• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

西藏许如错地区古近纪盆地碎屑锆石U-Pb年代学充填记录分析

和源, 陈庆, 朱利东, 黄荣才, 杨文光, 陶刚, 李超, 柳树权

和源, 陈庆, 朱利东, 黄荣才, 杨文光, 陶刚, 李超, 柳树权. 西藏许如错地区古近纪盆地碎屑锆石U-Pb年代学充填记录分析[J]. 中国地质, 2019, 46(3): 557-574. DOI: 10.12029/gc20190308
引用本文: 和源, 陈庆, 朱利东, 黄荣才, 杨文光, 陶刚, 李超, 柳树权. 西藏许如错地区古近纪盆地碎屑锆石U-Pb年代学充填记录分析[J]. 中国地质, 2019, 46(3): 557-574. DOI: 10.12029/gc20190308
HE Yuan, CHEN Qing, ZHU Lidong, HUANG Rongcai, YANG Wenguang, TAO Gang, LI Chao, LIU Shuquan. Paleogene basin Zircon U-Pb Geochronology and basin record of Xurucuo Area in Tibet[J]. GEOLOGY IN CHINA, 2019, 46(3): 557-574. DOI: 10.12029/gc20190308
Citation: HE Yuan, CHEN Qing, ZHU Lidong, HUANG Rongcai, YANG Wenguang, TAO Gang, LI Chao, LIU Shuquan. Paleogene basin Zircon U-Pb Geochronology and basin record of Xurucuo Area in Tibet[J]. GEOLOGY IN CHINA, 2019, 46(3): 557-574. DOI: 10.12029/gc20190308

西藏许如错地区古近纪盆地碎屑锆石U-Pb年代学充填记录分析

基金项目: 

中国地质调查局项目“西藏昂仁县北西H45E008011、H45E009011、H45E010010、H45E010011幅1:5万区域地质矿产调查” DD2016008004

详细信息
    作者简介:

    陈庆, 女, 1993年生, 硕士生, 沉积学专业, 主要从事沉积学与地层学的研究工作; E-mail:372702934@qq.com

  • 中图分类号: P588.21

Paleogene basin Zircon U-Pb Geochronology and basin record of Xurucuo Area in Tibet

Funds: 

China Geological Survey Program DD2016008004

More Information
    Author Bio:

    CHEN Qing, female, born in 1993, master candidate, majors in sedimentology, engages in research on sedimentology and stratigraphy; E-mail: 372702934@qq.com

  • 摘要:

    西藏许如错地区在国内鲜有学者研究,仅在少有的区域地质报告中出现。研究区内发育一套古近系碎屑岩沉积——日贡拉组,该地层在研究区局部具有一套火山岩夹层。文章通过对许如错地区古近系日贡拉组碎屑锆石的LA-ICP-MS U-Pb测年分析,结合周边盆地年龄结构及研究区沉积现象,进而追寻盆地沉积物物源和盆地充填记录。研究表明,日贡拉组为一套由粗变细最终又变粗的碎屑岩沉积夹少量火山岩,根据沉积原生构造和宏观剖面判断其主要是扇三角洲-浅湖相-扇三角洲的沉积环境;岩浆成因的碎屑锆石年龄峰值集中在127~134 Ma年龄段内,结合周缘年龄推断日贡拉组物源来自北-北西中部拉萨地块的早白垩世花岗岩。通过对研究区日贡拉组岩石组合、岩石地层序列、物源分析、沉积演化过程以及年代证据等方面的研究,发现日贡拉组的发育处于青藏高原俯冲碰撞隆升阶段和汇聚挤压隆升阶段。

    Abstract:

    Aimed at exploration of provenance and basin filling records, the authors selected detrital zircons from Rigongla Formation of the Paleogene in the middle part of central Lhasa and conducted LA-ICP-MS detrital zircon U-Pb isotope analysis. The result reveals that Rigongla Formation is a kind of classic rocks which evolved from coarse to thin to coarse, with minor interbedded volcanic rocks. Judging from the sedimentary primary structure and the macroscopic section, its sedimentary environment was fan delta and shallow lake facies and fan delta. The peak age of magmatic origin of detrital zircon is concentrated in the 127-134 Ma age section. Combined with perimeter age, it is held that the provenance was from the early Cretaceous granite of NNW-trending central Lhasa block, and it was in the stage of subduction and collision uplift of the Tibetan Plateau and the stage of convergence and uplift.

  • 巴音戈壁盆地为叠置在克拉通基底与晚古生代褶皱基底接合部位上的伸展断坳复合型盆地(罗毅等,2009; 张成勇等,2015),盆地中南部是古生代滨浅海相基础上发育的盆地建造带,其坳陷的基底为多期富铀花岗岩活化的古克拉通基底,是成熟度高的富铀基底,是铀成矿的有利区。近年来,核工业二〇八大队在盆地中南部开展了一系列的铀矿调查评价与勘查工作,取得突出的找矿成果(申科峰等,2014; 李鹏等,2017; 彭云彪等,2018b)。

    根据水成铀矿理论,砂岩型铀矿是一种产在近地表砂体中的外生铀矿床,是活化的六价铀元素沿含矿含水层运移,遇有机碳、黄铁矿或油气等还原剂,在过渡带被还原成四价铀元素富集沉淀成矿(陈路路等,2014)。盆地(坳陷)内能否铀成矿,取决于其所在地区的大地构造背景及构造-沉积演化特征,并通过影响区域构造、沉积演化、铀(物)源、水动力、氧化还原蚀变等成矿地质条件来控制砂岩型铀矿床的形成。因此,通过研究巴音戈壁盆地中南部构造-沉积演化及其对铀成矿的关系,对盆地内继续寻找铀矿床具有一定的积极作用。

    巴音戈壁盆地位于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北板块的结合部位,是巴尔喀什—天山—兴安岭晚古生代增生碰撞带。以恩格尔乌苏—巴音查干NEE向晚古生代陆-陆碰撞板块缝合线为界,巴音戈壁盆地中南部处于华北板块北缘阴山隆起带与宝音图—锡林浩特火山型被动陆缘的结合带。其北界为宗乃山—沙拉扎山隆起带,南界为巴丹吉林断裂(图 1),属弧间盆地。

