• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义

段政, 廖圣兵, 褚平利, 黄文成, 朱延辉, 舒徐洁, 李长波

段政, 廖圣兵, 褚平利, 黄文成, 朱延辉, 舒徐洁, 李长波. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 2019, 46(3): 493-516. DOI: 10.12029/gc20190305
引用本文: 段政, 廖圣兵, 褚平利, 黄文成, 朱延辉, 舒徐洁, 李长波. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 2019, 46(3): 493-516. DOI: 10.12029/gc20190305
DUAN Zheng, LIAO Shengbing, CHU Pingli, HUANG Wencheng, ZHU Yanhui, SHU Xujie, LI Changbo. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. GEOLOGY IN CHINA, 2019, 46(3): 493-516. DOI: 10.12029/gc20190305
Citation: DUAN Zheng, LIAO Shengbing, CHU Pingli, HUANG Wencheng, ZHU Yanhui, SHU Xujie, LI Changbo. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. GEOLOGY IN CHINA, 2019, 46(3): 493-516. DOI: 10.12029/gc20190305

江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义

基金项目: 

中国地质调查局基础地质综合研究项目 12120113064800

中国地质调查局基础地质综合研究项目 121201008000160902

中国地质调查局基础地质综合研究项目 12121008000150004

中国地质调查局基础地质综合研究项目 121201008000160903

国家重点研发计划“华南中生代大花岗岩省形成的深部过程与成矿作用” 2016YFC0600203

详细信息
    作者简介:

    段政, 男, 1987年生, 助理研究员, 火成岩岩石学专业; E-mail:dz19882010@163.com

  • 中图分类号: P588.12+1

Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance

Funds: 

China Geology Survey Project 12120113064800

China Geology Survey Project 121201008000160902

China Geology Survey Project 12121008000150004

China Geology Survey Project 121201008000160903

National key research and development program for deep process and mineralization of Mesozoic granitoid province in south China 2016YFC0600203

More Information
    Author Bio:

    DUAN Zheng, male, born in 1987, assistant researcher, majors in igneous petrology; E-mail:dz19882010@163.com

  • 摘要:

    江南造山带东段的九岭岩体为华南分布面积最大的新元古代花岗质侵入体。据其岩石组合、结构构造及野外侵入关系,可将其解体为由早到晚3个侵入序次的复式岩体,依次为黑云母花岗闪长岩、英云闪长岩及黑云母二长花岗岩。其中,黑云母花岗闪长岩分布面积最广,黑云母二长花岗岩次之,英云闪长岩分布面积最小,围岩为新元古代双桥山群浅变质岩系。LA-ICP-MS锆石U-Pb定年结果表明,黑云母花岗闪长岩、英云闪长岩、黑云母二长花岗岩分别形成于821.6~824.0 Ma、819.5~823.6 Ma、820.4~824.5 Ma,指示它们基本同时侵位,但三者均具有自SE向NW时代变新的趋势。九岭岩体与围岩(双桥山群)的侵入接触面具有南陡北缓、角岩化带南窄北宽且围岩捕掳体及捕获锆石也呈南少北多的特征,表明九岭岩体SE侧岩体剥蚀深度强于NW侧,可能暗示了新元古代华夏板块向扬子板块碰撞拼贴过程中,研究区SE侧岩浆起源深度较深,剥蚀程度较高,且形成时代较早,并逐渐向NW侧迁移(岩浆起源深度变浅、时代变新)。

    Abstract:

    Located in eastern Jiangnan orogen, the Jiuling pluton is the largest Neoproterozoic granitoid intrusion in South China. According to mineral assemblage, structure and intrusive contact relationships, Jiuling pluton can be divided into complex massif with 3 intrusion orders, followed by biotite-granodiorite, tonalite and biotite-monzogranite from early to late respectively. Among them, granodiorite are distributed most widely, followed by biotite-monzogranite, while tonalite is only distributed in a minimum area. They intruded into the surrounding epimetamorphic rocks of Neoproterozoic period. The LA-ICP-MS zircon U-Pb dating results show that the biotite-granodiorite, tonalite and biotite-monzogranite were formed in 821.6-821.6 Ma, 819.5-823.6 Ma and 820.4-824.5 Ma, respectively, which indicates that they belong to the product of contemporary magmatic activity. On the whole, however, the ganitoids tend to be younger from the southeast side to the northwest side. Besides, the dip angle of contact interface between Jiuling pluton and surrounding rocks (Shuangqiaoshan Group) is steep in the south and smooth in the north, hornfelsic belt is narrow in the south and wide in the north, and the xenoliths from the surrounding rock (Shuangqiaoshan Group) and the captured zircons also tend to decrease in size from south to north. These characteristics show that the rocks on the southeast side was eroded deeper than those on the northwest side, probably implying that, during the collision between Cathaysia plate and Yangtze plate in Neoproterozoic, the original depth of the granitic magma on the southeast side was deeper, the denudation was more intense, and the magma was formed earlier than the magma on the northwest side and gradually migrated northwestward, i.e., the origin depth of magma became shallow and the formation time became younger.

  • 隐爆角砾岩型矿床一般形成于浅成-超浅成(0.5~3 km)封闭或半封闭环境(唐菊兴, 1995; 卿敏和韩先菊, 2002),引发岩石隐蔽爆破的热液流体以岩浆热液为主,且多分布于浅成-超浅成中酸性侵入岩/次火山岩的顶部(Sillitoe, 1985; 卿敏和韩先菊, 2002; 张西社等, 2015),但也可见远离侵入岩的含矿隐爆角砾岩(Ni et al., 2018),该类型矿床的形成实质包括岩石爆破(气爆或者浆爆)和成矿流体注入过程(黄定华等, 1997; 李生元和马小兵, 1999; 马小兵和李生元, 1999)。隐爆角砾岩型矿床与斑岩型矿床或者浅成低温热液型矿床具有紧密联系(Eaton et al., 1993; Pirajno, 1995),有些学者甚至将其作为深部斑岩型矿床的找矿标志(Silltoe et al., 2003;张会琼等, 2012)。

    东南沿海地区属于环太平洋多金属成矿带西南部分,发育许多隐爆角砾岩型Au、Ag、Cu、Pb、Zn、Mo矿床(姜耀辉等, 1994; 濮为民等, 2008; 邓新根和华杰雄, 2010; 陈华, 2011; 林书平等, 2012)。其中,东际金(银)矿床位于闽北政和—建瓯金银矿集区内,具有隐爆角砾岩型矿床特征。2012年储量核实报告表明,该矿床已探明金资源量12.5 t,银资源量135.9 t,为次火山热液型矿床(刘永发, 2011)或者浅成中低温热液型矿床(卢燕等, 2017; 王波涛和严卸平, 2019; 刘日富等, 2019),成矿流体具有中低温(168.4~ 211.4℃)和低盐度(3.22%~ 8.13%NaCleqv)特征(王波涛和严卸平, 2019)。在以往的研究中,该矿床成矿物质来源和成矿时代等问题研究较少,制约了该金矿成矿与区域构造-岩浆事件的关联性研究,不利于进一步探讨此矿床深部找矿潜力。鉴于此,本文开展了黄铁矿硫、铅同位素,电子探针和锆石U-Pb测年等测试分析,试图解决东际金(银)矿床成矿作用方面的问题。

    闽北政和—建瓯金银矿集区位于华夏造山带北部龙泉—政和俯冲增生杂岩和浙闽沿海岩浆弧交界位置。该矿集区内地层主要为新元古代马面山岩群(变质基底)和燕山期陆相火山-沉积岩系(盖层)(图 1)。基底变质岩原岩是一套浊积特征显著并有中-基性火山物质掺杂的巨厚复理石建造,变质程度为绿片岩相。盖层主要为燕山期酸性—中酸性陆相火山岩建造,其中,晚侏罗世南园组火山岩浆活动表现为裂隙式喷发,构成北东向火山岩带,早白垩世晚期石帽山群火山岩浆活动则为中心式喷发,形成了东坑火山盆地(安山岩Rb- Sr年龄(104.4 ± 23)Ma,ISr= 0.7092;熔结凝灰岩Rb-Sr年龄(105.4±3.1)Ma,ISr= 0.7101,谢家莹等, 1994)和仁山火山盆地。

    图  1  政和—建瓯金矿集区大地构造位置(a)和地质矿产图(b)(图a据张克信等, 2015;图b据冯志文等, 1991
    Figure  1.  Tectonic location (a) and geological and mineral resources map (b) of the Zhenghe-Jianou gold ore concentration area (a after Zhang Kexin et al., 2015; b after Feng Zhiwen et al., 1991)

