• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

博茨瓦纳和中国含金刚石金伯利岩的地质特征及对寻找类似岩体的启示

刘飞, 杨经绥, 连东洋, 余晓艳, Kewame RollykenGwandu

刘飞, 杨经绥, 连东洋, 余晓艳, Kewame RollykenGwandu. 博茨瓦纳和中国含金刚石金伯利岩的地质特征及对寻找类似岩体的启示[J]. 中国地质, 2019, 46(1): 43-76. DOI: 10.12029/gc20190104
引用本文: 刘飞, 杨经绥, 连东洋, 余晓艳, Kewame RollykenGwandu. 博茨瓦纳和中国含金刚石金伯利岩的地质特征及对寻找类似岩体的启示[J]. 中国地质, 2019, 46(1): 43-76. DOI: 10.12029/gc20190104
LIU Fei, YANG Jingsui, LIAN Dongyang, YU Xiaoyan, Kewame Rollyken Gwandu. Metallogenic features of diamondiferous kimberlites in Botswana and China:Enlightenment for exploration of the same type deposits[J]. GEOLOGY IN CHINA, 2019, 46(1): 43-76. DOI: 10.12029/gc20190104
Citation: LIU Fei, YANG Jingsui, LIAN Dongyang, YU Xiaoyan, Kewame Rollyken Gwandu. Metallogenic features of diamondiferous kimberlites in Botswana and China:Enlightenment for exploration of the same type deposits[J]. GEOLOGY IN CHINA, 2019, 46(1): 43-76. DOI: 10.12029/gc20190104

博茨瓦纳和中国含金刚石金伯利岩的地质特征及对寻找类似岩体的启示

基金项目: 

国家自然科学基金项目 41672063

国家自然科学基金项目 41773029

国家自然科学基金项目 41373029

国家自然科学基金项目 41720104009

中国地质调查局地质调查项目 DD20160023-01

中国地质调查局地质调查项目 DD20160022−01

科技部项目 2014DFR2127C

详细信息
    作者简介:

    刘飞, 男, 1982年生, 博士, 主要从事蛇绿岩和金刚石的成因研究; E-mail:lfhy112@126.com; lfhy112@126.com

  • 中图分类号: P619.24+1

Metallogenic features of diamondiferous kimberlites in Botswana and China:Enlightenment for exploration of the same type deposits

Funds: 

National Natural Science Foundation of China 41672063

National Natural Science Foundation of China 41773029

National Natural Science Foundation of China 41373029

National Natural Science Foundation of China 41720104009

China Geological Survey DD20160023-01

China Geological Survey DD20160022−01

Ministry of Science and Technology of China 2014DFR2127C

More Information
    Author Bio:

    LIU Fei, male, born in 1982, mainly engages in the research on genesis of ophiolites and ophiolite−type and kimberlite−type diamond; E-mail:lfhy112@126.com; lfhy112@126.com

  • 摘要:

    金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNdt)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。

    Abstract:

    Important implications for the interior workings, constituent, circulation between crust and mantle, convection between core and mantle of the Earth can be drawn by studying diamonds and their hosted rocks. Based on the geological comparison of metallogenic kimberlites from super-giant deposits in Botswana and Mengyin and Wafangdian deposits in China, the authors put forward some exploration suggestions and prospecting clues as follows:(1) Kimberlite is an unique diamondiferous rock in Botswana, whereas lamproite is a main hosted -rock in South China craton including two important lamproite zones along the Jiangnan orogenic belt and northern margin of South China craton. Kimberlite is dominantly distributed in the North China craton, which is composed of three kimberlitic zones along Tanlu fault, Trans-North China orogen and northern margin of North China. Two industrial value diamondiferous kimberlite deposits are distributed in the Tanlu zone. (2) In-situ U-Pb age and Sr, Nd isotopic data of perovskites show that 86-97 Ma Orapa kimberlites and 456-470 Ma Mengyin and Wafangdian kimberlites have low 87Sr/86Sr ratios of 0.703-0.705, medium εNd(t) values ranging from -0.09 to 5, indicating that primary kimberlitic magmas were likely derived from primitive mantle or convective lower mantle. (3) Primary kimberlites in Botswana dominantly occur as pipes, while in China they mainly occur as irregular fissures, expressed as dykes and lesser extent sills. Crater facies are pervasively observed in Orapa and Jwaneng kimberlite pipes in comparison with hypabyssal (or root zone) facies in Mengyin and Wafangdian pipe clusters. (4) Orapa A/K1 and Jwaneng mines are a few diamondiferous kimberlitic pipes yielding predominantly eclogitic xenoliths and E type diamond. In contrast, Letlhakane, Damtshaa and Karowe mines also occur in Orapa cluster, Mengyin and Wafangdian mines from the Tanlu kimberlite belt have mainly peridotite xenoliths as well as P type and E type diamonds. (5) Some exploration suggestions and prospecting clues of diamondiferous kimberlites are presented as follows:(A) Deep faults cutting through on-craton and off-craton subcontinental lithospheric mantle play a role in the emplacement of kimberlites; (B) Soil sampling for kimberlite indicator minerals such as picroilmenite and garnet, Cr-rich rutile, Cr-spinel and Cr-diopside is a primary exploration tool; (C) Geophysical surveys such as aeromagnetic mothed should be combined with soil sampling for better prospecting results. (6) Work in diamondiferous prospecting target areas in the Tanlu kimberlite zone, Jiangnan lamproite zone and Tarim block should be further strengthened. Illuvial type diamond deposits in China have great potential for mineralization.

  • 稀土(Rare earth)是元素周期表中镧系元素和钪、钇共17种金属元素的总称。稀土是重要的自然资源,更是宝贵且关键的战略资源,在民用和军事方面用途十分广泛,同时也是先进装备制造业、新能源、新兴产业等高新技术产业不可或缺的原材料。在全球范围内,稀土资源分布不均,其主要分布于美国、俄罗斯、中国、印度、巴西等国家。中国稀土储量约占世界总储量的23%,却承担了世界90%以上的市场供应(中华人民共和国国务院新闻办公室, 2012)。经半个多世纪的过度开采,中国稀土资源保有储量及保障年限不断下降,鉴于此,发现和利用新类型稀土矿,可有效提高中国稀土资源储量,有力保障国家稀土资源供给安全。

    稀土矿床按成因分类主要有碱性岩—碱性超基性岩型、碳酸岩型、花岗岩型、砂矿型以及风化壳型(徐光宪, 1995);按工业类型分类主要有稀土-磁铁矿矿床、含稀土碳酸岩矿床、花岗岩风化壳型稀土矿床、含稀土伟晶岩矿床、含稀土磷块岩矿床以及独居石砂矿床(矿产资源工业要求手册, 2014)。近年来,多位学者报道在贵州威宁地区二叠系宣威组一段黏土岩中富含稀土元素,但是由于该稀土资源的综合利用技术多年来未取得突破(黄训华, 1997; 张震和戴朝辉, 2010; 周灵洁, 2012),稀土元素的赋存状态、富集机理以及稀土矿床成因类型等方面存在较大争议。2018年以来,笔者在滇东—黔西地区开展地质调查,发现研究区内广泛发育的二叠系宣威组富稀土黏土岩系属沉积成因,有别于Wang et al.(2018)提及的南方离子吸附型稀土矿,而类似于文俊等(2021)报道的川南沐川地区宣威组底部古风化壳-沉积型铌、稀土矿,该新类型稀土矿具有矿石禀赋好、矿层厚度大且较连续、“关键稀土元素(Critical rare earth element; Pr, Nd, Tb, Dy)”占比较高等特点,并伴生有铌、锆、镓等有价元素,其中镓的平均品位高达70.5×10-6,高于工业品位(Zhang et al., 2010)。另外,在稀土资源开发利用方面取得了重大突破,针对该稀土资源研发了“选择性浸出”新工艺(徐璐等, 2020),使稀土回收率可达90%以上,该新类型稀土资源有望实现规模化工业利用。滇东—黔西地区沉积型稀土资源的发现与利用,将有力支撑国家关键稀土资源战略储备。

    滇东—黔西地区大地构造位置位于扬子板块西缘(潘桂棠等, 2009),以北西向康定—水城断裂、北东向弥勒—师宗深大断裂带以及近南北向小江断裂所挟持的三角形地带(图 1)。区内地层属华南地层大区的扬子地层区之上扬子地层分区,主体位于黔西北地层小区,部分涉及到云南的昭通地层小区及曲靖地层小区。晚中生代以前主要是海相碳酸盐岩及陆源硅质碎屑岩,以后则主要为陆相沉积。火成岩主要为海西晚期陆相溢流的峨眉山玄武岩及同源异相的浅成侵入岩。

    图  1  研究区大地构造位置图(据骆耀南, 1985; 张志斌等, 2006
    ①—怒江断裂;②—金沙江—红河断裂;③—鲜水河断裂;④—龙门山山前断裂;⑤—小金河断裂;⑥—箐河—程海断裂;⑦—安宁河—绿汁江断裂;⑧—小江断裂;⑨—康定—水城断裂;⑩—弥勒—师宗断裂
    Figure  1.  Sketch map showing geotectonic position of the research area (after Luo Yaonan, 1985; Zhang Zhibin et al., 2006)
    ①-Nujiang fault; ②-Jinsha River—Red River fault; ③-Xian Shui River fault; ④-Longmen Mountain piedmont fault; ⑤-Xiao Jian River fault; ⑥-Jing River—Chenghai fault; ⑦-Anning River—Lü zhi River fault; ⑧-Xiao River fault; ⑨-Kang ding—Shui cheng fault; ⑩-Mile—Shizong fault

    在研究区内采集了186件宣威组一段沉积型稀土矿石样品,正样经破碎研磨至200目,取缩分样50 g/件,送至中国地质科学院矿产综合利用研究所分析测试中心,利用电感耦合等离子体质谱仪(Perkinelmer Optima Nexion 350X)测得稀土配分数据;再取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点缩分样20 g/件,送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用X射线衍射仪(日本理学Ultima Ⅳ)测得主要矿物成分。选取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点矿石副样,块样用切割机(MecatomeT330)切成3 cm×1 cm×2 cm样品,用环氧树脂镶嵌制光片坯样;松散样经研磨至40目,用环氧树脂镶嵌制砂片坯样。以上坯样用自动磨抛机(EcomeT300)制得直径为3.5 cm圆柱形待测样品,将待测样品送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用英国蔡司(ZEISS)Sigma 500型场发射扫描电镜及配套的德国布鲁克能谱仪(EDS)获取数据,并应用矿物特征自动定量分析软件(AMICS)进行矿物参数全自动定量分析。

    研究区内富稀土岩系发育于二叠系宣威组一段(P3x1)。宣威组出露面积较广(图 2),北至昭通金阳—大关一带,向南经昭通、威宁一直延伸至宣威—六盘水等地,呈北窄南宽的形态展布。宣威组平行不整合于二叠系峨眉山玄武岩组(P2-3em)之上、整合于三叠系东川组(T1dc)之下,是一套乐平世滨岸及湖沼相与同期曲流河相伴生产出的沉积地层,并且多出现在河泛平原背景上,无独立的大型湖泊沉积体系(戴传固, 2017)。