    图  1  巴音戈壁盆地中南部构造分区示意图
    1—蚀源区; 2—断裂; 3—一级构造单元界线; 4—二级构造单元界线; 5—矿床; 6—研究区范围
    Figure  1.  Sketch map of tectonic zoning in the south-central part of the Bayin Gobi Basin
    1-Provenance area; 2-Fault; 3-Boundary of primary structural unit; 4-Boundary of secondary structural unit; 5-Deposit; 6-Study area

    根据前人的划分方案,盆地中南部属于中构造域,为西部挤压与东部拉张环境的结合部,构造应力比较复杂(Darby et al., 2005; 陈戴生等,2011; Shi et al., 2015; 苗培森等,2017; 刘波等,2020; Jin et al., 2020; Yu et al., 2021)。区域上自中生代以来先后经历了印支期、燕山期、喜山期共7次构造运动,导致其上覆盖层中形成隆起和坳陷(凹陷)相间出现的局面(表 1)。

    表  1  巴音戈壁盆地中南部主要凹陷特征一览
    Table  1.  Characteristic list of main depressions in the central and southern Bayin Gobi Basin
    下载: 导出CSV 
    | 显示表格

    巴音戈壁盆地中南部基底地层主要为太古界乌拉山群深变质岩,古元古界阿拉善群中深变质岩、寒武系—泥盆系碎屑岩、碳酸盐岩及浅变质岩,石炭系中酸性火山岩、碎屑岩,二叠系碎屑岩、火山岩、碳酸盐岩等组成(张成勇等,2015; 刘波等,2020)。盖层主要为中新生界,主要为侏罗系、下白垩统巴音戈壁组、上白垩统乌兰苏海组,局部见下白垩统苏红图组,其中巴音戈壁组上段为盆地内主要的找矿目的层(何中波等,2010; 丁叶等,2012; 肖国贤等,2017; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020; Liu et al., 2021a)。盆地内岩浆岩主要发育于元古宙、古生代和显生宙,主要分布于宗乃山—沙拉扎山、狼山—巴彦诺尔公地区,主要为花岗岩、花岗闪长岩、花岗闪长玢岩、黑云闪长岩、石英闪长玢岩等(史兴俊等,2015),以花岗岩类最为发育。断裂主要有宗乃山—沙拉扎山南缘断裂和巴丹吉林断裂,基本控制了盆地中南部坳陷带的发育。

    巴音戈壁盆地中南部凹陷的构造样式主要为双断型、单断型与复合型(刘波等,2020)。从凹陷形态及其演化继承性分析,具有两种类型,表现为叠合型和迁移型(陈启林等,2005; 彭云彪等, 2018a, 2018b)。不同的凹陷形态具有不同的构造样式(卫三元等,2006),不同构造样式控制了不同的沉积充填类型(图 2),同时控制了凹陷后期构造反转、流体运移和铀矿化的分布等(刘波等, 2016, 2017a, 2017b, 2018, 2020)。

    图  2  因格井—尚丹坳陷各凹陷构造样式
    a—单断断槽式; b—单断迁移型; c—单断叠置型; d—双断地堑式; 1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—中下侏罗统; 5—地层界线; 6—正断层; 7—性质不明断层; 8—反转断层
    Figure  2.  Structuralstyles of sags in Inger-Shangdan Depression
    a-Single and slot; b-Single fault migration; c-Single fault superimposed; d-Double break graben; 1-Ulansuhai Formation of Upper Cretaceous; 2-Upper Member of Bayin Gobi Formation of Lower Cretaceous; 3- Lower Part of Bayin Gobi Formation of Lower Cretaceous; 4-Middle-Lower Jurassic; 5-Stratigraphic boundary; 6-Normal fault; 7-Unidentified fault; 8-Inversion fault

    单断箕状凹陷在盆地中南部发育规模最广,如因格井凹陷、乌力吉凹陷等。这种凹陷易于在断陷端发育冲积扇—扇三角洲沉积,远离断陷端多为湖泊沉积,扇三角洲平原分流河道和扇三角洲前缘多发育有利砂体,利于成矿流体运移及铀成矿,如塔木素铀矿床砂岩型铀矿体即赋存于因格井凹陷北部扇三角洲砂体中(李鹏等,2017; 彭云彪等,2018b; 刘波等,2020)。复合型凹陷在盆地中南部局部发育,如本巴图矿产地,赋存于单断箕状凹陷的复合部位。该部位因差异性抬升易于遭受剥蚀,继而形成大型剥蚀窗口,而剥蚀窗口有利于后生氧化发育,进而形成铀矿化。

    早中侏罗世,受燕山运动影响,盆地中南部开始局部裂陷,裂陷主要受北东向断裂控制,主要呈箕状和不对称地堑。在晚侏罗世,盆地整体抬升剥蚀,地层剥蚀殆尽,大部分残存于盆地中南部的沉降中心,少量在坳陷边缘局部呈残留体形式存在(罗毅等,2009)。

    早白垩世巴音戈壁期为强烈断陷期,主要发育了下白垩统巴音戈壁组,在坳陷带内具有广泛连通的特征,古构造地貌表现为北高南低,东高西低。在断陷发育扩张的早期,首先沉积了巴音戈壁组下段冲积扇砂砾岩层。巴音戈壁组上段早期湖泊相细粒沉积物不断向盆地外侧超覆沉积,反映出断陷不断扩张。随着断陷继续发育,巴音戈壁组上段沉积物供给<凹陷的可容纳空间,发育扇三角洲—湖沼沉积。这一时期在三角洲平原分流河道和三角洲前缘,既发育了有利的铀储层砂体,又在河道分流间湾沉积了暗色泥岩、粉砂质泥岩,构成了有利于地浸砂岩型铀矿形成的“泥-砂-泥”储层结构,成为本区砂岩型铀矿的主要找矿目的层。此后,盆地中南部差异性隆升,大部分地区沉积滨浅湖与半深湖亚相细碎屑物,表现为退积型沉积特点。

    在苏红图期,延续早白垩世巴音戈壁期北高南低和东高西低的基础上,银根地区发育为沉降沉积中心,发育了一定厚度的苏红图组,而其他大部分地区诸如塔木素、乌力吉地区依旧缓慢隆升,遭受剥蚀。