    区内侵入岩主要有熊山岩体(闪长岩,Sm-Nd等时线年龄为(585.7±30)Ma;任胜利等, 1997)、林屯岩体(石英闪长岩,锆石U-Pb年龄(433±7)Ma,隰弯弯等,2019)、富美岩体(花岗岩,锆石U-Pb年龄为(369±4)Ma,隰弯弯等,2019)、铁山岩体(燕山期大型钾质交代岩,Chen et al., 2017;也有人称石英正长岩和辉石正长岩,锆石U-Pb年龄为(254±4)Ma,Wang et al., 2005)和铜盆庵岩体(二长花岗岩和正长花岗斑岩,锆石U-Pb年龄为(153.5±1.8)Ma和(153.0±0.8)Ma,李亚楠等, 2015),其次是早白垩世岩脉(有~130 Ma和~100 Ma两期,未发表数据),岩石类型从中酸性—酸性—酸偏碱性皆有,以酸性和中酸性岩为主。区域构造以政和—大埔北东向断裂带为主,其次为浦城—三都澳北西向断裂带,二者交汇区域也是政和—建瓯矿集区的主体位置。该区内已发现东际金(银)矿(刘永发, 2011)、王母山金矿(胡荣华, 2009)、大药坑金矿(肖凡等, 2017)、狮子岗铜矿和夏山铅锌矿等,最近又新发现了井后超大型叶蜡石矿床(卢林, 2018),表明矿集区具有很好的成矿地质条件。

    东际金(银)矿床位于东坑火山盆地西缘,矿区出露地层有新元古代马面山岩群、晚侏罗世南园组和早白垩世晚期黄坑组,金(银)矿体均赋存于南园组(图 2)。马面山岩群出露于矿区西南角,岩性以片岩为主。南园组出露于矿区北部,岩性主要为流纹质晶屑凝灰(熔)岩夹晶屑凝灰(熔)岩,不整合于马面山岩群之上。黄坑组出露于矿区东南部,不整合覆盖于南园组及马面山岩群之上,上部为凝灰杂砂质砾岩、含砾砂岩,下部为凝灰质角砾岩、火山角砾岩。

    图  2  东际金(银)矿床地质简图(据刘永发, 2011修改)
    Figure  2.  Simplified geological map of the Dongji Au(Ag) deposit (after Liu Yongfa, 2011)

    矿区构造以夏山—东际北东向断裂带为主,次为前际—地坪北西向断裂带及次级或派生断裂,均为成矿后断裂。夏山—东际断裂带主体走向北东,往南东陡倾,或为岩脉充填切割矿体,或直接错断矿体,东坑火山盆地边界断裂也是其组成部分。前际—地坪断裂带总体走向北西,向南西陡倾,为花岗斑岩和辉绿玢岩充填,多表现为切割矿体。

    矿区侵入岩、次火山岩及脉岩广泛发育,包括中晚志留世细粒花岗岩和燕山晚期花岗斑岩、石英二长斑岩、石英正长斑岩、正长斑岩、闪长玢岩等,沿北东向断裂带及北西向断裂带充填。

    矿区隐爆角砾岩和矿体空间关系紧密,在416 m、450 m、501 m、517 m等中段均有出露。以450 m中段为例,此隐爆角砾岩主要由灰白色晶屑凝灰岩角砾和热液胶结物(石英和黄铁矿)组成,角砾彼此之间可拼贴完整,且遭受了硅化和绢云母化等蚀变,往往靠近围岩,角砾化程度降低,热液胶结物含量减少,而在角砾化程度较高位置,几乎全由灰黑色石英和黄铁矿构成,这样的区域也是金品位最高位置。

    矿区围岩蚀变主要有硅化、黄铁矿化、绢云母化、绿泥石化、绿帘石化和碳酸盐化等,其中,以硅化、黄铁矿化和绢云母化分布最为广泛,与成矿关系最为密切,尤以富铝绢云母带与金、银矿化带空间耦合性最好,可作为成矿流体主通道位置的识别标志(卢燕等, 2017)。

    矿区内共圈定金(银)矿体7个,其中Ⅰ号主矿体占矿床总资源/储量88%。Ⅰ号主矿体赋存于南园组底部,呈似层状产出(图 3),并具有分枝复合特点,矿体沿走向延伸305 m,沿倾向延伸400~500 m,最大为550 m(0#线),矿体走向为北东向(10~60°),倾向南东,倾角25~45°。其他矿体均属于Ⅰ号主矿体顺延伸方向尖灭再现或侧移的小矿体,储存部位及产状特征与Ⅰ号主矿体基本一致。

    图  3  东际金(银)矿0#勘探线地质剖面图(据刘永发, 2011修改)
    Figure  3.  Sketch geological section along 0# geological exploration line of the Dongji Au(Ag) deposit (after Liu Yongfa, 2011)

    矿石中金属矿物以黄铁矿为主,少量毒砂、黄铜矿、方铅矿和闪锌矿,微量自然金、银金矿、自然银和含银矿物等(图 4)。脉石矿物以石英、绢云母、水云母、绿泥石,少量方解石及绿帘石等。其中,金以自然金和银金矿形式存在,自然金呈他形粒状充填于石英晶粒间,金黄色,粒径5~20 μm,属细-微粒金,银金矿也赋存于石英晶粒间,粒径4~15 μm,呈不规则状和似椭球状。此外,银矿物(如辉银矿和深红银矿)沿黄铁矿裂隙生长,或以包体形式赋存于黄铁矿,粒径10~40 μm。

    图  4  东际金(银)矿床主要金属矿物特征
    a—自形—半自形粒状结构黄铁矿;b, c—黄铁矿被毒砂交代,黄铜矿沿毒砂颗粒边缘或者微裂隙生长,指示矿物生成顺序由早到晚依次为黄铁矿→毒砂→黄铜矿;d—黄铜矿、方铅矿交代他形粒状黄铁矿;e—银矿物沿黄铁矿裂隙生长(BSE图像);f—银矿物呈包裹体形式产于黄铁矿中(BSE图像);g, h—金矿物生长于石英颗粒间(BSE图像)。矿物代号:Py—黄铁矿;Ccp—黄铜矿;Apy—毒砂;Gn—方铅矿
    Figure  4.  Characteristics of main metal minerals of the Dongji Au(Ag) deposit
    a-Euhedral-subhedral texture pyrite; b, c-Pyrite replaced by arsenopyrite and chalcopyrite, which suggests that the sequence of metal minerals is pyrite, arsenopyrite and chalcopyrite; d-Anhedral texture pyrite replaced by chalcopyrite and galena; e-Ag-bearing mineral growing in the fracture of pyrite (BSE image); f- Ag-bearing mineral occurring as a inclusion in the pyrite (BSE image); g, h-Au-bearing mineral growing in the quartz. Mineral abbreviation: Py-Pyrite; Ccp-Chalcopyrite; Apy-Arsenopyrite; Gn-Galena

    矿石结构主要有粒状结构、压碎结构、交代残余结构和包含结构(图 4),矿石构造主要有角砾状构造、块状构造、脉状构造和稀疏浸染状构造(图 5),其中角砾状构造最为常见,当角砾变少时可变为块状构造,金品位明显增加,故两种矿石类型在空间上可同时出现,局部可见二者渐变过渡关系。

    图  5  东际金(银)矿床矿化特征
    a—黄铁矿-石英细脉;b—网脉状黄铁矿细脉;c, d, e—角砾状矿化,其中角砾已发生强烈硅化,胶结物为热液成因石英和黄铁矿;f—角砾状矿化,当岩石角砾变小和变少时,可变化为块状矿石,金含量也随之升高
    Figure  5.  Mineralization characteristics of the Dongji Au(Ag) deposit
    a-Pyrite-bearing quartz vein; b-Stockwork pyrite; c, d, e, f -Breccia mineralization, silicification breccias cemented by hydrothermal quartz and pyrite. The breccias become smaller and less in the breccia zone, whereas the Au grade is higher

    锆石年龄样品为矿区450 m中段角砾状矿石晶屑凝灰岩角砾和穿插矿体的花岗斑岩。晶屑凝灰岩主要由石英晶屑组成,少量岩屑,大小为0.1~ 0.4 mm,大者可至1mm,基质为隐晶质物质,发生了绢云母化蚀变(图 6abc)。花岗斑岩穿插矿(化)体,后者被氧化后呈特征“铁锈色”,花岗斑岩的斑晶矿物为石英、斜长石和黑云母等,含量分别可至20%、35%和5%,大小一般在0.4~0.8 mm,基质由斜长石和微细晶石英组成,总体含量40%(图 6def)。上述样品经人工破碎至80~100目后,按常规重液和电磁方法分选,并在双目镜下挑选锆石。将锆石颗粒置于环氧树脂制靶,固化抛光,用于阴极发光(CL)照相,并从中选取环带清晰的锆石进行LA-ICP-MS U-Pb定年测试分析,实验测试单位为中国冶金地质总局山东局测试中心。激光剥蚀系统为美国Conherent公司生产的GeoLasPro 193 nm Arf准分子系统,ICP-MS为Thermo X2。激光剥蚀采样过程以氦气作为载气,束斑直径为30 μm、频率为10Hz、能量密度约为10J/cm3。采样方式为单点剥蚀、跳峰采集。采用Plesovice(年龄为(337 ± 0.4)Ma,Slama et al., 2008)和GJ-1标准锆石作为外标进行基准校正。数据处理采用ICPMSDATACAL软件,锆石U-Pb年龄谐和图、年龄分布频率图和加权平均年龄计算采用Isoplot/Exver 3(Ludwig, 2003)完成。

