, d, e-Bauxitic clay rock; f-Gravel sandstone4.2 矿石特征
研究区沉积型稀土矿石主要为深灰—灰白色铝土质黏土岩(图 3c、d、e),具微细粒—隐晶质结构、鳞片状、块状构造。据偏光显微镜、X射线衍射仪、扫描电镜(图 4a)、AMICS矿物分析系统等仪器综合测试分析,结果显示矿石由黏土矿物(高岭石≈83%、埃洛石≈2%、伊利石 < 1%、绿泥石 < 1%)、金属氧化物(锐钛矿≈5%、褐铁矿≈1%、磁铁矿 < 1%、水铝石 < 1%)、硅酸盐矿物(石英+蛋白石 < 4%、火山玻璃≈2%)、金属硫化物(黄铁矿≈0.2%)以及其他方解石、针铁矿等微量矿物组成(徐莺等, 2018)。另外,偶见极少量的氟碳铈矿(图 4b)、方铈矿、磷铝铈矿等独立稀土矿物,其总含量 < 0.1%;以及少量锆石、磷灰石、金红石等含稀土元素的非独立稀土矿物,其总含量 < 1%。
4.3 稀土资源潜力
本文作者在研究区内优选二叠系宣威组(P3x)出露较好的区域,通过32个探槽工程、6个剥土工程地表控制及22个钻探工程深部验证,初步查明研究区二叠系宣威组(P3x)一段稀土矿层厚度2~18 m不等,单个矿石样品TREO含量最高为1.6%,圈定三处稀土矿找矿靶区(图 5):
(1)Ⅰ号找矿靶区:该靶区矿体形态呈层状、似层状,圈定一个矿体,矿体倾角26°~31°,矿体厚度2.96~18.92 m,矿体在地表出露较连续,沿走向延伸可达8 km,矿体TREO加权平均品位为0.21%(边界品位:0.18%,下同),该找矿靶区内推断资源量约4万t,矿床规模达小型。
(2)Ⅱ号矿找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、三个矿体,矿体倾角12° ~17°,矿体TREO加权平均品位0.23% ~ 0.39%,矿体厚度5.85~9.23 m,其中主矿体沿倾向延伸可达1.6 km,该找矿靶区内推断资源量约25万t,矿床规模达中型,并具有达大型的潜力。
(3)Ⅲ号找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、十个矿体,矿体倾角4° ~10°不等,矿体TREO加权平均品位0.18% ~ 0.46%,矿体厚度1.29~2.99 m。其中主矿体在地表出露连续,深部钻探控制也较稳定,沿倾向延伸可达2 km,该找矿靶区内推断资源量约2万t,矿床规模为小型。
综上所述,该区稀土资源规模大,矿体埋藏浅,产状较缓且连续,有利于大规模露天开采。
笔者在研究区内、找矿靶区以外的昭通、鲁甸、威宁炉山—东风—二塘、六盘水大湾、宣威大井等地(图 2),采集了宣威组一段铝土质黏土岩样品,分析结果显示均有稀土矿化异常,十余处稀土TREO品位超0.1%,最高品位0.42%,算数平均品位0.2%,矿体出露厚度2~6 m不等,推测滇东—黔西地区沉积型稀土资源找矿潜力巨大,远景资源量超100万t。
4.4 稀土配分及资源对比
物源区岩石经风化剥蚀形成的碎屑物质再搬运至沉积区沉积成岩,通常沉积岩继承了物源区岩石的稀土配分特征,风化和成岩作用对沉积岩中稀土元素再分配影响不大(Mclennan, 1993),所以稀土可作为一种有效的示踪物质。
在研究区内优选4条宣威组典型剖面(Pm101、Pm104、Pm205、Pm207),逐层采集岩石样品,分别按玄武岩、铁质黏土岩、铝土质黏土岩、黏土质粉砂岩、炭质黏土岩和砾岩进行稀土元素球粒陨石标准化,从稀土配分模式(图 6)可以看出宣威组富稀土岩系中所有样品均与峨眉山玄武岩均具有相对富集轻稀土元素、亏损重稀土元素、呈现右倾模式的特征;不同的是,大部分铁质黏土岩、黏土质粉砂岩与玄武岩具有更加相近的配分模式,即都只表现出轻微的负Eu异常;而铝土质黏土岩层作为主要的含矿层却表现为明显的负Eu异常(田恩源等, 2020)。
1—玄武岩;2—铁质粉砂质黏土岩;3—铝土质黏土岩;4—炭质粘土岩;5—黏土质粉砂岩;6—砂质砾岩Figure 6. Chondrite-normalized REE patterns of the samples (modifiled from Tian Enyuan et al., 2020; standardized values modifiled from Sun and McDonough, 1989)1-Basalt; 2-Fe-Silty clay rock; 3-Bauxitic clay rock; 4-Carbonaceous clay rock; 5-Clayey siltstone; 6-Sandy conglomerate滇东—黔西地区沉积型稀土矿石中关键稀土元素(CREO)高于国内正在开发利用的四川冕宁碳酸岩型、白云鄂博碳酸岩型、山东微山碳酸岩型以及部分南方离子吸附型等大型、超大型稀土矿床,同样也高于国外即将开发利用的美国芒廷帕斯碳酸岩型、格陵兰岛碱性岩型等超大型稀土矿床。另外,该沉积型稀土资源与离子吸附型、古砂矿型稀土矿对比,在矿石品位、资源规模、集中程度、开采方式、环境影响等方面具有较大的优势,其开发前景巨大(图 7a、b)。
表 1 世界典型稀土矿床对比表Table 1. Comparison table of typical rare earth deposits in the world5. 开发利用潜力
