Metallogenic features of diamondiferous kimberlites in Botswana and China:Enlightenment for exploration of the same type deposits
-
摘要:
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。
Abstract:Important implications for the interior workings, constituent, circulation between crust and mantle, convection between core and mantle of the Earth can be drawn by studying diamonds and their hosted rocks. Based on the geological comparison of metallogenic kimberlites from super-giant deposits in Botswana and Mengyin and Wafangdian deposits in China, the authors put forward some exploration suggestions and prospecting clues as follows:(1) Kimberlite is an unique diamondiferous rock in Botswana, whereas lamproite is a main hosted -rock in South China craton including two important lamproite zones along the Jiangnan orogenic belt and northern margin of South China craton. Kimberlite is dominantly distributed in the North China craton, which is composed of three kimberlitic zones along Tanlu fault, Trans-North China orogen and northern margin of North China. Two industrial value diamondiferous kimberlite deposits are distributed in the Tanlu zone. (2) In-situ U-Pb age and Sr, Nd isotopic data of perovskites show that 86-97 Ma Orapa kimberlites and 456-470 Ma Mengyin and Wafangdian kimberlites have low 87Sr/86Sr ratios of 0.703-0.705, medium εNd(t) values ranging from -0.09 to 5, indicating that primary kimberlitic magmas were likely derived from primitive mantle or convective lower mantle. (3) Primary kimberlites in Botswana dominantly occur as pipes, while in China they mainly occur as irregular fissures, expressed as dykes and lesser extent sills. Crater facies are pervasively observed in Orapa and Jwaneng kimberlite pipes in comparison with hypabyssal (or root zone) facies in Mengyin and Wafangdian pipe clusters. (4) Orapa A/K1 and Jwaneng mines are a few diamondiferous kimberlitic pipes yielding predominantly eclogitic xenoliths and E type diamond. In contrast, Letlhakane, Damtshaa and Karowe mines also occur in Orapa cluster, Mengyin and Wafangdian mines from the Tanlu kimberlite belt have mainly peridotite xenoliths as well as P type and E type diamonds. (5) Some exploration suggestions and prospecting clues of diamondiferous kimberlites are presented as follows:(A) Deep faults cutting through on-craton and off-craton subcontinental lithospheric mantle play a role in the emplacement of kimberlites; (B) Soil sampling for kimberlite indicator minerals such as picroilmenite and garnet, Cr-rich rutile, Cr-spinel and Cr-diopside is a primary exploration tool; (C) Geophysical surveys such as aeromagnetic mothed should be combined with soil sampling for better prospecting results. (6) Work in diamondiferous prospecting target areas in the Tanlu kimberlite zone, Jiangnan lamproite zone and Tarim block should be further strengthened. Illuvial type diamond deposits in China have great potential for mineralization.
-
Keywords:
- kimberlite /
- diamond /
- prospecting indicator /
- Botswana /
- China
-
1. 引言
三塘湖组(P1s)是广泛分布于新疆东准噶尔东北缘(三塘湖、克孜勒塔格、小青居羚山、库普及苏都库都克一带)的一套中酸性火山岩及其碎屑岩组合的陆相火山岩地层。下部为火山碎屑沉积岩与酸性喷出岩及中酸性火山碎屑岩不均匀互层;上部为中酸性喷出岩及火山碎屑岩夹火山碎屑-正常碎屑沉积岩,局部少量玄武岩;沉积夹层中产早二叠纪植物化石:Noeggerathiopsis cf. theodori Tschilova et Zalessky, Noeggerathiopsis cf. subangusta Zalessky(Sun, 1995)。
对这套陆相火山岩的研究最早始于1966年,1: 20万库普幅(L-46-XXV)将其划为中石炭世巴塔玛依内山组❶;1:20万奥什克山幅(L-46-XIX)将其自下而上划分为巴塔玛依内山组与苏都库都克组❷;1976年1:20万卡姆斯特幅(L-45-XXIV)亦将其划分为巴塔玛依内山组与苏都库都克组❸。随后,1979年1:20万克孜勒塔格幅(L-46-XXXV)❹与琼河坝幅(L-46-XXXVI)❺将其划分为上石炭统哈尔加乌组;1980年1:20万乌通苏依泉幅(L-46- XXVI)区调中将其划为中—上石炭统哈尔加乌组(C1-2h)❻;1:20万三塘湖幅(L-46-XXXIV)将这套地层在石头梅与条山地区分别划分为卡拉岗组(P1k)与哈尔加乌组❼;1985年新疆维吾尔自治区1: 200万地质图说明书将东、西准噶尔地区这套陆相火山岩自下而上统一定名为哈尔加乌组与卡拉岗组。但在1991年新疆维吾尔自治区地质矿产勘查开发局通过岩石地层清理则认为哈尔加乌组与卡拉岗组在三塘湖地区为同一层位,没有上下关系,时代为早二叠世;1995年孙巧缡在清理新疆岩石地层时建议将分布在新疆东准噶尔地区的这套陆相中酸性火山岩及其碎屑岩地层重新创名,由于三塘湖地区该套地层出露较好,建议用“三塘湖组”代表这套早二叠世地层;2000年新疆维吾尔自治区地质调查院认为这一建议较为切合实际,故沿用三塘湖一名代表这一套陆相火山岩❽。2015—2018年江西省地质矿产勘查开发局赣西北大队通过本次《新疆东准噶尔地区1:5万L46E019007、L46E019008、L46E020008三幅区域地质矿产调查项目》认为奥依托浪格地区原三塘湖组应划归为巴塔玛依内山组(C1-2bt)❾。
2. 地质背景及样品采集
新疆准噶尔盆地东北缘的三塘湖地区位于西伯利亚板块与哈萨克—准噶尔板块的结合部位,夹持在阿曼太—扎河坝与卡拉麦里巨型缝合带之间,因其特殊的大地构造位置而成为研究中亚造山带(CAOB)构造演化的热点区域之一(Li et al., 2012)。晚古生代是三塘湖地区经历洋陆转换的关键时期(Zhou et al., 2006),大地构造背景争议的时间段集中在早石炭世至早二叠世,这一时期以海相沉积结束,发育典型的陆相火山岩为特征。争论的焦点主要可概括为以下两点:观点一(Zhao et al., 2008; Chen et al., 2009; Wu et al., 2009; Yang et al., 2010; Mao et al., 2010)认为三塘湖地区晚古生代陆相火山岩形成于碰撞造山期后陆内伸展背景;观点二(Long et al., 2006; Zhao et al., 2006; Zhao et al., 2006; Li et al., 2010)则认为三塘湖地区陆相火山岩形成于与俯冲作用相关的岛弧环境。新疆东准噶尔地区构造背景复杂,形成这种争议的关键性因素即在于北疆岩石地层划分的混乱性,在三塘湖地区建组的这套二叠纪中酸性陆相火山岩是否在整个三塘湖盆地具有普适性还有待商榷,其内是否包含了石炭纪陆相火山岩而面临解体需要进一步的工作证实。基础地质问题的解决对正确划分岩石地层单元、厘清陆相火山岩的时空演化序列、解释晚古生代的构造演化具有重要的地质意义。
研究区位于天山兴蒙造山系(一级)准噶尔弧盆系(二级),跨北准噶尔晚古生代沟弧带与唐巴勒—卡拉麦里古生代复合沟弧带两个三级构造单元,包括洪古勒楞—阿尔曼太早古生代沟弧带、谢米斯台—库兰卡兹干古生代复合沟弧带、三塘湖晚古生代弧间盆地3个四级构造单元。奥依托浪格地区原三塘湖组陆相火山岩位于三塘湖晚古生代弧间盆地构造单元中,陆相火山岩共收集年龄样品3件,其中2件为锆石样品(RZ29-1、RZ48-1),岩性为含橄榄石玄武岩,岩石呈深灰色,斑状-间粒间隐结构,块状构造。斑晶主要由斜长石(15%)组成,极少量橄榄石,斜长石粒度0.02~1 mm,呈自形板状,具强泥化,橄榄石呈自形柱状、粒状,具强暗化,并具蛇纹石化,从斑晶到基质粒度有过渡变化。基质主要由微板条状斜长石组成,斜长石杂乱分布,斜长石蚀变同斑晶,在斜长石之间分布微粒状辉石、玻璃质及少量磁铁矿,辉石较新鲜。磁铁矿呈微晶粒状嵌布在玻璃质中,玻璃质显光性,颜色较淡。在岩石中分布少量微细不规则杏仁体,杏仁体由沸石组成。1件为化石样品(D0811HS-1),岩性为含炭质粉砂岩,层状片理发育,化石主要见于层面上。采样位置如图 1所示。
图 1 研究区大地构造位置及地质图I−2—查尔斯克−乔下哈拉缝合带;I−3—准噶尔弧盆系;I−4—准噶尔地块−吐哈地块;I−3−1—北准噶尔晚古生代沟弧带;I−3−1b—洪古勒楞—阿尔曼太早古生代沟弧带;I−3−2b—谢米斯台—库兰卡兹干古生代复合沟弧带;I−3−2c—三塘湖晚古生代弧间盆地;I−3−2d—唐古巴勒—卡拉麦里古生代复合沟弧带;Qheol—风成堆积物;Qhch—化学沉积;Qhal—冲积堆积;Qhpl—洪积堆积;Qp3X—新疆群;J2t—头屯河组;J2x—西山窑组;J1s—三工河组;T2-3k—克拉玛依组;P3hl—黄梁沟组;C1-2bt—巴塔玛依内山组;C1j—姜巴斯套组;D3C1j—江孜尔库都克组;D3kx—卡希翁组;D3ka—克安库都克组;D2w—乌鲁苏巴斯套组Figure 1. Geotectonic location and geological map of the study areaI−2−Chaersike−Qiaoxiahala suture; I−3−Junggar arc basin; I−4−Junggar block−Tuha block; I−3−1−Late Paleozoic groove arc belt in North Junggar; I−3−1b−Hongguleleng−Aermantai early Paleozoic groove arc; I−3−2b−Xiemisitai−Kulankazigan Paleozoic composite groove arc; I−3−2c−Late Paleozoic inter-arc basin in Santanghu; I−3−2d−Tanggubale−Kalamaili Paleozoic composite groove arc; Qheol− Aeolian deposit; Qhch−Chemical deposit; Qhal−Alluvial deposit; Qhpl−Flood deposit; Qp3X−Xinjiang Group; J2t−Toutunhe Formation; J2x−Xishanyao Formation; J1s−Sangonghe Formation; T2−3k−Kelamayi Formation; P3hl−Huanglianggou Formation; C1−2bt−Batamayineishan Formation; C1j−Jiangbasitao Formation; D3C1j− Jiangzierkuduke Formation; D3kx−Kaxiweng Formation; D3ka−Keankuduke Formation; D2w−Wulusubasitao Formation3. 锆石U-Pb年代学特征