    图  6  晶屑凝灰岩(a, b, c)和花岗斑岩(d, e, f)产状及矿物组成
    Q—石英;Pl—斜长石;Bt—黑云母;γπ—花岗斑岩
    Figure  6.  Geological characteristics and minerals of crystal tuff and granite porphyry
    Q-Quartz; Pl-Plagioclase; Bt-Biotite; γπ-Granite porphyry

    电子探针实验样品取自450 m中段,分别选取了块状矿石、角砾状矿石、细脉状矿石和稀疏浸染状矿石。切制探针片之后,首先进行黄铁矿岩相学观察,选取生成顺序清晰的黄铁矿作为目标点位,然后送至中国地质大学(武汉)地质过程与矿产资源国家重点实验室电子探针实验室进行表面喷碳处理,进而利用配备4道波谱仪的JEOL JXA-8100电子探针完成分析测试,工作加速电压20 kV,加速电流20 nA,束斑直径<1 μm,所有测试数据均进行了ZAF校正处理。

    硫、铅同位素样品为富Au角砾状矿石,采样位置为450 m中段和416 m中段1#穿脉位置。首先将矿石粉碎,使用双目镜,挑选黄铁矿单矿物,保证纯度在99%以上。然后使用超声波清洗掉矿物表面粘附粉尘,用玛瑙钵研磨至200目,送澳实分析检测(广州)有限公司实验室测试。其中,硫同位素使用S-ISTP01方法,元素分析仪配套硫同位素质谱仪测δ34S,数据经V-CDT即陨硫铁标准物质标准化。铅同位素使用Pb-IRM01方法,试样加入硝酸、盐酸和氢氟酸,微波消解,然后用扇形磁场等离子体质谱(HR-ICP-SFMS)测试,数据经内标(TI同位素比率)和外部校准(自然铅物质标样)标准化,206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值相对偏差RSD<0.2%。

    当成矿流体fO2较低时,硫主要呈低价态HS-和S2-存在,基本都富集于硫化物中;当成矿流体fO2较高时,硫主要呈高价态SO42-存在,并富集于硫酸盐矿物中,此时硫化物δ34S值低于成矿热液中总δ34S值(Ohmoto, 1972)。通过光薄片观察,东际金(银)矿床不发育硫酸盐矿物,含硫矿物主要为黄铁矿、毒砂、黄铜矿和方铅矿等,说明成矿过程中未发生不同价态含硫矿物之间硫同位素分馏,故本文研究的黄铁矿δ34S值可以反映成矿流体δ34SΣ的特征。东际金(银)矿床角砾状矿石金含量较高,故开展此类矿石中黄铁矿硫、铅同位素示踪,最能反映成矿物质来源。实验结果表明(表 1),416m中段黄铁矿δ34S为-1.8‰,450m中段黄铁矿δ34S为-0.7‰~-6.6‰,不同深度黄铁矿δ34S值相差不大。总体来看。东际金(银)矿床黄铁矿δ34S值为-0.7‰~-6.6‰,极差5.8‰,除一件样品较高外(450 CM0-1),其余样品δ34S值较集中,平均值为-2.03‰。

    表  1  东际金(银)矿床黄铁矿硫、铅同位素特征
    Table  1.  Sulfur and lead isotope data of pyrites from the Dongji Au(Ag) deposit
    下载: 导出CSV 
    | 显示表格

    由于金属硫化物U、Th元素含量低,在其结晶以后,通过衰变作用所产生的放射性成因铅含量非常低,对铅同位素组成的影响可以忽略,故硫化物铅同位素是示踪成矿物质来源的有效方法之一(张乾等, 2000)。东际金(银)矿床角砾状矿石黄铁矿206Pb/204Pb为17.9801~18.4303,207Pb/204Pb为15.2689~15.9397,208Pb/204Pb为37.9052~38.7871(表 1),与矿集区内大药坑金矿和邻区金矿矿石铅具有很好线性关系(图 7),与矿区周边马面山岩群变质岩、晚侏罗世南园组晶屑凝灰岩、晚侏罗世石英闪长岩和二长斑岩(发育于东坑火山盆地内,穿切早白垩世晚期火山岩,推测成岩时代为早白垩世晚期或者晚白垩世早期)等岩石的铅同位素相比,该矿床矿石铅与燕山期火山-侵入杂岩的岩石铅更加接近,也与马面山岩群中某些变质岩的铅同位素相似。

    图  7  东际金(银)矿床208Pb/204Pb-206Pb/204Pb和207Pb/204Pb-206Pb/204Pb图解
    (大药坑数据肖凡等, 2017, 邻区金矿、晶屑凝灰岩、二长斑岩和石英闪长岩铅同位素数据冯志文等, 1991, 马面山岩群绿片岩、石英片岩、灰绿色片岩铅同位素数据丰成友等, 2007
    Figure  7.  Plot of 208Pb/204Pb versus 206Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb of the Dongji Au(Ag) deposit
    (Dayaokeng Au deposit data after Xiao Fan et al., 2017; adjacent Au deposits, crystal tuff, monzonite porphyry and quartz diorite data after Feng Zhiwen et al., 1991; Mamianshan Group metamorphic rock data after Feng Chengyou et al., 2007)

    依据矿石构造类型、黄铁矿产出状态和晶形特征,黄铁矿可划分出5种类型(分别以Py1、Py2、Py3、Py4和Py5表示)。角砾状矿石黄铁矿有两种形态,Py1颗粒大,粒径0.1~0.4 mm,半自形结构,Py2颗粒小,粒径<0.1 mm,他形结构(图 8a)。浸染状矿石黄铁矿(Py3)颗粒小,粒径0.05~0.1 mm,它形结构,矿物集合体零星分布于晶屑凝灰岩中(图 8b)。细脉浸染状矿石黄铁矿(Py4)颗粒小,粒径<0.05 mm,常与毒砂矿物共生,矿物集合体呈放射状产出(图 8c)。块状矿石黄铁矿(Py5)颗粒大,粒径0.4~0.8 mm,半自形-自形结构,含金、银矿物(图 8d)。

    图  8  东际金(银)矿床中不同类型黄铁矿岩相学特征
    Figure  8.  Petrographic characteristics of different types of pyrites from the Dongji Au(Ag) deposit

    东际金(银)矿床黄铁矿S含量为50.89% ~ 53.42%,平均52.57%,Fe含量为44.38%~46.54%,平均45.83%(表 2),均低于黄铁矿S和Fe的理论含量(分别为53.45%和46.55%,一般沉积型黄铁矿接近理论值),但黄铁矿S/Fe值(原子数比值)为1.99~ 2.02(均值2.01),略高于理论值,说明东际金(银)矿床黄铁矿总体具有富硫贫铁特征。

    表  2  东际金(银)矿床黄铁矿电子探针数据(%)
    Table  2.  EPMA data of pyrites from the Dongji Au(Ag) deposit(%)
    下载: 导出CSV 
    | 显示表格

    不同类型黄铁矿具有相似微量元素变化曲线(图 9),表明它们形成于同一热液体系。黄铁矿Au/ Ag比值总体在0.9~5.5,均值2.6,表现出富金贫银特征,但不同类型黄铁矿Au元素含量存在差异,如晶屑凝灰岩中浸染状黄铁矿含有相对均匀的Au含量,而角砾状矿石中黄铁矿含有不均匀的Au含量,这可能反映成矿热液体系物化条件不稳定。研究表明,低温条件下不利于Se元素类质同象置换黄铁矿中S元素(刘英俊等, 1984),Py2贫Se元素且富集低温元素Sb,表明Py2形成温度最低,是角砾状矿石晚期黄铁矿,与岩相学观察基本一致(图 8a),这说明角砾状矿石是多阶段热液流体作用的产物,其金元素富集或许归因于这个地质过程。

    图  9  东际金(银)矿床不同类型黄铁矿微量元素变化曲线
    Figure  9.  Plot of trace elements of different kinds of pyrites in the Dongji Au(Ag) deposit

    晶屑凝灰岩中锆石颗粒较大,自形程度高,粒径在100~150 μm,成分环带清晰,Th/U值在0.55~ 2.29,均值为0.92,表明岩浆成因锆石。其中,18个锆石点落在谐和线范围,锆石206Pb/238U表面年龄加权平均值为(154±2)Ma(MSWD=2.1,N=18)(图 10表 3),说明晶屑凝灰岩形成于晚侏罗世。此外,1颗锆石发育“核-边”二元结构,核部锆石206Pb/238U表面年龄为506.6 Ma,发育岩浆成分环带,为岩浆锆石,边部锆石无震荡环带,可能是变质成因,其206Pb/238U表面年龄为402.1 Ma。另一颗锆石发育“核-幔”二元结构,核部锆石呈浑圆状且无岩浆成分环带,可能是变质锆石,其207Pb/206Pb表面年龄为2613 Ma,幔部锆石因较窄而无法进行实验。上述锆石的出现,反映了基底构造演化历史之复杂,可能经历了泛非期、加里东期乃至新太古代等时期的构造-岩浆运动。