笔者开展该沉积型稀土矿原矿铵盐浸出对比实验,结果表明稀土原矿中仅有少量(< 5%)稀土元素以离子吸附状态赋存于矿石中。通过多轮技术攻关,利用选择性浸出技术控制焙烧温度和焙烧时间,准确破坏稀土矿中高岭石的特定结构,脱去其层状结构中的羟基,变为高活性的偏高岭石,但偏高岭石仍保持了片状的结构特征。焙烧温度低于550℃,高岭石未转化为偏高岭石,稀土无法有效浸出,焙烧温度高于850℃,高岭石结构被完全破坏,硅和铝晶型会发生变化,对稀土元素进行重新包裹,导致稀土元素无法有效浸出,焙烧过程中不使用添加剂避免产生额外的有害废气。该技术通过协同控制焙烧和浸出条件,选择性浸出偏高岭石中的稀土元素,稀土元素浸出率高于90%,同时主要杂质铝、铁、钛和硅浸出率均<5%,有效抑制杂质大量进入富稀土料液。该技术申请了国家发明专利(徐璐等, 2020)。该技术的推广应用,有望使研究区内的稀土资源实现规模化工业利用。
6. 讨论
6.1 成因探讨
滇东—黔西地区稀土矿的成因研究程度不高,且存在较大争议,目前主要有三种观点:一是风化淋滤型,杨瑞东等(2006)、王伟(2008)以及Yang et al.(2008)通过分析稀土含矿层的地球化学特征,认为该矿床属与峨眉山玄武岩有关的风化壳型,峨眉山玄武岩及凝灰岩被强烈风化淋漓形成高岭石黏土岩,母岩中辉石的稀土元素被解析出来,被高岭石颗粒吸附,使稀土富集,形成稀土矿床;葛枝华(2018)同样赞同风化淋滤型稀土的观点,认为玄武岩风化过程实质就是一种脱硅富铝的过程,辉石、长石类矿物强烈分解,铁铝钛等氧化物明显增加,Ca、Na、Mg、K强烈迅速淋失,SiO2的含量不断降低,元素的迁移活动顺序是CaO>MgO>Na2O>SiO2,认为稀土元素通过风化淋滤作用在风化壳中不断富集起来。二是沉积-改造型,张海(2014)认为稀土矿床的形成与母岩的风化作用、沉积成岩作用以及地下流体作用有关,是沉积-再造型稀土矿床;黄训华(1997)、周灵洁(2012)、张海(2014)、吴承泉等(2019)通过稀土物源、地球化学特征分析,认为稀土矿物源不仅是峨眉山玄武岩,还应包括后期喷发的中酸性火成岩,经风化剥蚀后形成富集稀土的玄武岩质、凝灰质及少量长英质碎屑,经水介质搬运至沉积盆地形成高岭石硬质黏土岩,成岩过程中遭受一定程度的热液蚀变,促进稀土元素再富集;三是部分学者通过对比研究二叠纪峨眉山玄武岩及其同期长英质凝灰岩的地球化学特征,认为稀土异常富集与峨眉山玄武岩同期的碱性岩浆活动产生的凝灰岩有关,并接受了后期低温热液改造(Xu et al., 2001; Zhou et al., 2002; Long et al., 2004; Dai et al., 2010; Zhao et al., 2016)。
笔者研究发现,区域上宣威组富稀土岩系整体呈层状产出,从滇东到黔西横向演化和相变特征清晰;富稀土岩系底部常见河道相砾岩,辫状河沉积体系发育,层内偶见植物碎屑化石,层间发育水平层理等典型沉积构造;稀土含量较高的岩石主要为灰白色铝土质黏土岩,矿物组成主要为高岭石以及少量来自玄武岩及凝灰岩的典型矿物;由稀土配分模式看出铁质黏土岩和黏土质粉砂岩与玄武岩相比具有继承性,而铝土质黏土岩呈现出有别于玄武岩的明显负Eu异常特征(田恩源等, 2020);滇东—黔西地区位于上扬子陆块西缘,晚震旦世以来,长期处于相对稳定的台地沉积环境,区内无岩浆活动,不具备热液型稀土及南方离子吸附型稀土的成矿条件。基于以上认识,本文认为峨眉山玄武岩及同期的凝灰岩为富稀土岩系提供了主要的物质来源,而富稀土岩系中铝土质黏土岩很可能在沉积成岩过程中混入了大量上地壳富稀土物源区的物质,使得铝土质黏土岩中稀土异常富集。综上所述,本文认为滇东—黔西地区稀土资源成因类型为沉积型,是一种新类型的稀土资源。
6.2 稀土元素赋存状态
该稀土矿中稀土元素的赋存状态存在较大争议,前人分析矿石中稀土元素含量的高低可能与矿物组分有密切关系(周灵洁, 2012; Zhou et al., 2013; Zhang et al., 2016; Zhao et al., 2016, 2017; He et al., 2018)。在风化过程中,如果含稀土元素的副矿物抗风化能力弱,稀土元素则容易从副矿物中释放出来,以离子形式迁移富集于黏土矿物中,黏土矿物含量越高,稀土含量往往也相应比较高,稀土含量与黏土矿物含量就有较高的正相关性,据此推测认为稀土元素极有可能以离子吸附相和富含稀土元素的残余独立矿物相组成,与高岭石等黏土矿物含量密切相关;徐莺等(2018)利用电子探针、X射线衍射等现代分析测试手段并结合矿石选冶试验,认为稀土元素以类质同象为主、离子吸附相为辅的形式赋存于高岭石质黏土岩中;黄训华(1997)、吴承泉等(2019)通过分析在强烈风化条件下母岩被解析形成的稀土元素可能存在的赋存状态,认为稀土元素可能以离子吸附态、胶体吸附态等的混合态赋存于高岭石硬质黏土岩中。以上研究并未提供确凿证据证明稀土元素赋存状态。本文作者开展多组原矿铵盐浸出对比实验,稀土元素浸出率不超过20%,间接说明了稀土原矿中以离子吸附态赋存的稀土元素占比很低;据矿石岩矿鉴定,查明以独立稀土矿物形式赋存的稀土元素占比<0.1%,以类质同像(非独立稀土矿物)形式赋存的稀土元素占比也很低;而通过550℃~850℃焙烧选择性浸出技术,准确破坏稀土元素载体矿物——高岭石的特定结构,稀土元素浸出率高于90%。基于以上研究,推测稀土元素极有可能以某种形态赋存于高岭石矿物晶体层间间隙中。
6.3 关键稀土元素及其价值
