Multi-scale exploration of mineral system: Concept and progress-A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt
-
摘要:
在全球矿产勘查逐渐转向“绿地”、深部和覆盖区的大背景下,急需成矿理论的指导。20世纪末提出的成矿系统概念由于其强大的区域成矿预测功能,引起了矿业界广泛的关注和研究。本文首先回顾了成矿系统的概念、组成和分类,然后讨论了成矿系统主要组成部分的探测和识别方法,最后结合笔者近年在长江中下游成矿带开展的多尺度探测,讨论了陆内典型成矿系统的深部过程、地壳结构和地球物理响应,并对成矿系统概念在成矿预测领域的应用前景进行了展望。本文主要结论:(1)成矿系统是由控制矿床形成和保存所有要素构成的自然系统,基本组成单元包括“源区”、“通道”和“场所”,每个组成单元都包括复杂的物理、化学和动力学过程;(2)矿床是成矿系统多尺度深部过程耦合在某一“点上”的“结果”。成矿系统在演化过程中,各种物理、化学作用对地壳和岩石圈地幔进行了强烈“改造”,留下各种物理、化学和矿物学“痕迹”,这些“痕迹”改变了岩石的地球物理性质,具有很好的可探测性;(3)基于长江中下游多尺度探测结果,提出了陆内典型成矿系统“源区”形成过程、控制岩浆/流体迁移的“通道”和物质沉淀场所的新认识;(4)在地学大数据、机器学习、人工智能不断发展的今天,成矿系统和基于成矿系统的多尺度成矿预测将是未来的重要研究方向。
Abstract:The guidance of metallogenic theory is urgently needed under the background that global mineral exploration is gradually turning to the target at "greenfields", deep earth and coverage areas. The concept of metallogenic system proposed at the end of the last century has attracted extensive attention and study of the mining industry due to its powerful function of regional mineralization forecasting. In this study, first and foremost, the authors review the concept, components and classification of mineral systems. Then the methods of detecting and identifying the main components of the metallogenic system are discussed. Last but not least, the deep process, crustal structure and geophysical response of typical intracontinental metallogenic systems are discussed based on the authors' multi-scale exploration in the middle and lower reaches of the Yangtze River Metallogenic Belt in recent years, and the application of the concept of mineral system in the field of metallogenic prediction is also prospected. The main conclusions of this paper are as follows:(1) The mineral system is a natural system that comprises all the essential factors controlling the formation and preservation of deposits, with basic components of "source", "path" and "site". Each component includes complex physical, chemical and kinetic processes. (2) A deposit is the 'result' of multi-scale deep processes coupling at a certain 'point' in the mineral system. During the evolution of the mineral system, various physical and chemical processes have strongly "modified" the crust and lithospheric mantle, leaving behind various physical, chemical, and mineralogical "footprints" with significant detectability due to the altered geophysical properties. (3) A new model was proposed based on the multi-scale exploration in the middle and lower reaches of the Yangtze River Metallogenic Belt, for the understanding of "source", "path" and "site" of a typical intracontinentalmetallogenic system. (4) Mineral system based multi-scale target predication will be a prospective research direction in the future, with the continuous developing of geoscience big data, machine learning and artificial intelligence.