    在早白垩世苏红图沉积后,银根地区抬升遭受剥蚀,在原有古构造地貌基础上,表现为中央局部隆升,局部遭受剥蚀(He et al., 2015)。

    早白垩世晚期银根期,盆地中南部受滨西太平洋俯冲远程影响(Shi et al., 2014; Zhang et al., 2014; Liu et al., 2019),整体抬升强烈,普遍缺失银根组(图 3)。古构造地貌特征为北东高南西低的特点。

    图  3  巴音戈壁盆地中南部白垩纪地层沉积与剥蚀天窗示意图
    1—乌兰苏海组; 2—巴音戈壁组上段三岩段; 3—巴音戈壁组上段二岩段; 4—地质界线; 5—角度不整合界线; 6—钻孔孔号及标高(m); 7—工业矿孔; 8—矿化孔; 9—无矿孔
    Figure  3.  Schematic diagram of Cretaceous sedimentation and denudation windows in the central and southern Bayin Gobi Basin
    1-Ulansuhai Formation; 2-Third rock section inthe Upper Member of Bayin Gobi Formation; 3-Second rock section in the Upper Member of Bayin Gobi Formation; 4-Geological boundary; 5-Angular unconformity boundary; 6-Borehole number and elevation (m); 7-Industrial ore hole; 8-Mineralization hole; 9-Non ore Hole

    晚白垩世乌兰苏海期,受古亚洲板块俯冲影响,盆地中南部受北西-南东应力作用,整体从北西向南东阶梯式抬升(刘春燕等,2006; Feng et al., 2017; 张建新等,2018),在局部表现为伸展作用,在因格井坳陷、尚丹坳陷的南部,乌兰苏海组坳陷内沉积厚度较大; 在宗乃山—沙拉扎山隆起带边缘表现为缺失乌兰苏海组或厚度较小(图 3),此时古构造地貌表现为北西高-南东低。

    古近纪以来,受印度板块俯冲影响,盆地中南部受南西-北东应力作用影响,使得老构造重新活动和北东向断裂的新生(Tapponnier et al., 2001; 施炜等,2013; Cui et al., 2018; 赵衡等, 2019a, 2019b); 由南向北发育阶梯式抬升,导致在相邻的雅不赖盆地缺失白垩系,盆地内整体缺失古近系,近于直接出露厚层的乌兰苏海组(图 3)。而盆地中南部乌兰苏海组同样遭受抬升剥蚀,表现为厚度较薄或缺失。该时期地貌表现为南高北低,西高东低的特点,垂直高差300~500 m。

    巴音戈壁组在上、下段沉积过程中,其沉积相、沉积体系出现了明显的变化,下段沉积期间,显示相对单一的以重力流沉积为主体的冲积扇沉积和扇三角洲沉积,上段沉积时则演变为相对复杂的以重力流和牵引流沉积并重的多种沉积体系所构成的沉积格局,特别是扇三角洲沉积体系的广泛发育,为巴音戈壁盆地中南部砂岩铀矿的形成提供了最基本的砂体条件。这种沉积体系的演变虽然直接与沉积环境的变化有关,但空间上有规律的分布则明显与构造活动有关(丁叶等,2012; 陈路路等,2014; 彭云彪等, 2018a, b)。

    在巴音戈壁组沉积时,各凹陷虽构造样式不同(因格井凹陷为双断型、新尼乌苏凹陷为单断箕状),但在北东向控盆及控坳断裂控制下,在陡坡快速接受碎屑物沉积。结合气候干旱,流水作用不发育,决定了巴音戈壁组下段在盆地(坳陷)的南北两侧发育冲积扇沉积体系,以及局部地段的扇三角洲沉积体系。至巴音戈壁组上段沉积时,构造沉降作用进一步加剧,同时,气候环境明显改变,流水作用显著增强,湖盆发生快速扩张,除某些地段沉积仍显示陡坡特点形成冲积扇沉积体系与扇三角洲沉积体系外,在其他地段特别是北东向构造的闭合端,由于河流的发育,成为碎屑补给的主要地段,并使沉积坡降进一步降低,在构造交汇处形成由平原亚相逐步入湖的扇三角洲沉积体系(刘波等,2020; Liu et al., 2021b)。

    后期的构造反转,差异的块断升降导致原来形成的沉积格局发生改变。反转断裂以逆冲压性为主要构造性质,构造方向呈北东向,由若干条相互平行的断裂带组成。由于断裂构造的反转,使原有沉积相带在空间上的有序规律发生了变化,即由冲积扇-扇三角洲-湖相组合递变的沉积相带或由冲积扇-辫状河-辫状三角洲-湖相组合递变的沉积相带在空间上出现了错位或缺失,同时也使巴音戈壁组上、下段沉积地层在空间叠置关系上出现了错断和突变(何中波等,2010; 张成勇等,2015; 刘波等,2020)(图 4)。

    图  4  巴音戈壁盆地中南部白垩纪构造-沉积演化模式图
    a—早白垩世巴音戈壁组下段; b—早白垩世巴音戈壁组上段早期; c—早白垩世巴音戈壁组上段晚期; d—早白垩世末期; 1—扇三角洲; 2—冲积扇; 3—扇三角洲平原; 4—扇三角洲前缘; 5—湖泊相; 6—基底; 7—亚相界线; 8—正断层; 9—逆断层
    Figure  4.  Cretaceous tectonic-sedimentary evolution model diagram in the central and southern Bayin Gobi Basin
    a-The lower part of Bayin Gobi Formation in Early Cretaceous; b-Early upper member of Bayin Gobi Formation in Early Cretaceous; c-Late upper member of Bayin Gobi Formation in Early Cretaceous; d-Late Early Cretaceous; 1-Fan delta; 2-Alluvial fan; 3-Fan delta plain; 4-Fan delta front; 5-Lake facies; 6-Basement; 7-Subfacies boundary; 8-Normal fault; 9-Reverse fault