    图  10  东际金(银)矿床晶屑凝灰岩锆石CL图和U-Pb谐和图
    Figure  10.  Zircon CL images and U-Pb concordia diagram of crystal tuff from the Dongji Au(Ag) deposit
    表  3  东际金(银)矿床晶屑凝灰岩和花岗斑岩锆石U-Pb数据
    Table  3.  Zircon U-Pb data of crystal tuff and porphyry granite of the Dongji Au(Ag) deposit
    下载: 导出CSV 
    | 显示表格

    花岗斑岩锆石较粗大,自形程度高,粒径在150~250 mm,具有清晰成分环带,Th/U值在0.82~ 2.12,均值为1.27,是岩浆成因锆石。其中,30个锆石点落在谐和线范围,锆石206Pb/238U表面年龄加权平均值为(96.7±0.8)Ma(MSWD=0.65,N=30)(图 11表 4),说明此斑岩形成于晚白垩世早期。此外,有1颗锆石发育明显“核-幔”二元结构,“核部”锆石呈浑圆状,具有溶蚀残留特征,颜色发黑,但仍可见岩浆成分环带,故认为此锆石也为岩浆成因,其206Pb/238U表面年龄为148 Ma,“幔部”锆石具有清晰岩浆成分环带,也是岩浆成因锆石,其206Pb/238U表面年龄为98 Ma,这种锆石的出现可能是晚白垩世早期岩浆侵位时,捕获了围岩中较老锆石,并以此为核重新结晶生长而成。

    图  11  东际金(银)矿床花岗斑岩锆石CL图和U-Pb谐和图
    Figure  11.  Zircon CL images and U-Pb concordia diagram of granite porphyry of the Dongji Au(Ag) deposit
    表  4  典型金矿床黄铁矿Fe、As、S和Fe/(As+S)含量
    Table  4.  Content of Fe, As, S and Fe/(As+S) of pyrites from typical gold deposits
    下载: 导出CSV 
    | 显示表格

    黄铁矿Fe常被其同族元素Co和Ni类质同象置换,高温热液条件下,Co比Ni更易替代Fe2+,故不同成因黄铁矿Co/Ni值不一样(Yuan et al., 2018),一般沉积型Co/Ni值小于1且Co含量<100×10-6,变质热液型接近1,岩浆热液型Co/Ni值在1~5,且Co含量>400×10-6,火山热液型Co/Ni值大于5,同时Co含量>500 ×10-6且Ni含量<100 ×10-6王奎仁, 1987)。东际金(银)矿床黄铁矿Co/Ni值介于3~94,平均值23,Co含量在500×10-6~1070×10-6(均值799×10-6),Ni含量在10×10-6~240×10-6(均值104× 10-6),在黄铁矿Co-Ni图解中(图 12a),落在火山成因区域和岩浆热液成因区域,并以前者为主,与紫金山铜金矿中黄铁矿投点区域重叠,表明东际金(银)矿床中黄铁矿主体为火山作用相关的热液成因,与紫金山铜金矿中黄铁矿成因相同。在黄铁矿As-Co-Ni图解中(图 12b),东际金(银)矿床黄铁矿落在岩浆或火山热液成因区域,与Co-Ni图解中判断一致,成矿热液是与火山作用相关的热液,相对紫金山铜金矿床黄铁矿更富As,一般深循环低温大气水混入较多时,热液体系将更加富As(李红兵和曾凡志, 2005; 曹素巧等, 2014),故东际金(银)矿床成矿热液中含有一定量的大气水。

    图  12  东际金(银)矿床黄铁矿Co-Ni图解和As-Co-Ni图解
    (紫金山铜金矿黄铁矿数据张文媛等,2014)
    Figure  12.  Plot of Co-Ni and As-Co-Ni of pyrites from the Dongji Au(Ag) deposit
    (Zijinshan Cu-Au deposit data after Zhang Wenyuan et al., 2014)

    Au/Ag比值可以指示成矿温度,中低温热液型黄铁矿Au/Ag值>0.5(周学武等, 2005)。东际金(银)矿床黄铁矿Au/Ag值介于0.9~5.5,均值为2.6,说明黄铁矿形成于中低温条件,与王波涛和严卸平(2019)流体包裹体研究结果一致。邻区一些金矿床也具有类似特征,如前际金矿床均一温度为250~ 280℃,小坑金矿床为240~260℃,后坑—翁坑金矿区为260~280℃(冯志文等, 1991)。浅成中低温热液型矿床成矿温度大多在300℃以内(Hedenquist et al., 2000; Pirajno, 2009),如紫金山铜金矿(120~ 240℃)和团结沟金矿(170~230℃)等(毛景文等,2003)。因此,包含东际、前际、小坑等金(银)矿床在内的政和—建瓯金矿集区可能是一个中低温热液型金矿田。

    黄铁矿Fe/(S+As)比值与其形成深度具有相关性(周学武等, 2005; 彭丽娜等, 2009; 曹素巧等, 2014;张文媛等, 2014)。东际金(银)矿床黄铁矿Fe/(S+As)值为0.853~0.867(表 4),高于紫金山铜金矿床下部铜矿体中黄铁矿(Fe/(S+As)值平均0.848,张文媛等, 2014, 成矿深度0.5~1.5 km,高天钧, 1999),低于浙东南怀溪铜金矿中黄铁矿(Fe/(S+As)值平均0.881,彭丽娜等, 2009, 成矿压力126.25 × 105~ 295.5×105 Pa,属浅成环境,陶奎元等, 1998),说明东际金(银)矿床成矿深度具有浅成特征。王波涛和严卸平(2019)流体包裹体研究后,也认为该矿床主体成矿深度较浅(0.4~1.1 km)。此外,东际矿区热液蚀变类型以绢云母化和绿泥石化为主,缺失蒙脱石带,金、银矿化主要赋存在以伊利石为主的绢云母化带中,也佐证该矿床形成于浅成热液环境(卢燕等, 2017)。

    一般认为自然界有地幔硫、现代海洋硫和沉积(还原)硫三种不同硫来源(郑永飞等, 2000),地幔硫与陨石硫同位素变化于0‰附近,受地壳再循环组分影响,会在-6‰~+6‰变化(Denies, 1995),典型浅成低温热液型铜、金、银矿床δ34S值大都在此范围之内,如紫金山高硫型铜金矿金属硫化物的δ34S值峰值介于-5‰~-1‰(梁清玲等, 2015),悦洋低硫型银矿金属硫化物δ34S值介于- 6.8‰ ~ -1.0‰,平均值-4‰(梁清玲等, 2015),阿希低硫型金矿的黄铁矿δ34S值为-4‰~3.1‰,均值-0.45‰ (翟伟等, 2010)。因此,深源岩浆是浅成低温热液型铜、金、银矿床主要成矿物质来源,可以通过围岩淬取、深源岩浆期后热液或者火山喷气等方式富集。东际金(银)矿床黄铁矿δ34S在-0.7‰~-6.6‰,除样品450 CM0-1的δ34S值为-6.6‰外,其余δ34S值在-0.7‰~-2.3‰(平均值-2.03‰),与同一矿集区内锦屏金矿床(δ34S为0.5‰~2.6‰)和小坑—翁坑金矿化带(δ34S平均值为3.05‰)十分相似,均与幔源硫相似(0±3‰,Chaussidon et al., 1990),指示东际金(银)矿床和相邻金矿床硫源为深部岩浆硫。样品450 CM0-1的δ34S值(-6.6‰)与浙闽地区中生代火山岩中黄铁矿δ34S(4.6‰~6.8‰)和毫石银矿黄铁矿δ34S值(5‰~7‰,此矿床为地热水循环成因,成矿物质主要来源于晚侏罗世火山岩围岩;徐步台等, 1994)十分相近,表明火山岩围岩也是东际金(银)矿床成矿物质来源之一。

    除416 m中段黄铁矿,东际金(银)矿床矿石铅μ值在9.27~9.54,均值9.41,位于地幔(8.92)和造山带(10.87)(Doe et al., 1979)之间,ω值为36.22~38.21,均值37.2,超出正常铅范围(35.55±0.59),说明成矿物质具有壳幔混源特征。研究表明,放射性铅同位素“铀铅”(206Pb,207Pb)和“钍铅”(208Pb)含量不同,与物质来源紧密相关,一般化学沉积岩和花岗岩富“铀铅”(206Pb/204Pb>18,207Pb/204Pb>15.3)贫“钍铅”(208Pb/204Pb<39),变质岩铅贫“铀铅”(陈华勇等, 2000)。东际金(银)矿床矿石铅总体富“铀铅”贫“钍铅”型(除样品416 CM1-3外,206Pb/204Pb均值18.335,207Pb/204Pb均值15.565,208Pb/204Pb均值38.584),个别矿石铅贫“铀铅”(样品416 CM1-3的206Pb/204Pb为17.98,207Pb/204Pb为15.269),因此,东际金(银)矿成矿物质具有多源性。在与东际矿区周边马面山岩群变质岩、侵入岩、火山岩和邻区金矿床的铅同位素对比上(图 7),发现东际金(银)矿与邻区金矿矿石铅具有线性关系,与燕山期火山-侵入杂岩接近,也与个别变质岩铅同位素值相似,说明矿集区内金矿床的成矿物质来源相似,主要来自于燕山晚期火山-侵入岩系,变质岩次之。

