• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

西昆仑塔什库尔干马尔洋岩组的厘定及控矿意义

贺承广, 王世炎, 方怀宾, 柴建玉, 苏建仓, 常永伟, 王柳林, 陈登辉

贺承广, 王世炎, 方怀宾, 柴建玉, 苏建仓, 常永伟, 王柳林, 陈登辉. 西昆仑塔什库尔干马尔洋岩组的厘定及控矿意义[J]. 中国地质, 2019, 46(3): 517-536. DOI: 10.12029/gc20190306
引用本文: 贺承广, 王世炎, 方怀宾, 柴建玉, 苏建仓, 常永伟, 王柳林, 陈登辉. 西昆仑塔什库尔干马尔洋岩组的厘定及控矿意义[J]. 中国地质, 2019, 46(3): 517-536. DOI: 10.12029/gc20190306
HE Chengguang, WANG Shiyan, FANG Huaibin, CHAI Jianyu, SU Jiancang, CHANG Yongwei, WANG Liulin, CHEN Denghui. Redefination and ore-forming significance of Maeryang Forming, Taxkorgan, Western Kunlun Mountains[J]. GEOLOGY IN CHINA, 2019, 46(3): 517-536. DOI: 10.12029/gc20190306
Citation: HE Chengguang, WANG Shiyan, FANG Huaibin, CHAI Jianyu, SU Jiancang, CHANG Yongwei, WANG Liulin, CHEN Denghui. Redefination and ore-forming significance of Maeryang Forming, Taxkorgan, Western Kunlun Mountains[J]. GEOLOGY IN CHINA, 2019, 46(3): 517-536. DOI: 10.12029/gc20190306

西昆仑塔什库尔干马尔洋岩组的厘定及控矿意义

基金项目: 

中国地质调查局“新疆1:5万干豆尔那汗达坂、马尔洋、皮下尼牙提幅区域地质调查”项目 12120114081801

详细信息
    作者简介:

    贺承广, 男, 1985年生, 硕士生, 工程师, 构造地质学专业, 主要从事区域地质调查和构造地质研究; E-mail:2692624526@qq.com

  • 中图分类号: P597+.3

Redefination and ore-forming significance of Maeryang Forming, Taxkorgan, Western Kunlun Mountains

Funds: 

China Geological Survey project 12120114081801

More Information
    Author Bio:

    HE Chengguang, male, born in 1985, engineer, master candidate, majors in structural geology, engages in the study of regional geological survey and structural geology; E-mail:2692624526@qq.com

  • 摘要:

    塔什库尔干大型铁矿成矿带位于昆仑造山带西段, 原岩恢复表明该区含铁岩系主要为一套双峰式火山岩-碎屑岩-碳酸盐岩建造组合, 岩石普遍遭受绿片岩相变质和多期构造变形。本文报道了在老并一带变安山岩中获得的LA-ICP-MS锆石U-Pb同位素年龄值(603±10)Ma, 并结合前人年龄数据, 将原划古元古界布伦阔勒岩群的含铁岩系厘定为震旦系-寒武系纽芬兰统马尔洋岩组(Z€1m), 其内发育典型的双峰式火山岩组合, 证实了区内震旦纪-早寒武世仍处于拉张伸展背景, 变质火山-沉积组合特征表明其形成于大陆边缘裂谷构造环境。含铁岩系典型的膏(钡)-铁建造很可能为新元古代晚期"Marinoan雪球"冰期后地球系统变化的火山-沉积响应。

    Abstract:

    The Taxkorgan large-scale iron metallogenic belt is located in the western part of Kunlun orogenic belt. Research on metamorphic rocks shows that the protolith of the iron-bearing strata is a assemblage of bimodal volcanic rocks-clastic rockscarbonate rocks formation. The strata have undergone widespread greenschist facies metamorphism and multi-superimposed deformation. The meta-andesite in Laobing area yielded an U-Pb ziron age of (603±10) Ma, suggesting that the eruption age of volcanic rocks is early Sinian. Combined with other age data available, the authors redefined the iron-bearing strata as "SinianCambrian Terreneuvian Maeryang Formation" (Z€1m.), which doesn't belong to the previously defined "Paleoproterozoic Bulunkuole Group". The formation of the bimodal volcanic rocks proved that there was an extensional tectonic event in Taxkorgan area from Sinian to early Cambrian. Discrimination of tectonic setting on the metamorphic volcano-sedimentary formation indicates that the iron-bearing strata were formed in the continental margin rift. The gypsum (Ba)-iron formation was the volcanosedimentary response to the changes of "Marinoan Snowball Earth"'system after late Neoproterozoic glacial event.

  • 江西金属矿产素有南钨北铜的分布格局, 近年赣北地区新发现了大湖塘与朱溪两个世界级钨矿床, 彻底改变江西乃至世界钨资源的分布格局。朱溪原为热液脉型小铜矿, 断断续续采探十余年, 一直没有取得突破性进展。2009年, 江西省地勘基金以系列成矿理论为指导、按照“就矿找矿、以脉找体”思路, 揭示朱溪“上铜下钨”矿化分带模式, 在铜矿体的深部探获了延伸稳定(超2000 m)、厚度大(平均150 m余)、品位高(平均0.571%)的钨矿体, 矿床资源储量世界第一(Wang et al., 2014; 王先广等, 2015, 2018; 胡正华等, 2018a, 2018b), 目前矿床仍在勘查, 钨资源规模有望达到500万t。九瑞矿集区位于长江中下游Cu-Au-Mo(Fe)成矿带的转折端, 是中国铜矿大型资源基地, 查明铜资源储量313万t, 约占长江中下游铜总量的1/3。矿集区内勘查工作始于20世纪50年代, 开始以寻找铁矿为目的, 历经60余年的勘查总结出九瑞地区“上铁下铜(钼)”的矿化分带规律, 并发现了武山、城门、洋鸡山等一批大型铜金矿床。赣北地区钨矿存在3期成岩成矿作用, 自早至晚分别为: 160 Ma→150~145 Ma→135~125 Ma, 并且以150~145 Ma、135~125 Ma这两期为主(胡正华, 2018c)。大湖塘和朱溪、阳储岭钨矿床的成岩时代基本一致, 均为150~145 Ma(胡正华等, 2018a, 2018b, 2018c)。长江中下游成矿带鄂东南、宁镇、庐枞等矿集区亦发现了钨矿床(朱增青, 1987; 徐跃通等, 1992; 聂利青等, 2016)。通江岭铜钨矿床位于九瑞矿集区北侧, 是江西省地质勘查基金重点勘查项目, 近年通过系统勘查在矿区深部新发现了厚大的铜钨矿体, 成为九瑞矿集区新发现钨铜矿体的首个矿床。通江岭矿区深部钨铜矿体的发现, 极大丰富了九瑞矿集区找矿空间、找矿思路和找矿方向。通江岭铜钨矿床的研究程度较低, 仅进行了少量矿床地质特征的研究(胡正华等, 2018b), 本文拟通过对通江岭成矿岩浆岩年代学研究, 揭示矿床成矿岩浆岩形成时代, 为九瑞矿集区仍至长江中下游成矿带研究及下一步找矿方向提供建议。