    图  2  研究区地质简图
    Figure  2.  Sketch Geological map of the study area

    据笔者对威宁县哲觉镇小箐沟(东经103°59′ 08″,北纬26°36′37″)二叠系宣威组一段典型地层剖面(Pm201)研究,查明宣威组一段富稀土岩系主要为灰白色铝土质黏土岩与粉砂质黏土岩互层(图 3a、b),偶见植物碎屑,中部夹砾屑砂岩(图 3f),砾屑呈次圆状,粒度2~4 mm不等,由下往上砾屑粒度表现出粗—细—粗的渐变特征;岩石碎裂呈砂状、松散片状(图 3c),局部可见层理构造;稀土含量较高的岩石主要为铝土质黏土岩(图 3de)、粉砂质黏土岩(⑨~⑪层,⑬~⑮层)。

    图  3  贵州威宁哲觉镇宣威组一段(P3x1)剖面-柱状图
    a—宣威组一段典型剖面;b—宣威组一段柱状图;c、d、e—铝土质黏土岩;f—砾屑砂岩
    Figure  3.  Typical profile and histogram of the first part of Xuanwei Group (P3x1) in the Zhejue town of Weining area, Guizhou Province
    a-Typical section of the first part of Xuanwei Group; b-Histogram of the first passage of Xuanwei Group; c, d, e-Bauxitic clay rock; f-Gravel sandstone

    研究区沉积型稀土矿石主要为深灰—灰白色铝土质黏土岩(图 3cde),具微细粒—隐晶质结构、鳞片状、块状构造。据偏光显微镜、X射线衍射仪、扫描电镜(图 4a)、AMICS矿物分析系统等仪器综合测试分析,结果显示矿石由黏土矿物(高岭石≈83%、埃洛石≈2%、伊利石 < 1%、绿泥石 < 1%)、金属氧化物(锐钛矿≈5%、褐铁矿≈1%、磁铁矿 < 1%、水铝石 < 1%)、硅酸盐矿物(石英+蛋白石 < 4%、火山玻璃≈2%)、金属硫化物(黄铁矿≈0.2%)以及其他方解石、针铁矿等微量矿物组成(徐莺等, 2018)。另外,偶见极少量的氟碳铈矿(图 4b)、方铈矿、磷铝铈矿等独立稀土矿物,其总含量 < 0.1%;以及少量锆石、磷灰石、金红石等含稀土元素的非独立稀土矿物,其总含量 < 1%。

    图  4  稀土矿石扫描电镜照片
    a—扫描电镜照片;b—独立稀土矿物显微照片;Q—石英;Kl—高岭石;Lm—褐铁矿;Bsn—氟碳铈矿
    Figure  4.  Scanning electron microscope photograph of rare earth ores
    a-Scanning electron microscope photograph; b-Micrograph of independent rare earth minerals; Q-Quartz; Kl-Kaolinite; Lm-Limonite; BsnBastnaesite

    本文作者在研究区内优选二叠系宣威组(P3x)出露较好的区域,通过32个探槽工程、6个剥土工程地表控制及22个钻探工程深部验证,初步查明研究区二叠系宣威组(P3x)一段稀土矿层厚度2~18 m不等,单个矿石样品TREO含量最高为1.6%,圈定三处稀土矿找矿靶区(图 5):

    图  5  稀土矿找矿靶区分布图
    1—稀土矿体;2—断层;3—找矿靶区及其编号
    Figure  5.  Sketch map showing distribution of the target areas for rare earth ore
    1-Rare earth deposit; 2-Fault; 3-Target area for prospecting and its number

    (1)Ⅰ号找矿靶区:该靶区矿体形态呈层状、似层状,圈定一个矿体,矿体倾角26°~31°,矿体厚度2.96~18.92 m,矿体在地表出露较连续,沿走向延伸可达8 km,矿体TREO加权平均品位为0.21%(边界品位:0.18%,下同),该找矿靶区内推断资源量约4万t,矿床规模达小型。

    (2)Ⅱ号矿找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、三个矿体,矿体倾角12° ~17°,矿体TREO加权平均品位0.23% ~ 0.39%,矿体厚度5.85~9.23 m,其中主矿体沿倾向延伸可达1.6 km,该找矿靶区内推断资源量约25万t,矿床规模达中型,并具有达大型的潜力。

    (3)Ⅲ号找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、十个矿体,矿体倾角4° ~10°不等,矿体TREO加权平均品位0.18% ~ 0.46%,矿体厚度1.29~2.99 m。其中主矿体在地表出露连续,深部钻探控制也较稳定,沿倾向延伸可达2 km,该找矿靶区内推断资源量约2万t,矿床规模为小型。

    综上所述,该区稀土资源规模大,矿体埋藏浅,产状较缓且连续,有利于大规模露天开采。

    笔者在研究区内、找矿靶区以外的昭通、鲁甸、威宁炉山—东风—二塘、六盘水大湾、宣威大井等地(图 2),采集了宣威组一段铝土质黏土岩样品,分析结果显示均有稀土矿化异常,十余处稀土TREO品位超0.1%,最高品位0.42%,算数平均品位0.2%,矿体出露厚度2~6 m不等,推测滇东—黔西地区沉积型稀土资源找矿潜力巨大,远景资源量超100万t。

    物源区岩石经风化剥蚀形成的碎屑物质再搬运至沉积区沉积成岩,通常沉积岩继承了物源区岩石的稀土配分特征,风化和成岩作用对沉积岩中稀土元素再分配影响不大(Mclennan, 1993),所以稀土可作为一种有效的示踪物质。

    在研究区内优选4条宣威组典型剖面(Pm101、Pm104、Pm205、Pm207),逐层采集岩石样品,分别按玄武岩、铁质黏土岩、铝土质黏土岩、黏土质粉砂岩、炭质黏土岩和砾岩进行稀土元素球粒陨石标准化,从稀土配分模式(图 6)可以看出宣威组富稀土岩系中所有样品均与峨眉山玄武岩均具有相对富集轻稀土元素、亏损重稀土元素、呈现右倾模式的特征;不同的是,大部分铁质黏土岩、黏土质粉砂岩与玄武岩具有更加相近的配分模式,即都只表现出轻微的负Eu异常;而铝土质黏土岩层作为主要的含矿层却表现为明显的负Eu异常(田恩源等, 2020)。

    图  6  全岩球粒陨石稀土配分图(据田恩源等, 2020修改;标准化数值据Sun and McDonough, 1989)
    1—玄武岩;2—铁质粉砂质黏土岩;3—铝土质黏土岩;4—炭质粘土岩;5—黏土质粉砂岩;6—砂质砾岩
    Figure  6.  Chondrite-normalized REE patterns of the samples (modifiled from Tian Enyuan et al., 2020; standardized values modifiled from Sun and McDonough, 1989)
    1-Basalt; 2-Fe-Silty clay rock; 3-Bauxitic clay rock; 4-Carbonaceous clay rock; 5-Clayey siltstone; 6-Sandy conglomerate

    滇东—黔西地区沉积型稀土矿石中关键稀土元素(CREO)高于国内正在开发利用的四川冕宁碳酸岩型、白云鄂博碳酸岩型、山东微山碳酸岩型以及部分南方离子吸附型等大型、超大型稀土矿床,同样也高于国外即将开发利用的美国芒廷帕斯碳酸岩型、格陵兰岛碱性岩型等超大型稀土矿床。另外,该沉积型稀土资源与离子吸附型、古砂矿型稀土矿对比,在矿石品位、资源规模、集中程度、开采方式、环境影响等方面具有较大的优势,其开发前景巨大(图 7ab)。

    图  7  世界典型稀土矿床“关键稀土元素(CREE)”含量对比图(矿床序号如表 1所示)
    a—关键稀土元素含量-资源量对比图;b—关键稀土元素含量-矿石品位对比图
    Figure  7.  CREE content comparison diagram of typical rare earth deposits in the world (the sequence number of deposits is shown in Table 1)
    a-CREO-Resource comparison diagram; b-CREO-ore content comparison diagram
    表  1  世界典型稀土矿床对比表
    Table  1.  Comparison table of typical rare earth deposits in the world
    下载: 导出CSV 
    | 显示表格

    笔者开展该沉积型稀土矿原矿铵盐浸出对比实验,结果表明稀土原矿中仅有少量(< 5%)稀土元素以离子吸附状态赋存于矿石中。通过多轮技术攻关,利用选择性浸出技术控制焙烧温度和焙烧时间,准确破坏稀土矿中高岭石的特定结构,脱去其层状结构中的羟基,变为高活性的偏高岭石,但偏高岭石仍保持了片状的结构特征。焙烧温度低于550℃,高岭石未转化为偏高岭石,稀土无法有效浸出,焙烧温度高于850℃,高岭石结构被完全破坏,硅和铝晶型会发生变化,对稀土元素进行重新包裹,导致稀土元素无法有效浸出,焙烧过程中不使用添加剂避免产生额外的有害废气。该技术通过协同控制焙烧和浸出条件,选择性浸出偏高岭石中的稀土元素,稀土元素浸出率高于90%,同时主要杂质铝、铁、钛和硅浸出率均<5%,有效抑制杂质大量进入富稀土料液。该技术申请了国家发明专利(徐璐等, 2020)。该技术的推广应用,有望使研究区内的稀土资源实现规模化工业利用。

    滇东—黔西地区稀土矿的成因研究程度不高,且存在较大争议,目前主要有三种观点:一是风化淋滤型,杨瑞东等(2006)王伟(2008)以及Yang et al.(2008)通过分析稀土含矿层的地球化学特征,认为该矿床属与峨眉山玄武岩有关的风化壳型,峨眉山玄武岩及凝灰岩被强烈风化淋漓形成高岭石黏土岩,母岩中辉石的稀土元素被解析出来,被高岭石颗粒吸附,使稀土富集,形成稀土矿床;葛枝华(2018)同样赞同风化淋滤型稀土的观点,认为玄武岩风化过程实质就是一种脱硅富铝的过程,辉石、长石类矿物强烈分解,铁铝钛等氧化物明显增加,Ca、Na、Mg、K强烈迅速淋失,SiO2的含量不断降低,元素的迁移活动顺序是CaO>MgO>Na2O>SiO2,认为稀土元素通过风化淋滤作用在风化壳中不断富集起来。二是沉积-改造型,张海(2014)认为稀土矿床的形成与母岩的风化作用、沉积成岩作用以及地下流体作用有关,是沉积-再造型稀土矿床;黄训华(1997)周灵洁(2012)张海(2014)吴承泉等(2019)通过稀土物源、地球化学特征分析,认为稀土矿物源不仅是峨眉山玄武岩,还应包括后期喷发的中酸性火成岩,经风化剥蚀后形成富集稀土的玄武岩质、凝灰质及少量长英质碎屑,经水介质搬运至沉积盆地形成高岭石硬质黏土岩,成岩过程中遭受一定程度的热液蚀变,促进稀土元素再富集;三是部分学者通过对比研究二叠纪峨眉山玄武岩及其同期长英质凝灰岩的地球化学特征,认为稀土异常富集与峨眉山玄武岩同期的碱性岩浆活动产生的凝灰岩有关,并接受了后期低温热液改造(Xu et al., 2001; Zhou et al., 2002; Long et al., 2004; Dai et al., 2010; Zhao et al., 2016)。