重砂样采集由新疆维吾尔自治区矿产实验研究所完成,锆石制靶与阴极发光分析在北京离子探针中心完成,将样品破碎至约100 μm,先用磁法和重液分选,然后在双目显微镜下手工挑选。将代表性的锆石颗粒黏在直径25 mm环氧树胶上,然后磨光至一半,抛光并镀金。锆石的阴极发光图像研究利用FEI PHILIPS XL30型扫描电镜,实验条件为15 kV,120μA.U,Th和Pb同位素组成分析在SHRIMPⅡ上进行。测定的206Pb/238U比值用标准锆石SL13(572 Ma)和澳大利亚的TEM(417 Ma)进行校正。每测定一次标准样品,测定3~4个锆石待测点。普通Pb校正采用204Pb直接测定法,加权平均年龄计算采用Isoplot软件,其置信度为20,置信水平95%,测试数据见表 1。
表 1 RZ29-1、RZ48-1锆石SHRIMP U−Pb年龄测试结果Table 1. RZ29-1 and RZ48-1 zircon SHRIMP U−Pb age test results图 2是RZ29-1含橄榄石玄武岩锆石的阴极发光图,锆石大多呈短柱状,部分为不规则椭圆状,锆石发育发光强度不同的晶域,其中发光较弱的晶域锆石岩浆环带不可见,呈“墨棒状”,而发光较强的晶域则环带发育,以不规整椭圆状为多。对含橄榄石玄武岩进行了15个点位测试(表 1),其中10个年龄分布在305~335 Ma,3个年龄在402~419 Ma,2个年龄异常为277.7 Ma与481 Ma;通过观察锆石形态与打孔位置,10个300 Ma左右的年龄均为环带不发育与发育较好的锆石;3个400 Ma年龄的锆石可能为捕获的较老的基底锆石,2个年龄异常值可见打点均未位于锆石的边部,包含了边部与核部两部分。剔除这5个锆石(1、5、9、10、12)不稳定值,剩余10个年龄较稳定的锆石具有线性的Th/U值,说明锆石是从成分相对均匀的岩浆中结晶出来的。因此测定的206Pb/238U年龄加权平均值可以代表陆相火山岩中锆石的结晶年龄,即火山岩的成岩年龄。图 3中是RZ48-1含橄榄石玄武岩部分锆石的阴极发光图,部分锆石岩浆环带不发育,对该样品打点8个,大多数年龄分布在300~362 Ma,通过观察锆石形态与打孔位置,7个330 Ma左右的年龄均为环带不发育与发育较好的锆石,这7个年龄较稳定的锆石具有线性的Th/U值。
在谐和图上,所有数据均位于谐和线附近,最终测定的锆石U-Pb加权平均年龄为(320.5±7.1) Ma,MSWD=3.2(图 4),处于二分的上下石炭统界线附近,说明该火山岩形成于晚石炭世早期。RZ48-1测定的锆石U-Pb年龄为(335.6±6.5)Ma,MSWD= 1.9(图 5),为早石炭世晚期。
4. 三塘湖组解体讨论
4.1 三塘湖组的重新厘定与解体
在三塘湖地区,三塘湖组原为巴塔玛依内山组、苏都库都克组(或哈尔加乌组与卡拉岗组)的统称,代表三塘湖地区一套二叠系陆相中酸性火山岩系地层(Li et al., 2016),通过地质剖面与1: 5万路线调查,基本查明奥依托浪格地区陆相火山岩为一套基性火山岩及碎屑岩组合,仅发育少量中酸性火山岩,与三塘湖组中酸性火山岩为主有较大差异(图 6)。
图 6 奥依托浪格幅巴塔玛依内山组实测地质剖面缩略图1—砾岩;2—泥质粉砂岩;3—玄武岩;4—安山岩;5—英安岩;6—流纹质英安岩;7—珍珠岩;8—凝灰岩;9—闪长岩;10—粗面岩;11—火山角砾岩;12—碎石亚黏土Figure 6. Measured geological section map of the Batamayineishan Formation in Aoyituolangge geological map1-Conglomerate; 2-Argillaceous siltstone; 3-Basalt; 4-Andesite; 5-Dacite; 6-Dellenite; 7-Pearlite; 8-Tuff; 9-Diorite; 10-Trachyte; 11-Volcanic breccia; 12-Detritus subclay巴塔玛依内山组与其他石炭系不同,陆相火山岩广泛发育,是东准噶尔地区东北缘火山岩产出的主要层位。该组最早是由1:20万库普幅(L-46- XXV)区域地质矿产调查时建立,建组地点位于卡拉麦里蛇绿岩带的巴塔玛依内山南麓,主要表现为一套酸性、中基性陆相火山-湖相沉积体系。溢流相火山岩依岩性可分为玄武岩、安山岩、英安岩、流纹岩和珍珠岩等,具明显的多期次、间歇性喷发的特征(Zhang et al., 2014)。本文中测制巴塔玛依内山组地质剖面如图 6所示:地层厚度大于2248 m,总体呈现北倾的单斜构造,局部褶皱构造发育;岩性组合中以溢流相玄武岩为主,同时少量发育安山岩、玄武安山岩、粗面岩、英安岩、流纹英安岩和珍珠岩等;爆发相为各类型凝灰岩、火山角砾岩、玄武质角砾岩等;喷发间歇期可见泥质粉砂岩、细砂岩、岩屑砂岩、砾岩等沉积相系。通过剖面的岩相学研究,将本区巴塔玛依内山组依据正常沉积岩组分为3个喷发间歇期,火山作用岩组分为4个喷发旋回,以及13个喷发韵律❾,显示了本区巴塔玛依内山组同样具有多期次、间歇性喷发的特征,同区域上具有一致性。
准噶尔盆地陆东—五彩湾及北三台地区的钻孔资料显示,巴塔玛依内山组总体表现为上下两套火山岩中间夹一套碎屑岩,可分为三段:下段以溢流相中酸性火山岩与爆发相火山碎屑岩为主,上段以溢流相中基性火山岩夹爆发相火山碎屑岩为主,中段碎屑岩为火山喷发间歇期的正常沉积,局部地区夹煤层或煤线,含有丰富的植物和孢粉化石,植物化石为典型安加拉植物群,孢粉以高含量的单气囊的Noeggerathio psidozonotriletes为主要特征(Lü et al., 2013)。本文将巴塔玛依内山组分为上下两段,岩相演化序列清晰,段与段之间呈明显的岩相递变关系:下段(C1-2bt1)主要为爆发相(凝灰岩、火山角砾岩、集块岩)与喷发沉积相(砂岩、凝灰质砂岩)不均匀互层,其中东南角喷发沉积相极其发育,可见大型交错层理,成层性、褶皱形态清晰,细碎屑岩段见煤线发育,并有植物化石产出,但收集的样品经鉴定为蕨类植物的部分茎干,无时代意义;上段(C1-2bt2)主要为溢流相(基性玄武岩、少量中酸性安山岩、英安岩)夹爆发相(凝灰岩、火山角砾岩),极少量沉积岩夹层中亦可见煤线与植物化石。本文所分上下段分别可与陆东—五彩湾及北三台地区的巴塔玛依内山组中上段(碎屑相-喷出相)相对应(图 7)。
巴塔玛依内山组上段中采集的植物化石(D0811HS-1)经南京古生物研究所鉴定,植物化石种类为次狭科达(匙叶)(近似种)Noeggerathiopsis cf. subangusta Zalessky,属安加拉区系植物,给出的时代为二叠纪,与库普幅(L-46-XXV)最早定名为中石炭统巴塔玛依内山组内所发现的早二叠世化石一致,充分说明这类植物化石的穿时性。有报道指出,新疆北部的安加拉区系植物最早出现在早石炭世晚期,繁盛于二叠纪(Dou et al., 1985),这就解释了石炭纪地层中出现了二叠纪化石的合理性:即次狭科达(匙叶)也可以出现在石炭纪中晚期,为中晚石炭世与二叠纪早期的共同分子。
关于巴塔玛依内山组的年代学研究,从晚泥盆世晚期(364.0±13)Ma(Luo et al., 2012)到早二叠世晚期(275.0±6.8)Ma(Zhang et al., 2009)均有文章报道,时间跨度大,究其原因还是因为北疆这套陆相火山岩地层时代划分的混乱性。即使是石炭纪内部,巴塔玛依内山组同样存在早石炭世与晚石炭世的争议。通过本次巴塔玛依内山组年代学数据的统计学研究发现,绝大多数年龄数据分布在石炭纪内,仅1个数据与5个数据(其中4个数据属同一文章报道)分别位于晚泥盆世晚期与早二叠世晚期(未列表),不具有代表性。石炭纪共收集年龄数据为18个,如表 2所示,其中早石炭世数据为6个,晚石炭世数据为12个,说明在区域上巴塔玛依内山组在晚石炭世比较发育。而本次工作分别对巴塔玛依内山组上下两段分别进行了SHRIMP锆石U-Pb定年,获得其下段年龄为(335.6±6.5)Ma、上段年龄为(320.5±7.1)Ma,说明巴塔玛依内山组下上段分别形成于早石炭世晚期与晚石炭世,具有穿时性,对解决巴塔玛依内山组下上石炭统之争具有重大的年代学意义。
表 2 巴塔玛依内山组年代学数据Table 2. Chronologic data of Batamayineishan Formation前人研究表明北疆东准噶尔东北缘这套陆相火山由于上下关系不明很难进行解体,但本文认为这套陆相火山岩自西向东具有由早石炭世向早二叠世过渡演化的特征,可根据地质时代对石炭纪与二叠纪地质体进行区分,而本区的石炭纪陆相火山岩地层明显与区域上巴塔玛依内山组具有可对比性,故认为应将原三塘湖组解体为下—上石炭统巴塔玛依内山组与下二叠统(新)三塘湖组,三塘湖组仅代表二叠纪陆相火山岩。
4.2 石油地质意义
新疆北部东准噶尔东北缘这套陆相火山岩由于地层时代划分的混乱性,对其构造背景的争议主要体现在岛弧环境和板内拉张环境两方面,纵观东准噶尔晚古生代的演化历史,通常认为其为自西向东呈拉链式逐渐拼接的过程。在奥依托浪格地区,早石炭世早期仍存在卡拉麦里大洋向北俯冲作用下的残余洋盆沉积——姜巴斯套组(C1j),姜巴斯套组上部产大量海生动物化石(图 8),化石层厚近30 m,说明海洋生物活动范围逐渐变窄而汇聚至最终死亡,暗示残余洋盆受俯冲拼接作用而逐渐萎缩,直至早石炭世晚期奥依托浪格以西拼接最终完成(奥依托浪格以东三塘湖方向可能仍然存在俯冲作用),开启陆相火山演化阶段。
笔者对奥依托浪格石炭纪火山岩进行了地球化学研究,研究显示巴塔玛依内山组火山熔岩以橄榄玄武岩为主,岩石类型显示自西向东呈钙碱-碱性变化趋势,姜巴斯套组火山岩则为拉斑玄武岩系,从岩系上可以看出两个方向上的演化:由南向北与俯冲作用方向一致的拉斑-钙碱序列,显示残余洋盆向岛弧演化;由西向东与链式拼合方向一致的钙碱-碱性序列,显示岛弧向陆内(弧后)拉张演化。微量与稀土元素显示石炭纪火山岩富集大离子亲石元素(LILE)与轻稀土元素(LREE),亏损高场强元素(HFSE)与重稀土元素(HREE),总体具有岛弧火山岩的特征;但从其岩石组合特征及其微量元素特征指标来看,又与传统的岛弧火山岩具有明显差异,兼具岛弧环境与板内拉张环境的地球化学性质❾。由此本文认为,新疆东准噶尔东北缘这套陆相火山岩地球化学性质的奇特之处,就在于其俯冲作用下的自西向东链式拼接过程,这套陆相火山岩自西向东由石炭纪向二叠纪演化,以奥依托浪格为例,在早石炭晚期,这套陆相火山岩开始演化之时,其西侧已经拼接完成,进入陆内伸展阶段,而其东侧则可能还在继续受到俯冲作用,为岛弧环境,故其地球化学特征同时显示岛弧环境与板内拉张,其构造部位应与弧后盆地相当。
近年来,东准噶尔陆东—五彩湾地区油气勘探发现石炭系巴塔玛依内山组火山岩有不同程度的油气显示,发现了五彩湾气田与卡拉麦里千亿立方米天然气大气田,使得东准噶尔地区巴塔玛依内组越来越受到重视。巴塔玛依内山组与上覆地层克拉玛依组(T2-3k)呈角度不整合关系,说明在石炭纪末期这套陆相火山岩经历过构造抬升,而火山岩的风化壳为油气的优质储层(Zhang et al., 2015),同时本区存在至少3次火山间歇期,其间可见植物化石与煤线,其下段大套喷发沉积相说明其具有形成烃源岩的必要地质条件;另外构造上,巴塔玛依内山组整体呈背斜式,而下段喷发沉积相呈复式背向斜褶皱形态,为极好的油气藏储集体。同时火山机构发育,大量的环形、线性构造为油气的运移富集提供了空间。综上所述,奥依托浪格地区陆相火山岩虽然缺少类似东准噶尔陆东—五彩湾地区的下石炭统滴水泉组沉积地层作为烃源岩层的外部条件,但其自身内部具有形成“自生自储”油气藏的潜力,具有一定的石油地质意义。
5. 结论
(1)本文通过岩性、岩相组合对比与化石、SHRIMP锆石U-Pb年代学研究,认为奥依托浪格地区原三塘湖组(P1s)应重新厘定为巴塔玛依内山组(C1-2bt)。而原三塘湖组应根据时代解体为下—上石炭统巴塔玛依内山组与下二叠统(新)三塘湖组,三塘湖组仅代表二叠纪陆相火山岩。
(2)通过巴塔玛依内山组下上段火山岩SHRIMP锆石U-Pb年代学研究认为巴塔玛依内山组时代具有穿时性,为早石炭世到晚石炭世,对解决巴塔玛依内山组下上石炭统之争具有重大的年代学意义。
(3)北疆东准噶尔东北缘这套陆相火山岩不具备可分性的原因可能与东准噶尔构造带自西向东链式拼接而造成陆相火山岩自西向东由早石炭世向早二叠世连续演化有关。大地构造背景争议的两个焦点:陆内拉张伸展环境与俯冲带之上岛弧环境可能也与这种自西向东拼接方式有关,即该陆相火山岩同时受到东侧岛弧环境与西侧拉张环境的影响。该拼接模式对解释东准噶尔东北缘晚古生代构造演化争议具有重要的理论意义。
(4)本区石炭纪巴塔玛依内山组陆相火山岩构造发育:构造抬升、环形与线性构造、复式背向斜等。同时火山间歇期发育,为奥依托浪格地区巴塔玛依内山组形成“自生自储”油气藏提供了必要的地质条件,具有一定的石油地质意义。