-
1. 引言
巴音戈壁盆地为叠置在克拉通基底与晚古生代褶皱基底接合部位上的伸展断坳复合型盆地(罗毅等,2009; 张成勇等,2015),盆地中南部是古生代滨浅海相基础上发育的盆地建造带,其坳陷的基底为多期富铀花岗岩活化的古克拉通基底,是成熟度高的富铀基底,是铀成矿的有利区。近年来,核工业二〇八大队在盆地中南部开展了一系列的铀矿调查评价与勘查工作,取得突出的找矿成果(申科峰等,2014; 李鹏等,2017; 彭云彪等,2018b)。
根据水成铀矿理论,砂岩型铀矿是一种产在近地表砂体中的外生铀矿床,是活化的六价铀元素沿含矿含水层运移,遇有机碳、黄铁矿或油气等还原剂,在过渡带被还原成四价铀元素富集沉淀成矿(陈路路等,2014)。盆地(坳陷)内能否铀成矿,取决于其所在地区的大地构造背景及构造-沉积演化特征,并通过影响区域构造、沉积演化、铀(物)源、水动力、氧化还原蚀变等成矿地质条件来控制砂岩型铀矿床的形成。因此,通过研究巴音戈壁盆地中南部构造-沉积演化及其对铀成矿的关系,对盆地内继续寻找铀矿床具有一定的积极作用。
2. 地质背景
2.1 大地构造背景
巴音戈壁盆地位于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北板块的结合部位,是巴尔喀什—天山—兴安岭晚古生代增生碰撞带。以恩格尔乌苏—巴音查干NEE向晚古生代陆-陆碰撞板块缝合线为界,巴音戈壁盆地中南部处于华北板块北缘阴山隆起带与宝音图—锡林浩特火山型被动陆缘的结合带。其北界为宗乃山—沙拉扎山隆起带,南界为巴丹吉林断裂(图 1),属弧间盆地。
根据前人的划分方案,盆地中南部属于中构造域,为西部挤压与东部拉张环境的结合部,构造应力比较复杂(Darby et al., 2005; 陈戴生等,2011; Shi et al., 2015; 苗培森等,2017; 刘波等,2020; Jin et al., 2020; Yu et al., 2021)。区域上自中生代以来先后经历了印支期、燕山期、喜山期共7次构造运动,导致其上覆盖层中形成隆起和坳陷(凹陷)相间出现的局面(表 1)。
表 1 巴音戈壁盆地中南部主要凹陷特征一览Table 1. Characteristic list of main depressions in the central and southern Bayin Gobi Basin2.2 地质概况
巴音戈壁盆地中南部基底地层主要为太古界乌拉山群深变质岩,古元古界阿拉善群中深变质岩、寒武系—泥盆系碎屑岩、碳酸盐岩及浅变质岩,石炭系中酸性火山岩、碎屑岩,二叠系碎屑岩、火山岩、碳酸盐岩等组成(张成勇等,2015; 刘波等,2020)。盖层主要为中新生界,主要为侏罗系、下白垩统巴音戈壁组、上白垩统乌兰苏海组,局部见下白垩统苏红图组,其中巴音戈壁组上段为盆地内主要的找矿目的层(何中波等,2010; 丁叶等,2012; 肖国贤等,2017; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020; Liu et al., 2021a)。盆地内岩浆岩主要发育于元古宙、古生代和显生宙,主要分布于宗乃山—沙拉扎山、狼山—巴彦诺尔公地区,主要为花岗岩、花岗闪长岩、花岗闪长玢岩、黑云闪长岩、石英闪长玢岩等(史兴俊等,2015),以花岗岩类最为发育。断裂主要有宗乃山—沙拉扎山南缘断裂和巴丹吉林断裂,基本控制了盆地中南部坳陷带的发育。
3. 构造活动对目的层的制约
3.1 构造样式
巴音戈壁盆地中南部凹陷的构造样式主要为双断型、单断型与复合型(刘波等,2020)。从凹陷形态及其演化继承性分析,具有两种类型,表现为叠合型和迁移型(陈启林等,2005; 彭云彪等, 2018a, 2018b)。不同的凹陷形态具有不同的构造样式(卫三元等,2006),不同构造样式控制了不同的沉积充填类型(图 2),同时控制了凹陷后期构造反转、流体运移和铀矿化的分布等(刘波等, 2016, 2017a, 2017b, 2018, 2020)。