    巴音戈壁盆地中南部地下水的水动力方向和状态的改变,主要受构造隆升或掀斜构造的影响,而地下水的水动力条件改变,会使铀成矿作用产生变化。巴音戈壁盆地中南部在早白垩世巴音戈壁组上段沉积期,地势比较开阔,巴音戈壁组上段地层呈水平沉积; 巴音戈壁组沉积后,巴音戈壁盆地中南部受古亚洲造山带和滨西太平洋的双向挤压,北部宗乃山—沙拉扎山隆起抬升明显,使得下白垩统巴音戈壁组上段抬升剥蚀,形成早白垩世巴音戈壁期—晚白垩世长期的沉积间断,形成大型的剥蚀窗口。巴音戈壁盆地中南部内的含铀含氧水顺剥蚀窗口向盆地内运移,在巴音戈壁组上段的“泥-砂-泥”储层结构的约束下,与砂体内本身的有机质、还原(流)性介质发生作用,形成铀矿体(图 5)。在晚白垩世乌兰苏海期,巴音戈壁盆地中南部进入坳陷期,在坳陷(凹陷)内沉积了乌兰苏海组,形成了区域盖层。在古近纪,受喜山运动的影响,巴音戈壁盆地中南部由南西向北东发生掀斜式抬升,巴音戈壁盆地中南部地层整个抬升翘起,巴音戈壁组形成微向斜,含铀含氧水继续呈“C”型或者“U”型沿着剥蚀窗口向盆地内运移。在新近纪,受喜山运动影响,巴音戈壁盆地中南部受到由南西向北东掀斜的整体剧烈抬升,使得古近系、上白垩统在南部遭受剥蚀,宗乃山隆起被大量剥蚀改造,造山带和盆地的高差减小。由于剥蚀抬升,使得含铀含氧水向盆地内继续运移。由于受巴彦诺尔公隆起的影响,巴音戈壁盆地中南部内地下水由径流—弱径流,转为滞水。该时期由于气候持续干旱炎热,水岩作用强烈,NaCl型高矿化度地下水中的Na+替换了斜长石中的Ca2+,后者与地下水中的CO32-、HCO3-和Mg2+形成白云石等碳酸盐矿物,促使地下水中以[UO2(CO3)3]4-、[UO2(CO3)3]2-等碳酸铀酰络合离子及MgCO3·NaUO2(CO3)2复盐发生分离而形成了铀的沉淀(王凤岗等,2018; 刘波等,2020)。

    图  5  巴音戈壁盆地中南部下白垩统巴音戈壁组上段岩性-岩相示意图
    1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—侏罗系; 5—上石炭统; 6—盆地边界; 7—岩相界线; 8—扇三角洲平原; 9—扇三角洲前缘; 10—滨浅湖; 11—花岗岩; 12—矿床/矿产地; 13—乌兰苏海组剥蚀界线; 14—铀矿体; 15—断裂; 16—示意剖面
    Figure  5.  Lithology-lithofacies sketch map of upper member of lower Cretaceous Bayin Gobi Formation in south-central Bayin Gobi Basin
    1-Ulansuhai formation of upper Cretaceous; 2-Upper member of Bayin Gobi Formation of Lower Cretaceous; 3-Lower part of Bayin Gobi Formation of Lower Cretaceous; 4-Jurassic; 5- Upper Carboniferous; 6-Basin boundary; 7-Lithofacies boundary; 8-Fan delta plain; 9-Fan delta front; 10-Shore-shallow lake; 11-Granite/Orefield; 12-Deposit; 13-Denudation boundary of Wulansuhai Formation; 14-Uranium ore body; 15-Fault; 16-Schematic section

    总体来看,巴音戈壁盆地中南部在白垩纪—古近纪以来,北部地下水一直保持由北向南的径流趋势,南部地下水总体流向一直保持由南向北的径流趋势,在不同的次级凹陷中略呈分散状。地下水流向与当时的沉积物迁移和地层相带展布方向长期保持一致,这对铀的稳定迁移、层间氧化带的稳定发育及铀在氧化带前锋线一带沉积成矿是非常有利的。

    巴音戈壁盆地中南部主要经历了3次大规模的铀成矿作用,主要为第一期早白垩世中晚期(109.7±1.5)Ma ~(115.5±1.5)Ma,第二期为晚白垩世晚期—古近纪(45.4±0.6)Ma ~(70.9±1.0)Ma和第三期为新近纪(12.3±0.2)Ma ~(2.5±0.0)Ma(刘波等,2020)。在早白垩世中晚期,伴随着恩格尔乌苏断裂的活动,宗乃山隆起发生抬升,使得含铀含氧水向盆地内运移,发育层间氧化作用。从塔木素铀矿床的赤铁矿化发育情况看,该期氧化作用强烈,可能为主要成矿期。在晚白垩世晚期65~80 Ma(韩进等,2015; 刘溪等,2017),盆地经历了由北向南的强烈的推覆作用,这与巴音戈壁盆地中南部内典型矿床的第二期成矿年龄相对应。伴随着盆地晚白垩世晚期—古近纪盆地由北向南的推覆抬升,盆地内在原有基础上发育有叠加的黄色褐铁矿化层间氧化作用,该期盆地抬升较第一期弱,故层间氧化带的规模较上期小,表现为盆地内褐铁矿化分布较赤铁矿化分布范围小。但是该时期盆地古气候炎热干旱,盆地蒸发量增强,使得表生盐度高卤水向内入渗,在巴音戈壁组上段二岩段层间破碎、裂陷、微孔隙充填发育了大量石膏和碳酸盐(李鹏等,2017)。同时,斜长石因水岩作用(溶解、溶蚀等),在解理面及表面形成了次生的缝隙及孔洞等,为铀沉淀提供了空间。此外,含CO32-、SO42-等的酸性地表水沿层间下渗,溶解了砂岩中碳酸盐胶结物而形成了溶洞,为后期再次迁移的铀提供了沉淀空间,并形成了铀的进一步叠加、富集(王凤岗等,2018)。受盆地挤压抬升影响,后期近地表成矿流体促进了大规模潜水氧化与层间氧化的发育,深部有机流体(还原气体)上侵与SO42-发生反应生成黄铁矿。正是黄铁矿和植物炭屑的还原作用导致了渗入型含氧含铀地下水中矿质的沉淀,形成铀矿体。