    九瑞矿集区位于扬子板块南东缘襄广断裂与阳常断裂交汇处(图 1), 区内地层具有双层结构, 基底为新元古代双桥山群, 盖层从震旦纪至第四纪地层均有, 其中与成矿密切相关的地层主要为奥陶系与石炭系碳酸盐岩, 为区内主要赋矿地层。矿集区内褶皱与断裂构造发育, 褶皱为一系列轴向NE的褶皱带(王先广等, 2014); 断裂构造主要为NW—NNW和NE—NNE向两组, 这两组断裂构造的交汇部位是主要控岩控矿构造(翟裕生等, 1999; 包家宝等, 2002; 胡正华, 2015a)。矿集区内共出露31个岩体, 呈岩株、岩墙、岩脉状产出, 单个岩体出露面积为0.04~1.6 km2(翟裕生等, 1999)。岩株受NW—NNW向隐伏基底断裂控制, 呈等距状产出。岩脉受NE—NEE向断裂、NE向褶皱带、层间不整合面及层内薄弱面贯入式侵位产出, 自北至南发育6个岩浆岩带:即, 东雷湾—通江岭花岗闪长斑岩亚带、宝山—大桥花岗闪长斑岩亚带、宋家湾—武山花岗闪长斑岩亚带、大冲—丁家山石英闪长玢岩—花岗闪长斑岩亚带、城门山—十六公里花岗闪长斑岩—石英闪长玢岩亚带、沙河—狮子山花岗闪长斑岩—石英闪长玢岩亚带。区内矿产以铜、钼、金为主, 成矿岩浆岩均为高钾钙碱性Ⅰ型岩浆岩系列, 成岩时代集中于145 Ma左右(吴良士等, 1997; 李进文等, 2007; 蒋少涌等, 2008; 陈志洪等, 2011; 胡正华等, 2015a, 2018b, 2018c)。

    图  1  长江中下游九瑞矿集区地质简图(据Pan et al., 1999修改)
    (A—长江中下游构造简图;B—九瑞矿集区地质简图)
    1—奥陶系;2—志留系;3—泥盆—石炭系;4—二叠系;5—三叠系;6—第四系;7—岩体;8—地质界线/河流;9—矿床(点)位置及名称;10—城市位置及名称;11—矿集区;12—通江岭矿区位置
    Figure  1.  Simplified geological map of the Jiurui ore concentration area in the middle-lower Yangtze River Valley (modified from Pan et al., 1999)
    (A-Structure diagram of the middle-lower Yangtze River Valley; B-Geological map of the Jiurui ore concentration area)
    1-Ordovician; 2-Silurian; 3-Devonian, Carboniferous; 4-Permian; 5-Triassic; 6-Quaternary; 7-Lithesome; 8-Geological boundary/river; 9-Locations and names of deposits; 10-Locations and names of cities; 11-Ore concentration areas; 12-Location of Baoshan ore deposit

    通江岭矿区位于九瑞地区龙泉古寺—牛头山背斜核部。区内出露的地层自老至新有中二叠统茅口组(P2m)、上二叠统龙潭组(P3l)、上二叠统长兴组(P3c)、下三叠统殷坑组(T1y)、下三叠统青龙组(T1q)、下三叠统周冲村组(T1z)(图 2), 地层总体走向北东, 以龙泉古寺—牛头山背斜核部为界。区内断裂构造发育, 根据走向可分为3组:北东向(F1、F2、F3)、北西向(F4)、近南北向(F5)断裂, 其中北东向F2断裂为区内主要控岩控矿构造。花岗闪长斑岩沿龙泉古寺—牛头山背斜核部与F2断裂呈NE向岩墙展布。

    图  2  九瑞矿集区通江岭矿区地质简图
    1—第四系;2—下三叠统周冲村组;3—下三叠统青龙组;4—中二叠统茅口组;5—花岗闪长斑岩;6—断层及编号/地质界线;7—勘探线及其编号;8—钻孔及其编号
    Figure  2.  Simplified geological map of the Tongjiangling ore deposit in the Jiurui ore concentration area
    1-Quaternary; 2-Lower Triassic Zhouchongcun Formation; 3-Lower Triassic Qinglong Formation; 4-Middle Permian Maokou Formation; 5-Granodiorite porphyry; 6-Fault and its number/ geological boundary; 7-Exploration line and its number; 8-Drill hole and its number

    通江岭铜钨矿由14条矿体(M1~M14)组成, 总体走向NEE, 倾向东, 呈似层状、透镜状产出于花岗闪长斑岩与茅口组(P2m)碳酸盐的内、外接触带(图 3)。矿石类型以铜矿石和铜钨矿石为主; 矿石矿物以白钨矿、黄铜矿为主, 脉石矿物长石、石英、绿泥石、高岭石、石榴子石、透辉石、透闪石、长石、石英、绿泥石、方解石等为主; 矿石构造以脉状、浸染状、块状为主; 矿石结构以结晶结构、交代结构和固溶体分离结构为主。区内矿化垂向上具有“上铜下钨铜”的分带模式, 上部矿化以铜矿化为主, 矿石矿物主要为黄铜矿, 脉石矿物主要为长石、石英、高岭土、绿泥石和石榴子石等矽卡岩矿物; 黄铜矿主要以脉状、浸染状、块状赋存于矽卡岩、矽卡岩化大理岩和蚀变花岗闪长斑岩中。下部以钨铜矿化为主, 矿石矿物以黄铜矿、白钨矿为主, 脉石矿物主要为石榴子石、透辉石、透闪石等矽卡岩矿物。

    图  3  通江岭矿区9号勘探线剖面图
    1—下三叠统青龙组;2—中二叠统茅口组;3—花岗闪长斑岩;4—铜矿体;5—铜钨矿体;6—矿体及编号;7—地质界线;8—断层及编号;9—锆石U-Pb样采集位置及编号
    Figure  3.  Geological section along No. 9 exploration line in the Tongjiangling minging area
    1-Lower Triassic Qinglong Formation; 2-Middle Permian Maokou Formation; 3-Granodiorite porphyry; 4-Copper orebody; 5-Coppertungsten orebody; 6-Orebody and its number; 7-Geological boundary; 8-Fault and its number

    M9矿体为区内规模最大的铜钨矿体, 走向延伸超1200 m, 倾向延深超500 m, 真厚度10.43~27.66 m; Cu品位多介于0.45%~0.68%, 最高可达9.73%; WO3品位多介于0.05%~0.17%, 局部伴生Mo、Zn、Ag等, M9矿体矿石矿物以黄铜矿、白钨矿为主, 矿石构造以浸染状、细脉—网脉状为主。矿体具有“上铜下钨铜”的矿化分带特征。

    锆石U-Pb样品采自9线ZK0903孔885 m处M9矽卡岩矿体底板的花岗闪长斑岩(图 3)。花岗闪长斑岩(图 4)呈灰白-浅灰色, 斑状结构、块状构造, 斑晶(约64%)包括斜长石(约30%)、石英(约20%)、钾长石(约10%)、黑云母(约4%)。斜长石斑晶, 半自形板状, 粒径2~5 mm, 聚片双晶和卡钠复合双晶发育, 局部发育环带构造, 部分绢云母化; 石英斑晶, 他形粒状, 粒径2~3.5 mm。钾长石斑晶, 半自形粒状为主, 粒径2 mm左右, 常见高岭石化; 黑云母斑晶, 片状, 片径2~2.5 mm, 褐色, 多色性浅黄褐—黄褐色, 常见绿泥石化。基质(约36%)呈显微粒状结构, 由长英质及少量黑云母构成, 粒径一般为0.05~2 mm, 长石类可见绢云母化、高岭石化。