    笔者研究发现,区域上宣威组富稀土岩系整体呈层状产出,从滇东到黔西横向演化和相变特征清晰;富稀土岩系底部常见河道相砾岩,辫状河沉积体系发育,层内偶见植物碎屑化石,层间发育水平层理等典型沉积构造;稀土含量较高的岩石主要为灰白色铝土质黏土岩,矿物组成主要为高岭石以及少量来自玄武岩及凝灰岩的典型矿物;由稀土配分模式看出铁质黏土岩和黏土质粉砂岩与玄武岩相比具有继承性,而铝土质黏土岩呈现出有别于玄武岩的明显负Eu异常特征(田恩源等, 2020);滇东—黔西地区位于上扬子陆块西缘,晚震旦世以来,长期处于相对稳定的台地沉积环境,区内无岩浆活动,不具备热液型稀土及南方离子吸附型稀土的成矿条件。基于以上认识,本文认为峨眉山玄武岩及同期的凝灰岩为富稀土岩系提供了主要的物质来源,而富稀土岩系中铝土质黏土岩很可能在沉积成岩过程中混入了大量上地壳富稀土物源区的物质,使得铝土质黏土岩中稀土异常富集。综上所述,本文认为滇东—黔西地区稀土资源成因类型为沉积型,是一种新类型的稀土资源。

    该稀土矿中稀土元素的赋存状态存在较大争议,前人分析矿石中稀土元素含量的高低可能与矿物组分有密切关系(周灵洁, 2012; Zhou et al., 2013; Zhang et al., 2016; Zhao et al., 2016, 2017; He et al., 2018)。在风化过程中,如果含稀土元素的副矿物抗风化能力弱,稀土元素则容易从副矿物中释放出来,以离子形式迁移富集于黏土矿物中,黏土矿物含量越高,稀土含量往往也相应比较高,稀土含量与黏土矿物含量就有较高的正相关性,据此推测认为稀土元素极有可能以离子吸附相和富含稀土元素的残余独立矿物相组成,与高岭石等黏土矿物含量密切相关;徐莺等(2018)利用电子探针、X射线衍射等现代分析测试手段并结合矿石选冶试验,认为稀土元素以类质同象为主、离子吸附相为辅的形式赋存于高岭石质黏土岩中;黄训华(1997)吴承泉等(2019)通过分析在强烈风化条件下母岩被解析形成的稀土元素可能存在的赋存状态,认为稀土元素可能以离子吸附态、胶体吸附态等的混合态赋存于高岭石硬质黏土岩中。以上研究并未提供确凿证据证明稀土元素赋存状态。本文作者开展多组原矿铵盐浸出对比实验,稀土元素浸出率不超过20%,间接说明了稀土原矿中以离子吸附态赋存的稀土元素占比很低;据矿石岩矿鉴定,查明以独立稀土矿物形式赋存的稀土元素占比<0.1%,以类质同像(非独立稀土矿物)形式赋存的稀土元素占比也很低;而通过550℃~850℃焙烧选择性浸出技术,准确破坏稀土元素载体矿物——高岭石的特定结构,稀土元素浸出率高于90%。基于以上研究,推测稀土元素极有可能以某种形态赋存于高岭石矿物晶体层间间隙中。

    随着全球新材料、新技术、新能源、高新电子、高端装备制造、先进军事装备等战略性产业迅猛发展,加快了对原材料的结构性调整,一批新兴战略性关键矿产成为各国竞相争夺的资源。根据稀土各元素特有的性质,轻稀土中的Pr、Nd,重稀土中的Tb、Dy等元素由于其在高强度永磁行业、新能源汽车产业、高端声光电材料等方面具备不可替代的地位,这些制约着全球新兴产业、高新科技健康发展的稀土元素称之为“关键稀土元素(CREE)”。据上海有色网公布的2020年6月稀土氧化物实时交易均价(据上海有色网未公布Tm2O3、Yb2O3、Lu2O3成交均价)显示(图 8),Pr、Nd、Tb、Dy关键稀土氧化物价格分别29.5万元/t、28.0万元/t、419万元/t、194万元/t,合计约占所有单一稀土氧化物价格总和的88%,可见关键稀土元素具有极高的经济价值和重要的战略地位。

    图  8  稀土氧化物价格对比柱状图
    Figure  8.  Price comparison bar chart of rare earth oxide

    滇东—黔西地区发现的沉积型稀土矿具有矿层厚、矿石品位高、资源潜力大、矿石中关键稀土元素(CREE)占比高等特点,特别是矿石选冶新工艺取得重大突破,使该类型稀土矿可能实现规模化工业利用。该沉积型稀土矿的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。

    (1)滇东—黔西地区发育于二叠系宣威组的稀土矿,其成因类型属沉积型。

    (2)稀土元素极有可能以某种形式赋存于高岭石矿物晶体层间间隙中。

    (3)该沉积型稀土矿具有矿体厚度大、矿石品位高、资源潜力大、开采成本低、矿石中关键稀土元素(CREO)占比高等优点,其开发利用前景较好。

    (4)该沉积型稀土资源的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。

    致谢: 论文撰写过程中许志琴院士予以指导,牛晓露副研究员和冯光英副研究员给予华北克拉通和东北陆块构造演化方面的建议,中国地质大学(武汉)吴魏伟博士在金刚石成因方面给予帮助,李观龙和卢雨潇帮助查找材料,两位评审专家提出了宝贵的建议,在此一并表示诚挚地感谢。
  • 图  1   博茨瓦纳12个金伯利岩群在行政区图和构造地质简图中的分布(据Brook, 2017修改)

    Figure  1.   Administrative and geological maps of Botswana depicting locations of 12 kimberlite clusters

    图  2   奥拉帕金伯利岩群中金刚石矿的分布图(Kruger et al., 2017)

    Figure  2.   Positions of the diamondiferous mines in the Orapa kimberlite cluster

    图  3   奥拉帕A/K1金刚石矿的3D模型及其野外地质特征

    a—A/K1的露头采坑;b—A/K1的3D模型显示由两个金伯利岩筒组成(缩写见正文);c—北筒NPK−普遍可见花岗岩和玄武岩岩屑,岩屑粒径多小于1cm,橄榄石晶屑普遍蛇纹石化和方解石化;d—北筒MVK2−BBX,普遍可见棱角状玄武岩角砾;e—南筒黑色块状火山碎屑金伯利岩(SDVK),比重较大,含大量新鲜橄榄石和少量玄武岩捕虏体;f—南筒南部火山碎屑金伯利岩(SVK)上层,可见大量岩屑和橄榄石斑晶,偶见单斜辉石和钛铁矿

    Figure  3.   Field photos and a 3D view of the A/K1 kimberlite in which the lithologic units are shown in the text in details

    a-Orapa A/K1 open pit containing North and South pipes; b-3D model of the A/K1 kimberlitic pipes; c-Northern Proclastic Kimberlite (NPK) in North pipe showing pervasively granite and basalt debris with size less than 1 cm. Olivine is commonly altered by serpentinization and calcitization; d-Massive Volcaniclastic Kimberlite (MVK)− Basalt breccia xenolith (BBX) in North pipe; e-Southern Dark Volcaniclastic Kimberlite (SDVK) including an amount of olivines in the South Pipe; f-Basalt breccia, olivine, rare clinopyroxene and ilmenite are commonly observed in the upper unit of the Southern Volcaniclastic kimberlite (SVK)

    图  4   丹姆沙B/K9矿点岩筒地质简图(据Buse et al., 2011修改)

    Figure  4.   Schematic geological map illustrating the features of the Damtshaa B/K9(modified from Buse et al., 2011)

    图  5   卡罗韦A/K6金刚石矿床岩筒模型和野外地质特征

    a—卡罗韦A/K6南、中、北岩筒模型剖面图(南筒模拟深度约300 m(Chinn et al., 2010));b—AK6的3个金伯利岩矿筒中产出50~100克拉金刚石的分布图;c—AK6露头采坑;d—采坑的玄武质围岩;e—南筒的玻基斑状火山碎屑金伯利岩(VK)和块状初始岩浆金伯利岩(MPK)

    Figure  5.   Geological model and field photographs of diamondiferous kimberlite features in the Karowe mine

    a-Geological section of A/K6 mine showing the features of north, central and south lobes; b-Distribution map of diamonds with 50 to 100 carats from north, central and south lobes; c-Open pin of the Karowe (A/K6); d-Country rock of basalt from south lobe; e-Fragmental kimberlite (FK) sample from the central lobe and magmatic/pyroclastic kimberlite (MPK) sample from the south lobe

    图  6   朱瓦能DK2矿区的4个金伯利岩管分布图及野外特征

    a—DK2露头采坑;b—DK2采坑平面地质简图(de Wit et al, 2016);c—南筒火山碎屑金伯利岩和玄武岩围岩露头

    Figure  6.   Jwaneng D/K2 pit composed of north, central, south and forth lobes (a); Schematic geological map showing the DK2 features (b); Photographs of the volcanoclastic kimberlite and wall rock basalt from the south lobe (c)

    图  7   中国金伯利岩和钾镁煌斑岩分布简图(板块边界和主断裂带据Zheng et al., 2013许文良等, 2013

    1—山东蒙阴;2—辽宁瓦房店(旧称复县);3—辽宁桓仁;4—辽宁葫芦岛;5—辽宁铁岭;6—吉林集安;7—吉林通化钾镁煌斑岩;8—河南鹤壁;9—河北涉县;10—山西大同饮牛沟钾镁煌斑岩;11—山西大同采凉山;12—山西应县;13—山西柳林;14—内蒙古四子王旗;15—湖北大洪山彭家垮金伯利岩;16—湖北大洪山王关−徐家冲钾镁煌斑岩;17—湖南宁乡;18—广西融水;19—广西都安;20—广西大化;21—贵州镇远;22—贵州施秉;23—贵州麻江;24—扬子陆块西缘钾质煌斑岩;25—浙江龙游;26—江西安远;27—新疆巴楚;28—新疆皮山

    Figure  7.   Schematic map of kimberlites and lamproites distribution in China

    1-Mengyin, Shandong; 2-Wafangdian (formerly known as Fuxian), Liaoning; 3-Huanren, Liaoning; 4-Huludao, Liaoning; 5-Tieling, Liaoning; 6-Ji'an, Jilin; 7-Potassium-magnesium lamprophyre in Tonghua, Jilin; 8-Hebi, Henan; 9-Shexian, Hebei; 10-Yinniugou potassiummagnesium lamprophyre in Datong, Shanxi; 11-Cailiangshan, in Datong, Shanxi; 12-Yingxian, Shanxi; 13-Liulin, Shanxi; 14-Siziwang Banner, Inner Mongolia 15-Pengjia collapse kimberlite in Dahongshan, Hubei; 16-Wangguan-Xujiachong K-Mg lamprophyre in Dahongshan, Hubei; 17-Ningxiang, Hunan; 18-Guangxi meltwater; 19-Du'an, Guangxi; 20-Dahua, Guangxi; 21-Zhenyuan, Guizhou; 22-Shibing, Guizhou; 23-Majiang, Guizhou; 24-K-lamprophyre on the western margin of Yangtze block; 25-Longyou, Zhejiang; 26-Anyuan, Jiangxi; 27-Bachu, Xinjiang 28-Pishan, Xinjiang

    图  8   山东蒙阴金伯利岩地质简图(据宋瑞祥, 2013修改)

    F1—蒙山断裂;F2—新泰—垛庄断裂;F3—铜冶店—蔡庄断裂;F4—上五井断裂;F5—鄌郚−葛沟断裂;F6—沂水−汤头断裂;F7—安丘—莒县断裂;F8—昌邑—大店断裂

    Figure  8.   Geological map of Mengyin kimberlites showing the locations of three mines of Changmazhuang, Xiyu and Poli and main faults(modified from Song, 2013)