图 2 因格井—尚丹坳陷各凹陷构造样式a—单断断槽式; b—单断迁移型; c—单断叠置型; d—双断地堑式; 1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—中下侏罗统; 5—地层界线; 6—正断层; 7—性质不明断层; 8—反转断层Figure 2. Structuralstyles of sags in Inger-Shangdan Depressiona-Single and slot; b-Single fault migration; c-Single fault superimposed; d-Double break graben; 1-Ulansuhai Formation of Upper Cretaceous; 2-Upper Member of Bayin Gobi Formation of Lower Cretaceous; 3- Lower Part of Bayin Gobi Formation of Lower Cretaceous; 4-Middle-Lower Jurassic; 5-Stratigraphic boundary; 6-Normal fault; 7-Unidentified fault; 8-Inversion fault单断箕状凹陷在盆地中南部发育规模最广,如因格井凹陷、乌力吉凹陷等。这种凹陷易于在断陷端发育冲积扇—扇三角洲沉积,远离断陷端多为湖泊沉积,扇三角洲平原分流河道和扇三角洲前缘多发育有利砂体,利于成矿流体运移及铀成矿,如塔木素铀矿床砂岩型铀矿体即赋存于因格井凹陷北部扇三角洲砂体中(李鹏等,2017; 彭云彪等,2018b; 刘波等,2020)。复合型凹陷在盆地中南部局部发育,如本巴图矿产地,赋存于单断箕状凹陷的复合部位。该部位因差异性抬升易于遭受剥蚀,继而形成大型剥蚀窗口,而剥蚀窗口有利于后生氧化发育,进而形成铀矿化。
3.2 构造演化
3.1.1 侏罗纪构造演化
早中侏罗世,受燕山运动影响,盆地中南部开始局部裂陷,裂陷主要受北东向断裂控制,主要呈箕状和不对称地堑。在晚侏罗世,盆地整体抬升剥蚀,地层剥蚀殆尽,大部分残存于盆地中南部的沉降中心,少量在坳陷边缘局部呈残留体形式存在(罗毅等,2009)。
3.1.2 白垩纪构造演化
早白垩世巴音戈壁期为强烈断陷期,主要发育了下白垩统巴音戈壁组,在坳陷带内具有广泛连通的特征,古构造地貌表现为北高南低,东高西低。在断陷发育扩张的早期,首先沉积了巴音戈壁组下段冲积扇砂砾岩层。巴音戈壁组上段早期湖泊相细粒沉积物不断向盆地外侧超覆沉积,反映出断陷不断扩张。随着断陷继续发育,巴音戈壁组上段沉积物供给<凹陷的可容纳空间,发育扇三角洲—湖沼沉积。这一时期在三角洲平原分流河道和三角洲前缘,既发育了有利的铀储层砂体,又在河道分流间湾沉积了暗色泥岩、粉砂质泥岩,构成了有利于地浸砂岩型铀矿形成的“泥-砂-泥”储层结构,成为本区砂岩型铀矿的主要找矿目的层。此后,盆地中南部差异性隆升,大部分地区沉积滨浅湖与半深湖亚相细碎屑物,表现为退积型沉积特点。
在苏红图期,延续早白垩世巴音戈壁期北高南低和东高西低的基础上,银根地区发育为沉降沉积中心,发育了一定厚度的苏红图组,而其他大部分地区诸如塔木素、乌力吉地区依旧缓慢隆升,遭受剥蚀。
在早白垩世苏红图沉积后,银根地区抬升遭受剥蚀,在原有古构造地貌基础上,表现为中央局部隆升,局部遭受剥蚀(He et al., 2015)。
早白垩世晚期银根期,盆地中南部受滨西太平洋俯冲远程影响(Shi et al., 2014; Zhang et al., 2014; Liu et al., 2019),整体抬升强烈,普遍缺失银根组(图 3)。古构造地貌特征为北东高南西低的特点。