    图  4  通江岭矿区花岗闪长斑岩照片
    Figure  4.  Photographs of granodiorite porphyry in the Tongjiangling mining area

    锆石U-Pb测年样品, 先破碎至60目, 采用浮选、磁选方法初步分离筛选出锆石, 然后在双目镜下将挑选色泽、晶形较好, 透明度较高的锆石颗粒, 用于锆石制靶, 拍摄阴极发光(CL)图像, 观察锆石内部结构, 选择环带清晰的岩浆岩锆石作为待测点。LA-ICP-MS锆石U-Pb年龄的测试工作在中国地质科学院矿产资源研究所LA-ICP-MS实验室完成, 测试仪器为Agilent 7500a型ICP-MS与激光剥蚀系统ComPex 102 Excimer。为确保LA-ICPMS锆石U-Pb年龄测试的精确度, 每测试5个点加测标样91500和NIST610一次, 并测量一个锆石Plesovice来确定仪器运行状态是否正常。锆石年龄测试结果用Isoplot 3.0程序处理, 具体分析步骤和数据处理过程参见文献(柳小明等, 2002)。

    花岗闪长斑岩内锆石无色, 透明, 主要呈长柱状, 部分锆石内见细小的包裹体及裂纹(图 5), 锆石粒径在50 μm×110 μm~90 μm×180 μm。阴极发光图像显示锆石成分含量比较均匀, 主要以振荡环带为主, 少量锆石发育扇状环带和无环带现象。为确保定年结果的准确性, 实验中选择具有明显振荡环带锆石的边缘进行测试。本样品中挑取的锆石长轴和短轴之比在2:1~4:3 (图 5), 测点Th、U含量分别为107~266 μg/g, 269~653 μg/g(表 1)。Th/U比值大多介于0.34~0.71 (表 1), 与岩浆锆石的特征相似(吴元保等, 2004)。经测定15个有效锆石测点的207Pb/235U、206Pb/238U分析结果在误差范围内基本一致, 206Pb/238U年龄的加权平均值为(143.31±2.70)Ma (MSWD=0.62, n=15)(表 1, 图 6)。

    图  5  通江岭矿区花岗闪长斑岩锆石阴极发光及测点位置图
    Figure  5.  Zircon cathodoluminescence of granodiorite porphyry in the Tongjiangling mining area and map of measuring points
    表  1  通江岭矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄分析结果
    Table  1.  LA-ICP-MS zircon U-Pb age data of granodiorite porphyry in The Tongjiangling mining area
    下载: 导出CSV 
    | 显示表格
    图  6  通江岭矿区花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄谐和图
    Figure  6.  LA ICP-MS zircon U-Pb age concordia diagram of granodiorite porphyry in the Tongjiangling mining area

    通江岭矿区自花岗闪长斑岩体至茅口组碳酸盐岩具有绿泥石化-硅化-高岭土化(花岗闪长斑岩) →石榴子石-透辉石-透闪石矽卡岩→矽卡岩化化大理岩→大理岩蚀变分带, 区内黄铜矿、白钨矿物等矿石矿物主要呈细脉状、浸染状产出于花岗闪长岩与茅口组碳酸盐岩接触带的矽卡岩中, 部分以浸染状产出于蚀变花岗闪长斑岩中, 矿体垂向上自围岩至岩体(自浅至深)显示出“中温→中高温”的元素分带性, 即具有“上铜下钨铜”的矿化分带特征, 与典型的斑岩-矽卡岩型矿床的蚀变分带特征基本一致(王先广等, 2015; 唐菊兴等, 2017; 胡正华等, 2018c), 指示出花岗闪长斑岩为通江岭矿床的成矿岩浆岩, 矿床类型为斑岩-矽卡岩型。通江岭铜钨矿成矿花岗闪长斑岩锆石U-Pb年龄为(143.31±2.70) Ma(MSWD=0.62, n=15), 代表了成矿花岗闪长斑岩的成岩年龄。

    长江中下游成矿带鄂东南、宁镇、庐枞等矿集区已发现钨矿体或钨矿化体的报道, 如鄂东南矿集区阳新阮家湾和傅家山(朱增青, 1987; 徐跃通等, 1992)、大冶龙角山等矽卡岩型钨铜钼矿床(朱增青, 1987); 宁镇矿集区谏壁发现过中型斑岩型钨、钼矿床(杨松生等, 1985; 马春等, 2003); 庐枞矿集区东顾山矽卡岩型钨多金属矿床(聂利青等, 2016)。聂利青等(2016)提出长江中下游成矿带除铁、铜外, 亦具有良好找钨前景。九瑞矿集区受长江断裂西段北西西向的鄂州—九江深断裂带上盘控制, 两端为北北东向的麻城—湘东、赣江断裂带截接制约, 并与瑞昌弧形构造东部的北东东向反S形褶皱与走向断裂以及北北西向张裂隙带复合, 形成一个以北西西向为主轴的菱形构造网络结点控制着内岩浆岩侵位以及矿床的分布(包家定等, 2002)。矿集区内存在“多层结构”赋矿模式, 即层状矽卡岩矿体赋存于奥陶系、石炭系、二叠系、三叠系碳酸盐岩地层, 以石炭系地层为主(王先广等, 2014; 胡正华等, 2015a)。近年, 赣北地区新发现的朱溪世界最大钨矿床、武宁县东坪超大型石脉型黑钨矿床均具有上铜下钨的分带特征。朱溪钨矿的成岩成矿时代为145 Ma左右(王先广等, 2015; 胡正华, 2018c), 主矿体赋存于花岗岩与黄龙组碳酸盐岩接触带的矽卡岩中。近年, 江西省地质勘查基金管理中心在九瑞矿集区武山、南港矿区边深部均已发现了似层状斑岩-矽卡岩型铜钨矿体, 主要赋存于黄龙组碳酸盐岩与成矿岩浆岩的接触带附近, 成矿岩体均为花岗闪长斑岩或石英斑岩, 成矿岩年龄均为145 Ma左右(胡正华等, 2015a); 并且垂向上均具有“上铜下钨铜”的矿化分带特征, 中武山矿区深部的矽卡岩型钨铜矿体中钨资源规模达到大型。上石炭统黄龙组碳酸盐岩是赣北地区矽卡岩型矿床的主要赋矿围岩, 通江岭铜钨矿区目前仅在二叠系碳酸盐岩与花岗闪长斑岩接触带发现了斑岩-矽卡岩型铜钨矿体。通江岭矿区ZK0903孔790.15 m处花岗斑岩与碳酸盐岩接触带的矽卡岩中, 发现真厚度十余米的铜(钨)矿体, Cu品位多介于0.45%~0.68%, 最高可达9.73%; WO3平均品位0.067%, 最高达0.17%。区内其他钻孔在矽卡岩中亦揭示了钨矿化现象, 进一步表明通江岭矿区深部具有发现厚大钨矿体的潜能, 尤其是在矿区深部石炭系、奥陶系碳酸盐岩与花岗闪长斑岩的接触带或五通面、奥陶—志留系所形成的硅钙界面, 找矿潜能大。