致谢:本文得到江西省地质矿产勘查开发局赣西北大队邹国庆、孙国庆、左全狮高级工程师以及曹钟清、李旭辉教授级高工的指导与帮助;审稿专家对本文提出了宝贵的修改意见,在此一并表示感谢。
注释
❶新疆地质局区测大队. 1966.库普幅(L46-XXV)1:20万区域地质调查报告.
❷新疆地质局. 1966.奥什克山幅(L-46-XIX)1:20万地质图说明书.
❸新疆地质局区域地质调查大队. 1976.卡姆斯特幅(L-45- XXIV)1:20万区域地质调查报告.
❹新疆地质局区域地质调查大队. 1979.克孜勒塔格幅(L- 46-XXXV)1:20万区域地质调查报告.
❺新疆地质局区域地质调查大队. 1979.琼河坝幅(L-46- XXXVI)1:20万区域地质调查报告.
❻新疆地质局区域地质调查大队. 1980.乌通苏依泉幅(L- 46-XXVI)1:20万地质图说明书.
❼新疆地质局区域地质调查大队. 1980.三塘湖幅(L- 46-XXXIV)1:20万地质图说明书.
❽新疆地质调查院. 2000.纸房幅(L46C004002)1:25万区域地质调查报告.
❾江西省地质矿产勘查开发局赣西北大队. 2018.新疆东准噶尔地区1:5万L46E019007、L46E019008、L46E020008三幅区域地质调查报告.
致谢: 论文撰写过程中许志琴院士予以指导,牛晓露副研究员和冯光英副研究员给予华北克拉通和东北陆块构造演化方面的建议,中国地质大学(武汉)吴魏伟博士在金刚石成因方面给予帮助,李观龙和卢雨潇帮助查找材料,两位评审专家提出了宝贵的建议,在此一并表示诚挚地感谢。 -
图 1 博茨瓦纳12个金伯利岩群在行政区图和构造地质简图中的分布(据Brook, 2017修改)
Figure 1. Administrative and geological maps of Botswana depicting locations of 12 kimberlite clusters
图 2 奥拉帕金伯利岩群中金刚石矿的分布图(Kruger et al., 2017)
Figure 2. Positions of the diamondiferous mines in the Orapa kimberlite cluster
图 3 奥拉帕A/K1金刚石矿的3D模型及其野外地质特征
a—A/K1的露头采坑;b—A/K1的3D模型显示由两个金伯利岩筒组成(缩写见正文);c—北筒NPK−普遍可见花岗岩和玄武岩岩屑,岩屑粒径多小于1cm,橄榄石晶屑普遍蛇纹石化和方解石化;d—北筒MVK2−BBX,普遍可见棱角状玄武岩角砾;e—南筒黑色块状火山碎屑金伯利岩(SDVK),比重较大,含大量新鲜橄榄石和少量玄武岩捕虏体;f—南筒南部火山碎屑金伯利岩(SVK)上层,可见大量岩屑和橄榄石斑晶,偶见单斜辉石和钛铁矿
Figure 3. Field photos and a 3D view of the A/K1 kimberlite in which the lithologic units are shown in the text in details
a-Orapa A/K1 open pit containing North and South pipes; b-3D model of the A/K1 kimberlitic pipes; c-Northern Proclastic Kimberlite (NPK) in North pipe showing pervasively granite and basalt debris with size less than 1 cm. Olivine is commonly altered by serpentinization and calcitization; d-Massive Volcaniclastic Kimberlite (MVK)− Basalt breccia xenolith (BBX) in North pipe; e-Southern Dark Volcaniclastic Kimberlite (SDVK) including an amount of olivines in the South Pipe; f-Basalt breccia, olivine, rare clinopyroxene and ilmenite are commonly observed in the upper unit of the Southern Volcaniclastic kimberlite (SVK)
图 4 丹姆沙B/K9矿点岩筒地质简图(据Buse et al., 2011修改)
Figure 4. Schematic geological map illustrating the features of the Damtshaa B/K9(modified from Buse et al., 2011)
图 5 卡罗韦A/K6金刚石矿床岩筒模型和野外地质特征
a—卡罗韦A/K6南、中、北岩筒模型剖面图(南筒模拟深度约300 m(Chinn et al., 2010));b—AK6的3个金伯利岩矿筒中产出50~100克拉金刚石的分布图;c—AK6露头采坑;d—采坑的玄武质围岩;e—南筒的玻基斑状火山碎屑金伯利岩(VK)和块状初始岩浆金伯利岩(MPK)
Figure 5. Geological model and field photographs of diamondiferous kimberlite features in the Karowe mine
a-Geological section of A/K6 mine showing the features of north, central and south lobes; b-Distribution map of diamonds with 50 to 100 carats from north, central and south lobes; c-Open pin of the Karowe (A/K6); d-Country rock of basalt from south lobe; e-Fragmental kimberlite (FK) sample from the central lobe and magmatic/pyroclastic kimberlite (MPK) sample from the south lobe
图 6 朱瓦能DK2矿区的4个金伯利岩管分布图及野外特征
a—DK2露头采坑;b—DK2采坑平面地质简图(de Wit et al, 2016);c—南筒火山碎屑金伯利岩和玄武岩围岩露头
Figure 6. Jwaneng D/K2 pit composed of north, central, south and forth lobes (a); Schematic geological map showing the DK2 features (b); Photographs of the volcanoclastic kimberlite and wall rock basalt from the south lobe (c)
图 7 中国金伯利岩和钾镁煌斑岩分布简图(板块边界和主断裂带据Zheng et al., 2013;许文良等, 2013)
1—山东蒙阴;2—辽宁瓦房店(旧称复县);3—辽宁桓仁;4—辽宁葫芦岛;5—辽宁铁岭;6—吉林集安;7—吉林通化钾镁煌斑岩;8—河南鹤壁;9—河北涉县;10—山西大同饮牛沟钾镁煌斑岩;11—山西大同采凉山;12—山西应县;13—山西柳林;14—内蒙古四子王旗;15—湖北大洪山彭家垮金伯利岩;16—湖北大洪山王关−徐家冲钾镁煌斑岩;17—湖南宁乡;18—广西融水;19—广西都安;20—广西大化;21—贵州镇远;22—贵州施秉;23—贵州麻江;24—扬子陆块西缘钾质煌斑岩;25—浙江龙游;26—江西安远;27—新疆巴楚;28—新疆皮山
Figure 7. Schematic map of kimberlites and lamproites distribution in China
1-Mengyin, Shandong; 2-Wafangdian (formerly known as Fuxian), Liaoning; 3-Huanren, Liaoning; 4-Huludao, Liaoning; 5-Tieling, Liaoning; 6-Ji'an, Jilin; 7-Potassium-magnesium lamprophyre in Tonghua, Jilin; 8-Hebi, Henan; 9-Shexian, Hebei; 10-Yinniugou potassiummagnesium lamprophyre in Datong, Shanxi; 11-Cailiangshan, in Datong, Shanxi; 12-Yingxian, Shanxi; 13-Liulin, Shanxi; 14-Siziwang Banner, Inner Mongolia 15-Pengjia collapse kimberlite in Dahongshan, Hubei; 16-Wangguan-Xujiachong K-Mg lamprophyre in Dahongshan, Hubei; 17-Ningxiang, Hunan; 18-Guangxi meltwater; 19-Du'an, Guangxi; 20-Dahua, Guangxi; 21-Zhenyuan, Guizhou; 22-Shibing, Guizhou; 23-Majiang, Guizhou; 24-K-lamprophyre on the western margin of Yangtze block; 25-Longyou, Zhejiang; 26-Anyuan, Jiangxi; 27-Bachu, Xinjiang 28-Pishan, Xinjiang
图 8 山东蒙阴金伯利岩地质简图(据宋瑞祥, 2013修改)
F1—蒙山断裂;F2—新泰—垛庄断裂;F3—铜冶店—蔡庄断裂;F4—上五井断裂;F5—鄌郚−葛沟断裂;F6—沂水−汤头断裂;F7—安丘—莒县断裂;F8—昌邑—大店断裂
Figure 8. Geological map of Mengyin kimberlites showing the locations of three mines of Changmazhuang, Xiyu and Poli and main faults(modified from Song, 2013)
F1−Mengshan fault; F2−Xintai-Duozhuang fault; F3−TongyedianCaizhuang fault; F4−Shangwujing fault; F5−Zanzenggou fault; F6−Yishui−Tangtou fault; F7−Anqiu−Juxian fault; F8−Changyi−Dadian fault
图 9 辽宁省含金刚石金伯利岩和主要断裂构造分布图(据赵光慧等, 2011;宋瑞祥, 2013修改)
Figure 9. Distribution map of diamondiferous kimberlites and major faults in Liaoning Province (modified from Zhao et al., 2011; Song, 2013)
图 10 辽宁瓦房店金伯利岩群构造地质简图(据(宋瑞祥, 2013;赵春强等, 2018)修改)
Figure 10. Sketch geological map of Wafangdian kimberlite cluster in Liaoning Province including five kimberlite zones (modified from Zhao et al., 2011; Song, 2013; Zhao et al., 2018)
-
Agashev A M, Ionov D A, Pokhilenko N P, Golovin A V, Cherepanova Y, Sharygin I S. 2013. Metasomatism in lithospheric mantle roots:Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya[J]. Lithos, 160-161(1):201-215. http://www.sciencedirect.com/science/article/pii/S0024493712004690
Aulbach S, Jacob D E, Cartigny P, Stern R A, Simonetti S S, Wörner G, Viljoen K S. 2017. Eclogite xenoliths from Orapa:Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin[J]. Geochimica et Cosmochimica Acta, 213:574-592. doi: 10.1016/j.gca.2017.06.038
Bao Peisheng, Su Li, Zhai Qingguo, Xiao Xuchang. 2009. Compositions of the kimberlitic brecciated peridotite in the Bachu area, Xijiang and Iits ore-bearing potentialities[J]. Acta Geologica Sinica, 83(9):1276-1301(in Chinese with English abstract).