    早白垩世巴音戈壁期,巴音戈壁盆地断陷发育; 早白垩世苏红图—银根期,在太平洋俯冲远程效应下,巴音戈壁盆地发生断坳转换,发育走向北东的断裂与线性褶皱,致使地层发生差异性掀斜式抬升; 晚白垩世乌兰苏海期为坳陷期,沉积物以“填平补齐”的形式覆盖在早期的地质单元上,同时受喜山运动的影响,发育走向北西的断裂; 古近纪至今,受印度板块向北俯冲的影响,北东向构造活化与新生,区内差异性抬升更为明显,地层多被剥蚀(卫三元等,2006; 肖国贤等,2017; 彭云彪等,2018a; 赵衡等, 2019a, b; 刘波等,2020)。多期次构造叠加使得因格井—尚丹坳陷的地质体形成不同的块体。受早白垩世晚期至古近纪时期断续构造运动影响,白垩纪地层受北东向与北西向构造活动影响,形成大小不一的块体,在本巴图、乌力吉和塔木素地区比较明显,在不断抬升与剥蚀过程中局部形成剥蚀天窗(图 6),为后期铀成矿提供了有利条件,控制着层间氧化带由凹陷边缘向凹陷中心发育,加之(滨-浅)湖相地层中富含有机质,在氧化还原障附近形成铀矿化(表 2)。简言之,巴音戈壁盆地中南部内铀成矿在有利的构造背景下,主要受沉积相控制与层间氧化带制约。

    图  6  尚丹坳陷银根地区构造形迹示意图
    a—乌力吉—本巴图地区; b—沙拉扎山北侧; c—银根地区; 1—盆地边界; 2—正断层; 3—逆断层; 4—性质不明断层; 5—向斜; 6—复式褶皱; 7—地质界线; 8—剥蚀天窗
    Figure  6.  Structural trace map of Yingen area in Shangdan depression
    a-Wuliji-Benbatu area; b-The north side of the Salazha Mountain; c-Yingen area; 1-Basin boundary; 2-Normal fault; 3-Reverse fault; 4-Unknown fault; 5-Syncline; 6-Compound fold; 7-Geological boundary; 8-Denudation windows
    表  2  巴音戈壁盆地构造-沉积演化与铀成矿作用的关系
    Table  2.  Relationship between tectonic-sedimentary evolution and uranium mineralizationin in the Bayin Gobi Basin
    下载: 导出CSV 
    | 显示表格

    因格井坳陷内扇三角洲物源主要为自北向南,自早白垩世以来继承性发育。岩心及测井资料显示砂砾岩层累计厚度大,多表现出叠加正韵律岩性序列,反映出物源补给比较充足、强烈; A/S值虽然发生变化,但总体较小(林畅松,2015)。尚丹坳陷内扇三角洲继承性发育不良,岩石颗粒较细,细砂岩含量相对要高,累计厚度较薄,三角洲前积特征不明显,反映了物源供给的阶段性和微弱性,A/S值主体较大。

    现代分析认为,层序地层学和“源-汇”体系研究具有内在紧密关联性。断陷湖盆扇三角洲的分布特征与A/S值密切相关(刘磊等,2015; 吴冬等,2015; 刘波等,2020)。“A”实际上对应着巴音戈壁盆地中南部的“汇”,“S”对应着巴音戈壁盆地中南部的“源”,“源-汇”体系直接控制着沉积扇体的类型和特征。“源-汇”体系主导下的断陷湖盆扇三角洲通常具备两种形态,即“锥状”扇三角洲与“片状”扇三角洲(吴冬等,2015)。所谓“锥状”扇三角洲外形呈锥形,纵向厚度较大,平面分布相对较窄,在地震剖面上,扇根多呈现杂乱、弱振幅、差连续反射特征,扇端多呈现弱振幅、中连续前积特征,横截面为丘状或透镜状; “片状”扇三角洲厚度较薄,平面分布范围较大,呈层堆积,地震反射上难以看出三角洲前积特征(李佳鸿等,2012; 刘磊等,2015)。从能量守恒与转化的角度来看,在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,在某一或者诸多节点处可以形成多种形态的复合扇三角洲,据此可进行扇三角洲垛体的定性预测(图 7)。

    图  7  断陷盆地斜坡带扇三角洲发育模式图(吴东,2015)
    1—断裂; 2—断距; 3—剥蚀区; 4—沉积区
    Figure  7.  Development model of fan delta in slope zone of faulted basin(Wu Dong, 2015)
    1-Fault; 2-Fault distance; 3-Denudation area; 4-Sedimentary area

    此外,按相邻的相分类,巴音戈壁盆地中南部扇三角洲又可以分为靠山型与靠扇型扇三角洲。靠山型扇三角洲往往发育于盆缘断层下降盘坡度较陡的斜坡区,并且紧邻高地物源区; 而靠扇型扇三角洲多形成于坡度相对平缓的盆缘斜坡区,它与相邻高地物源区之间通常存在明显可识别的冲积扇相(陈景山等,2007; 刘磊等,2015)。其次,由于构造控制下的斜坡坡度不同,导致这两种扇三角洲的沉积水动力条件有所差别(表 3)。换句话说,巴音戈壁盆地中南部内盆地边缘斜坡较陡和湖泛面较高, 有利于靠山型扇三角洲相的发育; 当盆地边缘斜坡较平缓和湖泛面相对较低时,则有利于靠扇型扇三角洲相的发育。事实上,两种扇三角洲可以交替、叠加演化,在进行扇三角洲垛体定性预测的同时,要对已知扇三角洲铀成矿属性进行判别。

    表  3  靠山型与靠扇型扇三角洲特征对比表(据陈景山,2007)
    Table  3.  Characteristic comparison table between hillside fan delta and fan delta(after Chen Jingshan, 2007)
    下载: 导出CSV 
    | 显示表格

    巴音戈壁盆地中南部在早白垩世中晚期((109.7±1.5)Ma~(115.5±1.5)Ma)、晚白垩世晚期—古近纪((45.4±0.6)Ma~(70.9±1.0)Ma)和新近纪((12.3±0.2)Ma~(2.5±0.0)Ma),经受了南东、北西与南西方向的应力改造作用(刘波等,2020; Liu et al., 2021a)。目的层巴音戈壁组上段发育的扇三角洲平原亚相及前缘亚相砂体,长时间暴露地表,使得含铀含氧水沿砂体向盆地(坳陷)内运移,形成较大规模的层间氧化带型铀矿化(李鹏等,2017; 刘波等,2020): 在氧化砂岩与灰色砂岩界面、氧化还原过渡带中多形成砂岩型铀矿体(图 8); 在扇三角洲分流河道砂岩与分流间湾泥岩结合的部位(同时作为氧化还原障),形成砂泥混合型矿体,在泥岩一侧发育微弱氧化作用; 垂向河道之间的分流间湾、河道间、晚期洪泛平原泥质粉砂岩中形成后生泥岩型铀矿体,尤其是溶蚀孔洞和裂隙充填黄铁矿、褐铁矿比较发育的地段。