    (1) 通江岭铜钨矿成矿岩浆岩为花岗闪长斑岩, 其锆石U-Pb年龄为(143.31±2.70) Ma (MSWD=0.62, n=15), 代表了成矿花岗闪长斑岩成岩年龄。

    (2) 九瑞矿集区具有“上铜下钨铜”的矿化分带趋势, 通江岭矿区石炭系、奥陶系碳酸盐岩与花岗闪长斑岩接触带或五通面、奥陶—志留系所形成的硅钙界面, 找钨潜能大。

    致谢: 工作中得到了西安地质调查中心滕家欣、校培喜、伍跃中等研究员和高永宝博士的大力指导和帮助, 审稿专家和责任编辑对本文提出了十分宝贵的修改意见和建议, 在此一并表示由衷的感谢!
  • 图  1   西昆仑造山带及邻区构造单元划分及马尔洋一带地质简图

    a—西昆仑地区构造单元划分图;b—研究区地质概况
    a:TRMB—塔里木板块;WKLS—西昆仑造山带;KKLS—喀喇昆仑造山带;TSHT—甜水海地块;BYF—巴颜喀拉褶断带;SQT—羌塘地块;F1—公格尔-柯岗断裂;F2—康西瓦-鲸鱼湖断裂;F3—大红柳滩断裂;F4—喀喇昆仑断裂;b:1—第四系;2—上石炭统—下二叠统特给乃奇克达坂组;3—下石炭统;4—下志留统温泉沟组;5—震旦系—寒武系纽芬兰统马尔洋岩组第三岩段;6—震旦系—寒武系纽芬兰统马尔洋岩组第二岩段;7—震旦系—寒武系纽芬兰统马尔洋岩组第一岩段;8—古元古界五古力牙特岩组第一岩段;9—古元古界五古力牙特岩组第二岩段;10—古元古界瓦恰岩组;11—渐新世花岗闪长岩;12—晚三叠世二长花岗岩;13—早石炭世英云闪长岩;14—寒武纪第二世二长花岗岩;15—寒武纪第二世花岗闪长岩;16—寒武统芙蓉世辉长岩;17—大理岩;18—磁铁矿层;19—韧性断层;20—片麻理;21—片理;22—锆石年龄

    Figure  1.   Tectonic units and geological sketch map of Maeryang in western Kunlun orogenic belt

    a-Division of tectonic units in the western Kunlun orogenic belt; b-Geological sketch map of Maeryang
    a: TRMB-Tarim plate; WKLS-western Kunlun orogenic belt; KKLS-Karakorun orogenic belt; TSHT-Tianshuihai terrane; BYF-Bayankela faultfolded belt; SQT- Qiangtang terrane; F1- Kongur- Kegang fault; F2- Kangkir- Jingyuhu fault; F3- Dahongliutan fault; F4- Karakorun fault; b: 1-Quaternary; 2-Upper Carboniferous-Lower Permian Tegeinaiqikedaban Formation; 3-Lower Carboniferous; 4-Lower Silurian Wenquangou Formation; 5- Sinian—Cambrian Terreneuvian Maeryang Formation 3rd lithologic member; 6- Sinian—Cambrian Terreneuvian Maeryang Formation 2nd lithologic member; 7-Sinian—Cambrian Terreneuvian Maeryang Formation 1st lithologic member; 8-Paleoproterozoic Wuguliyate Formation 1st lithologic member; 9- Paleoproterozoic Wuguliyate Formation 2nd lithologic member; 10- Paleoproterozoic Waqia Formation; 11- Oligocene granodiorite; 12- Late Triassic monzogranite; 13- Early Carboniferous plagiogranite; 14- Cambrian series 2 Monzogranite; 15- Cambrian series 2 granodiorite; 16- Cambrian Furongian gabbro; 17- Marble; 18- Magnetite ore; 19- Ductile fault; 20- Gneissosity; 21-Schistosity; 22-Age of zircon

    图  2   马尔洋一带含铁岩系地质剖面图

    1—震旦系—寒武系纽芬兰统马尔洋岩组一岩段;2—震旦系—寒武系纽芬兰统马尔洋岩组二岩段;3—震旦系—寒武系纽芬兰统马尔洋岩组三岩段;4—古元古界五古力牙特岩组一岩段;5—渐新世花岗闪长岩;6—黑云石英片岩;7—斜长黑云石英片岩;8—石榴黑云石英片岩;9—黑云斜长变粒岩;10—斜长浅粒岩;11—斜长角闪片岩;12—榴闪岩;13—大理岩;14—磁铁矿层;15—中粗粒花岗闪长岩;16—脆性断层;17—脆韧性断层

    Figure  2.   Geological section of iron-bearing strata in Maeryang area

    1-Sinian-Cambrian Terreneuvian Maeryang Formation 1st lithologic member; 2-Sinian-Cambrian Terreneuvian Maeryang Formation 2nd lithologic member; 3-Sinian-Cambrian Terreneuvian Maeryang Formation 3rd lithologic member; 4-Paleoproterozoic Wuguliyate Formation 1st lithologic member; 5-Oligocene granodiorite; 6-Biotite quartz schist; 7-Plagioclase biotite quartz schist; 8-Garnet biotite quartz schist; 9-Biotite plagioclase leptynite; 10-Plagioclase leptite; 11-Amphibolite schist; 12-Garnet Amphibolite; 13-Marble; 14-Magnetite ore; 15-Medium coarsegrained granodiorite; 16-Brittle fault; 17-Ductile fault

    图  3   马尔洋一带含铁岩系野外和镜下特征

    a—斜长角闪片岩与浅粒岩互层产出特征;b—大理岩平卧褶皱露头特征;c, d—变安山岩露头及镜下特征;e—斜长浅粒岩中斜长残余斑晶镜下特征;f—石膏磁铁矿;Gp—石膏;Pl—斜长石;Mt—硫铁矿;Qz—石英

    Figure  3.   Field and microscopic features of iron-bearing strata in Maeryang area

    a-Interbedded amphibolite schist and leptite; b-Recumbent fold of marble; c, d-Outcrop and microscopic features of meta-andesite; e-Microphotograph of plagioclase phenocryst from Plagioclase leptite; f-Microphotograph of gypsum-iron formation; Gp—Gypsum; Pl—Pagioclase; Mt—Magnetite; Qz—Qzartz

    图  4   马尔洋岩组变质岩球粒陨石标准化REE配分模式图(a, c, e)和原始地幔(或洋脊花岗岩)标准化微量元素蛛网图(b, d, f)(球粒陨石标准化值及原始地幔标准化值引自Sun and McDonough, 1989, 洋脊花岗岩标准化值引自Pearce et al., 1984)

    Figure  4.   Chondrite−normalized REE patterns (a, c, e) and trace element spider diagram (b, d, f) of metamorphic rocks in the Maeryang Formation (chondrite data for Normalization and values of primitive mantle after Sun S S and McDonough, 1989, values of Ocean ridge granites after Pearce et al., 1984)