    F1−Mengshan fault; F2−Xintai-Duozhuang fault; F3−TongyedianCaizhuang fault; F4−Shangwujing fault; F5−Zanzenggou fault; F6−Yishui−Tangtou fault; F7−Anqiu−Juxian fault; F8−Changyi−Dadian fault

    图  9   辽宁省含金刚石金伯利岩和主要断裂构造分布图(据赵光慧等, 2011宋瑞祥, 2013修改)

    Figure  9.   Distribution map of diamondiferous kimberlites and major faults in Liaoning Province (modified from Zhao et al., 2011; Song, 2013)

    图  10   辽宁瓦房店金伯利岩群构造地质简图(据(宋瑞祥, 2013赵春强等, 2018)修改)

    Figure  10.   Sketch geological map of Wafangdian kimberlite cluster in Liaoning Province including five kimberlite zones (modified from Zhao et al., 2011; Song, 2013; Zhao et al., 2018)

  • Agashev A M, Ionov D A, Pokhilenko N P, Golovin A V, Cherepanova Y, Sharygin I S. 2013. Metasomatism in lithospheric mantle roots:Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya[J]. Lithos, 160-161(1):201-215. http://www.sciencedirect.com/science/article/pii/S0024493712004690

    Aulbach S, Jacob D E, Cartigny P, Stern R A, Simonetti S S, Wörner G, Viljoen K S. 2017. Eclogite xenoliths from Orapa:Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin[J]. Geochimica et Cosmochimica Acta, 213:574-592. doi: 10.1016/j.gca.2017.06.038

    Bao Peisheng, Su Li, Zhai Qingguo, Xiao Xuchang. 2009. Compositions of the kimberlitic brecciated peridotite in the Bachu area, Xijiang and Iits ore-bearing potentialities[J]. Acta Geologica Sinica, 83(9):1276-1301(in Chinese with English abstract).

    Bao Shuhua. 2013. Study on the relationship between kimberlite and diamond in Wafangdian area[J]. Science and Technology Communication, 10:166-168(in Chinese).

    Brook M C. 2017. Botswanàs Diamonds Prospecting to Jewellery[M]. Longpack Co., Ltd.

    Brown R J, Gernon T, Stiefenhofer J, Field M. 2008. Geological constraints on the eruption of the Jwaneng Centre kimberlite pipe, Botswana[J]. Journal of Volcanology and Geothermal Research, 174(1/3):195-208. http://www.sciencedirect.com/science/article/pii/S037702730700443X

    Bulanova G P, Walter M J, Smith C B, Kohn S C, Armstrong L S, Blundy J, Gobbo L. 2010. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil:Subducted protoliths, carbonated melts and primary kimberlite magmatism[J]. Contributions to Mineralogy & Petrology, 160(4):489-510. doi: 10.1007/s00410-010-0490-6

    Burgess R, Turner G, Harris J W. 1992. 40Ar-39Ar laser probe studies of clinopyroxene inclusions in eclogitic diamonds[J]. Geochimica et Cosmochimica Acta, 56(1):389-402. doi: 10.1016/0016-7037(92)90140-E

    Buse B, Sparks R S J, Field M, Schumacher J C, Chisi K, Tlhaodi T. 2011. Geology of the BK9 kimberlite (Damtshaa, Botswana):implications for the formation of dark volcaniclastic kimberlite[J]. Bulletin of Volcanology, 73(8):1029-1045. doi: 10.1007/s00445-011-0491-y

    Cai Yitao, Zhang Jie, Dong Zhongdou, Cao Zhengqi, Xiao Shuyue, Li Shuai, Li Chenkai, Chen Lezhu, Fan Feipeng. 2018. Neoproterozoic basicmagmatism in the north of Anhui Province:Evidence from whole-rock geochemistry and U-Pb geochronology of Diabase in Langan area[J].Geology in China, 45(2):351-366 (in Chinese with English abstract).

    Campbell J A, Jooste V. 2017. The AK6 kimberlite Discovery through to production-learning the lessons of history[C].11th International Kimberlite Conference: 1-16.

    Cartigny P, Harris J W, Javoy M. 2001. Diamond genesis, mantle fractionations and mantle nitrogen content:a study of δ13C-N concentrations in diamonds[J]. Earth and Planetary Science Letters, 185:85-98. doi: 10.1016/S0012-821X(00)00357-5

    Cartigny P, Palot M, Thomassot E, Harris J W. 2014. Diamond formation:A stable isotope perspective[J]. Annual Review of Earth and Planetary Sciences, 42(1):699-732. doi: 10.1146/annurev-earth-042711-105259

    Chi Jishang, Lu Fengxiang. 1996a. The kimberlite in the North China Craton and Characteristics of the Paleozoic Lithosphere Mantle[M]. Beijing:Science Press, 1-292 (in Chinese).

    Chi Jishang, Lu Fengxiang, Liu Yongshun, Hu Shijie, Zhao Zonghe, Ye Delong, Zheng Jianping, Zhao Lei, Zhang Hongfu, Jiang Wan. 1996b. Study on the Metallogenic Geological Conditions of Primary Diamond in China[M]. China University of Geosciences Press, 1-138 (in Chinese with English abstract).

    Chinn I L, Krug M A, Minnie W P, Rikhotso C T. 2010. Decoding the diamonds from AK6 kimberlite[J]. The Southern African Institute of Mining and Metallurgy Diamonds-Source to Use.

    Chinn I L, Perritt S H, Stiefenhofer J, Stern R A. 2018. Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data[J]. Mineralogy and Petrology, 112(Supp.):197-207. doi: 10.1007/s00710-018-0570-2

    Comprehensive Geological Team of Hebei Provincial Bureau of Geology and Mineral Resources. 1988. Evaluation of Kimberlite Complex and Survey Report of Diamond of Zhanghe-Shahe River System in Shexian, Hebei Province[R]. (in Chinese).

    Creus P K, Basson I J, Stoch B, Mogorosi O, Gabanakgosi K, Ramsden F, Gaegopolwe P. 2018. Structural analysis and implicit 3D modelling of Jwaneng Mine:Insights into deformation of the Transvaal Supergroup in SE Botswana[J]. Journal of African Earth Sciences, 137:9-21. doi: 10.1016/j.jafrearsci.2017.09.010

    Davis G L. 1977. The ages and uranium contents of zircons from kimberlites and associated rocks[J]. Second International Conference. doi: 10.29173/ikc945

    De Wit M C J. 2018. Prospecting history leading to the discovery of Botswana's diamond mines:from artefacts to Lesedi La Rona[J]. Mineralogy & Petrology:1-16. doi: 10.1007/s00710-018-0556-0

    De Wit M J, de Ronde C E J, Tredoux M, Roering C, Hart R J, Armstrong R A, Green R W E, Peberdy E, Hart R A. 1992. Formation of an Archaean continent[J]. Nature, 357(6379):553-562. doi: 10.1038/357553a0

    De Wit M J, Ronde C E J D, Tredoux M, Roering C, Hart R J, Armstrong R A, Green R W E, Peberdy E, Hart R A. 1992. Formation of an Archean continent[J]. Nature, 357(6379):553-562. doi: 10.1038/357553a0

    De Wit M, Zi B, Davidson J, Haggerty S E, Hundt P, Jacob J, Lynn M, Marshall T R, Skinner C, Smithson K. 2016. Overview of Diamond Resources in Africa[J]. Episodes, 39(2):198. doi: 10.18814/epiiugs/2016/v39i2/95776

    Deines P, Stachel T, Harris J W. 2009. Systematic regional variations in diamond carbon isotopic composition and inclusion chemistry beneath the Orapa kimberlite cluster, in Botswana[J]. Lithos, 112:776-784. doi: 10.1016/j.lithos.2009.03.027

    Deines P, Harris J W. 2004. New insights into the occurrence of 13C-depleted carbon in the mantle from two closely associated kimberlites:Letlhakane and Orapa, Botswana[J]. Lithos, 77(1):125-142. http://www.sciencedirect.com/science/article/pii/S0024493704001306

    Dobbs P N, Duncan D J, Hu S, Shee S R, Colgan E A, Brown M A, Smith C B, Allsopp H L. 1994. The geology of the Mengyin kimberlites, Shandong, China[C]//Meyer H O A, Leonardos O H (eds.). Fifth International Kimberlite Conference, Vol. 1.Companhia de Pesquisa de Recursos Minerais, Araxa: 40-61.

    Dong Zhenxin. 1991. Some geological characteristics of kimberlite type diamond deposits in China and their ore-prospectiong indicators[J]. Mineral Deposits, 10(3):255-264(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199103007.htm

    Duncan M S, Dasgupta R. 2017. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon[J]. Nature Geoscience, 10(5):387-392. http://www.nature.com/ngeo/journal/v10/n5/ngeo2939/metrics

    Eglington B M. 2006. Evolution of the Namaqua-Natal Belt, southern Africa-A geochronological and isotope geochemical review[J]. Journal of African Earth Sciences, 46(1):93-111. http://www.sciencedirect.com/science/article/pii/S1464343X06001348

    Field M, Stiefenhofer J, Robey J, Kurszlaukis S. 2008. Kimberlitehosted diamond deposits of southern Africa:A review[J]. Ore Geology Reviews, 34(1/2):33-75. http://www.sciencedirect.com/science/article/pii/S0169136808000188

    Gernon T M, Field M, Sparks R. 2009. Depositional processes in a kimberlite crater:the Upper Cretaceous Orapa South Pipe(Botswana)[J]. Sedimentology, 56:623-643. doi: 10.1111/sed.2009.56.issue-3

    Gress M U, Howell D, Chinn I L, Speich L, Kohn S C, van den Heuvel Q, Schulten E, Pals A S M, Davies G R. 2018. Episodic diamond growth beneath the Kaapvaal Craton at Jwaneng Mine, Botswana[J]. Mineralogy and Petrology, 112(Supp.1):219-229. DOI: 10.1007/s00710-018-0582-y.

    Gress M U, Pearson D G, Timmerman S, Chinn I L, Koornneef J M, Davies G R. 2017. Diamond growth beneath Letlhakane established by Re-Os and Sm-Nd systematics of individual eclogitic sulphide, garnet and clinopyroxene inclusions[C]. EGU General Assembly Conference, 19: 5540.