    图  8  断陷湖盆背景下的扇三角洲成矿模式图
    a—铀矿体产于氧化砂岩中; b—铀矿体产于氧化砂岩与灰色砂岩界面上; c—铀矿体产于灰色砂岩中; d、e—铀矿体产于氧化砂岩与灰色泥岩界面上; f—铀矿体产于氧化砂岩中的泥岩; 1—剥蚀区; 2—扇三角洲; 3—基底; 4—扇三角洲平原; 5—扇三角洲前缘; 6—滨浅湖; 7—砂岩; 8—泥岩; 9—褐铁矿化; 10—赤铁矿化; 11—炭化植物碎屑; 12—黄铁矿; 13—槽状交错层理; 14—正粒序; 15—平行层理; 16—水平层理; 17—流体方向; 18—铀矿体; 19—断裂; 20—裂隙; 21—高岭土化; 22—碳酸盐化; 23—电阻率测井曲线; 24—γ测井曲线
    Figure  8.  Metallogenic model of fan delta underthe background of faulted lacustrine basin
    a-Uranium ore body occurs in oxidized sandstone; b-Uranium ore body occurs at the interface between oxidized sandstone and grey sandstone; c-Uranium ore body occurs in grey sandstone; d/e-Uranium ore bodies occur at the interface between oxidized sandstone and grey mudstone; f-Uranium ore body occurs at mudstone in oxidized sandstone; 1-Denudation area; 2-Fan delta; 3-Basement; 4-Fan delta plain; 5-Fan delta front; 6-Shore shallow lake; 7-Sandstone; 8-Mudstone; 9-Limonition; 10-Hematite mineralization; 11-Carbonized plant debris; 12 -Pyrite; 13-Trough cross bedding; 14-Normal grain sequence; 15-Parallel bedding; 16-Horizontal bedding; 17 -Fluid direction; 18-Uranium ore body; 19 -Fracture; 20-Cranny; 21- Kaolinite; 22-Carbonation; 23-Resistivity logging curve; 24 -Gamma logging curve

    综合巴音戈壁盆地中南部内铀成矿要素与典型铀矿床成矿特征(李晓翠等,2014; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020),确定主要成矿要素为: ①找矿层位为下白垩统巴音戈壁组上段; ②扇三角洲平原亚相的辫状分流河道与前缘亚相的水下分流河道、河口坝是砂岩型铀矿的有利成矿部位,而分流间湾是泥岩型铀矿的有利成矿部位; ③目的层具有稳定的“泥-砂-泥”结构; ④层间氧化还原转换带控矿—单个黄色氧化舌外侧或两个黄色氧化舌之间还原砂体内,以及氧化砂体内部灰色残留体; ⑤盆缘构造斜坡带控制成矿地质体的发育,同时控制含氧含铀水在目的层砂体中的运移; ⑥多期次构造活动形成“剥蚀天窗”,影响层间氧化带发育规模。因此,定位扇三角洲垛体是找矿预测的基础。

    巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块。目前已知的塔木素铀矿床、本巴图矿产地均是位于此类有利构造部位(图 5图 6)。进一步对比分析巴音戈壁盆地中南部内铀矿床与铀矿化(异常点)的分布可以发现,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。这些地段受不同程度的构造抬升影响,目的层巴音戈壁组上段遭受不同程度的剥蚀,如本巴图地区巴音戈壁组上段较塔木素地区剥蚀深度大于100 m,造成事实上的“剥蚀天窗”,有利于成矿流体的运移以及铀成矿。因此,在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部内铀矿重点找矿预测方向,诸如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。

    由于巴音戈壁盆地中南部内构造-沉积演化的不均一性,小型凹陷以及凸起比较发育,现有工作程度比较低,制约着我们的认识。从现有钻孔的揭遇情况来看,沉积间断面附近通常发育较强的氧化还原作用,具有明显的γ异常与增高。因此定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。

    (1) 巴音戈壁盆地中南部凹陷的构造样式主要为双断型和单断型; 从凹陷形态及其演化继承性分析,又可以分为叠合型和迁移型。

    (2) 不同的凹陷构造样式控制着巴音戈壁组上段不同的沉积相组合,多期次构造叠加使得目的层逐步形成剥蚀天窗,控制着层间氧化带由凹陷边缘向凹陷中心发育,在氧化还原障附近形成铀矿化。

    (3) 在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,据此可进行扇三角洲垛体的定性预测,同时要对已知扇三角洲铀成矿属性进行判别,进而对矿化类型进行预判与识别。

    (4) 巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部铀矿重点找矿预测方向,如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。

    (5) 由于巴音戈壁盆地中南部构造-沉积演化的不均一性,定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。

  • 图  1   研究区构造位置图

    Ⅰ—班公湖—怒江缝合带;Ⅱ—波仓藏布—色林错弧前陆棚带;Ⅲ—则弄火山岩浆弧;Ⅳ—措勤—多瓦复合弧后前陆盆地;Ⅴ—隆格尔—念青唐古拉复合火山岩浆弧;Ⅵ—南冈底斯岩浆弧;Ⅶ—雅鲁藏布缝合带;Ⅷ—喜马拉雅造山带

    Figure  1.   Structure location map of the study area

    Ⅰ-Bangong Co-Nujiang suture zone; Ⅱ-Bocangzangbu-Celin Co front arc shelf belt; Ⅲ-Zenong magmatic arc; Ⅳ-Cuoqin-Duowa composite retroarc foreland basin; Ⅴ-Longgeer- Nyainqentanglha composite magmatic arc; Ⅵ-South Gangdise magmatic arc; Ⅶ-Yarlung Zangbo suture zone; Ⅷ-Himalaya orogenic belt

    图  2   日贡拉组地层柱状对比图

    1—砾岩;2—砂砾岩;3—含砾砂岩;4—含砾泥岩;5—砂岩;6—粉砂岩;7—泥质粉砂岩;8—泥岩;9—页岩;10—泥灰岩;11—凝灰岩;12—砂质凝灰岩;13—平行层理;14—斜层理;15—递变层理;16—冲刷面;17—水平层理