随着全球新材料、新技术、新能源、高新电子、高端装备制造、先进军事装备等战略性产业迅猛发展,加快了对原材料的结构性调整,一批新兴战略性关键矿产成为各国竞相争夺的资源。根据稀土各元素特有的性质,轻稀土中的Pr、Nd,重稀土中的Tb、Dy等元素由于其在高强度永磁行业、新能源汽车产业、高端声光电材料等方面具备不可替代的地位,这些制约着全球新兴产业、高新科技健康发展的稀土元素称之为“关键稀土元素(CREE)”。据上海有色网公布的2020年6月稀土氧化物实时交易均价(据上海有色网未公布Tm2O3、Yb2O3、Lu2O3成交均价)显示(图 8),Pr、Nd、Tb、Dy关键稀土氧化物价格分别29.5万元/t、28.0万元/t、419万元/t、194万元/t,合计约占所有单一稀土氧化物价格总和的88%,可见关键稀土元素具有极高的经济价值和重要的战略地位。
滇东—黔西地区发现的沉积型稀土矿具有矿层厚、矿石品位高、资源潜力大、矿石中关键稀土元素(CREE)占比高等特点,特别是矿石选冶新工艺取得重大突破,使该类型稀土矿可能实现规模化工业利用。该沉积型稀土矿的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。
7. 结论
(1)滇东—黔西地区发育于二叠系宣威组的稀土矿,其成因类型属沉积型。
(2)稀土元素极有可能以某种形式赋存于高岭石矿物晶体层间间隙中。
(3)该沉积型稀土矿具有矿体厚度大、矿石品位高、资源潜力大、开采成本低、矿石中关键稀土元素(CREO)占比高等优点,其开发利用前景较好。
(4)该沉积型稀土资源的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。
致谢: 感谢西藏矿业教授级高工巴登珠和中国冶金地质总局第二地质勘察院穆小平、施杨术、赵凯等人在野外工作中的耐心指导、支持与帮助。中国地质大学(北京)罗照华教授、中国地质科学院地质研究所刘飞和邱添助理研究员在论文撰写全过程中提供的思路,给予的支持、帮助与宝贵的修改意见;电子探针分析是在中国地质科学院地质研究所电子探针实验室毛小红助理研究员辅助下完成,在此一并致以诚挚的谢意。 -
图 1 青藏高原构造格架图(据Liu Chuanzhou et al., 2010))
Figure 1. Geological sketch map of the Tibetan Plateau, showing major tectonic units(after Liu Chuanzhou et al., 2010))
图 6 丁青蛇绿岩地幔橄榄岩野外露头照片
a—条带状纯橄榄岩和方辉橄榄岩;b—条带状纯橄榄岩和方辉橄榄岩(小尺度);c—团块状纯橄榄岩和方辉橄榄岩;d—块状方辉橄榄岩;e—斑杂状方辉橄榄岩;f—定向方辉橄榄岩;g—斑杂-定向方辉橄榄岩;h—球粒状方辉橄榄岩;i—斑杂-球粒状方辉橄榄岩
Figure 6. Field photos of peridotites in the Dingqing ophiolite
a-Banded dunite and harzburgite, b-Banded dunite and harzburgite (at small scale), c-Crumby dunite and harzburgite, d-Massive harzburgite, e-Taxitic harzburgite, f-Directed harzburgite, g-Taxitic-directed harzburgite, h-Globular harzburgite, i-Taxitic-globular harzburgite
图 10 丁青蛇绿岩铬铁矿矿石和橄榄岩显微照片
a—块状铬铁矿;b—浸染状铬铁矿;c—浸染条带状铬铁矿;d—纯橄榄岩;e—方辉橄榄岩;f—浸染条带状铬铁矿;g—方辉橄榄岩(背散射照片);h—方辉橄榄岩(背散射照片);i—纯橄榄岩(背散射照片); Cr—铬铁矿;Ol—橄榄石;Opx—辉石;Srp—蛇纹石
Figure 10. Microphotographs of chromitite and peridotite in the Dingqing ophiolite
a-Massive chromitite; b-Disseminated chromitite; c-Disseminated banded chromitite; d-Dunite; e-Harzburgite; f-Disseminated banded chromitite; g-Harzburgite (EBS); h-Harzburgite (EBS); i-Dunite; Cr-Chromitite; Ol-Olivine; Opx-Pyroxene; Srp-Serpentine
图 7 丁青蛇绿岩铬铁矿剖面图和平面图
a—拉拉卡探槽6剖面图;b—拉拉卡探槽1剖面图c—拉滩果探槽10剖面图;d—浪达探槽13平面图;e—那宗纳探槽9剖面图
Figure 7. Profiles and a plan view of chromite bodies in the Dingqing ophiolite
a-Profile of Trench 6 in Lalaka; b-Profile of Trench 1 in Lalaka; c-Profile of Trench 10 in Latanguo; d-Plan of Trench 13 in Langda; e-Profile of Trench 9 in Nazongna
图 8 丁青蛇绿岩铬铁矿野外照片