    Griffin W L, Batumike J M, Greau Y, Pearson N J, Shee S R, O Reilly S Y. 2014. Emplacement ages and sources of kimberlites and related rocks in southern Africa:U-Pb ages and Sr-Nd isotopes of groundmass perovskite[J]. Contributions to Mineralogy & Petrology, 168(1):1032. doi: 10.1007/s00410-014-1032-4

    Griffin W L, O'Reilly S Y, Natapov L M, Ryan C G. 2003. The evolution of lithospheric mantle beneath the Kalahari Craton and its margins[J]. Lithos, 71(2/4):215-241. http://www.sciencedirect.com/science/article/pii/S0024493703001142

    Haggerty S E, Raber E, Naeser C W. 1983. Fission track dating of kimberlitic zircons[J]. Earth and Planetary Science Letters, 63(1):41-50. doi: 10.1016/0012-821X(83)90020-1

    Harte B. 2010. Diamond formation in the deep mantle:The record of mineral inclusions and their distribution in relation to mantle dehydration zones[J]. Mineralogical Magazine, 74(2):189-215. doi: 10.1180/minmag.2010.074.2.189

    Hastie W W, Watkeys M K, Aubourg C. 2014. Magma flow in dyke swarms of the Karoo LIP:Implications for the mantle plume hypothesis[J]. Gondwana Research, 25(2):736-755. doi: 10.1016/j.gr.2013.08.010

    Heaman L M, Kjarsgaard B A, Creaser R A. 2003. The timing of kimberlite magmatism in North America:Implications for global kimberlite genesis and diamond exploration[J]. Lithos, 71(2):153-184. http://www.sciencedirect.com/science/article/pii/S0024493703001117

    Hou Guangshun, Xiang Shihong, Qi Yong'an, Zhi Fengqi, Wang Mingguo, Zhou Xue, Lin Liu, Li Ming, Wu Chengbin. 2016. Mineral chemical study on mantle xenoliths from kimberlites in Hebi Region, North China Craton[J].Acta Mineralogica Sinica, 36(3):318-328(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201603002

    Huang Yunhui, Qin Shuying, Zhou Xiuzhong, Deng Chujun, Zhao Donggao, Yang Jianmin, Guo Yuemin, Li Gejing, Gao Yan. 1992. North China Craton Kimberlite and Diamond[M]. Beijing:Geological Publishing House, 1-198 (in Chinese with English abstract).

    Institute of Geology, Chinese Academy of Geological Sciences. 1970. Geological Survey Report of No.1, Longtoushan Kimberlite Complex, Siziwangqi, Inner Mongolia[R] (in Chinese).

    Jacob D E. 2004. Nature and origin of eclogite xenoliths from kimberlites[J]. Lithos, 77(1/4):295-316. http://www.sciencedirect.com/science/article/pii/S0024493704001045

    Jacobs J, Pisarevsky S, Thomas R J, Becker T. 2008. The Kalahari Craton during the assembly and dispersal of Rodinia[J]. Precambrian Research, 160(1):142-158. http://www.sciencedirect.com/science/article/pii/S0301926807001611

    Kaminsky F. 2012. Mineralogy of the lower mantle:A review of 'super-deep' mineral inclusions in diamond[J]. Earth-Science Reviews, 110(1):127-147. http://linkinghub.elsevier.com/retrieve/pii/S0012825211001668

    Kemppinen L I, Kohn S C, Parkinson I J, Bulanova G P, Howell D, Smith C B. 2018. Identification of molybdenite in diamond-hosted sulphide inclusions:Implications for Re-Os radiometric dating[J]. Earth and Planetary Science Letters, 495:101-111. doi: 10.1016/j.epsl.2018.04.037

    Kinabo B D, Hogan J P, Atekwana E A, Abdelsalam M G, Modisi M P. 2008. Fault growth and propagation during incipient continental rifting:Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana[J]. Tectonics, 27(3):DOI: 10.1029/2007tc002154.

    Kinny P D, Compston W, Bristow J W, Williams I S. 1989. Archaean mantle xenocrysts in a Permian kimberlite: Two generations of kimberlitic zircon in Jwaneng DK2, southern Botswana[C]//Kimberlites and Related Rocks, vol. 14. Geological Society of Australia, 2: 833-842.

    Koornneef J M, Gress M U, Chinn I L, Jelsma H A, Harris J W, Davies G R. 2017. Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism[J]. Nature Communications, 8(1):648. http://europepmc.org/articles/PMC5608721

    Kruger K, Maphane K. 2017. Orapa, Letlhakane and Damtshaa Mines Field Guide[C]//11th International Kimerlite Conference Field Trip Guide.

    Kusky T M. 1998. Tectonic setting and terrane accretion of the Archean Zimbabwe craton[J]. Geology, 26(26):163-166. doi: 10.1130-0091-7613(1998)026-0163-TSATAO-2.3.CO%3b2/

    Lei Xueying. 2017. The Review of Kimberlite[J]. Journal of the Graduates Sun Yat-Sen University (Natural Science, Medicine), 38(1):41-51(in Chinese with English abstract). doi: 10.1080-00206819509465403/

    Li Xuan. 2012. Age of the Kimberlitic Explosive Breccia in the Bachu Area, Xinjiang and Its Diagenetic Mechanism Research[D]. China University of Geosciences (Beijing): 1-55 (in Chinese with English abstract).

    Lian Dongyang, Yang Jingsui, Wiedenbeck M, Dilek Y, Rocholl A, Wu Weiwei. 2018. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti-Karsanti chromitite, Turkey[J]. Contributions to Mineralogy & Petrology, 173(9):72. doi: 10.1007/s00410-018-1499-5

    Lian Dongyang, Yang Jingsui, Liu Fei, Wu Weiwei. 2018. Diamond classification, compositional characteristics, and research progress:A review[J]. Earth Science, 1-72 (in Chinese with English abstract).

    Liang Rixuan, Fang Qingsong. 1992. Geological conditions for the formation of diamond deposits and direction in diamond prospection in the Tarim platform[J]. Regional Geology of China, (2):161-166(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-ZQYD199202009.htm

    Lin Weipeng. 2007. Studies on the Zircon Mineralogy and Geochronology in the Lamproites and Heavy-sand of Related Rocks from Ningxiang, Hunan[D]. Sun Yat-Sen University: 1-59(in Chinese with English abstract).

    Lin Zongman. 2011. Characteristics of Tancheng-Lujiang fault and its role on basin controlling[J]. Journal of Geomechanics, 17(4):322-337(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201104004.htm

    Liu Jitai. 2002. Study on Primary diamond ore-forming future in Shandong Province[J]. Shandong Geology, 18(3):100-104(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDI2002Z1034.htm

    Liu Zhina, Xu Hong, Wang Qiushu, Chen Mei. 2016. Global diamond resources distribution and suggestions of exploitation for Chinàs mining corporation[J]. China Mining Magazine, (7):5-10(in Chinese with English abstract).

    Lu Fengxiang, Han Zhuguo, Zheng Jianping, Ren Yingxin. 1991. Characteristics of Paleozoic lithospheric mantle in Fuxian County Liaoning Province[J]. Geological Science and Tecnology Information, 10(2):20(in Chinese with English abstract).

    Lu Fengxiang, Wang Ying, Chen Meihua, Zheng Jianping. 1998. Geochemical characteristics and emplacement ages of the Mengyin kimberlites, Shandong Province, China[J]. International Geology Review, 40(11):998-1006. doi: 10.1080/00206819809465251

    Lu Fengxiang. 2008. Kimberlite and Diamond[J]. Chinese Journal of Nature, (2):63-66 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0213898477/

    Lu Qi, Shi Nicheng, Liu Huifang, Li Guowu, Tang Zhongdao, Xiao Ping. 2011. TiC inclusion frist found in diamond from Fuxian, Liaoning of China[J]. Geological Science and Technology Information, 30(2):1-5 (in Chinese with English abstract).

    Lu Qi, Liu Huifang, Xiao Ping, Shi Nicheng, Li Guowu, Tang Zhongdao. 2012. Discovery and geological significance of majorite inclusion in diamond from Liaoning Province, China[J]. Geological Science and Technology Information, 31(5):5-11 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205003.htm

    Luguet A, Behrens M, Pearson D G, König S, Herwartz D. 2015. Significance of the whole rock Re-Os ages in cryptically and modally metasomatised cratonic peridotites:Constraints from HSE-Se-Te systematics[J]. Geochimica et Cosmochimica Acta, 164:441-463. doi: 10.1016/j.gca.2015.06.016

    Luo Huiwen, Yang Guangshu. 1989. Petrologic features of lamproite in Zhenyuan, Guizhou province[J]. Acta Petrologica et Mineralogica, (2):97-109 (in Chinese with English abstract).

    Luo Shengxuan, Ren Xirong, Zhu Yuan, Chen Jichang, Guo Yaping, Wei Tonglin. 1999. Geology of Shandong diamond[M]. Jinan:Shandong Science and Technology Press (in Chinese with English abstract).

    Luo Zhili, Li Jingming, Li Xiaojun, Liu Shugen, Zhao Xikui, Sun Wei. 2005. Discussion on the Formation, Evolution and Problems of the Tancheng-Lujiang Fault Zone[J]. Journal of Jilin University(Earth Science Edition), 35(6):699-706(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200506005.htm

    Lynn M, Nowicki D T, Valenta M, Robinson B, Gallagher M, Bolton R, Sexton J. 2014. Karowe Diamond Mine Botswana NI 43-101 Independent Technical Report (Amended)[R].: 1-155.

    Malkovets V G, Rezvukhin D I, Belousova E A, Griffin W L, Sharygin I S, Tretiakova I G, Gibsher A A, O'Reilly S Y, Kuzmin D V, Litasov K D. 2016. Cr-rich rutile:A powerful tool for diamond exploration[J]. Lithos, 265:304-311. doi: 10.1016/j.lithos.2016.08.017

    Mapeo R B M, Ramokate L V, Corfu F, Davis D W, Kampunzu A B. 2006. The Okwa basement complex, western Botswana:U-Pb zircon geochronology and implications for Eburnean processes in southern Africa[J]. Journal of African Earth Sciences, 46(3):253-262. doi: 10.1016/j.jafrearsci.2006.05.005

    Mccourt S, Armstrong R A, Grantham G H, Thomas R J. 2006. Geology and evolution of the Natal belt, South Africa[J]. Journal of African Earth Sciences, 46(1/2):71-92. http://www.sciencedirect.com/science/article/pii/S1464343X06001336

    Mccourt S, Kampunzu A B, Bagai Z, Armstrong R A. 2004. The crustal architecture of Archaean terranes in Northeastern Botswana[J]. South African Journal of Geology, 107:147-158. doi: 10.2113/107.1-2.147

    Mcdonald I, Hughes H S R, Butler I B, Harris J W, Muir D. 2017. Homogenisation of sulphide inclusions within diamonds:A new approach to diamond inclusion geochemistry[J]. Geochimica et Cosmochimica Acta, 216, 335-357. doi: 10.1016/j.gca.2017.04.039

    Mcdonough W F. 2013. Compositional Model for the Earth's Core[J]. Treatise on Geochemistry, 2:559-577. http://adsabs.harvard.edu/abs/2003TrGeo...2..547M

    Mei Houjun, Tang Chunjing, Li Sunrong, Li Yongming, Zhang Xingchun, Lu Dengrong, Zhang Lianchang. 1998. Genesis of diamond deposits of Lamproite and kimberlite in China[J] Science in China (Series D), 28(s2):72-78 (in Chinese).

    Miensopust M P, Jones A G, Muller M R, Garcia X, Evans R L. 2011. Lithospheric structures and Precambrian terrane boundaries in northeastern Botswana revealed through magnetotelluric profiling as part of the Southern African Magnetotelluric Experiment[J]. Journal of Geophysical Research Solid Earth, 116(B2):1-21. doi: 10.1029/2010JB007740/abstract

    Mikhail S, Howell D. 2016. Outlooks in Earth and Planetary Materials:Chemistry and Mineralogy of Earth's Mantle:A petrological assessment of diamond as a recorder of the mantle nitrogen cycle[J]. American Mineralogist, 101(4):780-787.

    Mmualefe M K. 2017. Jwaneng Diamond Mine, Botwana:History, geology and mining[J]. 11th international Kimberlite Conference Field Trip Guide:1-31.