Bao Shuhua. 2013. Study on the relationship between kimberlite and diamond in Wafangdian area[J]. Science and Technology Communication, 10:166-168(in Chinese).
Brook M C. 2017. Botswanàs Diamonds Prospecting to Jewellery[M]. Longpack Co., Ltd.
Brown R J, Gernon T, Stiefenhofer J, Field M. 2008. Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana[J]. Journal of Volcanology and Geothermal Research, 174(1/3):195-208. http://www.sciencedirect.com/science/article/pii/S037702730700443X
Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil:Subducted protoliths, carbonated melts and primary kimberlite magmatism[J]. Contributions to Mineralogy & Petrology, 160(4):489-510. doi: 10.1007/s00410-010-0490-6
Burgess R, Turner G, Harris J W. 1992. 40Ar-39Ar laser probe studies of clinopyroxene inclusions in eclogitic diamonds[J]. Geochimica et Cosmochimica Acta, 56(1):389-402. doi: 10.1016/0016-7037(92)90140-E
Buse B, Sparks R S J, Field M, Schumacher J C, Chisi K, Tlhaodi T. 2011. Geology of the BK9 kimberlite (Damtshaa, Botswana):implications for the formation of dark volcaniclastic kimberlite[J]. Bulletin of Volcanology, 73(8):1029-1045. doi: 10.1007/s00445-011-0491-y
Cai Yitao, Zhang Jie, Dong Zhongdou, Cao Zhengqi, Xiao Shuyue, Li Shuai, Li Chenkai, Chen Lezhu, Fan Feipeng. 2018. Neoproterozoic basicmagmatism in the north of Anhui Province:Evidence from whole-rock geochemistry and U-Pb geochronology of Diabase in Langan area[J].Geology in China, 45(2):351-366 (in Chinese with English abstract).
Campbell J A, Jooste V. 2017. The AK6 kimberlite Discovery through to production-learning the lessons of history[C].11th International Kimberlite Conference: 1-16.
Cartigny P, Harris J W, Javoy M. 2001. Diamond genesis, mantle fractionations and mantle nitrogen content:a study of δ13C-N concentrations in diamonds[J]. Earth and Planetary Science Letters, 185:85-98. doi: 10.1016/S0012-821X(00)00357-5
Cartigny P, Palot M, Thomassot E, Harris J W. 2014. Diamond formation:A stable isotope perspective[J]. Annual Review of Earth and Planetary Sciences, 42(1):699-732. doi: 10.1146/annurev-earth-042711-105259
Chi Jishang, Lu Fengxiang. 1996a. The kimberlite in the North China Craton and Characteristics of the Paleozoic Lithosphere Mantle[M]. Beijing:Science Press, 1-292 (in Chinese).
Chi Jishang, Lu Fengxiang, Liu Yongshun, Hu Shijie, Zhao Zonghe, Ye Delong, Zheng Jianping, Zhao Lei, Zhang Hongfu, Jiang Wan. 1996b. Study on the Metallogenic Geological Conditions of Primary Diamond in China[M]. China University of Geosciences Press, 1-138 (in Chinese with English abstract).
Chinn I L, Krug M A, Minnie W P, Rikhotso C T. 2010. Decoding the diamonds from AK6 kimberlite[J]. The Southern African Institute of Mining and Metallurgy Diamonds-Source to Use.
Chinn I L, Perritt S H, Stiefenhofer J, Stern R A. 2018. Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data[J]. Mineralogy and Petrology, 112(Supp.):197-207. doi: 10.1007/s00710-018-0570-2
Comprehensive Geological Team of Hebei Provincial Bureau of Geology and Mineral Resources. 1988. Evaluation of Kimberlite Complex and Survey Report of Diamond of Zhanghe-Shahe River System in Shexian, Hebei Province[R]. (in Chinese).
Creus P K, Basson I J, Stoch B, Mogorosi O, Gabanakgosi K, Ramsden F, Gaegopolwe P. 2018. Structural analysis and implicit 3D modelling of Jwaneng Mine:Insights into deformation of the Transvaal Supergroup in SE Botswana[J]. Journal of African Earth Sciences, 137:9-21. doi: 10.1016/j.jafrearsci.2017.09.010
Davis G L. 1977. The ages and uranium contents of zircons from kimberlites and associated rocks[J]. Second International Conference. doi: 10.29173/ikc945
De Wit M C J. 2018. Prospecting history leading to the discovery of Botswana's diamond mines:from artefacts to Lesedi La Rona[J]. Mineralogy & Petrology:1-16. doi: 10.1007/s00710-018-0556-0
De Wit M J, de Ronde C E J, Tredoux M, Roering C, Hart R J, Armstrong R A, Green R W E, Peberdy E, Hart R A. 1992. Formation of an Archaean continent[J]. Nature, 357(6379):553-562. doi: 10.1038/357553a0
De Wit M J, Ronde C E J D, Tredoux M, Roering C, Hart R J, Armstrong R A, Green R W E, Peberdy E, Hart R A. 1992. Formation of an Archean continent[J]. Nature, 357(6379):553-562. doi: 10.1038/357553a0
De Wit M, Zi B, Davidson J, Haggerty S E, Hundt P, Jacob J, Lynn M, Marshall T R, Skinner C, Smithson K. 2016. Overview of Diamond Resources in Africa[J]. Episodes, 39(2):198. doi: 10.18814/epiiugs/2016/v39i2/95776
Deines P, Stachel T, Harris J W. 2009. Systematic regional variations in diamond carbon isotopic composition and inclusion chemistry beneath the Orapa kimberlite cluster, in Botswana[J]. Lithos, 112:776-784. doi: 10.1016/j.lithos.2009.03.027
Deines P, Harris J W. 2004. New insights into the occurrence of 13C-depleted carbon in the mantle from two closely associated kimberlites:Letlhakane and Orapa, Botswana[J]. Lithos, 77(1):125-142. http://www.sciencedirect.com/science/article/pii/S0024493704001306
Dobbs P N, Duncan D J, Hu S, Shee S R, Colgan E A, Brown M A, Smith C B, Allsopp H L. 1994. The geology of the Mengyin kimberlites, Shandong, China[C]//Meyer H O A, Leonardos O H (eds.). Fifth International Kimberlite Conference, Vol. 1.Companhia de Pesquisa de Recursos Minerais, Araxa: 40-61.
Dong Zhenxin. 1991. Some geological characteristics of kimberlite type diamond deposits in China and their ore-prospectiong indicators[J]. Mineral Deposits, 10(3):255-264(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199103007.htm
Duncan M S, Dasgupta R. 2017. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon[J]. Nature Geoscience, 10(5):387-392. http://www.nature.com/ngeo/journal/v10/n5/ngeo2939/metrics
Eglington B M. 2006. Evolution of the Namaqua-Natal Belt, southern Africa-A geochronological and isotope geochemical review[J]. Journal of African Earth Sciences, 46(1):93-111. http://www.sciencedirect.com/science/article/pii/S1464343X06001348
Field M, Stiefenhofer J, Robey J, Kurszlaukis S. 2008. Kimberlitehosted diamond deposits of southern Africa:A review[J]. Ore Geology Reviews, 34(1/2):33-75. http://www.sciencedirect.com/science/article/pii/S0169136808000188
Gernon T M, Field M, Sparks R. 2009. Depositional processes in a kimberlite crater:the Upper Cretaceous Orapa South Pipe(Botswana)[J]. Sedimentology, 56:623-643. doi: 10.1111/sed.2009.56.issue-3
Gress M U, Howell D, Chinn I L, Speich L, Kohn S C, van den Heuvel Q, Schulten E, Pals A S M, Davies G R. 2018. Episodic diamond growth beneath the Kaapvaal Craton at Jwaneng Mine, Botswana[J]. Mineralogy and Petrology, 112(Supp.1):219-229. DOI: 10.1007/s00710-018-0582-y.
Gress M U, Pearson D G, Timmerman S, Chinn I L, Koornneef J M, Davies G R. 2017. Diamond growth beneath Letlhakane established by Re-Os and Sm-Nd systematics of individual eclogitic sulphide, garnet and clinopyroxene inclusions[C]. EGU General Assembly Conference, 19: 5540.