    Figure  2.   Statigraphic section correlation of Rigongla Formation

    1-Conglomerate; 2-Gravel rock; 3-Conglomerate sandstone; 4-Gravelly mudstone; 5-Sandstone; 6-Siltstone; 7-Pelitic siltstone; 8-Mudstone; 9-Shale; 10-Marl; 11-Tuff; 12-Sand tuff; 13-Parallel bedding; 14-Oblique bedding; 15-Graded bedding; 16-Scour surface; 17-Horizontal bedding

    图  3   研究区剖面宏观照片(a、c)及局部特征照片(b、d、e)

    Figure  3.   Macro photo(a, c) and the local characteristics photo of Rigongla Formation (b, d, e)

    图  4   研究区日贡拉组基本层序特征

    Figure  4.   Basic sequence characteristics of Rigongla Formation in the study area

    图  5   许如错盆地沉积相分析图

    Figure  5.   Basin sedimentary facies analysis chart

    图  6   流纹岩、云斜煌岩和岩屑石英砂岩镜下照片

    Qz—石英;Bit—云母

    Figure  6.   The microscopic photograph of rhyolite, kersantite, lithic quartz sandstone

    Qz-Quartz; Bit-Mica

    图  7   日贡拉组火山岩锆石(P13-13)和沉积岩锆石(P05-21, P05-32)形态及年龄(部分)

    Figure  7.   Morphology and age of zircon (part) in volcanic rocks (P13-13) and sedimentary rock (P05-21, P05-32) in Rigongla Formation

    图  8   日贡拉组沉积岩碎屑锆石谐和图及年龄频率分布图

    Figure  8.   Age distribution of detrital zircon, sedimentary rock in Rigongla Formation

    图  9   日贡拉组火山岩夹层锆石U-Pb年龄谐和图

    Figure  9.   Zircon U-Pb concordia diagrams for volcanic rocks in Rigongla Formation

    图  10   拉萨地块晚白垩世—渐新世碎屑锆石年龄对比图

    SCLS—中拉萨南部;ECLS—中拉萨东部;N-NWCLS—中拉萨北-北西部;SLS—南部拉萨

    Figure  10.   The comparison chart of Detrital zircon ages from Late Cretaceous-Oligocene in Lhasa block

    SCLS-South of central Lhasa; ECLS- East of central Lhasa; NNWCLS- North and northwest of central Lhasa; SLS- South Lhasa

    图  11   碎屑锆石εHf(t)-U-Pb年龄分布图(据Wu et al., 2010

    Figure  11.   The distribution map of Zircon εHf(t)-U-Pb (after Wu et al., 2010)

    图  12   碎屑锆石年轻峰值年龄对比(块体名称同图 10

    Figure  12.   The young peak age of detrital zircon

    图  13   冈底斯锆石U-Pb年龄分布图(据Zhu et al., 2011修改)

    Figure  13.   The distribution map of zircon U-Pb ages in Gangdise (modified from Zhu et al., 2011)

    图  14   青藏高原及邻区古新世—渐新世沉积区与隆起(剥蚀)区演变略图

    Figure  14.   The deposition zone and uplift (erosion) region evolution map from Paleocene to Oligocene in the Tibetan plateau and adjacent areas

    表  1   许如错地区日贡拉组碎屑锆石分析结果

    Table  1   Results of detrital zircon analysis of Rigongla Formation in Xurucuo area

    下载: 导出CSV
  • Bureau of Geology and Mineral Resources of Tibet Autonomous Region.1993.Regional Geology of Tibet Autonomous Region[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Chu M F, Chung S L, Song B. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 34(9):745. doi: 10.1130/G22725.1

    Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L.2006.Tibetan basement rocks near Amdo reveal"missing "Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34:505-508. doi: 10.1130/G22453.1

    He Zhonghua, Yang Mingde, Zheng Changqing, Huang Yingcong.2005.Geochemistry of the Indosinian granitoids in the Mamba area, Gangdese belt, Tibet and its tectonic significance[J]. Geological Bulletin of China. 24(4):354-359(in Chinese with English abstract).

    He yuan. 2017. Oligocene Basin Record and its Response to the Early Uplift of the Tibetan Plateau in Xurucuo, Tibet[D]. Chengdu University of Technology (in Chinese with English abstract).

    Jiang Xin, Zhao Zhidan, Zhu Dicheng, Zhang Fengqin, Dong Guochen, Mo Xuanxue, Guo Tieying. 2010. Zircon U-Pb geochronology and Hf isotopic geochemistry of Jiangba, Bangba and Xiongba granitoids in western Gangdese, Tibet[J]. Acta Petrologica Sinica, 26(7):2155-2164. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007017

    Li Yandong. 2002. New progress in the geoscience study of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China, 21(7):370-376 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200207002

    Li Yinglie, Wu Xinhe, Wang Rui, Xia Xianghua.2018.New findings of oil and gas in central depression of Lunpola Basin, Tibet[J]. Geology in China, 45(4):853-854. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804017

    Li Yuntong.1984.Stratigraphy of China:Third Series in China[M]. Beijing:Geological Publishing House, 272-341 (in Chinese with English abstract).

    Leeder M R, Smith A B, Yin J X. 1988. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse[J]. Philosophical Transactions of the Royal Society London, 327(1574):107-143.

    Li Jijun, Fang Xiaomin, Pan Baotian, Zhao Zhijun, Song Yougui.2001.Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and it impacts on environments in surrounding area[J].Quaternary Sciences, 21(5):381-391 (in Chinese with English abstract).

    Miall A D. 1985. Architectural element analysis:A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Review, 22(4):261-308. doi: 10.1016/0012-8252(85)90001-7

    Miall A D. 1996. The Geology of Fluvial Deposits[M]. Springer Berlin Heidelberg, 582.