a-拉拉卡探槽6照片; b-拉拉卡探槽1照片; c-那宗纳探槽10照片; d-浪达探槽13照片; e-那宗纳探槽9照片; f-拉拉卡探槽6矿体边部脉状特征
Figure 8. Field occurrence of chromite bodies in the Dingqing ophiolite
a-Photo of Trench 6 in Lalaka; b-Photo of Trench 1 in Lalaka; c-Photo of Trench 10 in Nazongna; d-Photo of Trench 13 in Langda; e-Photo of Trench 9 in Nazongna; f-Photo of the part of Trench 6 in Lalaka
图 9 丁青蛇绿岩铬铁矿不同类型矿石
a—脉状铬铁矿;b—块状铬铁矿;c—块状铬铁矿矿体边部脉状特征;d—浸染状铬铁矿;e—浸染状-块状铬铁矿;f—星散状-稀疏浸染状铬铁矿;g—浸染条带状铬铁矿;h—浸染条带状铬铁矿;i—瘤状铬铁矿
Figure 9. Different types of chromitites in the Dingqing ophiolite
a-Vein chromitite; b-Massive chromitite; c-Vein characteristics at the edge of massive chromitite; d-Disseminated chromitite; e-Disseminatedmassive chromitite; f-Star-sparse disseminated chromitite; g-Disseminated banded chromitite; h-Disseminated banded chromitite; i-Tumor chromitite
表 1 丁青蛇绿岩铬铁矿矿体野外产出特征统计
Table 1 Field occurrence characteristics of chromite bodies in the Dingqing ophiolite
表 3 丁青蛇绿岩铬铁矿矿体中铬尖晶石的电子探针分析结果(%)
Table 3 Representative microprobe analyses of chromian spinel from the Dingqing ophiolite chromitite (%)
表 2 4种类型铬铁矿特征
Table 2 Characteristics of four different chromitites
-
Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-questioning about the rock/melt interaction metallogeny[J]. Geological Bulletin of China, 28(12):1741-1761(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD200912009.htm
Betchaida D. Payot, Shoji Arai, Henry J B. Dick, Natsue Abe, Yuji Ichiyama. 2014. Podiform chromitite formation in a low-Cr/highAl system:An example from the Southwest Indian Ridge(SWIR)[J]. Mineralogy and Petrology, 108(4):533-549. doi: 10.1007/s00710-013-0317-z
Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 305:27-31. http://gji.oxfordjournals.org/external-ref?access_num=10.1038/307027a0&link_type=DOI
González-Jiménez J M, Proenza J A, Gervilla F, Melgarejo J C, Blanco-Moreno J A, Ruiz-Sanchez R, Griffin W L. 2011. HighCr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal Ophiolitic Massif (eastern Cuba):Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements[J]. Lithos, 125(1):101-121.
Huang Guicheng, Xu Deming, Lei Yijun, Li Lijuan. 2007. Chromite prospects in the Daba-Xiugugabu ophiolite zone southwestern Tibet[J]. Geology in China, 34(4):668-674(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200704016