Griffin W L, Batumike J M, Greau Y, Pearson N J, Shee S R, O Reilly S Y. 2014. Emplacement ages and sources of kimberlites and related rocks in southern Africa:U-Pb ages and Sr-Nd isotopes of groundmass perovskite[J]. Contributions to Mineralogy & Petrology, 168(1):1032. doi: 10.1007/s00410-014-1032-4
Griffin W L, O'Reilly S Y, Natapov L M, Ryan C G. 2003. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins[J]. Lithos, 71(2/4):215-241. http://www.sciencedirect.com/science/article/pii/S0024493703001142
Haggerty S E, Raber E, Naeser C W. 1983. Fission track dating of kimberlitic zircons[J]. Earth and Planetary Science Letters, 63(1):41-50. doi: 10.1016/0012-821X(83)90020-1
Harte B. 2010. Diamond formation in the deep mantle:The record of mineral inclusions and their distribution in relation to mantle dehydration zones[J]. Mineralogical Magazine, 74(2):189-215. doi: 10.1180/minmag.2010.074.2.189
Hastie W W, Watkeys M K, Aubourg C. 2014. Magma flow in dyke swarms of the Karoo LIP:Implications for the mantle plume hypothesis[J]. Gondwana Research, 25(2):736-755. doi: 10.1016/j.gr.2013.08.010
Heaman L M, Kjarsgaard B A, Creaser R A. 2003. The timing of kimberlite magmatism in North America:Implications for global kimberlite genesis and diamond exploration[J]. Lithos, 71(2):153-184. http://www.sciencedirect.com/science/article/pii/S0024493703001117
Hou Guangshun, Xiang Shihong, Qi Yong'an, Zhi Fengqi, Wang Mingguo, Zhou Xue, Lin Liu, Li Ming, Wu Chengbin. 2016. Mineral chemical study on mantle xenoliths from kimberlites in Hebi Region, North China Craton[J].Acta Mineralogica Sinica, 36(3):318-328(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201603002
Huang Yunhui, Qin Shuying, Zhou Xiuzhong, Deng Chujun, Zhao Donggao, Yang Jianmin, Guo Yuemin, Li Gejing, Gao Yan. 1992. North China Craton Kimberlite and Diamond[M]. Beijing:Geological Publishing House, 1-198 (in Chinese with English abstract).
Institute of Geology, Chinese Academy of Geological Sciences. 1970. Geological Survey Report of No.1, Longtoushan Kimberlite Complex, Siziwangqi, Inner Mongolia[R] (in Chinese).
Jacob D E. 2004. Nature and origin of eclogite xenoliths from kimberlites[J]. Lithos, 77(1/4):295-316. http://www.sciencedirect.com/science/article/pii/S0024493704001045
Jacobs J, Pisarevsky S, Thomas R J, Becker T. 2008. The Kalahari Craton during the assembly and dispersal of Rodinia[J]. Precambrian Research, 160(1):142-158. http://www.sciencedirect.com/science/article/pii/S0301926807001611
Kaminsky F. 2012. Mineralogy of the lower mantle:A review of 'super-deep' mineral inclusions in diamond[J]. Earth-Science Reviews, 110(1):127-147. http://linkinghub.elsevier.com/retrieve/pii/S0012825211001668
Kemppinen L I, Kohn S C, Parkinson I J, Bulanova G P, Howell D, Smith C B. 2018. Identification of molybdenite in diamond-hosted sulphide inclusions:Implications for Re-Os radiometric dating[J]. Earth and Planetary Science Letters, 495:101-111. doi: 10.1016/j.epsl.2018.04.037
Kinabo B D, Hogan J P, Atekwana E A, Abdelsalam M G, Modisi M P. 2008. Fault growth and propagation during incipient continental rifting:Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana[J]. Tectonics, 27(3):DOI: 10.1029/2007tc002154.
Kinny P D, Compston W, Bristow J W, Williams I S. 1989. Archaean mantle xenocrysts in a Permian kimberlite: Two generations of kimberlitic zircon in Jwaneng DK2, southern Botswana[C]//Kimberlites and Related Rocks, vol. 14. Geological Society of Australia, 2: 833-842.
Koornneef J M, Gress M U, Chinn I L, Jelsma H A, Harris J W, Davies G R. 2017. Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism[J]. Nature Communications, 8(1):648. http://europepmc.org/articles/PMC5608721
Kruger K, Maphane K. 2017. Orapa, Letlhakane and Damtshaa Mines Field Guide[C]//11th International Kimerlite Conference Field Trip Guide.
Kusky T M. 1998. Tectonic setting and terrane accretion of the Archean Zimbabwe craton[J]. Geology, 26(26):163-166. doi: 10.1130-0091-7613(1998)026-0163-TSATAO-2.3.CO%3b2/
Lei Xueying. 2017. The Review of Kimberlite[J]. Journal of the Graduates Sun Yat-Sen University (Natural Science, Medicine), 38(1):41-51(in Chinese with English abstract). doi: 10.1080-00206819509465403/
Li Xuan. 2012. Age of the Kimberlitic Explosive Breccia in the Bachu Area, Xinjiang and Its Diagenetic Mechanism Research[D]. China University of Geosciences (Beijing): 1-55 (in Chinese with English abstract).
Lian Dongyang, Yang Jingsui, Wiedenbeck M, Dilek Y, Rocholl A, Wu Weiwei. 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey[J]. Contributions to Mineralogy & Petrology, 173(9):72. doi: 10.1007/s00410-018-1499-5
Lian Dongyang, Yang Jingsui, Liu Fei, Wu Weiwei. 2018. Diamond classification, compositional characteristics, and research progress:A review[J]. Earth Science, 1-72 (in Chinese with English abstract).
Liang Rixuan, Fang Qingsong. 1992. Geological conditions for the formation of diamond deposits and direction in diamond prospection in the Tarim platform[J]. Regional Geology of China, (2):161-166(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZQYD199202009.htm
Lin Weipeng. 2007. Studies on the Zircon Mineralogy and Geochronology in the Lamproites and Heavy-sand of Related Rocks from Ningxiang, Hunan[D]. Sun Yat-Sen University: 1-59(in Chinese with English abstract).
Lin Zongman. 2011. Characteristics of Tancheng-Lujiang fault and its role on basin controlling[J]. Journal of Geomechanics, 17(4):322-337(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201104004.htm
Liu Jitai. 2002. Study on Primary diamond ore-forming future in Shandong Province[J]. Shandong Geology, 18(3):100-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI2002Z1034.htm
Liu Zhina, Xu Hong, Wang Qiushu, Chen Mei. 2016. Global diamond resources distribution and suggestions of exploitation for Chinàs mining corporation[J]. China Mining Magazine, (7):5-10(in Chinese with English abstract).
Lu Fengxiang, Han Zhuguo, Zheng Jianping, Ren Yingxin. 1991. Characteristics of Paleozoic lithospheric mantle in Fuxian County Liaoning Province[J]. Geological Science and Tecnology Information, 10(2):20(in Chinese with English abstract).
Lu Fengxiang, Wang Ying, Chen Meihua, Zheng Jianping. 1998. Geochemical characteristics and emplacement ages of the Mengyin kimberlites, Shandong Province, China[J]. International Geology Review, 40(11):998-1006. doi: 10.1080/00206819809465251
Lu Fengxiang. 2008. Kimberlite and Diamond[J]. Chinese Journal of Nature, (2):63-66 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0213898477/
Lu Qi, Shi Nicheng, Liu Huifang, Li Guowu, Tang Zhongdao, Xiao Ping. 2011. TiC inclusion frist found in diamond from Fuxian, Liaoning of China[J]. Geological Science and Technology Information, 30(2):1-5 (in Chinese with English abstract).
Lu Qi, Liu Huifang, Xiao Ping, Shi Nicheng, Li Guowu, Tang Zhongdao. 2012. Discovery and geological significance of majorite inclusion in diamond from Liaoning Province, China[J]. Geological Science and Technology Information, 31(5):5-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205003.htm
Luguet A, Behrens M, Pearson D G, König S, Herwartz D. 2015. Significance of the whole rock Re-Os ages in cryptically and modally metasomatised cratonic peridotites:Constraints from HSE-Se-Te systematics[J]. Geochimica et Cosmochimica Acta, 164:441-463. doi: 10.1016/j.gca.2015.06.016
Luo Huiwen, Yang Guangshu. 1989. Petrologic features of lamproite in Zhenyuan, Guizhou province[J]. Acta Petrologica et Mineralogica, (2):97-109 (in Chinese with English abstract).
Luo Shengxuan, Ren Xirong, Zhu Yuan, Chen Jichang, Guo Yaping, Wei Tonglin. 1999. Geology of Shandong diamond[M]. Jinan:Shandong Science and Technology Press (in Chinese with English abstract).
Luo Zhili, Li Jingming, Li Xiaojun, Liu Shugen, Zhao Xikui, Sun Wei. 2005. Discussion on the Formation, Evolution and Problems of the Tancheng-Lujiang Fault Zone[J]. Journal of Jilin University(Earth Science Edition), 35(6):699-706(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200506005.htm
Lynn M, Nowicki D T, Valenta M, Robinson B, Gallagher M, Bolton R, Sexton J. 2014. Karowe Diamond Mine Botswana NI 43-101 Independent Technical Report (Amended)[R].: 1-155.
Malkovets V G, Rezvukhin D I, Belousova E A, Griffin W L, Sharygin I S, Tretiakova I G, Gibsher A A, O'Reilly S Y, Kuzmin D V, Litasov K D. 2016. Cr-rich rutile:A powerful tool for diamond exploration[J]. Lithos, 265:304-311. doi: 10.1016/j.lithos.2016.08.017
Mapeo R B M, Ramokate L V, Corfu F, Davis D W, Kampunzu A B. 2006. The Okwa basement complex, western Botswana:U-Pb zircon geochronology and implications for Eburnean processes in southern Africa[J]. Journal of African Earth Sciences, 46(3):253-262. doi: 10.1016/j.jafrearsci.2006.05.005
Mccourt S, Armstrong R A, Grantham G H, Thomas R J. 2006. Geology and evolution of the Natal belt, South Africa[J]. Journal of African Earth Sciences, 46(1/2):71-92. http://www.sciencedirect.com/science/article/pii/S1464343X06001336
Mccourt S, Kampunzu A B, Bagai Z, Armstrong R A. 2004. The crustal architecture of Archaean terranes in Northeastern Botswana[J]. South African Journal of Geology, 107:147-158. doi: 10.2113/107.1-2.147
Mcdonald I, Hughes H S R, Butler I B, Harris J W, Muir D. 2017. Homogenisation of sulphide inclusions within diamonds:A new approach to diamond inclusion geochemistry[J]. Geochimica et Cosmochimica Acta, 216, 335-357. doi: 10.1016/j.gca.2017.04.039
Mcdonough W F. 2013. Compositional Model for the Earth's Core[J]. Treatise on Geochemistry, 2:559-577. http://adsabs.harvard.edu/abs/2003TrGeo...2..547M
Mei Houjun, Tang Chunjing, Li Sunrong, Li Yongming, Zhang Xingchun, Lu Dengrong, Zhang Lianchang. 1998. Genesis of diamond deposits of Lamproite and kimberlite in China[J] Science in China (Series D), 28(s2):72-78 (in Chinese).