    Modie B N. 2000. Geology and mineralisation in the Meso-to Neoproterozoic Ghanzi-Chobe belt of northwest Botswana[J]. Journal of African Earth Sciences, 30(3):467-474. doi: 10.1016/S0899-5362(00)00032-4

    Moen H F G, Armstrong R A. 2008. New age constraints on the tectogenesis of the Kheis Subprovince and the evolution of the eastern Namaqua Province[J]. South African Journal of Geology, 111(1):79-88. http://www.sciencedirect.com/science/article/pii/S0301926807001611

    Moore A E. 2014. The origin of large irregular gem-quality type Ⅱ diamonds and the rarity of blue type Ⅱb varieties[J]. South African Journal of Geology, 117(2):219-236. http://geoscienceworld.org/content/gssajg/117/2/219

    Moore A, Belousova E. 2005. Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma:implications for mantle structure and the generation of kimberlite magmas[J]. Contributions to Mineralogy and Petrology, 149(4):462-481. doi: 10.1007/s00410-005-0663-x

    Motsamai T, Harris J W, Stachel T, Pearson D G, Armstrong J. 2018. Mineral inclusions in diamonds from Karowe Mine, Botswana:super-deep sources for super-sized diamonds?[J]. Mineralogy and Petrology, 112:169-180. doi: 10.1007/s00710-018-0604-9

    Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson D G, Pamato M G, Alvaro M, Peruzzo L, Gurney J J, Moore A E. 2018. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle[J]. Nature, 555(7695):237-241. doi: 10.1038/nature25972

    Niu X, Yang J, Liu F, Zhang H, Yang M. 2016. Origin of Baotoudong syenites in North China Craton:Petrological, mineralogical and geochemical evidence[J]. Science China Earth Sciences, 59(1):95-110. doi: 10.1007/s11430-015-5216-1

    O'Reilly S Y, Griffin W L. 2010. The continental lithosphereasthenosphere boundary:Can we sample it?[J]. Lithos, 120(1):1-13. doi: 10.1029/2009JB006914/citedby

    Peng Yanju, Lu Linsu, Zhou Zhenhua. Distribution and Utilization of Diamond Resources in China[J]. Journal of Gems and Gemmology, 2013, 15(4):1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB201304002.htm

    Peng Yanju, Lu Linsu, Zhou Zhenhua. 2013. Distribution and Utilization of Diamond Resources in China[J]. Journal of Gems and Gemmology, 15(4):1-7(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB201304002.htm

    Qi Yuxing, Han Zhuguo. 1998. The prospecting and exploration of diamond deposits in Liaoning[J]. Land Resouces, (2):111-125(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LOAD802.004.htm

    Qiao Xiufu, Zhang Andi. 2002. North China block, Jiao-Liao-korea block and Tanlu fault[J]. Geology in China, 29(4):337-345(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200204001

    Qin Zhengyong, Lin Xiaohui. 2001. Discussion about possibility of discovered kimberlite in hutoushan, Longyou county, Zhejiang[J]. Geology and Mineral Resources of South China, (2):57-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200102008.htm

    Rayner R J, Waters S B, Mckay I J, Dobbs P N, Shaw A L. 1991. The mid-Cretaceous palaeoenvironment of central Southern Africa(Orapa, Botswana)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 88(1-2):147-156. doi: 10.1016/0031-0182(91)90020-R

    Ren Huaixiang, Zhang Guangwen. 1993. Geological characteristics of phlogopite volcanic rocks (lamproite) in Majiang, Guizhou Province[J]. Guizhou Geology, (3):189-191(in Chinese with English abstract).

    Richardson S H, Shirey S B, Harris J W. 2004. Episodic diamond genesis at Jwaneng, Botswana, and implications for Kaapvaal craton evolution[J]. Lithos, 77(1):143-154. http://www.sciencedirect.com/science/article/pii/S0024493704001495

    Russell S S, Arden J W, Pillinger C T. 1996. A carbon and nitrogen isotope study of diamond from primitive chondrites[J]. Meteoritics & Planetary Science, 31(3):343-355. doi: 10.1111/j.1945-5100.1996.tb02071.x/full

    Salters V J, Stracke A. 2004. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 5(5):1-27. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1301.2191

    Satish-Kumar M, So H, Yoshino T, Kato M, Hiroi Y. 2011. Experimental determination of carbon isotope fractionation between iron carbide melt and carbon:12C-enriched carbon in the Earth's core?[J]. Earth and Planetary Science Letters, 310(3-4):340-348. doi: 10.1016/j.epsl.2011.08.008

    Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the Geology of Mantle Carbon[J]. Reviews in Mineralogy & Geochemistry, 75(1):355-421. http://adsabs.harvard.edu/abs/2013RvMG...75..355S

    Smith C B. 1983. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites[J]. Nature, 304:51-54. doi: 10.1038/304051a0

    Smith E M, Shirey S B, Richardson S H, Nestola F, Bullock E S, Wang J, Wang W. 2018. Blue boron-bearing diamonds from Earth's lower mantle[J]. Nature, 560(7716):84-87. doi: 10.1038/s41586-018-0334-5

    Song Ruixiang. 2013. Blinking diamonds——World history of diamond prospecting[M]. Beijing:Geological Publishing House, 1-284 (in Chinese).

    Stachel T. 2001. Diamonds from the asthenosphere and the transition zone[J]. European Journal of Mineralogy, 13(5):883-892. http://eurjmin.geoscienceworld.org/content/13/5/883

    Stachel T, Viljoen K S, Mcdade P, Harris J W. 2004. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton-the peridotitic inclusion suite in diamonds from Orapa and Jwaneng[J]. Contributions to Mineralogy & Petrology, 147(1):32-47. doi: 10.1007/s00410-003-0535-1

    Stachel T, Harris J W. 2008. The origin of cratonic diamonds -Constraints from mineral inclusions[J]. Ore Geology Reviews, 34(1-2):5-32. doi: 10.1016/j.oregeorev.2007.05.002

    Stachel T, Luth R W. 2015. Diamond formation-Where, when and how?[J]. Lithos, 220-223:200-220. doi: 10.1016/j.lithos.2015.01.028

    Stanley J R, Flowers R M. 2016. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology[J]. Geochemistry Geophysics Geosystems, 17(11):4517-4533. doi: 10.1002/ggge.v17.11

    Shu Xiaoxin. The research of petrology of the potassic lamproites along the western border of Yangzi platorm[J]. Acta Petrologica Sinica, 1994, 10(3):248-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB199403002.htm

    Tappe S, Steenfelt A, Nielsen T. 2012. Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland:New high-precision U-Pb and Sr-Nd isotope data on perovskite[J]. Chemical Geology, 320-321(5):113-127. http://linkinghub.elsevier.com/retrieve/pii/S0009254112002653

    Tappert R, Stachel T, Harris J W, Muehlenbachs K, Ludwig T, Brey G P. 2005. Diamonds from Jagersfontein (South Africa):messengers from the sublithospheric mantle[J]. Contributions to Mineralogy and Petrology, 150(5):505-522. doi: 10.1007/s00410-005-0035-6

    Thomassot E, Cartigny P, Harris J W, Lorand J P, Rollion-Bard C, Chaussidon M. 2009. Metasomatic diamond growth:A multiisotope study (13 C, 15 N, 33 S, 34 S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana)[J]. Earth and Planetary Science Letters, 282(1):79-90. http://www.sciencedirect.com/science/article/pii/S0012821X09001447

    Tian Hongshui, Zhu Jiewang, Wang Hualin, Zhang Zengqi, Zhang Banghua, Zhang Shenhe. 2017. Spatio-temporal distribution and significance of seismic event horizon in the Yishu Fault Zone and its adjacent area[J]. Journal of Palaeogeography, (03):393-417(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201703001.htm

    Timmerman S, Chinn I L, Fisher D, Davies G R. 2018. Formation of unusual yellow Orapa diamonds[J]. Mineralogy and Petrology, 112:209-218. doi: 10.1007/s00710-018-0592-9

    Timmerman S, Koornneef J M, Chinn I L, Davies G R. 2017. Dated eclogitic diamond growth zones reveal variable recycling of crustal carbon through time[J]. Earth & Planetary Science Letters, 463:178-188. http://www.sciencedirect.com/science/article/pii/S0012821X17300614

    Tu Huaikui. 2001. Discussion of Alluvial Tyoe Placer of Diamono and It's Metalogenic model[J]. Chemical Mineral Geology, 23(4):239-244(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HGKC200104006.htm

    Van Schijndel V, Cornell D H, Hoffmann K H, Frei D. 2011. Three episodes of crustal development in the Rehoboth Province, Namibia[J]. Measurement Techniques, 33(2):164-167. http://adsabs.harvard.edu/abs/2011GSLSP.357...27V

    Venter L J. 1998. A Review of Southern African Kimberlites and Exploration Techniques[D].Department of Geology, Rhodes University.

    Wainwright A N, Luguet A, Fonseca R O C, Pearson D G. 2015. Investigating metasomatic effects on the 187Os isotopic signature:A case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite(Botswana)[J]. Lithos, 232:35-48. doi: 10.1016/j.lithos.2015.06.017

    Wang Jiuhua. 2012. Distribution Pattern and Crystallography Feature of Diamond Resource in Shandong Province[J]. Shanghai Land and Resources, 32(4):43-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD201104010.htm

    Wang W, Takahashi E, Sueno S. 1998. Geochemical properties of lithospheric mantle beneath the Sino-Korea craton; evidence from garnet xenocrysts and diamond inclusions[J]. Physics of the Earth & Planetary Interiors, 107(1-3):249-260. http://www.sciencedirect.com/science/article/pii/S0031920197001374

    Wang Xinyu, Peng Songbo, Wu Xiangke, Lu Gang. 2013. Discovory lamproite and its prospecting significance in Northern part of Guizhou[J]. Geological Science and Tecnology Information, (3):93(in Chinese with English abstract).

    Wei Yunfeng, Wang Junhu. 2015. Geochemical characteristics and geological significance of kimberlite in Jianjiagou, Liulin county[J]. Huabei Land and Resources, (2):116-118(in Chinese).

    Wang Xuemu, Wang Ping, Hu Ke. 2015. The erosion depth of kimberlite and the denudation thickness of diamond in the wafangdian region of Liaoning Province[J]. China Mining Magazine, (S1):300-303(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKA2015S1076.htm

    Wei Yunfeng, Wang Junhu. 2015. Geochemical characteristics and geological significance of kimberlite in Jianjiagou, Liulin county[J]. Huabei Land and Resources, (2):116-118(in Chinese).

    Wilson M G C, McKenna N, Lynn M D. 2007.The occurrence of diamonds in South Africa[M]. Silverton, Pretoria:Council for Geoscience, 1-105.

    Wu Fuyuan, Sun Deyou. 1999. The Mesozoic magmatism and lithospheric thinning in Eastern China[J]. Science China Earth Science, Journal of Changchun University of Science and Tecnology, (4):313-318(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CCDZ199904000.htm

    Wu F, Yang Y, Mitchell R H, Li Q, Yang J, Zhang Y. 2010. In situ UPb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada[J]. Lithos, 115(1/4):205-222. http://www.sciencedirect.com/science/article/pii/S0024493709004988

    Wu Genyao, Liang Xing, Chen Huanjiang. 2007. An approach to the Tancheng-Lujiang fault zone:its creation, evolution and character[J]. Chinese Journal of Geology, 42(1):160-175(in Chinese with English abstract).

    Wudrick M, Pearson D G, Stachel T, Armstrong J, Woodland S J, Motsamai T. 2017. Age of the Lithospheric Mantle Beneath the Karowe Diamond Mine[C]. 11 IKC, 4489: 1-3.