    Pan Guitang, Ding Jun. 2004. Geological Map of Qinghai Tibet Plateau and its Adjacent Areas[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    Shi Yaeng, Li Jijun, Li Bingyuan, Yao Tandong, Wang Sumin, Li Shijie, Cui Zhiyou, Wang Fubao, Pan Baotian, Fang Xiaomin, Zhang Qingsong. 1999. Uplift of the Tibetan Plateau and East Asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 54(1):10-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb199901002

    Sun Zhuanrong, Dong Guochen, Zhao Zuoxin, Wang Weiqing, Liu Shengqiang.2017.Petrological, geochemical and geochronological features of Lailishan ganitoids in western Yunnan and their genesis of partial melting of crustal soure[J].Geology in China, 44(6):1140-1158(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706010

    Taylor P, Zhu D, Pan G, Chung S, Liao Z. 2008. Shrimp zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the yeba Formation, southern Gangdese, south Tibet shrimp zircon age and geochemical constraints[J].International Geology Review, 50(5):442-471. doi: 10.2747/0020-6814.50.5.442

    Wang Liyuan, Zheng Youye, Gao Shunbao, Huang Liangliang, Mao Rongwei. 2014. Provenance anlysis and prospecting significane of Oligocene Rigongla Formation in Jiwa Area, Tibet[J].Journal of Jilin University:Earth Science Edition.44(4):1097-1107(in Chinese with English abstract).

    Wu F Y, Ji W Q, Liu C Z, Chung S L. 2010. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 271(1/2):13-25.

    Yang Jingsui, Xu Zhiqin, Li Tianfu, Li Huaqi, Li Zhaoli, Ren Yufeng, Xu Xiangzhen, Chen Songyong. 2007. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China:Remains of the PaleoTethys ocean basin?[J]. Geological Bulletin of China, 26(10):1277-1287(in Chinese with English abstract).

    Zhai Qingguo, Li Cai, Li Huimin, Wang Tianwu. 2005. U-Pb zircon age of leucogranite in the central Gangdese, Tibet and its geological significance[J]. Geological Bulletin of China, 24(4):349-353 (in Chinese with English abstract).

    Zhang Kexin, Wang Guocan, Ji Junliang, Luo Mansheng, Kou Xiaohu, Wang Yueming, Xu Yadong, Chen Fenning, Chen Ruiming, Song Bowen, Zhang Jianyu, Liang Yinping. 2010. Stratigraphic division and sequence of Paleogene and Neogene in Tibetan Plateau and its response to uplift[J].Science China:Earth Science, 40(12):1632-1654 (in Chinese with English abstract).

    Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Zhao Zhidan, Dong Guochen, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J]. Acta Petrologica Sinica, 22(3):534-546.(in Chinese with English abstract).

    Zhu D C, Zhao Z D, Pan G T, Lee H Y, Kang Z Q, Liao Z L. 2009.Early cretaceous subduction-related adakite-like rocks of the gangdese belt, southern tibet:products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences, 34(3):298-309. doi: 10.1016/j.jseaes.2008.05.003

    Zhu D C, Zhao Z D, Niu Y L, Mo X X. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 301(1/2):241-255. doi: 10.1016-j.epsl.2010.11.005/

    和钟铧, 杨德明, 郑常青, 黄映聪. 2005.西藏冈底斯带门巴地区印支期花岗岩地球化学特征及其构造意义[J].地质通报, 24(4):354-359. doi: 10.3969/j.issn.1671-2552.2005.04.009
    和源. 2017.西藏许如错地区古近纪盆地记录及其对高原早期隆升的响应[D].成都理工大学.
    姜昕, 赵志丹, 朱弟成, 张凤琴, 董国臣, 莫宣学, 郭铁鹰. 2010.西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学[J].岩石学报, 26(7):2155-2164. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007017
    李廷栋. 2002.青藏高原地质科学研究的新进展[J].地质通报, 21 (7):370-376. doi: 10.3969/j.issn.1671-2552.2002.07.002
    李英烈, 伍新和, 汪锐, 夏响华.2018.西藏伦坡拉盆地中央凹陷带探获油气[J].中国地质, 45(4):853-854. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180415&flag=1
    李云通. 1984.中国地层-中国的第三系[M].北京:地质出版社, 272-341.
    李吉均, 方小敏, 潘保田, 赵志军, 宋友桂. 2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究, 21(5):381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001
    潘桂堂, 丁俊. 2004.青藏高原及邻区地质图说明书[M].北京:地质出版社.
    施雅风, 李吉均, 李炳元, 姚檀栋, 王苏民, 李世杰, 崔之久, 王富保, 潘保田, 方小敏, 张青松. 1999.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报, 54(1):10-21. doi: 10.3321/j.issn:0375-5444.1999.01.002
    孙转荣, 董国臣, 赵作新, 王伟清, 刘圣强.2017.滇西来利山花岗岩年代学、地球化学特征及其壳源部分熔融成因[J].中国地质, 44(6):1140-1158. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170609&flag=1
    王力圆, 郑有业, 高顺宝, 黄亮亮, 毛荣威. 2014.西藏吉瓦地区渐新统日贡拉组物源分析及找矿意义[J].吉林大学学报(地球科学版), 44(4):1097-1107. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201404004
    西藏自治区地质矿产局. 1993.西藏自治区区域地质志[M].北京:地质出版社.
    杨经绥, 许志琴, 李天福, 李化启, 李兆丽, 任玉峰, 徐向珍, 陈松永. 2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留?[J].地质通报, 26(10):1277-1287. doi: 10.3969/j.issn.1671-2552.2007.10.006
    翟庆国, 李才, 李惠民, 王天武. 2005.西藏冈底斯中部淡色花岗岩锆石U-Pb年龄及其地质意义[J].地质通报, 24(4):349-353. doi: 10.3969/j.issn.1671-2552.2005.04.008
    张克信, 王国灿, 季军良, 骆满生, 寇晓虎, 王岳明, 徐亚东, 陈奋宁, 陈锐明, 宋博文, 张楗钰, 梁银平. 2010.青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应[J].中国科学:地球科学, 40(12):1632-1654.
    朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002
  • 期刊类型引用(2)

    1. 孙砚泽,李世臻,刘卫彬,刘岩,柯昌炜,徐耀辉. 大兴安岭西缘贺斯格乌拉凹陷白垩系烃源岩生烃潜力与天然气成因. 地质通报. 2021(09): 1484-1492 . 百度学术
    2. Shi-zhen Li,Wei-bin Liu,Dan-dan Wang,Wen-hao Zhang,Yan-hua Lin,Shu Tao,Yao-hui Xu. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology. China Geology. 2019(04): 439-457 . 必应学术

    其他类型引用(0)

图(14)  /  表(1)
计量
  • 文章访问数:  3045
  • HTML全文浏览量:  517
  • PDF下载量:  4316
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-04-18
  • 修回日期:  2017-08-10
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-06-24

目录

/

返回文章
返回
x 关闭 永久关闭