    东际金(银)矿床角砾状矿石晶屑凝灰岩角砾锆石U-Pb年龄为(154±2)Ma,与德化地区东洋金矿床容矿围岩年龄相近(158~162 Ma,Xu et al., 2018),穿插矿体的花岗斑岩锆石U-Pb年龄为(96.7±0.8)Ma,因此,该矿床成矿年龄应在上述两个年龄之间。在政和—建瓯金矿集区内,东际金(银)矿与邻区金矿具有相似成矿物质来源,可能反映它们形成于相同成矿构造环境,东坑盆地主体由早白垩世晚期石帽山群火山-沉积岩系构成(安山岩Rb-Sr年龄(104.4±23)Ma,ISr=0.7092;熔结凝灰岩Rb-Sr年龄(105.4±3.1)Ma,ISr=0.7101,谢家莹等, 1994),上山岗金矿、东坑金矿和马仑头金矿等赋存于此地层中,这表明区域金矿化时间应晚于上述时期,据此可进一步约束东际金(银)矿床形成时间为早白垩世晚期。

    从区域上来讲,浙闽交界地区三都澳—浦城北西向断裂带是一条铜钼金银多金属成矿带,主要由浦城铜多金属矿集区、政和—建瓯金矿集区和周宁—(福安)铜钼铅锌银矿集区等构成,成矿时代大都集中于100~105 Ma(张克尧等, 2009; 王登红等, 2010),同时也是早白垩世晚期(或称石帽山期)火山盆地分布区域,如东坑盆地、仁山盆地、香炉山盆地等,故该构造-岩浆带是一条早白垩世晚期成岩成矿带,矿床具有相似成矿地质背景和成矿物质来源(冯志文等, 1991),只是因成矿热液物理化学条件不一致,形成了不同成矿类型。因此,将东际金(银)矿床成矿时代限定为早白垩世晚期是可行的,它是区域强烈火山岩浆活动背景下的产物,也是该区大规模成矿的一个缩影。

    (1)黄铁矿微量元素特征指示东际金(银)矿床成矿热液具有多阶段性特征,形成于浅成中低温热液条件,成矿热液中含有一定量大气降水。

    (2)此矿床黄铁矿硫、铅同位素特征反映成矿物质主要来源于壳幔混源型花岗质岩浆,在岩浆-热液体系演化过程中,活化萃取了变质基底和火山岩围岩中金属元素。

    (3)东际金(银)矿区赋矿围岩晶屑凝灰岩锆石U-Pb年龄为(154±2)Ma,穿切矿体的花岗斑岩锆石U-Pb年龄为(96.7±0.8)Ma,结合区域性资料对比分析,可以限定东际金(银)矿床成矿年龄为早白垩世晚期。

  • 图  1   九岭岩体地质简图(a)、华南前寒武纪岩石分布地质简图(b,修改自Yao et al., 2014)及赣西北修水—武宁地区地质简图(c,据1: 5万罗溪幅、黄沙桥幅、石门楼幅地质图改绘)

    Figure  1.   Simplified geological map of Jiuling pluton (a), simplified geological map of South China (b, modified from Yao et al., 2014), simplified geological map of Xiushui-Wuning area in northwest Jiangxi Province (c, modified from 1: 50, 000 Luoxi Sheet, Huangshaqiao Sheet, Shimenlou Sheet geological map)

    图  2   研究区新元古代花岗岩类野外露头及岩石学特征

    a—研究区新元古代黑云母花岗闪长岩侵入于双桥山群变细砂岩之中;b—黑云母花岗闪长岩镜下特征,正交偏光;c—英云闪长岩镜下特征;d, e—钾长石巨斑晶黑云母二长花岗岩镜下特征(d,正交偏光)及野外特征(e);f—黑云母花岗闪长岩中堇青石显微特征,沿裂理绢云母化,且锆石包裹体周围发育柠檬黄多色晕,左为单偏光,右为正交偏光; Olg—更长石;Kf—钾长石;Ads—中长石;Qz—石英;Bt—黑云母;Crd—堇青石;Ser—绢云母;Mu—白云母;Zr—锆石

    Figure  2.   Petrological and field outcrops characteristics of Neoproterozoic granitoids in the study area

    a-Neoproterozoic biotite granodiorite intruding into meta-sandstone of Shuangqiaoshan Group in the study area; b-Microscopic characteristics of biotite-granodiorite, perpendicular polarized light; c-Microscopic characteristics of tonalite; d, e-Microscopic characteristics of biotitemonzogranite with giant potassium feldspar phenocryst (d) and its outcrops characteristics in the field (e); f-Microscopic characteristics of the cordierite with sericitization along its rifts and showing the lemon yellow multi-color halo developed around the zircon inclusions from biotite granodiorite, the right side is perpendicular polarized light, the left side is plane polarized light. Olg-Oligoclase; Kf-K-feldspar; Ads-Adesine; Qz-Quartz; Bt-Biotite; Crd-Cordierite; Ser-Sericite; Mu-Muscovite; Zr-Zircon

    图  3   研究区新元古代花岗岩接触关系地质简图

    a—英云闪长岩侵入于黑云母花岗闪长岩之中;b—黑云母二长花岗岩侵入于英云闪长岩之中;c—黑云母二长花岗岩侵入于黑云母花岗闪长岩之中;d—研究区北部黑云母花岗闪长岩与双桥山群侵入接触关系;e—研究区南部黑云母花岗闪长岩与双桥山群侵入接触关系

    Figure  3.   Geological sketch map of contacting relationships of the Neoproteozoic granitoids in the study area

    a-Tonalite intruding the biotite-granodirite; b-Biotite-monzogranite intruding the tonalite; c- Biotite-monzogranite intruding biotite-granodirite; d-The contacting relationship between the biotite-granodiorite and the Shuangqiaoshan Group in northern study area; e-The contacting relationship between the biotite-granodiorite and the Shuangqiaoshan Group in northern study area

    图  4   研究区九岭岩体锆石CL图像及测点位置和结果

    Figure  4.   CL images, site of analyzed point and dating data of zircons from Neoproterozoic granites in the study area

    图  5   研究区新元古代黑云母花岗闪长岩锆石U-Pb年龄谐和图

    Figure  5.   U-Pb concordia diagram of the zircons from Neoproterozoic biotite granodiorite

    图  6   研究区新元古代英云闪长岩锆石U-Pb年龄谐图

    Figure  6.   U-Pb concordia diagram of the zircons from Neoproterozoic tonalite

    图  7   研究区新元古代黑云母二长花岗岩锆石U-Pb年龄谐图

    Figure  7.   U-Pb concordia diagram of the zircons from Neoproterozoic biotite adamellite

    表  1   江南造山带新元古代花岗岩年代学资料

    Table  1   Geochronological data for Neoproterozoic granites in Jiangnan orogen

    下载: 导出CSV

    表  2   九岭岩体LA-ICP-MS锆石U-Pb分析数据

    Table  2   LA-ICP-MS zircon U-Pb dating data of Jiuling Pluton

    下载: 导出CSV
  • Anderson D L. 1989. Composition of the Earth[J]. Science, 243(4889):367-370. doi: 10.1126/science.243.4889.367

    Barbarin B, 1999. A review of the relationships between granitoid types:their origins and their geodynamic environments[J]. Lithos, 46:605-626. doi: 10.1016/S0024-4937(98)00085-1

    Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block:An overview[J]. Journal of Asian Earth Science, 74:198-209. doi: 10.1016/j.jseaes.2013.02.015

    Cox J, Searle M, Pedersen R. 1999. The petrogenesis of leucogranitic dykes intruding the northern Semail ophiolite, United Arab Emirates:field relationships, geochemistry and Sr/Nd isotope systematics[J]. Contributions to Mineralogy and Petrology, 137:267-287. doi: 10.1007/s004100050550

    Charvet J, Shu Liangshu, Shi Yangshen, Guo Lingzhi, Faure M. 1996.The building of south China:collision of Yangtze and Cathaysia blocks, problems and tentative answers[J]. Journal of Asian Earth Science, 13(3/5):223-235. https://www.sciencedirect.com/science/article/pii/0743954796000293

    Chen Zhihong, Guo Kunyi, Dong Yongguan, Chen Rong, Li Longming, Liang Yihong, Li Chunhai, Yu Ximing, Zhao Ling, Xing Guangfu. 2009a. Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone:evidence from zircon LA-ICPMS U-Pb geochronology and geochemistry[J]. Science China, Series D Earth Science, 52:925-939. doi: 10.1007/s11430-009-0071-6

    Chen Zhihong, Xing Guangfu, Guo Kunyi, Dong Yongguan, Chen Rong, Zeng Yong, Li Longming, He Zhenyu, Zhao Ling. 2009b.Petrogenesis keratophyres in the Pingshui Group, Zhejiang:constraints from zircon U-Pb ages and Hf isotopes[J]. Chinese Science Bulletin, 54:1570-1578. http://www.cnki.com.cn/Article/CJFDTotal-JXTW200909017.htm

    Chen Xin, Wang Di, Wang Xiaolei, Gao Jianfeng, Shu Xujie, Zhou Jincheng, Qi Liang. 2014. Neoproterozoic chromite-bearing highMg diorites in the western part of the Jiangnan orogen, southern China:geochemistry, petrogenesis and tectonic implications[J]. Lithos, 200-201:35-48. doi: 10.1016/j.lithos.2014.04.007

    Ding Binghua, Shi Rendeng, Zhi Chenxia, Zheng Lei, Chen Lei. 2008.Neoproterozoic (850Ma) subduction in the Jiangnan orogen:Evidence from the SHRIMP U-Pb dating of the SSZ-type ophiolite in southern Anhui Province[J]. Acta Petrologica et Mineralogica, 27(5):375-388 (in Chinese with English abstract).