Lai Shengmin, Yang Jingsui, Xiong Fahui, Liu Zhao, Tian Yazhou, Zhou Wenda, Zhang Lan, Chen Yanhong, Gaojian. 2015. Mineralogy and PGE features of Zedang peridotites in eastern Yarlung Zangbo suture, Tibet[J]. Geology in China, 42(5):1515-1534(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201505022.htm
Li Hongsheng. 1988. Early Jurassic(Late Pliensbachian) radiolaria from the Dengqen area, Xizang(Tibet)[J]. Acta Micropalaeontologica Sinica, 5(3):323-330(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003219189
Li Jianghai, Niu Xianglong, Chen Zheng, Feng Jun, Huang Xiongnan. 2002. The discovery of podiform chromite in west Liaoning and its implication for plate tectonics[J]. 18(2): 187-192(in Chinese).
Li Pu. 1955. A preliminary understanding of the geology of eastern Tibet[J]. Chinese Science Bulletin(7):62-71(in Chinese).
Lian Dongyang, Yang Jingsui, Xiong Fahui, Liu Fei, W Yunpeng. 2015. Platinum-group element characteristics of the peridotite and podiform chromitite from Dajiweng ophiolite of the western segment of Yarlung-Zangbo suture zone, Tibet[J]. Geology in China, 42(2):525-546(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201502013.htm
Lin Liang. 2015. Formation Age and Geochemical Characteristics of the Dingqing Ophiolite, Tibet[D]. Beijing: University of Chinese Academy of Sciences(in Chinese with English abstract).
Liu Chuanzhou, Wu Fuyuan, Simon A. Wilde, Yu Liangjun, Li Jiliang. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism[J]. Lithos, (114):413-422. http://www.sciencedirect.com/science/article/pii/S0024493709003909
Qian Wenbin, Qian Qing, Yue Guoli, Li Qiusheng, Zhang Qi, Zhou Meifu. 2002. The geochemical characteristics of fore-arc ophiolite from Dingqing area, Tibet[J]. Acta Petrologica Sinica, 18(3):392-400(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200203015
Qiang Bazhaxi, Xie Yaowu, Wu Yanwang, Xie Chaoming, Li Qiuli, Qiu Junqiang. 2009. Zircon SIMS U-Pb dating and its significance of cumulate gabbro from Dengqen ophiolite, eastern Tibet, China[J]. Geological Bulletin of China, 28(9):1253-1258(in Chinese with English abstract).
She Yuwei, Zhu Xiangkun, He Yuan, Ma Jiangxiong, Sun Jian. 2017. The new discovery of the podiform chromitite in the Xigaze ophiolite, Yarlung Zangbo suture zone, Tibet[J]. Geology in China, 44(3):610-611(in Chinese with English abstract).