    Xu Kangkang, Wang Jie, Ren Junping, Zuo Libo, Liu Xiaoyang, He Shengfei, Gong Penghui, Sun Kai, Liu Yu, He Fuqing. 2016. Metallogenic Geological Setting, Types and Characters of the Diamond Deposits in Central and Southern Africa[J]. Geologcial Review, (2):362-374(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLP201602011.htm

    Xu Jun. 2013. Deep structure of Shanxi massif and kimberlite formation:A discussion on the deep process of the stable massif in relation to diamond deposits[J]. Geology in China, 40(3):790-799(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201303012.htm

    Xu Wenliang, Wang Feng, Pei Fuping, Meng En, Tang Jie, Xu Meijun, Wang Wei. 2013. Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, (2):339-353 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001

    Xu Xiangzhen. 2006. Assessment of Diamond Minearlization Geological Condition in Souhtwest of Hetian Aera, Xinjiang[D]. China University of Geosciences (Beijing): 1-60(in Chinese with English abstract).

    Yang, Jianmin. 1995. Study on the Mineralogy and Petrology of Kimberlite and Lamprolite from the North Part of Shanxi Province, China[D]. Chinese Academy of Geological Sciences: 1-135(in Chinese with English abstract).

    Yang Jingsui, Xu Zhiqin, Zhang Jianxin, Zhang Zeming, Liu Fulai, Wu Cailai. 2009. Tectonic setting of main high and ultrahigh pressure metamorphic belts in China and adjacent region and discussion on their subduction and exhumation mechanism[J]. Acta Petrologica Sinica, 25(7):1529-1560(in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-ysxb200907001.htm

    Yang J, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites[J]. Elements, 10(2):127-130. http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201703010

    Yang J, Robinson P T, Dilek Y. 2015. Diamond-bearing ophiolites and their geological occurrence[J]. Episodes, 38(4):344-364. http://www.episodes.org/index.php/epi/article/download/82430/65477

    Yang Y H, Wu F Y, Wilde S A, Liu X M, Zhang Y B, Xie L W, Yang J H. 2009. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J]. Chemical Geology, 264(1):24-42. http://www.sciencedirect.com/science/article/pii/S0009254109000898

    Ye Delong, Wang Qun, Yang Jinxiang, Ren Yingxin. 1991. Kimberlite and lamproite in the Southern section of mountain Dahong in Hubei province[J]. Geological Science and Tecnology Information, (s1):37-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ1991S1004.htm

    Ye Song, Yang Mei, Ye Delong, Tai Daoqian, Ren Yingxin. 2007. Research on kimberl itic lamprophyre pipe at Luj ing in Anyuan area, Jiangxi Province——A new type of mantle-derived alkal ine ultrabasic rock[J]. Mineral Resources and Geology, (04):383-394(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD200704000.htm

    Yin Li. 2008. The Characteristics and Significance of Diamond Inclusions in the North China Craton, Taking Mengyin Mine in Shandong as An Example[D]. Wuhan: China University of Geosciences (Wuhan): 1-68.

    Zhai Mingguo. 2010. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, (1):24-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ201001005.htm

    Zhang Fushun.1992. Direction of diamond prospecting in Jilin Province[J]. Jilin Geological Science and Tecnology Information, (2):2-7(in Chinese with English abstract).

    Zhang Hongfu, Yang Yueheng. 2007. Emplacement age and Sr-NdHf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton[J]. Acta Petrologica Sinica, 2007, 23(2):285-294 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702010.htm

    Zhang Jiantai.2017. Discussion on the geophysical characteristics of Kimberley rocks in Mengyin area[J]. Progress in Geophysics, 6:2589-2595(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201706040.htm

    Zhang Peiyuan. 1998. New knowledge of some important questions about diamond deposit genesis[J]. Hunan Geology, (3):67-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ803.016.htm

    Zhang Peng, Wang Liangshu, Shi Huosheng, Li Limei, Tan Huiming. 2010. The Mesozoic-Cenozoic tectonic evolution of the Shandong Segment of the Tan-Lu fault zone[J]. Acta Geologica Sinica, 84(9):1316-1323(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201009006.htm

    Zhang Xigui, Shi Rui, Wu Shouning, Li Yonggang, Lin Zeyuan. 2015. New discovery of Wengshao lamproite and its significance of diamond prospecting in Shibing, Guizhou province[J]. Guizhou Geology, 32(1):37-40 (in Chinese with English abstract).

    Zhao Chunqiang, Zhang Zhibin, Shi Yi, Shi Shaoshan, You Hongxi, Li Jing, Zhao Jingyang. 2018. Research progress and discussion on the metallogenic background of diamond in southern Liaoning[J]. Geology and Resources, (2):149-159(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gjsdz201802007

    Zhao G, Sun M, Wilde S A, Sanzhong L. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002

    Zhao Guanghui, Guan Yubo, Zhao Jianjun. 2011. Characteristics of plate tectonics and division of geotectonic units in Liaoning region[J] Geology and Resources, 20(2):101-106(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GJSD201102005.htm

    Zhao Jianjun, Li Jing, Wang Shu, Dai Jun. 2011. The regional orecontrolling conditions and prediction of resources potential of the diamond concentrated district in Wafangdian, Liaoning province[J]. Geology and Resources, 20(1):40-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201101012.htm

    Zhao Lei, He Mingyue, Li Youzhi, Li Jian Zhe, Yang Wanzhi, Yuan Yingxia, Fang Xilian, Palati. Abudukadier. 1998. Discovery of lamproite in southern margin of Tarim platform, China[J]. Geoscience, 1998, (4):555-558(in Chinese with English abstract).

    Zhao Xin, Shi Guanghai, Zhang Ji. 2015. Review of Lithospheric Diamonds and Their Mineral Inclusions[J]. Advances in Earth Science, 30(3):310-322 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201503002

    Zheng Jianping. 1989. Advances in the studies of petrogenesis of kimberlite, East Liaoning[J]. Geological Science and Tecnology Information, (2):8-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ198902001.htm

    Zheng Jianping. 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulliten, 54(14):1990-2007 (in Chinese). http://www.cqvip.com/QK/86894X/200919/31923706.html

    Zheng Jianping, Lu Fengxiang. 1999. Mantle xenoliths fromkimberlites, Shandong and Liaoning:Paleozoic mantle character and its heterogeneity[J]. Acta Petrologica Sinica, (1):65-74(in Chinese with English abstract).

    Zheng J P, Griffin W L, O'Relly S Y, Yang J S, Li T, Zhang M, Zhang R Y, Liou J G. 2006. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:Constraints on Mantle Evolution beneath Eastern China[J]. Journal of Petrology, 47(11):2233-2256. doi: 10.1093/petrology/egl042

    Zheng J, O'Reilly S Y, Griffin W L, Lu F, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos, 57(1):43-66. http://www.sciencedirect.com/science/article/pii/S0024493700000736

    Zheng Xiang, Peng Maoyuan, Hu Gui'ang, Lu Gang, Huang Xianglin. 2016. Volcano-tectonic characteristics of diamond ore prospects in Southeast Guizhou[J]. Chinese Journal of Engineering Geophysics, 36(3):418-425(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-GCDQ201603026.htm

    Zheng Y, Xiao W, Zhao G. 2013. Introduction to tectonics of China[J]. Gondwana Research, 23(4):1189-1206. doi: 10.1016/j.gr.2012.10.001

    Zhu Rixiang, Chen Ling, Wu Fuyuan, Liu Junlai. 2011. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Science, (5):583-592 (in Chinese with English abstract). http://gji.oxfordjournals.org/external-ref?access_num=10.1007/s11430-011-4203-4&link_type=DOI