图 3 巴音戈壁盆地中南部白垩纪地层沉积与剥蚀天窗示意图1—乌兰苏海组; 2—巴音戈壁组上段三岩段; 3—巴音戈壁组上段二岩段; 4—地质界线; 5—角度不整合界线; 6—钻孔孔号及标高(m); 7—工业矿孔; 8—矿化孔; 9—无矿孔Figure 3. Schematic diagram of Cretaceous sedimentation and denudation windows in the central and southern Bayin Gobi Basin1-Ulansuhai Formation; 2-Third rock section inthe Upper Member of Bayin Gobi Formation; 3-Second rock section in the Upper Member of Bayin Gobi Formation; 4-Geological boundary; 5-Angular unconformity boundary; 6-Borehole number and elevation (m); 7-Industrial ore hole; 8-Mineralization hole; 9-Non ore Hole晚白垩世乌兰苏海期,受古亚洲板块俯冲影响,盆地中南部受北西-南东应力作用,整体从北西向南东阶梯式抬升(刘春燕等,2006; Feng et al., 2017; 张建新等,2018),在局部表现为伸展作用,在因格井坳陷、尚丹坳陷的南部,乌兰苏海组坳陷内沉积厚度较大; 在宗乃山—沙拉扎山隆起带边缘表现为缺失乌兰苏海组或厚度较小(图 3),此时古构造地貌表现为北西高-南东低。
3.1.3 古近纪以来构造演化
古近纪以来,受印度板块俯冲影响,盆地中南部受南西-北东应力作用影响,使得老构造重新活动和北东向断裂的新生(Tapponnier et al., 2001; 施炜等,2013; Cui et al., 2018; 赵衡等, 2019a, 2019b); 由南向北发育阶梯式抬升,导致在相邻的雅不赖盆地缺失白垩系,盆地内整体缺失古近系,近于直接出露厚层的乌兰苏海组(图 3)。而盆地中南部乌兰苏海组同样遭受抬升剥蚀,表现为厚度较薄或缺失。该时期地貌表现为南高北低,西高东低的特点,垂直高差300~500 m。
3.3 构造对沉积充填的影响
巴音戈壁组在上、下段沉积过程中,其沉积相、沉积体系出现了明显的变化,下段沉积期间,显示相对单一的以重力流沉积为主体的冲积扇沉积和扇三角洲沉积,上段沉积时则演变为相对复杂的以重力流和牵引流沉积并重的多种沉积体系所构成的沉积格局,特别是扇三角洲沉积体系的广泛发育,为巴音戈壁盆地中南部砂岩铀矿的形成提供了最基本的砂体条件。这种沉积体系的演变虽然直接与沉积环境的变化有关,但空间上有规律的分布则明显与构造活动有关(丁叶等,2012; 陈路路等,2014; 彭云彪等, 2018a, b)。
在巴音戈壁组沉积时,各凹陷虽构造样式不同(因格井凹陷为双断型、新尼乌苏凹陷为单断箕状),但在北东向控盆及控坳断裂控制下,在陡坡快速接受碎屑物沉积。结合气候干旱,流水作用不发育,决定了巴音戈壁组下段在盆地(坳陷)的南北两侧发育冲积扇沉积体系,以及局部地段的扇三角洲沉积体系。至巴音戈壁组上段沉积时,构造沉降作用进一步加剧,同时,气候环境明显改变,流水作用显著增强,湖盆发生快速扩张,除某些地段沉积仍显示陡坡特点形成冲积扇沉积体系与扇三角洲沉积体系外,在其他地段特别是北东向构造的闭合端,由于河流的发育,成为碎屑补给的主要地段,并使沉积坡降进一步降低,在构造交汇处形成由平原亚相逐步入湖的扇三角洲沉积体系(刘波等,2020; Liu et al., 2021b)。
后期的构造反转,差异的块断升降导致原来形成的沉积格局发生改变。反转断裂以逆冲压性为主要构造性质,构造方向呈北东向,由若干条相互平行的断裂带组成。由于断裂构造的反转,使原有沉积相带在空间上的有序规律发生了变化,即由冲积扇-扇三角洲-湖相组合递变的沉积相带或由冲积扇-辫状河-辫状三角洲-湖相组合递变的沉积相带在空间上出现了错位或缺失,同时也使巴音戈壁组上、下段沉积地层在空间叠置关系上出现了错断和突变(何中波等,2010; 张成勇等,2015; 刘波等,2020)(图 4)。