Shoji Arai, Kyoko Matsukage. 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific——a comparison between abyssal and alpine-type podiform chromitites[J]. Lithos, 43(1):1-14. http://www.sciencedirect.com/science/article/pii/S0024493798000036
Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some obserbations on the Guleman-Soridag district, Turkey[J]. Economic Geology, 59:1497-1524. doi: 10.2113/gsecongeo.59.8.1497
Tomoaki Morishita, Jinichiro Maeda, Sumio Miyashita, Hidenori Kumagai, Takeshi Matsumoto, Henry J.B. Dick. 2007. Petrology of local concentration of chromian spinel in dunite from the slowspreading Southwest Indian Ridge[J]. European Journal of Mineralogy, 19(6):871-882. doi: 10.1127/0935-1221/2007/0019-1773
Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo. 2016. Evolution of the Bangong-Nujiang Tethyan ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 245:18-33. doi: 10.1016/j.lithos.2015.07.016
Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits-A case study the Luobosa chromite deposit, Tibet[J]. Acta Geologica Sinica, (2):166-181(in Chinese with English abstract).
Wang Yujing, Wang Jianping, LiuYanming, Li Qiusheng, Pei Fang. 2002. Characteristics and age of the Dingqing ophiolite in Xizang(Tibet) and their geological significance[J]. Acta Micropalaeontologica Sinica, 19(4):417-420(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200204009
Wei Zhenquan, Xia Bin, Zhou Guoqing, Zhou Lifeng, Wang Ran, Hu Jingren, Chen Guojie. 2007. Geochemical characteristics and its origin for mid-ocean ridge superposing oceanic island of chongbe ophiolitic melange, Dingqing, Xizang(Tibet)[J]. Geological Review, 53(2):187-197(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200702007.htm
She Yuwei, Zhu Xiangkun, He Yuan, Ma Jiangxiong, Sun Jian. The new discovery of the podiform chromitite in the Xigaze ophiolite, Yarlung Zangbo suture zone, Tibet[J]. Geology in China, 2017, 44(3):610-611(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201703018
Xiong Fahui, Yang Jingsui, Ba Dengzhu, Liu Zhao, Xu Xiangzhen, Feng Guanying, Niu Xiaolu, X Jifeng. 2014. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 30(8):2137-2163(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408003
Xiong Fahui, Yang Jingsui, Gao Jian, Lai Shengmin, Chen Yanhong, Zhang Lan. 2016. Feature of Zedong podifrom chromitite, eastern Yarlung-Zangbo suture zone in Tibet.[J]. Acta Petrologica Sinica, 32(12):3635-3648(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201612006.htm
Xiong Fahui, Yang Jingsui, Liu Zhao, GuoGuolin, Chen Songyong, Xu Xiangzhen, Li Yuan, L Fei. 2013. High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet[J]. Acta Petrologica Sinica, 29(6):1878-1908(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306004
Xiong Fahui, Yang Jingsui, Robinson P T, Gao jian, Chen Yanhong, Lai Shengming. 2017. Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet:Implications for a suprasubduction zone origin[J]. Journal of Asian Earth Sciences, 146:56-75. doi: 10.1016/j.jseaes.2017.05.001
Xiong Fahui, Yang Jingsui, Robinson P T, Xu Xiangzhen, Liu Zhao, Li Yuan, LinJinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27:525-542. doi: 10.1016/j.gr.2014.04.008
Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultrahighpressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet:A review[J]. Acta Geoscientica Sinica, 29(3):263-274(in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=27855292
Yang Jingsui, Ba Dengzhu, Xu Xiangzhen, L Zhaoli. 2010. A restudy of podiform chromite deposites and their ore-prospecting vista in China[J]. Geology in China, 37(4):1141-1150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm
Yang Jingsui, Larissa Dobrzhinetskaya, Bai Wenji, Robinson P T, Zhang Junfeng, Harry W. Green. 2007. Diamond-and coesitebearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10):875-878. doi: 10.1130/G23766A.1
Yang Jingsui, Robinson P T, Yildirim Dilek. 2014. Diamonds in ophiolites:A little-known diamond occurrence[J]. Elements, 10:123-126. http://www.igeodata.org/handle/20.500.11758/184
Yang Jingsui, Xiong Fahui, Guo Guolin, Liu Fei, Liang Fenghua, Chen Songyong, Li Zhaoli, Zhang Liwen. 2011. The Dongbo Ultramafic massif:A mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for a major chromite deposit[J]. Acta Petrologica Sinica, 27(11):3207-3222(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111005
You Zaiping. 1997. 40Ar/39Ar Geochronology of Dengqen ophiolitic melange in Xizang[J]. Tibet Geology, (2):24-30(in Chinese with English abstract).