Miensopust M P, Jones A G, Muller M R, Garcia X, Evans R L. 2011. Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling as part of the Southern African Magnetotelluric Experiment[J]. Journal of Geophysical Research Solid Earth, 116(B2):1-21. doi: 10.1029/2010JB007740/abstract
Mikhail S, Howell D. 2016. Outlooks in Earth and Planetary Materials:Chemistry and Mineralogy of Earth's Mantle:A petrological assessment of diamond as a recorder of the mantle nitrogen cycle[J]. American Mineralogist, 101(4):780-787.
Mmualefe M K. 2017. Jwaneng Diamond Mine, Botwana:History, geology and mining[J]. 11th international Kimberlite Conference Field Trip Guide:1-31.
Modie B N. 2000. Geology and mineralisation in the Meso-to Neoproterozoic Ghanzi-Chobe belt of northwest Botswana[J]. Journal of African Earth Sciences, 30(3):467-474. doi: 10.1016/S0899-5362(00)00032-4
Moen H F G, Armstrong R A. 2008. New age constraints on the tectogenesis of the Kheis Subprovince and the evolution of the eastern Namaqua Province[J]. South African Journal of Geology, 111(1):79-88. http://www.sciencedirect.com/science/article/pii/S0301926807001611
Moore A E. 2014. The origin of large irregular gem-quality type Ⅱ diamonds and the rarity of blue type Ⅱb varieties[J]. South African Journal of Geology, 117(2):219-236. http://geoscienceworld.org/content/gssajg/117/2/219
Moore A, Belousova E. 2005. Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma:implications for mantle structure and the generation of kimberlite magmas[J]. Contributions to Mineralogy and Petrology, 149(4):462-481. doi: 10.1007/s00410-005-0663-x
Motsamai T, Harris J W, Stachel T, Pearson D G, Armstrong J. 2018. Mineral inclusions in diamonds from Karowe Mine, Botswana:super-deep sources for super-sized diamonds?[J]. Mineralogy and Petrology, 112:169-180. doi: 10.1007/s00710-018-0604-9
Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson D G, Pamato M G, Alvaro M, Peruzzo L, Gurney J J, Moore A E. 2018. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle[J]. Nature, 555(7695):237-241. doi: 10.1038/nature25972
Niu X, Yang J, Liu F, Zhang H, Yang M. 2016. Origin of Baotoudong syenites in North China Craton:Petrological, mineralogical and geochemical evidence[J]. Science China Earth Sciences, 59(1):95-110. doi: 10.1007/s11430-015-5216-1
O'Reilly S Y, Griffin W L. 2010. The continental lithosphereasthenosphere boundary:Can we sample it?[J]. Lithos, 120(1):1-13. doi: 10.1029/2009JB006914/citedby
Peng Yanju, Lu Linsu, Zhou Zhenhua. Distribution and Utilization of Diamond Resources in China[J]. Journal of Gems and Gemmology, 2013, 15(4):1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB201304002.htm
Peng Yanju, Lu Linsu, Zhou Zhenhua. 2013. Distribution and Utilization of Diamond Resources in China[J]. Journal of Gems and Gemmology, 15(4):1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB201304002.htm
Qi Yuxing, Han Zhuguo. 1998. The prospecting and exploration of diamond deposits in Liaoning[J]. Land Resouces, (2):111-125(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD802.004.htm
Qiao Xiufu, Zhang Andi. 2002. North China block, Jiao-Liao-korea block and Tanlu fault[J]. Geology in China, 29(4):337-345(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200204001
Qin Zhengyong, Lin Xiaohui. 2001. Discussion about possibility of discovered kimberlite in hutoushan, Longyou county, Zhejiang[J]. Geology and Mineral Resources of South China, (2):57-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200102008.htm
Rayner R J, Waters S B, Mckay I J, Dobbs P N, Shaw A L. 1991. The mid-Cretaceous palaeoenvironment of central Southern Africa(Orapa, Botswana)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 88(1-2):147-156. doi: 10.1016/0031-0182(91)90020-R
Ren Huaixiang, Zhang Guangwen. 1993. Geological characteristics of phlogopite volcanic rocks (lamproite) in Majiang, Guizhou Province[J]. Guizhou Geology, (3):189-191(in Chinese with English abstract).
Richardson S H, Shirey S B, Harris J W. 2004. Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal craton evolution[J]. Lithos, 77(1):143-154. http://www.sciencedirect.com/science/article/pii/S0024493704001495
Russell S S, Arden J W, Pillinger C T. 1996. A carbon and nitrogen isotope study of diamond from primitive chondrites[J]. Meteoritics & Planetary Science, 31(3):343-355. doi: 10.1111/j.1945-5100.1996.tb02071.x/full
Salters V J, Stracke A. 2004. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 5(5):1-27. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1301.2191
Satish-Kumar M, So H, Yoshino T, Kato M, Hiroi Y. 2011. Experimental determination of carbon isotope fractionation between iron carbide melt and carbon:12C-enriched carbon in the Earth's core?[J]. Earth and Planetary Science Letters, 310(3-4):340-348. doi: 10.1016/j.epsl.2011.08.008
Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the Geology of Mantle Carbon[J]. Reviews in Mineralogy & Geochemistry, 75(1):355-421. http://adsabs.harvard.edu/abs/2013RvMG...75..355S
Smith C B. 1983. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites[J]. Nature, 304:51-54. doi: 10.1038/304051a0
Smith E M, Shirey S B, Richardson S H, Nestola F, Bullock E S, Wang J, Wang W. 2018. Blue boron-bearing diamonds from Earth's lower mantle[J]. Nature, 560(7716):84-87. doi: 10.1038/s41586-018-0334-5
Song Ruixiang. 2013. Blinking diamonds——World history of diamond prospecting[M]. Beijing:Geological Publishing House, 1-284 (in Chinese).
Stachel T. 2001. Diamonds from the asthenosphere and the transition zone[J]. European Journal of Mineralogy, 13(5):883-892. http://eurjmin.geoscienceworld.org/content/13/5/883
Stachel T, Viljoen K S, Mcdade P, Harris J W. 2004. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton-the peridotitic inclusion suite in diamonds from Orapa and Jwaneng[J]. Contributions to Mineralogy & Petrology, 147(1):32-47. doi: 10.1007/s00410-003-0535-1
Stachel T, Harris J W. 2008. The origin of cratonic diamonds -Constraints from mineral inclusions[J]. Ore Geology Reviews, 34(1-2):5-32. doi: 10.1016/j.oregeorev.2007.05.002
Stachel T, Luth R W. 2015. Diamond formation-Where, when and how?[J]. Lithos, 220-223:200-220. doi: 10.1016/j.lithos.2015.01.028
Stanley J R, Flowers R M. 2016. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology[J]. Geochemistry Geophysics Geosystems, 17(11):4517-4533. doi: 10.1002/ggge.v17.11
Shu Xiaoxin. The research of petrology of the potassic lamproites along the western border of Yangzi platorm[J]. Acta Petrologica Sinica, 1994, 10(3):248-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB199403002.htm
Tappe S, Steenfelt A, Nielsen T. 2012. Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland:New high-precision U-Pb and Sr-Nd isotope data on perovskite[J]. Chemical Geology, 320-321(5):113-127. http://linkinghub.elsevier.com/retrieve/pii/S0009254112002653
Tappert R, Stachel T, Harris J W, Muehlenbachs K, Ludwig T, Brey G P. 2005. Diamonds from Jagersfontein (South Africa):messengers from the sublithospheric mantle[J]. Contributions to Mineralogy and Petrology, 150(5):505-522. doi: 10.1007/s00410-005-0035-6
Thomassot E, Cartigny P, Harris J W, Lorand J P, Rollion-Bard C, Chaussidon M. 2009. Metasomatic diamond growth:A multiisotope study (13 C, 15 N, 33 S, 34 S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana)[J]. Earth and Planetary Science Letters, 282(1):79-90. http://www.sciencedirect.com/science/article/pii/S0012821X09001447
Tian Hongshui, Zhu Jiewang, Wang Hualin, Zhang Zengqi, Zhang Banghua, Zhang Shenhe. 2017. Spatio-temporal distribution and significance of seismic event horizon in the Yishu Fault Zone and its adjacent area[J]. Journal of Palaeogeography, (03):393-417(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201703001.htm
Timmerman S, Chinn I L, Fisher D, Davies G R. 2018. Formation of unusual yellow Orapa diamonds[J]. Mineralogy and Petrology, 112:209-218. doi: 10.1007/s00710-018-0592-9
Timmerman S, Koornneef J M, Chinn I L, Davies G R. 2017. Dated eclogitic diamond growth zones reveal variable recycling of crustal carbon through time[J]. Earth & Planetary Science Letters, 463:178-188. http://www.sciencedirect.com/science/article/pii/S0012821X17300614
Tu Huaikui. 2001. Discussion of Alluvial Tyoe Placer of Diamono and It's Metalogenic model[J]. Chemical Mineral Geology, 23(4):239-244(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HGKC200104006.htm
Van Schijndel V, Cornell D H, Hoffmann K H, Frei D. 2011. Three episodes of crustal development in the Rehoboth Province, Namibia[J]. Measurement Techniques, 33(2):164-167. http://adsabs.harvard.edu/abs/2011GSLSP.357...27V
Venter L J. 1998. A Review of Southern African Kimberlites and Exploration Techniques[D].Department of Geology, Rhodes University.
Wainwright A N, Luguet A, Fonseca R O C, Pearson D G. 2015. Investigating metasomatic effects on the 187Os isotopic signature:A case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite(Botswana)[J]. Lithos, 232:35-48. doi: 10.1016/j.lithos.2015.06.017
Wang Jiuhua. 2012. Distribution Pattern and Crystallography Feature of Diamond Resource in Shandong Province[J]. Shanghai Land and Resources, 32(4):43-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD201104010.htm
Wang W, Takahashi E, Sueno S. 1998. Geochemical properties of lithospheric mantle beneath the Sino-Korea craton; evidence from garnet xenocrysts and diamond inclusions[J]. Physics of the Earth & Planetary Interiors, 107(1-3):249-260. http://www.sciencedirect.com/science/article/pii/S0031920197001374
Wang Xinyu, Peng Songbo, Wu Xiangke, Lu Gang. 2013. Discovory lamproite and its prospecting significance in Northern part of Guizhou[J]. Geological Science and Tecnology Information, (3):93(in Chinese with English abstract).
Wei Yunfeng, Wang Junhu. 2015. Geochemical characteristics and geological significance of kimberlite in Jianjiagou, Liulin county[J]. Huabei Land and Resources, (2):116-118(in Chinese).
Wang Xuemu, Wang Ping, Hu Ke. 2015. The erosion depth of kimberlite and the denudation thickness of diamond in the wafangdian region of Liaoning Province[J]. China Mining Magazine, (S1):300-303(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA2015S1076.htm
Wei Yunfeng, Wang Junhu. 2015. Geochemical characteristics and geological significance of kimberlite in Jianjiagou, Liulin county[J]. Huabei Land and Resources, (2):116-118(in Chinese).
Wilson M G C, McKenna N, Lynn M D. 2007.The occurrence of diamonds in South Africa[M]. Silverton, Pretoria:Council for Geoscience, 1-105.