    图  5   马尔洋岩组变安山岩锆石CL图像(a)及LA−ICP−MS锆石U−Pb谐和图(b, c)

    Figure  5.   CL image (a) of zircons and LA−ICP−MS U−Pb concordia diagram (b, c) of meta−andesite in the Maeryang Formation

    图  6   马尔洋岩组变质岩的西蒙南图解(a底图据王仁民等, 1987)和Al2O3−(Na2O+K2O)判别图解(b底图据邱家骧和林景仟, 1991)

    Figure  6.   Simonen plot (a after Wang Renmin et al., 1987) and Al2O3-(Na2O+K2O) diagram (b after Qiu Jiaxiang and Lin Jingqian, 1991) of metamorphic rocks in the Maeryang Formation

    图  7   马尔洋岩组长英质片岩的砂岩类型判别图(a, 据Herron, 1988)和La/Th−Hf判别图(b, 据Floyd et al., 1987)

    Figure  7.   Sandstone discriminant diagram (a, after Herron, 1988) and La/Th versus Hf diagram (b, after Floyd et al., 1987) of felsic schist in the Maeryang Formation

    图  8   马尔洋岩组变质岩SiO2-K2O图解(a, 底图据徐夕生和邱检生, 2010)和Zr/TiO2-SiO2图解(b, 据Winchester and Floyd, 1977

    Figure  8.   SiO2-K2O diagram (a, after Xu Xisheng and Qiu Jiansheng, 2010) and Zr/TiO2-SiO2 diagram (b, after Winchester and Floyd, 1977) of metamorphic rocks in the Maeryang Formation

    图  9   马尔洋岩组斜长角闪片岩的Zr-Zr/Y(a, 据Pearce, 1982)、Ta/Hf-Th/Hf图解(b, 据汪云亮等, 2001)和Ti/100-Zr-3Y图解(c, 据Pearce and Cann, 1973)

    Figure  9.   Zr-Zr/Y diagram (a, after Pearce, 1982), Ta/Hf-Th/Hf diagram (b, after Wang Yunliang et al., 2001) and Ti/100-Zr-3Y diagram (c, after Pearce and Cann, 1973) of amphibolite schist in the Maeryang Formation

    图  10   马尔洋岩组长英质片岩的K2O/Na2O-SiO2图解(a, 据Roser and Korsch, 1986)、Th-Sc-Zr/10图解(b, 据Bhatia and Crook, 1986)、La-Th-Sc图解(c, 据Bhatia and Crook, 1986)和ICV-CIA图解(d, 据王仁民等, 1987)

    Figure  10.   K2O/Na2O-SiO2 diagram (a, after Roser and Korsch, 1986), Th-Sc-Zr/10 diagram (b, after Bhatia and Crook, 1986), La-Th-Sc diagram (c, after Bhatia and Crook, 1986) and ICV-CIA diagram (d, after Wang Renmin et al., 1987) of felsic schist in the Maeryang Formation

    图  11   马尔洋岩组斜长角闪片岩Rb-Sr图解(a据Condie and Been, 2006)和Zr/Y-Zr扩张速率图(b底图据汪晓伟等, 2015)

    Figure  11.   Rb-Sr diagram (a after Condie and Been, 2006) and Zr/Y-Zr diagram (b after Wang Yunliang et al., 2015) of amphibolite schist in the Maeryang Formation

    表  1   马尔洋岩组变质岩主量元素(%)和微量元素(10−6)分析结果

    Table  1   Major elements (%) and trace elements (10−6) compositions of metamorphic rocks in the Maeryang Formation

    下载: 导出CSV

    表  2   马尔洋岩组变安山岩(TW2026/1) LA−ICP−MS锆石U−Pb同位素测试结果

    Table  2   LA−ICP−MS zircon U−Pb isotope data of meta−andesite (TW2026/1) in the Maeryang Formation

    下载: 导出CSV

    表  3   原划“布伦阔勒岩群”锆石U-Pb同位素年龄统计

    Table  3   The U−Pb age of zircons in the rocks previously defined as"bulunkuole Group"

    下载: 导出CSV
  • Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology, 91(6):611-627. doi: 10.1086/628815

    Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywacks and tectonic setting discrimination of sedimentary basin[J]. Contributions to Mineralogy and Petrology, 92:181-193. doi: 10.1007/BF00375292

    Brouxel M, Lapierre H, Michard A, Albrede F. 1987. The deep layers of a Paleozoic arc:Geochemistry of the Copley-Blaklala series, northern California[J]. Earth and Planetary Science Letters, 85:386-400. doi: 10.1016/0012-821X(87)90135-X

    Chai Guanglu, Li Shuangying. 2016. Geochemical characteristcs and geological implication for the metamorphic rocks of Foziling Group in the eastern of North Huaiyang tectonic belt[J]. Earth Science Frontiers, 23(4):29-45(in Chinese with English abstract).

    Chen Denghui, Wu Yuezhong, Liu Wenming, Wang Wenan, Qiao Gengbiao, Zhao Xiaojian. 2013. Geological characteristics and genesis of the iron deposits in the Taxkorgan area, west Kunlun[J]. Geotectonica et Metallogenia, 37(4):671-684(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201304012

    Chen Junkui, Yan Changhai, Zhang Wangsheng, Gao Tingchen, Lv Xianhe, Zhang Shaobo, Hu Xiaochuan. 2011. Geological characteristics and prospecting direction of the magnetite iron deposits in the Taxkorgan, Xinjiang[J]. Geological Survey and Research, 34(3):179-189(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201103003

    Chu Xuelei. 2004."Snowball Earth" during the Neoproterozoic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3):233-238(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_6cfe2e6a0b8d29be121edc9bb7faf0e7

    Condie K C and Been K. 2006. Archean geodynamics:Similar to or different from modern geodynamics[J]. American Geophysical Union Mono-Graph, 164:47-59. http://d.old.wanfangdata.com.cn/Periodical/kxtb-e200705002

    Dong Lianhui, Feng Jing, Zhuang Daoze, Li Fengming, Qu Xun, Liu Dequan, Tang Yanling. 2011a. Dissucation of metallogenic models, mineralization characteristic and main type of rich iron ore of Xinjiang[J]. Xinjiang Geology, 29(4):416-422(in Chinese with English abstract).

    Floyd P A, Leveridge B E. 1987. Tectonic environment of the Devonian Gramscatho basin south Cornwall:Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 144(4):531-542. doi: 10.1144/gsjgs.144.4.0531

    Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    Gao Xiaofeng, Xiao Peixi, Kang lei, Zhu Haiping, Guo Lei, Xi Rengang, Dong Zengchan. 2013. Origin of the volcanic rocks from the Ta'axi Region, Taxkorgan Xinjiang and its significance[J]. Earth Science-Journal of China University of Geosciences, 38(6):1169-1182(in Chinese with English abstract). doi: 10.3799/dqkx.2013.116

    Geist D, Howard K A, Larson P. 1995. The generation of oceanic rhyolites by crustal fractionation:The basalt-rhyolite association at Volcano Alcedo, Galapagos Archipelago[J]. Journal of Petrology, 36:965-982. doi: 10.1093/petrology/36.4.965

    Gill J B. 1981. Orogenic andesites and plate tectonics[J]. SpringerVerlag:1-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006026062

    Herron M M. 1988. Geochemical classification of terrigenous sands and shales from core or log data[J]. Journal of Sedimentary Research, 58(5):820-829. http://d.old.wanfangdata.com.cn/Periodical/njlgdxxb201705016

    Hu Jianwei, Zhuang Daoze, Yang Wanzhi. 2010. The prediction model of comprehensive information and its application in the prediction of region of Zankan iron deposit in Taxkorgan County, Southwest Xinjiang[J]. Geological Bulletin of China, 29(10):1495-1503(in Chinese with English abstract).