Zhang Qi. 1983. The new information about ophiolite in Dengqen County, Tibet[J]. Scientia Geologica Sinica, 1:101-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368517
Zhang Qi, Yang Ruiying. 1985. The geological significance of plutonic intrusion of boninitic series from Dingqing, Xizang[J]. Chinese Science Bulletin, 16:1243(in Chinese).
Zhang Qi, Yang Ruiying. 1987. The geochemical characteristics of intrusion of boninitic series from Dingqing, Xizang[J]. Acta Petrologica Sinica, (2):66-76(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004882522
Zhang Qizhi, Ba Dengzhu, Xiong Fahui, Yang Jingsui. Discussion on genesis process and deep prospecting breakthrough of Luobusa chromitite, Tibet[J]. Geology in China, 2017, 44(2):224-241(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702002
Zheng Haixiang, Pan Guitang, Xu Yaorong, Wang Peisheng. 1982. Some new information about the ultramafics along Nujiang Tectonic Belt-A complete ophiolite suite[C]//Geological Articles of the Qinghai-Xizang Plateau. Beijing: Geological Publishing House(in Chinese).
Zheng Yiyi.1982.Discovery of an ophiolite-melange association in Dengqen area, Xizang(Tibet)[C]//Geological Articles of the Qinghai-Xizang Plateau. Beijing: Geological Publishing House, 177-188 (in Chinese).
Zou Guangfu. 1993. The characteristic of rock geochemistry and origin for Dingqing ophiolite in Tibet[J]. Tibet Geology, (2):46-58(in Chinese with English abstract).
Zhou Meifu, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, western China:Relationship to partial melting and melt/rock reaction in the Upper Mantle[J]. International Geology Review, 36:378-686. http://cn.bing.com/academic/profile?id=667169f2edfe453f496ce2eb489f0e4f&encoded=0&v=paper_preview&mkt=zh-cn
鲍佩声. 2009.再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J].地质通报, 28(12):1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008 黄圭成, 徐德明, 雷义均, 李丽娟. 2007.西藏西南部达巴-休古嘎布绿岩带铬铁矿的找矿前景[J].中国地质, 34(4):668-674. doi: 10.3969/j.issn.1000-3657.2007.04.016 来盛民, 杨经绥, 熊发挥, 刘钊, 田亚洲, 徐向珍, 周文达, 张岚, 陈艳红, 高健. 2015.西藏雅鲁藏布江缝合带泽当地幔橄榄岩的矿物化学和铂族元素特征[J].中国地质, 42(5):1515-1534. doi: 10.3969/j.issn.1000-3657.2015.05.022 李红生. 1988.西藏丁青地区早侏罗世放射虫[J].微体古生物学报, 5(3):323-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003219189 李江海, 牛向龙, 陈征, 冯军, 黄雄南.2002.辽西豆荚状铬铁矿的发现及其意义[J].岩石学报, 18(2): 187-192. 李璞.1955.西藏东部地质的初步认识[J].科学通报, (7):62-71. http://www.cnki.com.cn/Article/CJFDTotal-KXTB195507016.htm 连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏. 2015.雅鲁藏布江缝合带西段达机翁地幔橄榄岩及铬铁矿的铂族元素特征[J].中国地质, 42(2):525-546. doi: 10.3969/j.issn.1000-3657.2015.02.013 林靓. 2015.西藏丁青蛇绿岩的形成时代与岩石地球化学特征[D].北京: 中国科学院大学. 刘文斌, 钱青, 岳国利, 李秋生, 张旗, 周美付. 2002.西藏丁青弧前蛇绿岩的地球化学特征[J].岩石学报, 18(3):392-400. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200203015 强巴扎西, 谢尧武, 吴艳旺, 谢超明, 李秋立, 邱军强. 2009.藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J].地质通报, 28(9):1253-1258. doi: 10.3969/j.issn.1671-2552.2009.09.013 佘宇伟, 朱祥坤, 何源, 马健雄, 孙剑.2017.西藏雅鲁藏布构造带日喀则蛇绿岩中新发现豆荚状铬铁矿化[J].中国地质, 44(3):601-611. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170318&flag=1 王希斌. 1987.