Wu Fuyuan, Sun Deyou. 1999. The Mesozoic magmatism and lithospheric thinning in Eastern China[J]. Science China Earth Science, Journal of Changchun University of Science and Tecnology, (4):313-318(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CCDZ199904000.htm
Wu F, Yang Y, Mitchell R H, Li Q, Yang J, Zhang Y. 2010. In situ UPb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada[J]. Lithos, 115(1/4):205-222. http://www.sciencedirect.com/science/article/pii/S0024493709004988
Wu Genyao, Liang Xing, Chen Huanjiang. 2007. An approach to the Tancheng-Lujiang fault zone:its creation, evolution and character[J]. Chinese Journal of Geology, 42(1):160-175(in Chinese with English abstract).
Wudrick M, Pearson D G, Stachel T, Armstrong J, Woodland S J, Motsamai T. 2017. Age of the Lithospheric Mantle Beneath the Karowe Diamond Mine[C]. 11 IKC, 4489: 1-3.
Xu Kangkang, Wang Jie, Ren Junping, Zuo Libo, Liu Xiaoyang, He Shengfei, Gong Penghui, Sun Kai, Liu Yu, He Fuqing. 2016. Metallogenic Geological Setting, Types and Characters of the Diamond Deposits in Central and Southern Africa[J]. Geologcial Review, (2):362-374(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLP201602011.htm
Xu Jun. 2013. Deep structure of Shanxi massif and kimberlite formation:A discussion on the deep process of the stable massif in relation to diamond deposits[J]. Geology in China, 40(3):790-799(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201303012.htm
Xu Wenliang, Wang Feng, Pei Fuping, Meng En, Tang Jie, Xu Meijun, Wang Wei. 2013. Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, (2):339-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001
Xu Xiangzhen. 2006. Assessment of Diamond Minearlization Geological Condition in Souhtwest of Hetian Aera, Xinjiang[D]. China University of Geosciences (Beijing): 1-60(in Chinese with English abstract).
Yang, Jianmin. 1995. Study on the Mineralogy and Petrology of Kimberlite and Lamprolite from the North Part of Shanxi Province, China[D]. Chinese Academy of Geological Sciences: 1-135(in Chinese with English abstract).
Yang Jingsui, Xu Zhiqin, Zhang Jianxin, Zhang Zeming, Liu Fulai, Wu Cailai. 2009. Tectonic setting of main high and ultrahigh pressure metamorphic belts in China and adjacent region and discussion on their subduction and exhumation mechanism[J]. Acta Petrologica Sinica, 25(7):1529-1560(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-ysxb200907001.htm
Yang J, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites[J]. Elements, 10(2):127-130. http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201703010
Yang J, Robinson P T, Dilek Y. 2015. Diamond-bearing ophiolites and their geological occurrence[J]. Episodes, 38(4):344-364. http://www.episodes.org/index.php/epi/article/download/82430/65477
Yang Y H, Wu F Y, Wilde S A, Liu X M, Zhang Y B, Xie L W, Yang J H. 2009. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J]. Chemical Geology, 264(1):24-42. http://www.sciencedirect.com/science/article/pii/S0009254109000898
Ye Delong, Wang Qun, Yang Jinxiang, Ren Yingxin. 1991. Kimberlite and lamproite in the Southern section of mountain Dahong in Hubei province[J]. Geological Science and Tecnology Information, (s1):37-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ1991S1004.htm
Ye Song, Yang Mei, Ye Delong, Tai Daoqian, Ren Yingxin. 2007. Research on kimberl itic lamprophyre pipe at Luj ing in Anyuan area, Jiangxi Province——A new type of mantle-derived alkal ine ultrabasic rock[J]. Mineral Resources and Geology, (04):383-394(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200704000.htm
Yin Li. 2008. The Characteristics and Significance of Diamond Inclusions in the North China Craton, Taking Mengyin Mine in Shandong as An Example[D]. Wuhan: China University of Geosciences (Wuhan): 1-68.
Zhai Mingguo. 2010. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, (1):24-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201001005.htm
Zhang Fushun.1992. Direction of diamond prospecting in Jilin Province[J]. Jilin Geological Science and Tecnology Information, (2):2-7(in Chinese with English abstract).
Zhang Hongfu, Yang Yueheng. 2007. Emplacement age and Sr-NdHf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton[J]. Acta Petrologica Sinica, 2007, 23(2):285-294 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702010.htm
Zhang Jiantai.2017. Discussion on the geophysical characteristics of Kimberley rocks in Mengyin area[J]. Progress in Geophysics, 6:2589-2595(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201706040.htm
Zhang Peiyuan. 1998. New knowledge of some important questions about diamond deposit genesis[J]. Hunan Geology, (3):67-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ803.016.htm
Zhang Peng, Wang Liangshu, Shi Huosheng, Li Limei, Tan Huiming. 2010. The Mesozoic-Cenozoic tectonic evolution of the Shandong Segment of the Tan-Lu fault zone[J]. Acta Geologica Sinica, 84(9):1316-1323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201009006.htm
Zhang Xigui, Shi Rui, Wu Shouning, Li Yonggang, Lin Zeyuan. 2015. New discovery of Wengshao lamproite and its significance of diamond prospecting in Shibing, Guizhou province[J]. Guizhou Geology, 32(1):37-40 (in Chinese with English abstract).
Zhao Chunqiang, Zhang Zhibin, Shi Yi, Shi Shaoshan, You Hongxi, Li Jing, Zhao Jingyang. 2018. Research progress and discussion on the metallogenic background of diamond in southern Liaoning[J]. Geology and Resources, (2):149-159(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gjsdz201802007
Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002
Zhao Guanghui, Guan Yubo, Zhao Jianjun. 2011. Characteristics of plate tectonics and division of geotectonic units in Liaoning region[J] Geology and Resources, 20(2):101-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GJSD201102005.htm
Zhao Jianjun, Li Jing, Wang Shu, Dai Jun. 2011. The regional orecontrolling conditions and prediction of resources potential of the diamond concentrated district in Wafangdian, Liaoning province[J]. Geology and Resources, 20(1):40-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201101012.htm
Zhao Lei, He Mingyue, Li Youzhi, Li Jian Zhe, Yang Wanzhi, Yuan Yingxia, Fang Xilian, Palati. Abudukadier. 1998. Discovery of lamproite in southern margin of Tarim platform, China[J]. Geoscience, 1998, (4):555-558(in Chinese with English abstract).
Zhao Xin, Shi Guanghai, Zhang Ji. 2015. Review of Lithospheric Diamonds and Their Mineral Inclusions[J]. Advances in Earth Science, 30(3):310-322 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201503002
Zheng Jianping. 1989. Advances in the studies of petrogenesis of kimberlite, East Liaoning[J]. Geological Science and Tecnology Information, (2):8-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ198902001.htm
Zheng Jianping. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulliten, 54(14):1990-2007 (in Chinese). http://www.cqvip.com/QK/86894X/200919/31923706.html
Zheng Jianping, Lu Fengxiang. 1999. Mantle xenoliths fromkimberlites, Shandong and Liaoning:Paleozoic mantle character and its heterogeneity[J]. Acta Petrologica Sinica, (1):65-74(in Chinese with English abstract).
Zheng J P, Griffin W L, O'Relly S Y, Yang J S, Li T, Zhang M, Zhang R Y, Liou J G. 2006. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:Constraints on Mantle Evolution beneath Eastern China[J]. Journal of Petrology, 47(11):2233-2256. doi: 10.1093/petrology/egl042
Zheng J, O'Reilly S Y, Griffin W L, Lu F, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos, 57(1):43-66. http://www.sciencedirect.com/science/article/pii/S0024493700000736
Zheng Xiang, Peng Maoyuan, Hu Gui'ang, Lu Gang, Huang Xianglin. 2016. Volcano-tectonic characteristics of diamond ore prospects in Southeast Guizhou[J]. Chinese Journal of Engineering Geophysics, 36(3):418-425(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDQ201603026.htm