    包淑华. 2013.瓦房店市金伯利岩与金刚石的关系研究[J].科技传播, (10):166-168. http://d.old.wanfangdata.com.cn/Periodical/kjcb201310125
    鲍佩声, 苏犁, 翟庆国, 肖序常. 2009.新疆巴楚地区金伯利质角砾橄榄岩物质组成及含矿性研究[J].地质学报, 83(9):1276-1301. doi: 10.3321/j.issn:0001-5717.2009.09.008
    蔡逸涛, 张洁, 董钟斗, 曹正琦, 肖书阅, 李帅, 李成凯, 陈乐柱, 范飞鹏. 2018.皖北栏杆地区新元古代岩浆活动:含金刚石母岩U-Pb年代学及地球化学制约[J].中国地质, 45(2):351-366. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180210&flag=1
    池际尚, 路凤香. 1996a.华北地台金伯利岩及古生代岩石圈地幔特征[M].北京:科学出版社, 1-292.
    池际尚, 路凤香, 刘永顺, 胡世杰, 赵宗贺, 叶德隆, 郑建平, 赵磊, 张宏福, 江万. 1996b.中国原生金刚石成矿地质条件研究[M].北京:中国地质大学出版社, 1-138.
    董振信. 1991.中国金伯利岩型金刚石矿床的若干地质特征及其找矿标志[J].矿床地质, 10(3):255-264. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199103007.htm
    河北省地质矿产局综合地质大队. 1988.河北省涉县金伯利岩体评价及漳河-沙河水系金刚石普查报告[R].
    侯广顺, 向世红, 齐永安, 支风岐, 王明国, 周雪, 林刘军, 李明, 吴成斌. 2016.河南鹤壁地区金伯利岩中地幔包体矿物化学特征[J].矿物学报, 36(3):318-328. http://d.old.wanfangdata.com.cn/Periodical/kwxb201603002
    黄蕴慧, 秦淑英, 周秀仲, 邓楚均, 赵东高, 杨建民, 郭月敏, 李戈晶, 高岩. 1992.华北地台金伯利岩与金刚石[M].北京:地质出版社, 1-198.
    雷雪英. 2017.金伯利岩研究进展综述[J].中山大学研究生学刊(自然科学.医学版), 38(1), 41-51. http://www.cnki.com.cn/Article/CJFDTOTAL-YJSK201701004.htm
    李弦. 2012.新疆巴楚地区金伯利质隐爆角砾岩成岩年龄及成岩机制研究[D].中国地质大学(北京), 1-55.
    连东洋, 杨经绥, 刘飞, 吴魏伟. 2018.金刚石分类, 组成特征以及中国金刚石研究展望[J].地球科学, 1-72.
    梁日暄, 方青松. 1992.塔里木地台金刚石成矿地质条件和找矿方向[J].地质通报, (2):161-166. http://d.old.wanfangdata.com.cn/Thesis/Y443926
    林玮鹏. 2007.湖南宁乡钾镁煌斑岩及相关岩石重砂的锆石成因矿物学研究[D].广州: 中山大学, 1-59.
    林宗满. 2011.郯城-庐江断裂基本特征及其控盆作用[J].地质力学学报, 17(4):322-337. doi: 10.3969/j.issn.1006-6616.2011.04.003
    刘继太. 2002.山东金刚石原生矿找矿前景探讨[J].山东国土资源, 18(3):100-104. doi: 10.3969/j.issn.1672-6979.2002.03.034
    刘陟娜, 许虹, 王秋舒, 陈梅. 2016.全球金刚石资源分布现状及中国勘查开发建议[J].中国矿业, (7):5-10. doi: 10.3969/j.issn.1004-4051.2016.07.003
    陆琦, 刘惠芳, 肖平, 施倪承, 李国武, 汤中道. 2012.中国辽宁金刚石中高硅钙铁榴石(Majorite)等超高压矿物包裹体的发现及地质意义[J].地质科技情报, (5):5-11. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205003.htm
    陆琦, 施倪承, 刘惠芳, 李国武, 汤中道, 肖平. 2011.中国辽宁复县金刚石中新发现的碳化钛矿物[J].地质科技情报, 30(2):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102002.htm
    路凤香. 2008.金伯利岩与金刚石[J].自然杂志, (2):63-66. doi: 10.3969/j.issn.0253-9608.2008.02.001
    路凤香, 韩柱国, 郑建平, 任迎新. 1991.辽宁复县地区古生代岩石圈地幔特征[J].地质科技情报, 10(2):20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ1991S1001.htm
    罗会文, 杨光树. 1989.贵州省镇远地区钾镁煌斑岩岩石特征[J].岩石矿物学杂志, (2):97-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198902000.htm
    罗声宣, 任喜荣, 朱源, 陈积鋹, 郭亚平, 魏同林. 1999.山东金刚石地质[M].山东科学技术出版社.
    罗志立, 李景明, 李小军, 刘树根, 赵锡奎, 孙玮. 2005.试论郯城-庐江断裂带形成, 演化及问题[J].吉林大学学报:地球科学版, 35(6):699-706. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200506004
    梅厚钧, 唐春景, 李荪蓉, 李永明, 张兴春, 卢登蓉, 张连昌. 1998.中国的钾镁煌斑岩和金伯利岩与金刚石矿床生成[J].中国科学:地球科学, (s2):72-78. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S2010.htm
    彭艳菊, 吕林素, 周振华. 2013.中国金刚石资源分布及开发利用现状[J].宝石和宝石学杂志, 15(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/bshbsxzz201304001
    齐玉兴, 韩柱国. 1998.辽宁金刚石矿找矿与勘查[J].国土资源, (2):111-125. http://www.cqvip.com/Main/Detail.aspx?id=3159117
    乔秀夫, 张安棣. 2002.华北块体, 胶辽朝块体与郯庐断裂[J].中国地质, 29(4):337-345. doi: 10.3969/j.issn.1000-3657.2002.04.001
    秦正永, 林晓辉. 2001.浙江龙游县虎头山是否存在"金伯利岩"[J].华南地质与矿产, (2):57-62. doi: 10.3969/j.issn.1007-3701.2001.02.009
    任怀翔, 张光文. 1993.贵州麻江金云火山岩(钾镁煌斑岩)的地质特征[J].贵州地质, (3):189-191. http://www.cqvip.com/qk/91769X/199303/1043614.html
    舒小辛. 1994.扬子地台西缘钾质煌斑岩类的岩石学研究[J].岩石学报, 10(3):248-260. doi: 10.3321/j.issn:1000-0569.1994.03.003
    宋瑞祥. 2013.中国金刚石矿床专论——中国金刚石矿找矿与开发[M].北京:地质出版社, 1-284.
    田洪水, 祝介旺, 王华林, 张增奇, 张邦花, 张慎河. 2017.沂沭断裂带及其近区地震事件地层的时空分布及意义[J].古地理学报, (3):393-417. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201703001
    涂怀奎. 2001.冲积型金刚石砂矿与其成矿模式的讨论[J].化工矿产地质, 23(4):239-244. doi: 10.3969/j.issn.1006-5296.2001.04.006
    王久华. 2012.山东金刚石资源分布规律与结晶学特性[J].上海国土资源, 32(4):43-48. http://d.old.wanfangdata.com.cn/Periodical/shdz201104009
    王新宇, 彭松柏, 吴祥珂, 陆刚. 2013.桂北地区钾镁煌斑岩的发现及找矿意义[J].地质科技情报, (3):93. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303015.htm
    王雪木, 王萍, 胡克. 2015.辽宁瓦房店金伯利岩剥蚀深度与金刚石剥蚀量计算[J].中国矿业, (S1):300-303. http://d.old.wanfangdata.com.cn/Periodical/zgky2015z1076
    魏云峰, 王俊虎. 2015.柳林县尖家沟金伯利岩地球化学特征及地质意义[J].华北国土资源, (2):116-118. doi: 10.3969/j.issn.1672-7487.2015.02.060
    吴福元, 孙德有. 1999.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报, (4):313-318. http://d.old.wanfangdata.com.cn/Conference/6315280
    吴根耀, 梁兴, 陈焕疆. 2007.试论郯城-庐江断裂带的形成, 演化及其性质[J].地质科学, 42(1):160-175. doi: 10.3321/j.issn:0563-5020.2007.01.014
    许康康, 王杰, 任军平, 左立波, 刘晓阳, 何胜飞, 龚鹏辉, 孙凯, 刘宇, 贺福清. 2016.中南部非洲金刚石矿床的成矿地质背景、成矿类型及矿床特征[J].地质论评, (2):362-374. http://d.old.wanfangdata.com.cn/Periodical/dzlp201602011
    徐俊. 2013.山西地块的深部构造和金伯利建造:兼论金刚石矿与稳定地块的深部过程[J].中国地质, 40(3):790-799. doi: 10.3969/j.issn.1000-3657.2013.03.011
    徐向珍.2006.新疆和田西北部金刚石成矿地质条件分析[D].中国地质大学(北京): 1-60.
    许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, (2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001
    杨建民. 1995.山西北部金伯利岩钾镁煌斑岩岩石学矿物学研究[D].中国地质科学院: 1-135.
    杨经绥, 许志琴, 张建新, 张泽明, 刘福来, 吴才来. 2009.中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨[J].岩石学报, 25(7):1529-1560. http://www.cnki.com.cn/article/cjfdtotal-ysxb200907001.htm
    叶德隆, 王群, 杨金香, 任迎新. 1991.湖北大洪山南段的金伯利岩和钾镁煌斑岩[J].地质科技情报, (s1):37-44. http://www.cqvip.com/QK/93477A/1991S1/4001594323.html
    叶松, 杨眉, 叶德隆, 邰道乾, 任迎新. 2007.江西安远路迳金伯利质煌斑岩筒研究——一种新型的幔源碱性超基性岩[J].矿产与地质, (4):383-394. doi: 10.3969/j.issn.1001-5663.2007.04.001
    殷莉. 2008.华北地台金刚石包裹体特征及意义——以山东蒙阴为例[D].中国地质大学(武汉): 1-68.
    张复顺. 1992.吉林省金刚石找矿方向[J].吉林地质科技情报, (2):2-7. http://www.cqvip.com/Main/Detail.aspx?id=796696
    张宏福, 杨岳衡. 2007.华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征[J].岩石学报, 23(2):285-294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702009
    张建太. 2017.山东蒙阴地区金伯利岩的地球物理特征探讨[J].地球物理学进展, (6):2589-2595. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065334.htm
    张培元. 1998.有关金刚石成因等若干重大问题的新认识[J].湖南地质, (03):67-73. http://www.cnki.com.cn/Article/CJFDTotal-HNDZ803.016.htm
    张鹏, 王良书, 石火生, 李丽梅, 谭慧明. 2010.郯庐断裂带山东段的中新生代构造演化特征[J].地质学报, 84(9):1316-1323 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201009006
    张锡贵, 石睿, 吴寿宁, 李永刚, 林泽渊. 2015.贵州施秉翁哨地区钾镁煌斑岩的新发现及其金刚石找矿意义[J].贵州地质, 32(1):37-40. doi: 10.3969/j.issn.1000-5943.2015.01.007
    赵春强, 张志斌, 时溢, 石绍山, 尤洪喜, 李靖, 赵敬阳. 2018.辽南金刚石成矿背景研究进展及讨论[J].地质与资源, (2):149-159. doi: 10.3969/j.issn.1671-1947.2018.02.007
    赵光慧, 关玉波, 赵建军. 2011.辽宁板块构造特征及大地构造单元划分[J].地质与资源, 20(2):101-106. doi: 10.3969/j.issn.1671-1947.2011.02.004
    赵建军, 李靖, 王书, 戴军. 2011.辽宁瓦房店金刚石矿集区区域成矿控制条件及资源潜力预测[J].地质与资源, 20(1):40-44 doi: 10.3969/j.issn.1671-1947.2011.01.008
    赵磊, 何明跃, 李友枝, 李建哲, 杨万志, 袁英霞, 方锡廉, 帕拉提·阿布都卡迪尔. 1998.塔里木地台南缘发现钾镁煌斑岩[J].现代地质, (4):555-558. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ804.015.htm
    赵欣, 施光海, 张骥. 2015.岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J].地球科学进展, 30(3):310-322. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201503002
    郑建平. 1989.辽东金伯利岩成因研究的某些进展[J].地质科技情报, (2):8-14. http://www.cqvip.com/QK/93477A/198902/3001435489.html
    郑建平. 2009.不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J].科学通报, 54(14):1990-2007. http://www.cqvip.com/Main/Detail.aspx?id=31308372
    郑建平, 路凤香. 1999.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性[J].岩石学报, (1):65-74. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199901007
    郑翔, 彭懋媛, 胡贵昂, 陆刚, 黄祥林. 2016.广西大化金伯利岩类岩石的岩石学特征[J].桂林理工大学学报, 36(3):418-425 doi: 10.3969/j.issn.1674-9057.2016.03.002
    中国地质科学院地质研究所. 1970.内蒙古四子王旗龙头山一号金伯利岩体地质普查报告[R].
    朱日祥, 陈凌, 吴福元, 刘俊来. 2011.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学, (5):583-592. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201105001.htm
  • 期刊类型引用(9)

    1. 孔祥科,李义,王平,韩占涛,刘圣华,张兆吉,王妍妍. 制革污泥渗滤液中特征污染物对土壤氨氮转化及微生物群落结构的影响. 中国地质. 2024(05): 1676-1685 . 本站查看
    2. 谷培科,陆海建,梁小阳,王俊,邓一荣. 华南地区某地块地下水污染特征与成因分析. 农业与技术. 2024(22): 96-99 . 百度学术
    3. 李晓源,程庆禧,张宇霆,陆海建,邓一荣. 华南典型工业地块地下水污染特征与成因分析. 生物化工. 2024(06): 114-117 . 百度学术
    4. 陈秀梅. 基于因子-聚类分析的地下水中阳离子来源研究. 环境监控与预警. 2023(02): 15-21 . 百度学术
    5. 陈秀梅. 南通市深层地下水中氨氮的影响因素研究. 环境监测管理与技术. 2023(04): 72-75 . 百度学术
    6. 吕晓立,郑跃军,韩占涛,李海军,杨明楠,张若琳,刘丹丹. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因. 地学前缘. 2022(03): 88-98 . 百度学术
    7. 吕晓立,刘景涛,韩占涛,朱亮,李海军. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因. 环境科学. 2022(10): 4449-4458 . 百度学术
    8. 郑艺文,李福杰,刘晓煌,常铭,赵宏慧,赖明,张子凡. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应. 中国地质. 2022(05): 1361-1373 . 本站查看
    9. 曹建文,夏日元,唐仲华,赵良杰,王喆,栾崧,王松. 粤港澳大湾区地下水资源特征及开发潜力. 中国地质. 2021(04): 1075-1093 . 本站查看

    其他类型引用(0)

图(10)
计量
  • 文章访问数:  4019
  • HTML全文浏览量:  547
  • PDF下载量:  4347
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-08-02
  • 修回日期:  2019-01-07
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-02-24

目录

/

返回文章
返回
x 关闭 永久关闭