    Huang Chaoyang. 2014. Geological Characteristics and Genesis of the Iron Deposit in the Brunguole Group, West Kunlun[D]. Beijing: University of Chinese Academy of Sciences: 1-108(in Chinese).

    Ji Wenhua, Li Rongshe, Chen Shoujian, He Shiping, Zhao Zhenming, Bian Xiaowei, Zhu Haiping, Cui Jigang, Ren Juangang. 2011. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of northwest China and its geological significance[J]. Sci. China Earth Sci., 54:61-72(in Chinese). doi: 10.1007/s11430-010-4043-7

    Jiang Chunfa, Wang Zongqi, Li Jintie. 2000. Opening-closing Tectonics of Center Orogenic Belt[M]. Beijing:Geological Publishing House, 1-154(in Chinese).

    Li Rongshe, Ji Wenhua, Yang Yongcheng, Yu Pusheng, Zhao Zhenming, Chen Shoujian, Mengyong, Pan Xiaoping, Shi Bingde, Zhang Weiji, Li Xing, Luo Changyi. 2008. Geology of Kunlun Mountain and its Adjacent Area[M]. Beijing:Geological Publishing House, 68-127(in Chinese).

    Li Houmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong, 2014. Types and General characteristics of the BIFrelated Iron deposits in China[J]. Ore Geology Reviews, 57:264-287. doi: 10.1016/j.oregeorev.2013.09.014

    Li Xianhua, Li Zhengxiang, Zhou Hanwen, Liu Ying, Kinny P D. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian rift of south China:Implications for the initial rifting of Rodinia[J]. Precambrian Research, 113:135-154. doi: 10.1016/S0301-9268(01)00207-8

    Li Zhiquan, Zhang Lianchang, Xue Chunji, Zheng Mengtian, Hao Yanhai, Shi Yujun. 2015. Geological and geochimical characteristics of Zankan iron deposit in the West Kunlun mountains[J]. Chinese Journal of Geology, 50(1):100-117(in Chinese with English abstract).

    Liu Jianpin, Wang He, Ren Guangli, Fu Wangwei, Wu Yufeng. 2009.Types and exploration prospect in the West Kunlun iron ore deposit[J]. Acta Mineralogica Sinica, 29(S1):439-441(in Chinese with English abstract).

    Liu Pinde. 2014. Geological Features and Mineralization Process of Laobing gypsum Magnetite deposit in Taxkorgan region of west Kunlun[J]. Northwestern Geology, 47(4):227-236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201404024

    Liu Pinde, Yan Changhai, Zhang Shaobo, Chen Junkui, Liao Shijin, Zhao Jianmin, Chen Lei, Zhang Gehong, Yang Ruixi, Yang Fan, Li Shanpo, Lv Guoying, Cao Wenyou, Liu Ying, Zhang Tielin, Liu Jiaju, Chen Hongmin, Zhang Jianjun, Liu Chuanquan, Cheng Guo'an, Yu Lei. 2012. The investigation report of Lead-Zinc ore prospect of Taxkorgan area in western Kunlun, Xinjiang[R]. Zhengzhou: Henan Institute of Geological Survey, 22-81(in Chinese).

    Liu Yu, Kuang Aibing, Zhang Jing. 2011. Xinjiang Taxkorgan county Laobin-Zankan-Talugou area iron ore deposit geological characteristics and origin analysis[J]. Acta mineralogica Sinica, 31(S1):373-375(in Chinese with English abstract).

    Liu Zhentao, Yang Haibo, Wang Yuewu, Zhang Miaohong, Zhao Xuelian. 2000. The regional geological report of Xialafudie map, Bandier map: Scale 1: 50000, Xinjiang[R]. Urumqi: Xinjiang Institute of Geological Survey, 13-17(in Chinese).

    McLennan S M, Taylor S R. 1991. Sedimentary rocks and crustal evolution:Tectonic setting and secular trends[J]. Journal of Geology, 99:1-21. doi: 10.1086/629470

    Pan Yusheng, Wen Shixuan, Sun Dongli, . 2000. Geolosical Evolution of the Karakorum and Kunlun Monntains[M]. Beijing:Science Publishing House, 1-523(in Chinese).

    Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorps R S(ed.). Andesite. New York: John Wiley and Sons, 525-548.

    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks determined by using trace element analyses[J]. Earth Planet. Sci.Lett., 19:290-300. doi: 10.1016/0012-821X(73)90129-5

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrol., 25(4):956-983. doi: 10.1093/petrology/25.4.956

    Pearce J A, Lippard S J and Roberts S. 1984b. Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Marginal Basin Geology. Geological Society of London Special Publications, 16: 77-94.

    Pei Guodong, Gong Xiaoping, Ma Huadong, Guan Chuanshuo, Du Weiqiang, Liu Yangyang, Ouyang Chengzhao, Li Xiaoguang. 2018. Geochemical characteristics and formation environments of metamorphic rocks in the Kanas Group of Altay tectonic belt[J]. Geology in China, 45(1):141-154(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201801012

    Qiao Gengbiao, Wang Ping, Wu Yuezhong, Hao Yanhai, Zhao Xiaojian, Chen Denghui, Lü Pengrui, Du Wei. 2015. Formation age of ore-bearing strata of the Zankan iron deposit in Taxkorgan landmass of western Kunlun mountains and its geological significance[J]. Geology in China, 42(3):616-630(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503016

    Qiu Jiaxiang, Lin Jingqian. 1991. Petrochemistry[M]. Beijing:Geological Publishing House, 261-263(in Chinese).

    Roser B P and Korsch R J. 1986. Determination fo tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 94(5):635-650. doi: 10.1086/629071

    Sun S S and McDonough. 1989. Chemical and isotopic systematics in Ocean Basalt: Implication for mantle composition and process[C]//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins.Geological Society Special Publication, (42): 313-345.

    Tian Jingchun, Zhang Xiang. 2016. Sedimentary Geochemistry[M]. Beijing:Geological Publishing House, 48-49(in Chinese).

    Wang Renmin, He Gaopin, Chen Zhenzhen. 1987. The Plot for Recovering Protoliths of Metamorphic Rocks[M]. Beijing:Geological Publishing House, 5-6(in Chinese).

    Wang Shiyan, Peng Songmin, Ma Ruishen Zhang Yanqi, Lv Jigen, Bai Guodian, Xie Chaoyong, Gao Tingchen, Ren Jiande, Liu Pinde, Yang Junfeng, Fang Huanbin, Li Chunyan, Lv Xianhe, Li Xiangzi, Yang Ruixi, Du Fengjun, Pang Yunchao, Zhang Gehong. 2014. The People's Republic of China Regional Geological Report: Kuketuluke map(J43C003002), Taxkorgan map(J43C003003): Scale 1: 250000[M]. Wuhan: China University of Geosciences Press, 252-272 (in Chinese).