图 4 巴音戈壁盆地中南部白垩纪构造-沉积演化模式图a—早白垩世巴音戈壁组下段; b—早白垩世巴音戈壁组上段早期; c—早白垩世巴音戈壁组上段晚期; d—早白垩世末期; 1—扇三角洲; 2—冲积扇; 3—扇三角洲平原; 4—扇三角洲前缘; 5—湖泊相; 6—基底; 7—亚相界线; 8—正断层; 9—逆断层Figure 4. Cretaceous tectonic-sedimentary evolution model diagram in the central and southern Bayin Gobi Basina-The lower part of Bayin Gobi Formation in Early Cretaceous; b-Early upper member of Bayin Gobi Formation in Early Cretaceous; c-Late upper member of Bayin Gobi Formation in Early Cretaceous; d-Late Early Cretaceous; 1-Fan delta; 2-Alluvial fan; 3-Fan delta plain; 4-Fan delta front; 5-Lake facies; 6-Basement; 7-Subfacies boundary; 8-Normal fault; 9-Reverse fault4. 构造-沉积演化对铀成矿的制约
4.1 构造-沉积演化对成矿流体的影响
巴音戈壁盆地中南部地下水的水动力方向和状态的改变,主要受构造隆升或掀斜构造的影响,而地下水的水动力条件改变,会使铀成矿作用产生变化。巴音戈壁盆地中南部在早白垩世巴音戈壁组上段沉积期,地势比较开阔,巴音戈壁组上段地层呈水平沉积; 巴音戈壁组沉积后,巴音戈壁盆地中南部受古亚洲造山带和滨西太平洋的双向挤压,北部宗乃山—沙拉扎山隆起抬升明显,使得下白垩统巴音戈壁组上段抬升剥蚀,形成早白垩世巴音戈壁期—晚白垩世长期的沉积间断,形成大型的剥蚀窗口。巴音戈壁盆地中南部内的含铀含氧水顺剥蚀窗口向盆地内运移,在巴音戈壁组上段的“泥-砂-泥”储层结构的约束下,与砂体内本身的有机质、还原(流)性介质发生作用,形成铀矿体(图 5)。在晚白垩世乌兰苏海期,巴音戈壁盆地中南部进入坳陷期,在坳陷(凹陷)内沉积了乌兰苏海组,形成了区域盖层。在古近纪,受喜山运动的影响,巴音戈壁盆地中南部由南西向北东发生掀斜式抬升,巴音戈壁盆地中南部地层整个抬升翘起,巴音戈壁组形成微向斜,含铀含氧水继续呈“C”型或者“U”型沿着剥蚀窗口向盆地内运移。在新近纪,受喜山运动影响,巴音戈壁盆地中南部受到由南西向北东掀斜的整体剧烈抬升,使得古近系、上白垩统在南部遭受剥蚀,宗乃山隆起被大量剥蚀改造,造山带和盆地的高差减小。由于剥蚀抬升,使得含铀含氧水向盆地内继续运移。由于受巴彦诺尔公隆起的影响,巴音戈壁盆地中南部内地下水由径流—弱径流,转为滞水。该时期由于气候持续干旱炎热,水岩作用强烈,NaCl型高矿化度地下水中的Na+替换了斜长石中的Ca2+,后者与地下水中的CO32-、HCO3-和Mg2+形成白云石等碳酸盐矿物,促使地下水中以[UO2(CO3)3]4-、[UO2(CO3)3]2-等碳酸铀酰络合离子及MgCO3·NaUO2(CO3)2复盐发生分离而形成了铀的沉淀(王凤岗等,2018; 刘波等,2020)。
图 5 巴音戈壁盆地中南部下白垩统巴音戈壁组上段岩性-岩相示意图1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—侏罗系; 5—上石炭统; 6—盆地边界; 7—岩相界线; 8—扇三角洲平原; 9—扇三角洲前缘; 10—滨浅湖; 11—花岗岩; 12—矿床/矿产地; 13—乌兰苏海组剥蚀界线; 14—铀矿体; 15—断裂; 16—示意剖面Figure 5. Lithology-lithofacies sketch map of upper member of lower Cretaceous Bayin Gobi Formation in south-central Bayin Gobi Basin1-Ulansuhai formation of upper Cretaceous; 2-Upper member of Bayin Gobi