    Dong Yunpeng, Liu Xiaoming, Santosh M, Chen Qing, Zhang Xiaoning, Li Wei, He Dengfeng, Zhang Guowei. 2012.Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China:Constraints from zircon U-Pb geochronology and geochemistry[J]. Precambrian Research, 196-197:247-274. doi: 10.1016/j.precamres.2011.12.007

    Dong Shuwen, Xue Huaimin, Xiang Xinkui, Ma L C. 2010. The discovery of Neoproterozoic pillow lava in spilite-ceratophyre of Lushan area, northern Jiangxi Province, and its geological significance[J]. Geology in China, 37 (4):1021-1033 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201004017

    Duan Zheng, Xing Guangfu, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui, Shu Xujie, Li Changbo. 2017.Compositional difference from the sources of Jiuling Neoproterozoic granite complex in Eastern Segment of the Jiangnan Orogen:Constraints from geochemistry and Hf isotope of zircons[J]. Acta Petrologica sinica. 33(11):3610-3634. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201711019.htm

    Duan Zheng, Xing Guangfu, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui, Shu Xujie, Li Changbo. 2018.Petrogenesis of the microcrystalline-dioritic enclaves from Jiuling granitoids in the eastern segment of Jiangnan Orogen and constraints on magma source materials[J]. China Geology, 3:374-391. http://cn.bing.com/academic/profile?id=c88ee1c20839e41d008bd494659af193&encoded=0&v=paper_preview&mkt=zh-cn

    Gao Linzhi, Dai Chuangu, Ding Xiaozhong, Wang Min, Liu Yanxue, Wang Xuehua, Chen Jianshu. 2011. SHRIMP U-Pb dating of intrusive alaskite in the Fanjigshan Group and alaskite basal conglomerates:Constraints on the deposition of the Xiajiang Group[J]. Geology in China. 38(6):1413-1420 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=37e5620cedcbf77e1ed62447e2ffe8ea&encoded=0&v=paper_preview&mkt=zh-cn

    Gao Linzhi, Dai Chuangu, Liu Yanxue, Wang Min, Wang Xuehua, Chen Jianshu, Ding Xiaozhong, Zhang Chuanheng, Cao Qian, Liu Jianhui. 2010. Zircon SHRIMP U-Pb dating of tuff bed of the Sibao Group in southeastern Guizhounorthern Guangxi area, China and its stratigraphic implication[J]. Geological Bulletin of China, 29 (9):1259-1268 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201009001

    Ge Wenchun, Li Xianhua, Li Zhengxiang, Zhou Hanwen, Lee Chiyu. 2001. Geochemical studies on two types of Neoproterozoic peraluminous granitoids in northern Guangxi[J]. Geochimica, 30(1):24-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200101004

    Greentree M R, Li Zhengxiang, Li Xianhua, Wu, Huaichun. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 151:79-100. doi: 10.1016/j.precamres.2006.08.002

    Griffin W L, Belousova E A, Shee S R, Pearson N J and O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton:UPb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131:231-282. doi: 10.1016/j.precamres.2003.12.011

    Hu Shiling, Wang Songshan, Sang Haiqing, Qiu Ji, Liu Jiayuan. 1985.An application of the fast-neutron activation dating technique to approach the age of early emplacement of Jiuling granodiorite of Jiangxi Province[J]. Acta Petrology of Sinica, 1(3):29-34 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb198503002.htm

    Huang Lanchun, Jiang Shaoyong. 2012. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province[J]. Acta Petrologica Sinica, 28 (12):3887-3900 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212008

    Jayananda M, Moyen J F, Martin H, Peucat J J, Auvray B, Mahabaleswar B. 2000. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India:constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry[J]. Precambrian Research, 99:225-254. doi: 10.1016/S0301-9268(99)00063-7

    Li Fengchun, Hou Minglan, Luan Rijian, Lin Peijun, Li Zengsheng, Zhao Long, Wang Jilin, XU Shuang. 2016. Optimization of analytical conditions for LA-ICP-MS and its application to zircon U-Pb dating[J]. Journal of Rock and Mineral Analysis, 35(1):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201601005

    Li Wuxian, Li Xianhua, Li Zhengxiang, Lou Fasheng. 2008d.Obduction-type granites within the NE Jiangxi Ophiolite:Implications for the final amalgamation between the Yangtze and Cathaysia Blocks[J]. Gondwana Research, 13:288-301. doi: 10.1016/j.gr.2007.12.010

    Li Wuxian, Li Xianhua. 2003. Adakitic granites within the NE Jiangxi ophiolites, South China:geochemical and Nd isotopic evidence[J]. Precambrian Research, 122:29-44. doi: 10.1016/S0301-9268(02)00206-1

    Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Yin. 2008b. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia[J]. Lithos, 102:341-357. doi: 10.1016/j.lithos.2007.04.007

    Li Xianhua, Li Wuxian, Li Zhengxiang, Lo Chinghua, Wang Jian, Ye Meifang, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China:Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174:117-128. doi: 10.1016/j.precamres.2009.07.004

    Li Xianhua, Li Zhengxiang, Ge Wenchun, Zhou Hanwen, Li Wuxian and Wingate M T D. 2003a. Neoproterozoic granitoids in South China:Crystal melting above a mantle plume at ca. 825Ma?[J]Precambrian Research, 122:45-83. doi: 10.1016/S0301-9268(02)00207-3

    Li Xianhua, Li Zhengxiang, Ge Wenchun, Zhou Hanwen, Li Wuxian, Liu Yin. 2001. U-Pb ziron ages of the Neoproterozoic granitoids in South China and their tectonic implications[J]. Bulletin of Mineralogy Petrology and Geochemistry, 20(4):271-273 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200104019

    Li Xianhua, Li Zhengxiang, Sinclair J A, Li Wuxian and Garreth C. 2006. Revisiting the "Yanbian Terrane":Implications for Neoproterozoic tectonic Evolution of the western Yangtze Block, South China[J]. Precambrian Research, 151 (1/2):14-30. doi: 10.1016-j.precamres.2006.07.009/

    Li Xianhua, Zhu Weiguang, Zhong Hong, Wang Xuance, He Defeng, Bai Zhongjie, Liu Feng. 2010. The Tongde picritic dikes in the western Yangtze Block:Evidence for ca. 800Ma mantle plume magmatism in South China During the breakup of Rodinia[J]. Journal of Geology, 118(5):509-522. doi: 10.1086/655113

    Li Zhengxiang, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008c. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 160:179-210. doi: 10.1016/j.precamres.2007.04.021

    Li Zhengxiang, Li Xianghua, Zhou Hanwen, Kinny, P D. 2002.Grenvillian continental collision in South China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 30:163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang S, Zhou H. 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:Evidence For a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122 (1/4):85-109. http://cn.bing.com/academic/profile?id=f37b2e324eb8eddd96446f3e3d501681&encoded=0&v=paper_preview&mkt=zh-cn

    Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian. 1999. The breakup of Rodinia:Did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 173 (3):171-181. doi: 10.1016/S0012-821X(99)00240-X

    Li Zhengxiang, Li Xianhua, Li Wuxian, Ding Shijiang. 2008a. Was Cathaysia part of Proterozoic Laurentia? New data from Hainan Island, south China[J]. Terra Nova. 20:154-164. doi: 10.1111/j.1365-3121.2008.00802.x

    Li Zhengxiang, Wartho J A, Occhipinti S, Zhang Chuanlin, Li Xianhua, Wang Jian, Bao Chaomin, 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:new mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 159:79-94. doi: 10.1016/j.precamres.2007.05.003

    Li Zhengxiang, Zhang Linghua, Powell C M. 1995. South China in rodinia:Part of The missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23 (5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2

    Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recyclinginduced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2):537-571. https://www.researchgate.net/profile/Keqing_Zong2/publication/268411794_Continental_and_Oceanic_Crust_Recycling-Induced_Melt_Peridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths/links/551434ad0cf2eda0df306881/Continental-and-Oceanic-Crust-Recycling-Induced-Melt-Peridotite-Interactions-in-the-Trans-North-China-Orogen-UPb-Dating-Hf-Isotopes-and-Trace-Elements-in-Zircons-from-Mantle-Xenoliths.pdf

    Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICPMS[J]. Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    Ludwig K R, 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, California, Berkeley, 39 pp.