    Wang Xiaowei, Xu Xueyi, Ma Zhongping, Chen Juanlu, Zhu Xiaohui, Sun Jiming, Cui Fanglei. 2015. Geochemical characteristics of the Late Carboniferous bimodal volcanic rocks in Jijitaizi area, eastern Bogda orogenic belt, and their geological significance[J]. Geology in China, 42(3):553-569(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503012

    Wang Yan, Qian Qing, Liu Liang, Zhangqi. 2000. Major geochemical characteristics of bimodal volcanic Rocks in different geochemical environments[J]. Acta Petrologica Sinica, 16(2):169-173(in Chinese with English abstract).

    Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 17(3):413-421(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009

    Wang Yuzhen. 1985. Geological map, 1985. Mineral Map and Introduction of Western South Xinjiang(Scale 1: 500000)[M]. Beijing: China University of Geosciences Press, 3-45(in Chinese).

    Wendlandt R F, Altherr R, Neumann E R, Baldridge W S. 1995.Petrology, Geochemistry, Isotopes[C]//Olsen K H(ed.). Continental Rifts: Evolution, Structure, Tectonics. Elsevier, 47-60.

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magmas series and their differentiation products using immobile elements[J]. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    Xia Linqi, Xia Zuchun, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007.The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1):77-89(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701011

    Xue Xisheng, Qiu Jiansheng. 2010. Igneous Petrolongy[M]. Beijing:Science Press, 177-178(in Chinese).

    Yan Changhai, Chen Caojun, Cao Xinzhi, Zhang Wangsheng, Chen Junkui, Li Shanpo, Liu Pinde. 2012. The discovery of the "Pamirtype" iron deposits in Taxkorgan area of Xinjiang and its geological significance[J]. Geological Bulletin of China, 31(4):549-557(in Chinese with English abstract).

    Yang Wenqiang. 2013. The Indosinian Metamorphism, Magmatism and Formation Age of Bunlunkuole Rock Group in TaxkorganKangxiwar Tectonic Belt, Western Kunlun[D]. Xi'an: Northwest University: 1-128(in Chinese).

    Zhang Chuanlin, Lu Songnian, Yu Haifeng, Ye Min. 2007. Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai-Tibet Plateau:Evidence from zircon SHRIMP and LAICP-MS U-Pb geochronology[J]. Science in China Series D, 37(2):145-154(in Chinese).

    Zhang Chuanlin, Yang Chun, Shen Jialin, Wang Aiguo, Zhao Yu, Dong Yongguan, Guo Kunyi. 2003. Zircon SHRIMP age of Neoproterozoic gneissoid granites in the West Kunlun and its significance[J]. Geological Review, 19(3):239-244(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005584

    Zhang Shaobo. 2016. Genisis of gypsolyte-iron foration of west KunlunPamir type iron deposits:A case study of Laobing iron deposit[J]. Mineral Resources and Geology, 30(2):151-156(in Chinese with English abstract).

    Zhang Zhaochong, Hou Tong, Santosh M., Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng, 2014. Spatiotemporal distribution and tectonic settings of the major iron deposits in China:An overview[J]. Ore Geology Reviews, 57:247-263. doi: 10.1016/j.oregeorev.2013.08.021

    Zheng Mengtian, Zhang Lianchang, Zhu Mingtian, Li Zhiquan, He Lidong, Shi Yujun, Dong Lianhui, Feng Jing. 2016. Geological characteristics, formation age and genisis of the Kalazi Ba-Fe deposit in west Kunlun[J]. Earth Science Frontiers, 23(5):252-265(in Chinese with English abstract).