Zheng Y, Xiao W, Zhao G. 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4):1189-1206. doi: 10.1016/j.gr.2012.10.001
Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Science, (5):583-592 (in Chinese with English abstract). http://gji.oxfordjournals.org/external-ref?access_num=10.1007/s11430-011-4203-4&link_type=DOI
包淑华. 2013.瓦房店市金伯利岩与金刚石的关系研究[J].科技传播, (10):166-168. http://d.old.wanfangdata.com.cn/Periodical/kjcb201310125 鲍佩声, 苏犁, 翟庆国, 肖序常. 2009.新疆巴楚地区金伯利质角砾橄榄岩物质组成及含矿性研究[J].地质学报, 83(9):1276-1301. doi: 10.3321/j.issn:0001-5717.2009.09.008 蔡逸涛, 张洁, 董钟斗, 曹正琦, 肖书阅, 李帅, 李成凯, 陈乐柱, 范飞鹏. 2018.皖北栏杆地区新元古代岩浆活动:含金刚石母岩U-Pb年代学及地球化学制约[J].中国地质, 45(2):351-366. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180210&flag=1 池际尚, 路凤香. 1996a.华北地台金伯利岩及古生代岩石圈地幔特征[M].北京:科学出版社, 1-292. 池际尚, 路凤香, 刘永顺, 胡世杰, 赵宗贺, 叶德隆, 郑建平, 赵磊, 张宏福, 江万. 1996b.中国原生金刚石成矿地质条件研究[M].北京:中国地质大学出版社, 1-138. 董振信. 1991.中国金伯利岩型金刚石矿床的若干地质特征及其找矿标志[J].矿床地质, 10(3):255-264. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199103007.htm 河北省地质矿产局综合地质大队. 1988.河北省涉县金伯利岩体评价及漳河-沙河水系金刚石普查报告[R]. 侯广顺, 向世红, 齐永安, 支风岐, 王明国, 周雪, 林刘军, 李明, 吴成斌. 2016.河南鹤壁地区金伯利岩中地幔包体矿物化学特征[J].矿物学报, 36(3):318-328. http://d.old.wanfangdata.com.cn/Periodical/kwxb201603002 黄蕴慧, 秦淑英, 周秀仲, 邓楚均, 赵东高, 杨建民, 郭月敏, 李戈晶, 高岩. 1992.华北地台金伯利岩与金刚石[M].北京:地质出版社, 1-198. 雷雪英. 2017.金伯利岩研究进展综述[J].中山大学研究生学刊(自然科学.医学版), 38(1), 41-51. http://www.cnki.com.cn/Article/CJFDTOTAL-YJSK201701004.htm 李弦. 2012.新疆巴楚地区金伯利质隐爆角砾岩成岩年龄及成岩机制研究[D].中国地质大学(北京), 1-55. 连东洋, 杨经绥, 刘飞, 吴魏伟. 2018.金刚石分类, 组成特征以及中国金刚石研究展望[J].地球科学, 1-72. 梁日暄, 方青松. 1992.塔里木地台金刚石成矿地质条件和找矿方向[J].地质通报, (2):161-166. http://d.old.wanfangdata.com.cn/Thesis/Y443926 林玮鹏. 2007.湖南宁乡钾镁煌斑岩及相关岩石重砂的锆石成因矿物学研究[D].广州: 中山大学, 1-59. 林宗满. 2011.郯城-庐江断裂基本特征及其控盆作用[J].地质力学学报, 17(4):322-337. doi: 10.3969/j.issn.1006-6616.2011.04.003 刘继太. 2002.山东金刚石原生矿找矿前景探讨[J].山东国土资源, 18(3):100-104. doi: 10.3969/j.issn.1672-6979.2002.03.034 刘陟娜, 许虹, 王秋舒, 陈梅. 2016.全球金刚石资源分布现状及中国勘查开发建议[J].中国矿业, (7):5-10. doi: 10.3969/j.issn.1004-4051.2016.07.003 陆琦, 刘惠芳, 肖平, 施倪承, 李国武, 汤中道. 2012.中国辽宁金刚石中高硅钙铁榴石(Majorite)等超高压矿物包裹体的发现及地质意义[J].地质科技情报, (5):5-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205003.htm 陆琦, 施倪承, 刘惠芳, 李国武, 汤中道, 肖平. 2011.中国辽宁复县金刚石中新发现的碳化钛矿物[J].地质科技情报, 30(2):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102002.htm 路凤香. 2008.金伯利岩与金刚石[J].自然杂志, (2):63-66. doi: 10.3969/j.issn.0253-9608.2008.02.001 路凤香, 韩柱国, 郑建平, 任迎新. 1991.辽宁复县地区古生代岩石圈地幔特征[J].地质科技情报, 10(2):20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ1991S1001.htm 罗会文, 杨光树. 1989.贵州省镇远地区钾镁煌斑岩岩石特征[J].岩石矿物学杂志, (2):97-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198902000.htm 罗声宣, 任喜荣, 朱源, 陈积鋹, 郭亚平, 魏同林. 1999.山东金刚石地质[M].山东科学技术出版社. 罗志立, 李景明, 李小军, 刘树根, 赵锡奎, 孙玮. 2005.试论郯城-庐江断裂带形成, 演化及问题[J].吉林大学学报:地球科学版, 35(6):699-706. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200506004 梅厚钧, 唐春景, 李荪蓉, 李永明, 张兴春, 卢登蓉, 张连昌. 1998.中国的钾镁煌斑岩和金伯利岩与金刚石矿床生成[J].中国科学:地球科学, (s2):72-78. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S2010.htm 彭艳菊, 吕林素, 周振华. 2013.中国金刚石资源分布及开发利用现状[J].宝石和宝石学杂志, 15(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/bshbsxzz201304001 齐玉兴, 韩柱国. 1998.辽宁金刚石矿找矿与勘查[J].国土资源, (2):111-125. http://www.cqvip.com/Main/Detail.aspx?id=3159117 乔秀夫, 张安棣. 2002.华北块体, 胶辽朝块体与郯庐断裂[J].中国地质, 29(4):337-345. doi: 10.3969/j.issn.1000-3657.2002.04.001 秦正永, 林晓辉. 2001.浙江龙游县虎头山是否存在"金伯利岩"[J].华南地质与矿产, (2):57-62. doi: 10.3969/j.issn.1007-3701.2001.02.009 任怀翔, 张光文. 1993.贵州麻江金云火山岩(钾镁煌斑岩)的地质特征[J].贵州地质, (3):189-191. http://www.cqvip.com/qk/91769X/199303/1043614.html 舒小辛. 1994.扬子地台西缘钾质煌斑岩类的岩石学研究[J].岩石学报, 10(3):248-260. doi: 10.3321/j.issn:1000-0569.1994.03.003 宋瑞祥. 2013.中国金刚石矿床专论——中国金刚石矿找矿与开发[M].北京:地质出版社, 1-284. 田洪水, 祝介旺, 王华林, 张增奇, 张邦花, 张慎河. 2017.沂沭断裂带及其近区地震事件地层的时空分布及意义[J].古地理学报, (3):393-417. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201703001 涂怀奎. 2001.冲积型金刚石砂矿与其成矿模式的讨论[J].化工矿产地质, 23(4):239-244. doi: 10.3969/j.issn.1006-5296.2001.04.006 王久华. 2012.山东金刚石资源分布规律与结晶学特性[J].上海国土资源, 32(4):43-48. http://d.old.wanfangdata.com.cn/Periodical/shdz201104009 王新宇, 彭松柏, 吴祥珂, 陆刚. 2013.桂北地区钾镁煌斑岩的发现及找矿意义[J].地质科技情报, (3):93. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303015.htm 王雪木, 王萍, 胡克. 2015.辽宁瓦房店金伯利岩剥蚀深度与金刚石剥蚀量计算[J].中国矿业, (S1):300-303. http://d.old.wanfangdata.com.cn/Periodical/zgky2015z1076 魏云峰, 王俊虎. 2015.柳林县尖家沟金伯利岩地球化学特征及地质意义[J].华北国土资源, (2):116-118. doi: 10.3969/j.issn.1672-7487.2015.02.060 吴福元, 孙德有. 1999.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报, (4):313-318. http://d.old.wanfangdata.com.cn/Conference/6315280 吴根耀, 梁兴, 陈焕疆. 2007.试论郯城-庐江断裂带的形成, 演化及其性质[J].地质科学, 42(1):160-175. doi: 10.3321/j.issn:0563-5020.2007.01.014 许康康, 王杰, 任军平, 左立波, 刘晓阳, 何胜飞, 龚鹏辉, 孙凯, 刘宇, 贺福清. 2016.中南部非洲金刚石矿床的成矿地质背景、成矿类型及矿床特征[J].地质论评, (2):362-374. http://d.old.wanfangdata.com.cn/Periodical/dzlp201602011 徐俊. 2013.山西地块的深部构造和金伯利建造:兼论金刚石矿与稳定地块的深部过程[J].中国地质, 40(3):790-799. doi: 10.3969/j.issn.1000-3657.2013.03.011 徐向珍.2006.新疆和田西北部金刚石成矿地质条件分析[D].中国地质大学(北京): 1-60. 许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, (2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 杨建民. 1995.山西北部金伯利岩钾镁煌斑岩岩石学矿物学研究[D].中国地质科学院: 1-135. 杨经绥, 许志琴, 张建新, 张泽明, 刘福来, 吴才来. 2009.中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨[J].岩石学报, 25(7):1529-1560. http://www.cnki.com.cn/article/cjfdtotal-ysxb200907001.htm 叶德隆, 王群, 杨金香, 任迎新. 1991.湖北大洪山南段的金伯利岩和钾镁煌斑岩[J].地质科技情报, (s1):37-44. http://www.cqvip.com/QK/93477A/1991S1/4001594323.html 叶松, 杨眉, 叶德隆, 邰道乾, 任迎新. 2007.江西安远路迳金伯利质煌斑岩筒研究——一种新型的幔源碱性超基性岩[J].矿产与地质, (4):383-394. doi: 10.3969/j.issn.1001-5663.2007.04.001 殷莉. 2008.华北地台金刚石包裹体特征及意义——以山东蒙阴为例[D].中国地质大学(武汉): 1-68. 张复顺. 1992.吉林省金刚石找矿方向[J].吉林地质科技情报, (2):2-7. http://www.cqvip.com/Main/Detail.aspx?id=796696 张宏福, 杨岳衡. 2007.华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征[J].岩石学报, 23(2):285-294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702009 张建太. 2017.山东蒙阴地区金伯利岩的地球物理特征探讨[J].地球物理学进展, (6):2589-2595. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065334.htm 张培元. 1998.有关金刚石成因等若干重大问题的新认识[J].湖南地质, (03):67-73. http://www.cnki.com.cn/Article/CJFDTotal-HNDZ803.016.htm 张鹏, 王良书, 石火生, 李丽梅, 谭慧明. 2010.郯庐断裂带山东段的中新生代构造演化特征[J].地质学报, 84(9):1316-1323 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201009006 张锡贵, 石睿, 吴寿宁, 李永刚, 林泽渊. 2015.贵州施秉翁哨地区钾镁煌斑岩的新发现及其金刚石找矿意义[J].贵州地质, 32(1):37-40. doi: 10.3969/j.issn.1000-5943.2015.01.007 赵春强, 张志斌, 时溢, 石绍山, 尤洪喜, 李靖, 赵敬阳. 2018.辽南金刚石成矿背景研究进展及讨论[J].地质与资源, (2):149-159. doi: 10.3969/j.issn.1671-1947.2018.02.007 赵光慧, 关玉波, 赵建军. 2011.辽宁板块构造特征及大地构造单元划分[J].地质与资源, 20(2):101-106. doi: 10.3969/j.issn.1671-1947.2011.02.004 赵建军, 李靖, 王书, 戴军. 2011.辽宁瓦房店金刚石矿集区区域成矿控制条件及资源潜力预测[J].地质与资源, 20(1):40-44 doi: 10.3969/j.issn.1671-1947.2011.01.008 赵磊, 何明跃, 李友枝, 李建哲, 杨万志, 袁英霞, 方锡廉, 帕拉提·阿布都卡迪尔. 1998.塔里木地台南缘发现钾镁煌斑岩[J].现代地质, (4):555-558. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.015.htm 赵欣, 施光海, 张骥. 2015.岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J].地球科学进展, 30(3):310-322. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201503002 郑建平. 1989.辽东金伯利岩成因研究的某些进展[J].地质科技情报, (2):8-14. http://www.cqvip.com/QK/93477A/198902/3001435489.html 郑建平. 2009.不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J].科学通报, 54(14):1990-2007. http://www.cqvip.com/Main/Detail.aspx?id=31308372 郑建平, 路凤香. 1999.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性[J].岩石学报, (1):65-74. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199901007 郑翔, 彭懋媛, 胡贵昂, 陆刚, 黄祥林. 2016.广西大化金伯利岩类岩石的岩石学特征[J].桂林理工大学学报, 36(3):418-425 doi: 10.3969/j.issn.1674-9057.2016.03.002 中国地质科学院地质研究所. 1970.内蒙古四子王旗龙头山一号金伯利岩体地质普查报告[R]. 朱日祥, 陈凌, 吴福元, 刘俊来. 2011.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学, (5):583-592. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm -
期刊类型引用(3)
1. 刘珉,周玉,苏飞,袁彦伟,朱永胜,邢建磊,杨鱼帆. 东准噶尔三塘湖盆地中侏罗统砂岩碎屑锆石U-Pb年龄、Hf同位素特征及对铀成矿的意义. 地质论评. 2024(02): 742-758 . 百度学术
2. 邹国庆,余牛奔,孙国庆,黄修保,尼加提·阿布都逊,卢观送. 东准噶尔奥依托浪格地区石炭纪双峰式火山岩地球化学特征及其构造意义. 吉林大学学报(地球科学版). 2021(02): 455-472 . 百度学术
3. 勾永东,舒石,张伟,曾华栋,殷长江. 东准噶尔喀拉托别地区火山岩地质特征及地层厘定. 四川地质学报. 2021(S2): 12-20 . 百度学术
其他类型引用(0)