豆荚状铬铁矿床的成因——以西藏自治区罗布莎铬铁矿床为例[J].地质学报, (2):166-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000377826 王玉净, 王建平, 刘彦明, 李秋生, 裴放. 2002.西藏丁青蛇绿岩特征、时代及其地质意义[J].微体古生物学报, 19(4):417-420. doi: 10.3969/j.issn.1000-0674.2002.04.009 韦振权, 夏斌, 周国庆, 钟立峰, 王冉, 胡敬仁, 陈国结. 2007.西藏丁青宗白蛇绿混杂岩地球化学特征及其洋中脊叠加洋岛的成因[J].地质评论, 53(2):187-197. http://d.old.wanfangdata.com.cn/Periodical/dzlp200702006 熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 2014.西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J].岩石学报, 30(8):2137-2163. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408003 熊发挥, 杨经绥, 高健, 来盛民, 陈艳红, 张岚. 2016.西藏雅鲁藏布江缝合带东段泽当豆荚状铬铁矿特征[J].岩石学报, 32(12):3635-3648. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162017042100251521 熊发挥, 杨经绥, 刘钊, 郭国林, 陈松永, 徐向珍, 李源, 刘飞. 2013.西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体[J].岩石学报, 29(6):1878-1908. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306004 杨经绥, 巴登珠, 徐向珍, 李兆丽. 2010.中国铬铁矿床的在研究及找矿前景[J].中国地质, 37(4):1141-1150. doi: 10.3969/j.issn.1000-3657.2010.04.028 杨经绥, 白文吉, 方青松, 戎合. 2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述)[J].地球学报, 29(3):263-274. doi: 10.3321/j.issn:1006-3021.2008.03.002 杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011.东波超镁铁岩体:西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体[J].岩石学报, 27(11):3207-3222. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201303008 游再平. 1997.西藏丁青蛇绿混杂岩40Ar/39Ar年代学[J].西藏地质, (2):24-30. http://www.cqvip.com/QK/97137X/199702/2874879.html 张旗. 1983.丁青蛇绿岩新知[J].地质科学, (1):101-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368517 张旗, 杨瑞英. 1985.西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J].科学通报, (16):1243-1243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001997720 张旗, 杨瑞英. 1987.西藏丁青蛇绿岩中玻镁安山岩类侵入岩的地球化学特征[J].岩石学报, (2):66-76. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198702005.htm 章奇志, 巴登珠, 熊发挥, 杨经绥. 2017.西藏罗布莎豆荚状铬铁矿床深部找矿突破与成因模式讨论[J].中国地质, 44(2):224-241. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170202&flag=1 郑海翔, 潘桂棠, 徐跃荣, 王培生. 1982.怒江构造带超基性岩新知——一个完整的蛇绿岩套的确定[C]//青藏高原地质文集, 北京.地质出版社. 郑一义. 1982.西藏丁青地区蛇绿岩-混杂岩的发现[C]//青藏高原地质文集.北京.地质出版社. 邹光富. 1993.西藏丁青蛇绿岩岩石地球化学特征及其成因意义[J].西藏地质, (2):46-58. http://cdmd.cnki.com.cn/Article/CDMD-80165-2007101605.htm -
期刊类型引用(9)
1. 孔祥科,李义,王平,韩占涛,刘圣华,张兆吉,王妍妍. 制革污泥渗滤液中特征污染物对土壤氨氮转化及微生物群落结构的影响. 中国地质. 2024(05): 1676-1685 . 本站查看
2. 谷培科,陆海建,梁小阳,王俊,邓一荣. 华南地区某地块地下水污染特征与成因分析. 农业与技术. 2024(22): 96-99 . 百度学术
3. 李晓源,程庆禧,张宇霆,陆海建,邓一荣. 华南典型工业地块地下水污染特征与成因分析. 生物化工. 2024(06): 114-117 . 百度学术
4. 陈秀梅. 基于因子-聚类分析的地下水中阳离子来源研究. 环境监控与预警. 2023(02): 15-21 . 百度学术
5. 陈秀梅. 南通市深层地下水中氨氮的影响因素研究. 环境监测管理与技术. 2023(04): 72-75 . 百度学术
6. 吕晓立,郑跃军,韩占涛,李海军,杨明楠,张若琳,刘丹丹. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因. 地学前缘. 2022(03): 88-98 . 百度学术
7. 吕晓立,刘景涛,韩占涛,朱亮,李海军. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因. 环境科学. 2022(10): 4449-4458 . 百度学术
8. 郑艺文,李福杰,刘晓煌,常铭,赵宏慧,赖明,张子凡. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应. 中国地质. 2022(05): 1361-1373 . 本站查看
9. 曹建文,夏日元,唐仲华,赵良杰,王喆,栾崧,王松. 粤港澳大湾区地下水资源特征及开发潜力. 中国地质. 2021(04): 1075-1093 . 本站查看
其他类型引用(0)