    柴广路, 李双应. 2016.淮阳东段佛子岭群变质岩地球化学特征及其地质意义[J].地学前缘, 23 (4):29-45. http://d.old.wanfangdata.com.cn/Periodical/dxqy201604003
    陈登辉, 伍跃中, 李文明, 王兴安, 乔耿彪, 赵晓健. 2013.西昆仑塔什库尔干地区磁铁矿矿床特征及其成因[J].大地构造与成矿学, 37(4):671-684. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201304012
    陈俊魁, 燕长海, 张旺生, 高廷臣, 吕宪河, 张哨波, 胡小川. 2011.新疆塔什库尔干地区磁铁矿床地质特征与找矿方向[J].地质调查与研究, 34(3):179-189. doi: 10.3969/j.issn.1672-4135.2011.03.003
    储雪蕾. 2004.新元古代的"雪球地球"[J].矿物岩石地球化学通报, 23(3):233-238. doi: 10.3969/j.issn.1007-2802.2004.03.010
    董连慧, 冯京, 庄道泽, 李凤鸣, 区迅, 刘德权, 唐延龄. 2011a.新疆富铁矿成矿特征及主攻类型成矿模式探讨[J].新疆地质, 29 (4):416-422. http://d.old.wanfangdata.com.cn/Periodical/xjdz201104012
    高晓峰, 校培喜, 康磊, 朱海平, 过磊, 奚仁刚, 董增产. 2013.新疆塔什库尔干塔阿西一带火山岩成因及地质意义[J].地球科学(中国地质大学学报), 38(6):1169-1182. http://d.old.wanfangdata.com.cn/Periodical/dqkx201306002
    胡建卫, 庄道泽, 杨万志. 2010.新疆西南部塔什库尔干地区赞坎铁矿综合信息预测模型及其在区域预测中的应用[J].地质通报, 29(10):1495-1503. doi: 10.3969/j.issn.1671-2552.2010.10.012
    黄朝阳. 2014.西昆仑布伦阔勒群铁矿床地质特征及成因研究[D].北京: 中国科学院大学: 1-108.
    计文化, 李荣社, 陈守建, 何世平, 赵振明, 边小卫, 朱海平, 崔继岗, 任娟刚. 2011.甜水海地块古元古代火山岩的发现及其地质意义[J].中国科学(D辑), 41(9):1268-1280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201109005
    姜春发, 王宗起, 李锦铁. 2000.中央造山带开合构造[M].北京:地质出版社, 1-154.
    李荣社, 计文化, 杨永成, 于浦生, 赵振明, 陈守建, 孟勇, 潘小平, 史秉德, 张维吉, 李行, 洛长义. 2008.昆仑山及邻区地质[M].北京:地质出版社, 68-127.
    李智泉, 张连昌, 薛春纪, 郑梦天, 郝延海, 石玉君. 2015.西昆仑赞坎铁矿地质和地球化学特征及矿床类型探讨[J].地质科学, 50(1):100-117. doi: 10.3969/j.issn.0563-5020.2015.01.007
    刘建平, 王核, 任广利, 付王伟, 吴玉峰. 2009.西昆仑铁矿矿床类型及勘探前景[J].矿物学报, 29(S1):439-441. http://d.old.wanfangdata.com.cn/Conference/7298249
    刘品德. 2014.西昆仑塔什库尔干地区老并石膏磁铁矿地质特征及成矿作用过程探讨[J].西北地质, 47(4):227-236. doi: 10.3969/j.issn.1009-6248.2014.04.024
    刘品德, 燕长海, 张哨波, 陈俊魁, 廖诗进, 赵建敏, 陈雷, 张戈红, 杨瑞西, 杨凡, 李山坡, 吕国营, 曹文友, 刘颖, 张铁林, 刘家橘, 陈宏民, 张建军, 刘传权, 程国安, 于雷. 2012.新疆西昆仑塔什库尔干地区铁铅锌矿远景调查报告[R].郑州: 河南地质调查院, 22-81.
    刘宇, 匡爱兵, 张静. 2011.新疆塔什库尔干县老并赞坎塔吐鲁沟一带铁矿床地质特征及成因浅析[J].矿物学报, 31(S1):373-375. http://d.old.wanfangdata.com.cn/Conference/7684494
    刘振涛, 杨海波, 王跃武, 张妙红, 赵雪莲. 2000.1: 50000下拉夫迭、班迪尔幅区域地质调查报告[R].乌鲁木齐: 新疆地质调查院, 13-17.
    潘裕生, 文世宣, 孙东立. 2000.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社, 1-523.
    裴国栋, 弓小平, 马华东, 关传硕, 杜韦强, 刘洋洋, 欧阳承钊, 李晓光. 2018.阿尔泰造山带喀纳斯群变质岩地球化学特征及其形成环境[J].中国地质, 45(1):141-154. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180112&flag=1
    乔耿彪, 王萍, 伍跃中, 郝延海, 赵晓健, 陈登辉, 吕鹏瑞, 杜玮. 2015.西昆仑塔什库尔干陆块赞坎铁矿赋矿地层形成时代及其地质意义[J].中国地质, 42(3):616-630. doi: 10.3969/j.issn.1000-3657.2015.03.016
    邱家骧, 林景仟. 1991.岩石化学[M].北京:地质出版社, 261-263.
    田景春, 张翔. 2016.沉积地球化学[M].北京:地质出版社, 48-49.
    王仁民, 贺高品, 陈珍珍. 1987.变质岩原岩图解判别法[M].北京:地质出版社, 5-6.
    王世炎, 彭松民, 马瑞申, 张彦启, 吕际根, 白国典, 谢朝勇, 高廷臣, 任建德, 刘品德, 杨俊峰, 方怀宾, 李春艳, 吕宪河, 李香资, 杨瑞西, 杜凤军, 庞运超, 张戈红. 2014.中华人民共和国区域地质调查报告.克克吐鲁克幅幅(J43C003002)、塔什库尔干塔吉克自治县幅(J43C003003): 比例尺1: 25万[M].武汉: 中国地质大学出版社, 252-272.
    汪晓伟, 徐学义, 马中平, 陈隽璐, 朱小辉, 孙吉明, 崔方磊. 2015.博格达造山带东段芨芨台子地区晚石炭世双峰式火山岩地球化学特征及其地质意义[J].中国地质, 42(3):553-569. doi: 10.3969/j.issn.1000-3657.2015.03.012
    王焰, 钱青, 刘良, 张旗. 2000.不同构造环境中双峰式火山岩的主要特征[J].岩石学报, 16(2):169-173. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200002004
    汪云亮, 张成江, 修淑芝. 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报, 17(3):413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
    汪玉轸. 1985.1:500 000新疆南疆西部地质图、矿产图及说明书[M].北京:中国地质大学出版社, 3-45.
    夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 26(1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011
    徐夕生, 邱检生. 2010.火成岩岩石学[M].北京:科学出版社, 177-178.
    燕长海, 陈曹军, 曹新志, 张旺生, 陈俊魁, 李山坡, 刘品德. 2012.新疆塔什库尔干地区"帕米尔式"铁矿床的发现及其地质意义[J].地质通报, 31(4):549-557. doi: 10.3969/j.issn.1671-2552.2012.04.008
    杨文强. 2013.西昆仑塔县-康西瓦构造带印支期变质、岩浆作用及布伦阔勒岩群的形成时代[D].西安: 西北大学: 1-128. http://cdmd.cnki.com.cn/Article/CDMD-10697-1013253366.htm
    张传林, 陆松年, 于海锋, 叶海敏.2007.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].中国科学:D辑, 37(2):145-154. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200702001
    张传林, 杨淳, 沈加林, 王爱国, 赵宇, 董永观, 郭坤一. 2003.西昆仑北缘新元古代片麻状花岗岩锆石SHRIMP年龄及其意义[J].地质评论, 19(3):239-244. http://d.old.wanfangdata.com.cn/Periodical/dzlp200303003
    张哨波. 2016.西昆仑帕米尔式铁矿床膏铁建造成因探讨——以老并铁矿为例[J].矿产与地质, 30(2):151-156. doi: 10.3969/j.issn.1001-5663.2016.02.002
    郑梦天, 张连昌, 朱明田, 李智泉, 何立东, 石玉君, 董连慧, 冯京. 2016.西昆仑喀来子钡-铁矿床地质特征、时代及成因探讨[J].地学前缘, 23(5):252-265. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605026
  • 期刊类型引用(8)

    1. 王海,付海平,李永胜,钟福军,王颖,吉鸿杰,徐林,胡朗明,杨世彪. 江西通江岭铜(钨)矿床石榴子石和锆石LA-ICP-MS原位U-Pb定年及其地质意义. 地质学报. 2023(07): 2281-2292 . 百度学术
    2. 王先广,曹圣华,龚良信,胡正华,曹明轩,张德富,陈麒如. 江西钨锡多金属矿床成矿系列与找矿. 地球学报. 2023(05): 916-932 . 百度学术
    3. 高任,谢桂青,冯道水,纪云昊,钟浩,张磊. 江西武山铜矿区新发现钨矿(化)体特征和其成因——来自矿相学、白钨矿原位U-Pb年代学和元素地球化学的约束. 矿床地质. 2023(06): 1139-1158 . 百度学术
    4. 高任,谢桂青,查志强,童继中,樊涛,章平,罗建安. 江西城门山铜矿床伴生稀散金属矿化特征及其地质意义. 地质与勘探. 2022(03): 514-531 . 百度学术
    5. 毛景文,周涛发,谢桂青,袁峰,段超. 长江中下游地区成矿作用研究新进展和存在问题的思考. 矿床地质. 2020(04): 547-558 . 百度学术
    6. 毛景文,吴胜华,宋世伟,戴盼,谢桂青,苏蔷薇,刘鹏,王先广,余忠珍,陈祥云,唐维新. 江南世界级钨矿带:地质特征、成矿规律和矿床模型. 科学通报. 2020(33): 3746-3762 . 百度学术
    7. 胡正华,王先广,陈毓川,周卫,王彦媛,龚良信,杨舒钧. 江南钨矿带(江西段)成矿规律. 中国钨业. 2020(05): 10-19 . 百度学术
    8. 杨世文,楼法生,丁沛勋,张芳荣. 赣北中生代岩浆作用与钨成矿特征. 中国钨业. 2020(05): 53-60 . 百度学术

    其他类型引用(0)

图(11)  /  表(3)
计量
  • 文章访问数:  3459
  • HTML全文浏览量:  519
  • PDF下载量:  4780
  • 被引次数: 8
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2018-05-09
  • 网络出版日期:  2023-09-26
  • 刊出日期:  2019-06-24

目录

/

返回文章
返回
x 关闭 永久关闭