    Ma Tieqiu, Chen Lixin, Bai Daoyuan, Zhou Kejun, Li Gang, Wang Xianhui. 2009. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in southeastern Hunan[J]. Geology in China 36 (1):65-73 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200901004

    Shu Liangshu, Zhou Guoqing, Shi Yangshen., Yin Jun. 1994. Study of high pressure metamorphic blueschist and its late Proterozoic age in the eastern Jiangnan belt[J]. Chinese Science Bulletin, 39:1200-1204. http://www.cnki.com.cn/Article/CJFDTotal-JXTW199414012.htm

    Shu Liangshu. 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31 (7):1035-1053 (in Chinese with English Abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003

    Wang Xuance, Li Xianhua, Li Wuxian, Li Zhengxiang. 2007a. Ca. 825Ma komatiitic basalts in south China:First evidence for> 1500℃ mantle melts by a Rodinian mantle plume[J]. Geology, 35(12):1103-1106. doi: 10.1130/G23878A.1

    Wang Xuance, Li Xianhua, Li Zhengxiang, Li Qiuli, Tang Guoqiang, Gao Yuya, Zhang Qirui, Liu Yin. 2012a. Episodic Precambrian crust growth:evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 222-223:386-403. doi: 10.1016/j.precamres.2011.06.001

    Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng. Gao Jianfeng. 2004.Petrogenesis of Neoproterozoic peraluminous granites from northeastern Hunan province:chronological and geochemical constraints[J]. Geological Review, 50(1):65-76 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005348

    Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Zhang Wenlan, Liu Xiaoming, Zhang Guilin. 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 145:111-130. doi: 10.1016/j.precamres.2005.11.014

    Wang Xiaolei, Zhou Jincheng, Qiu, Jiansheng, Zhang Wenlan, Liu Xiaoming, Zhang Guilin. 2006. Petrogenesis of the Neoproterozoic strongly peraluminous granitoids from Northern Guangxi:Constraints from zircon geochronology and Hf isotopes[J]. Acta Petrology Sinica, 22(2):326-342 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200602007.htm

    Wang Xiaolei, Zhou Jincheng, Griffin W L, Wang Rucheng, Qiu Jiansheng, O'Reilly S Y, Xu Xisheng, Liu Xiaoming, Zhang Guilin. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze Cathaysia blocks[J]. Precambrian Research, 159:117-131. doi: 10.1016/j.precamres.2007.06.005

    Wang Xiaolei, Zhao Guochun, Zhou Juncheng, Liu Yongsheng, Hu Jian. 2008. Geochronology and Hf iso-topes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic tectonic evolution of the eastern Jiangnanorogen[J]. Gondwana Research. 18:355-367. https://www.sciencedirect.com/science/article/pii/S1342937X08000701

    Wang Xiaolei, Shu Liangshu, Xing Guangfu, Zhou Jincheng, Tang Ming, Shu Xujie, Qi Liang. Hu Yanhua. 2012b. Post-orogenic extension in the eastern part of the Jiangnan orogen:Evidence from ca 800-760 Ma volcanic rocks[J]. Precambrian Research, 222-223:404-423. doi: 10.1016/j.precamres.2011.07.003

    Wang Wei, Zhou Meifu, Yan Danping, Li Jianwei. 2012c. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 192-195, 107-124. doi: 10.1016/j.precamres.2011.10.010

    Wang Xiaolei, Zhou Jincheng, Wan Yusheng, Kitajima K, Wang Di, Bonamici C, Qiu Jiansheng, Sun Tao. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China:Hf and O isotopes in zircon[J]. Earth and Planetary Science Letters, 366:71-82. doi: 10.1016/j.epsl.2013.02.011

    Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt:Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242:154-171. doi: 10.1016/j.precamres.2013.12.023

    Wang Yuejun, Zhang Feifei, Fan Weiming, Zhang Guowei, Chen Shiyue, Cawood P A, Zhang Aimei. 2010. Tectonic setting of the South China Block in the early Paleozoic:Resolving intracontinental and ocean closure models from detrital zircon UPb geochronology[J]. Tectonics, 29(6):1-70. http://cn.bing.com/academic/profile?id=65c5ce42f543ca6546e1a80e4a7c9491&encoded=0&v=paper_preview&mkt=zh-cn

    Wang Yuejun, Zhang Aimei, Fan Weiming., Zhao Guochun, Zhang Guowei, Zhang Feifei, Zhang Yuzhi, Li Sanzhong. 2011.Kwangsian crustal anatexis within the eastern South China Block:geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and WuyiYunkai Domains[J]. Lithos, 127:239-260. doi: 10.1016/j.lithos.2011.07.027

    Wu Rongxin, Zheng Yongfei, Wu Yuanbao, Zhao Zifu, Zhang Shaobing, Liu Xiaoming, Wu Fuyuan. 2006. Reworking of juvenile crust:element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 146:179-212. doi: 10.1016/j.precamres.2006.01.012

    Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15):1554-1569. doi: 10.1007/BF03184122

    Xue Huaimin, Ma Fang, Song Yongqin, Xie Yaping. 2010.Geochronology and geochemistry of the Neoproterozoic granitoid association from eastern segment of the Jiangnan orogen, China:Constraints on the timing and process of amalgamation between the Yangtze and Cathaysia blocks[J]. Acta Petrologica Sinica. 26(11):3215-3244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201011006.htm

    Xu Xianbing, Tang Shuai, Li Yuan, Zhang Zejun. 2015. Characteristics of Neoproterozoic-Early Mesozoic multiphase orogenic activities of eastern Jiangnan Orogen[J]. Geology in China, (1):33-50(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi2015010004

    Xia Yan, Xu Xisheng, Niu Yaolin, Liu Lei. 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks:The magmatism in various tectonic settings and continent-arccontinent collision[J]. Precambrian Research, 309:56-87. doi: 10.1016/j.precamres.2017.02.020

    Yan Shengwu, Bai Xianzhou, Wu Wenxiang, Zhu Bing, Zhan Qiongyao, Wen Long, Yang Hui, Wang Yuting. 2017. Genesis and geological implications of the Neoproterozoic A-type granite from the Lugu area, western Yangtze block[J]. Geology in China, 44(1):136-150(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701010

    Yang Zhenyu, Sun Zhiming, Yang Tienshui, Pei Junling. 2004. A long connection (750-380 Ma) between South China and Australia:paleomagnetic constraints[J]. Earth and Planetary Science Letters, 220:423-434. doi: 10.1016/S0012-821X(04)00053-6

    Ye Meifang, Li Xianhua, Li Wuxian, Liu Ying, Li Zhengxiang. 2007.SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block[J]. Gondwana Research, 12:144-156. doi: 10.1016/j.gr.2006.09.001

    Yu Jinhai, O' Reilly S Y, Wang Lijuan, Griffin W L, Zhang, Ming, Wang Rucheng, Jiang Shaoyong, Shu Liangshu. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons[J]. Precambrian Research, 164, 1-15. doi: 10.1016/j.precamres.2008.03.002

    Yao Jinlong, Shu Liangshu, Santosh M, Li Jinyi. 2013. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen:Constraining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Science. 74, 225-243. doi: 10.1016/j.jseaes.2012.08.010

    Yao Jinlong, Shu Liangshu, Santosh M, Zhao Guochun. 2014.Neoproterozoic arc-related mafic-ultramafic rocks and syncollision granite from the western segment of the Jiangnan Orogen, South China:constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 243:39-62. doi: 10.1016/j.precamres.2013.12.027

    Zeng Wen, Zhou Hanwen, Zhong Zengqiu, Zeng Zhaoguang, Li Huimin. 2005. Single zircon U-Pb ages and their tectonic implications of Neoproterozoic magmatic rocks in southeastern Guizhou, China[J]. Geochemica, 34(6):548-556 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200506002

    Zhang Shaobing, Wu Rongxin, Zheng Yongfei. 2012a. Neoproterozoic continental accretion in South China:geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research, 220-221:45-64. doi: 10.1016/j.precamres.2012.07.010

    Zhang Yuzhi, Wang Yuejun, Fan Wweimin, Zhang Aimei, Ma Liyan. 2012b. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (~825 Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications[J]. Precambrian Research, 220-221:139-157. doi: 10.1016/j.precamres.2012.07.003

    Zhang Chuanlin, Santosh M, Zou Haibo, Li Haikun, Huang Wencheng. 2013. The Fuchuan ophiolite in Jiangnan Orogen:geochemistry, zircon U-Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China[J]. Lithos 179:263-274. doi: 10.1016/j.lithos.2013.08.015

    Zhang Feifei, Wang Yuejun, Fan Weiming, Zhang Aimei, Zhang Yuzhi. 2011. Zircon U-Pb geochronology and Hf isotopes of the Neoproterozoic granites in the central of Jiangnan uplift[J]. Geotectonica et Metallogenia, 35 (1):73-84 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201101008

    Zhao Guochun, Cawood P A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block:implications for Neoproterozoic collisionrelated assembly of the South China craton[J]. American Journal of Science, 299:309-339. doi: 10.2475/ajs.299.4.309

    Zhao Guochun, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222-223:13-54. doi: 10.1016/j.precamres.2012.09.017

    Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China:no connection with the Grenvillian orogeny[J]. Geology, 39:299-302. doi: 10.1130/G31701.1

    Zhao Junhong, Zhou Meifu. 2009. Neoproterozoic high-Mg basalts formed by melting of ambient mantlein South China[J]. Precambrian Research, 233:193-205. https://core.ac.uk/display/38034939

    Zheng Yongfei, Zhang Shaobing, Zhao Zifu, Wu Yuanbao, Li Xianhua, Li Zhengxiang, Wu Fuyuan. 2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 96:127-150. doi: 10.1016/j.lithos.2006.10.003

    Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 163:351-383. doi: 10.1016/j.precamres.2008.01.004

    Zhong Yufang, Ma Changqian, Lin Guangchun, Xu Haijin, Wang Rrenjing. 2005. The SHRIMP U-Pb geochronology of zircons from the composite batholith of Jiulingshan granitoids, Jiangxi Province[J]. Earth Science-Journal of China University of Geosciences. 30(6):685-691 (in Chinese with English abstract).

    Zhou Meifu, Kennedy A K, Sun Min, Malpas J, Lesher C M. 2002a.Neoproterozoicarc related mafic intrusions along the northern margin of South China:Implications for the accretion of Rodinia[J]. The Journal of Geology, 110 (5):611-618. doi: 10.1086/341762

    Zhou Meifu, Yan Danping, Kennedy A K, Li Yunqian, Ding Jun. 2002b. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196 (1/2):51-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa451c838d83ba45f2729cf180d2373c

    Zhou Jincheng, Wang Xiaolei, Qiu Jiansheng, Gao Jiangfeng. 2004.Geochemistry of Meso and Neoproterozoic mafic ultramafic rocks from northern Guangxi, China:Arc or plume magmatism?[J]Geochemical Journal, 38 (2):139-152. doi: 10.2343/geochemj.38.139

    Zhou Jincheng, Wang Xiaolei, Qiu Jiansheng. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:Coeval arc magmatism and sedimentation[J]. Precambrian Research, 170:27-42. doi: 10.1016/j.precamres.2008.11.002

    丁炳华, 史仁灯, 支霞臣, 郑磊, 陈雷. 2008.江南造山带存在新元古代(850Ma)俯冲作用来自皖南SSZ型蛇绿岩锆石SHRIMP UPb年龄证据[J].岩石矿物学杂志, 27(5):375-388. doi: 10.3969/j.issn.1000-6524.2008.05.001
    董树文, 薛怀民, 项新葵, 马立成. 2010.赣北庐山地区新元古代细碧-角斑岩系枕状熔岩的发现及其地质意义[J].中国地质, 37(4):1021-1033. doi: 10.3969/j.issn.1000-3657.2010.04.017
    段政, 邢光福, 廖圣兵, 褚平利, 黄文成, 朱延辉. 2017.江南造山带东段九岭新元古代复式花岗岩源区性质的差异:来自地球化学及锆石Hf同位素的制约[J].岩石学报, 33(11):3610-3634. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711019
    高林志, 戴传固, 丁孝忠, 王敏, 刘燕学, 王雪华, 陈建书. 2011.侵入梵净山群白岗岩锆石U-Pb年龄及白岗岩底砾岩对下江群沉积的制约[J].中国地质, 38(6):1413-1420. doi: 10.3969/j.issn.1000-3657.2011.06.001
    高林志, 戴传固, 刘燕学, 王敏, 王雪华, 陈建书, 丁孝忠, 张传恒, 曹茜, 刘建辉. 2010.黔东南-桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义[J].地质通报, 29(9):1259-1267. doi: 10.3969/j.issn.1671-2552.2010.09.001
    葛文春, 李献华, 李正祥, 周汉文, 李寄嵎. 2001.桂北新元古代两类强过铝质花岗岩的地球化学研究[J].地球化学, 30:24-34. http://www.cnki.com.cn/Article/CJFDTotal-DQHX200101003.htm
    黄兰椿, 蒋少涌. 2012.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究[J].岩石学报, 28 (12):3887-3900 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212008
    胡世玲, 王松山, 桑海清, 裘冀, 刘家远.应用40Ar/39Ar快中子活化定年技术探讨江西九岭花岗闪长岩体的早期侵位时代[J].岩石学报, 1(3):29-34. http://www.cnki.com.cn/Article/CJFDTotal-YSXB198503002.htm
    李凤春, 侯明兰, 栾日坚, 林培军, 李增胜, 赵龙, 王继林, 徐爽. 2016.电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J].岩矿测试, 35(1):17-23. http://d.old.wanfangdata.com.cn/Periodical/ykcs201601005
    李献华, 李正祥, 葛文春, 周汉文, 李武显, 刘颖. 2001.华南新元古代花岗岩的锆石U-Pb年龄及其构造意义.矿物岩石地球化学通报[J], 20(4):271-273. doi: 10.3969/j.issn.1007-2802.2001.04.019
    马铁球, 陈立新, 柏道远, 周柯军, 李纲, 王先辉. 2009.湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征[J].中国地质, 36(1):65-73. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20090104&flag=1
    舒良树. 2012.华南构造演化基本特征[J].地质通报, 31(7):1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
    王孝磊, 周金城, 邱检生, 高剑峰. 2004.湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据[J].地质论评, 50(1):65-76. doi: 10.3321/j.issn:0371-5736.2004.01.009
    王孝磊, 周金城, 邱检生, 张文兰, 柳小明, 张桂林. 2006.桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约[J].岩石学报, 22(2):326-342. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200602007
    薛怀民, 马芳, 宋永勤, 谢亚平. 2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束[J].岩石学报, 26(11):3215-3244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011006
    徐先兵, 汤帅, 李源, 章泽军. 2015.江南造山带东段新元古代至早中生代多期造山作用特征[J].中国地质, 2015, (1):33-50. doi: 10.3969/j.issn.1000-3657.2015.01.004
    鄢圣武, 白宪洲, 伍文湘, 朱兵, 詹琼窑, 文龙, 杨辉, 王玉婷. 2017.扬子地块西缘新元古代泸沽A型花岗岩成因与变泥质岩熔融[J].中国地质, 44(1):136-150. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170110&flag=1
    张菲菲, 王岳军, 范蔚茗, 张爱梅, 张玉芝. 2011.江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究[J].大地构造与成矿学, 35(1):73-84. doi: 10.3969/j.issn.1001-1552.2011.01.008
    曾雯, 周汉文, 钟增球, 曾昭光, 李惠民. 2005.黔东南新元古代岩浆岩单颗粒锆石U-Pb年龄及其构造意义[J].地球化学, 34(6):548-556. doi: 10.3321/j.issn:0379-1726.2005.06.002
    钟玉芳, 马昌前, 佘振兵, 林广春, 续海金, 王人镜, 杨坤光, 刘强. 2005.江西九岭岩类复式岩基锆石SHRIMP U-Pb年代学[J].地球科学——中国地质大学学报, 30(6):685-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200506005
  • 期刊类型引用(7)

    1. 王利,梁天意. 内蒙古东部钓鱼台地区火山岩年代学、地球化学特征及地质意义. 西北地质. 2025(01): 68-80 . 百度学术
    2. 魏巍,黄行凯,徐巧,蒋斌斌,刘孜,祝新友,巫锡勇. 大兴安岭中南段哈力黑坝岩体的年代学、地球化学及其构造拆沉作用. 中国地质. 2024(03): 978-994 . 本站查看
    3. 赵利刚,王文龙,高学生,王树庆,许雅雯,胡晓佳. 内蒙古达茂旗北部包尔汉图群时代及中早-中三叠世变质锆石年龄的启示. 华北地质. 2024(02): 1-15+37 . 百度学术
    4. 何鹏,郭硕,苏航. 大兴安岭南段昌图锡力地区白音高老组火山岩年代学、地球化学及构造环境. 华北地质. 2024(02): 16-27 . 百度学术
    5. 杨海星,赵胜金,柳志辉,隋海涛,高利东,高玉石,于海洋,张猛. 大兴安岭中南段满克头鄂博组正层型剖面火山岩年代学及地球化学特征. 世界地质. 2023(02): 213-229 . 百度学术
    6. 程泽宇,边伟华,陈崇阳,杨卓龙,高航,王璞珺. 海拉尔盆地嵯岗隆起侏罗系火山岩年代学、地球化学特征及其地质意义. 世界地质. 2022(03): 451-464 . 百度学术
    7. 赵强,汤静如,周青,舒广龙,马鹏,姜迎久,孙振江. 大兴安岭北段满克头鄂博组火山岩形成时代、地球化学特征与大地构造环境. 桂林理工大学学报. 2021(03): 497-509 . 百度学术

    其他类型引用(2)

图(7)  /  表(2)
计量
  • 文章访问数:  3524
  • HTML全文浏览量:  472
  • PDF下载量:  4195
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-07-24
  • 修回日期:  2018-01-17
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-06-24

目录

/

返回文章
返回
x 关闭 永久关闭