Formation of Lower Cretaceous; 3-Lower part of Bayin Gobi Formation of Lower Cretaceous; 4-Jurassic; 5- Upper Carboniferous; 6-Basin boundary; 7-Lithofacies boundary; 8-Fan delta plain; 9-Fan delta front; 10-Shore-shallow lake; 11-Granite/Orefield; 12-Deposit; 13-Denudation boundary of Wulansuhai Formation; 14-Uranium ore body; 15-Fault; 16-Schematic section总体来看,巴音戈壁盆地中南部在白垩纪—古近纪以来,北部地下水一直保持由北向南的径流趋势,南部地下水总体流向一直保持由南向北的径流趋势,在不同的次级凹陷中略呈分散状。地下水流向与当时的沉积物迁移和地层相带展布方向长期保持一致,这对铀的稳定迁移、层间氧化带的稳定发育及铀在氧化带前锋线一带沉积成矿是非常有利的。
4.2 构造-沉积演化对氧化还原蚀变的影响
巴音戈壁盆地中南部主要经历了3次大规模的铀成矿作用,主要为第一期早白垩世中晚期(109.7±1.5)Ma ~(115.5±1.5)Ma,第二期为晚白垩世晚期—古近纪(45.4±0.6)Ma ~(70.9±1.0)Ma和第三期为新近纪(12.3±0.2)Ma ~(2.5±0.0)Ma(刘波等,2020)。在早白垩世中晚期,伴随着恩格尔乌苏断裂的活动,宗乃山隆起发生抬升,使得含铀含氧水向盆地内运移,发育层间氧化作用。从塔木素铀矿床的赤铁矿化发育情况看,该期氧化作用强烈,可能为主要成矿期。在晚白垩世晚期65~80 Ma(韩进等,2015; 刘溪等,2017),盆地经历了由北向南的强烈的推覆作用,这与巴音戈壁盆地中南部内典型矿床的第二期成矿年龄相对应。伴随着盆地晚白垩世晚期—古近纪盆地由北向南的推覆抬升,盆地内在原有基础上发育有叠加的黄色褐铁矿化层间氧化作用,该期盆地抬升较第一期弱,故层间氧化带的规模较上期小,表现为盆地内褐铁矿化分布较赤铁矿化分布范围小。但是该时期盆地古气候炎热干旱,盆地蒸发量增强,使得表生盐度高卤水向内入渗,在巴音戈壁组上段二岩段层间破碎、裂陷、微孔隙充填发育了大量石膏和碳酸盐(李鹏等,2017)。同时,斜长石因水岩作用(溶解、溶蚀等),在解理面及表面形成了次生的缝隙及孔洞等,为铀沉淀提供了空间。此外,含CO32-、SO42-等的酸性地表水沿层间下渗,溶解了砂岩中碳酸盐胶结物而形成了溶洞,为后期再次迁移的铀提供了沉淀空间,并形成了铀的进一步叠加、富集(王凤岗等,2018)。受盆地挤压抬升影响,后期近地表成矿流体促进了大规模潜水氧化与层间氧化的发育,深部有机流体(还原气体)上侵与SO42-发生反应生成黄铁矿。正是黄铁矿和植物炭屑的还原作用导致了渗入型含氧含铀地下水中矿质的沉淀,形成铀矿体。
4.3 构造-沉积演化与铀成矿的关系
早白垩世巴音戈壁期,巴音戈壁盆地断陷发育; 早白垩世苏红图—银根期,在太平洋俯冲远程效应下,巴音戈壁盆地发生断坳转换,发育走向北东的断裂与线性褶皱,致使地层发生差异性掀斜式抬升; 晚白垩世乌兰苏海期为坳陷期,沉积物以“填平补齐”的形式覆盖在早期的地质单元上,同时受喜山运动的影响,发育走向北西的断裂; 古近纪至今,受印度板块向北俯冲的影响,北东向构造活化与新生,区内差异性抬升更为明显,地层多被剥蚀(卫三元等,2006; 肖国贤等,2017; 彭云彪等,2018a; 赵衡等, 2019a, b; 刘波等,2020)。多期次构造叠加使得因格井—尚丹坳陷的地质体形成不同的块体。受早白垩世晚期至古近纪时期断续构造运动影响,白垩纪地层受北东向与北西向构造活动影响,形成大小不一的块体,在本巴图、乌力吉和塔木素地区比较明显,在不断抬升与剥蚀过程中局部形成剥蚀天窗(图 6),为后期铀成矿提供了有利条件,控制着层间氧化带由凹陷边缘向凹陷中心发育,加之(滨-浅)湖相地层中富含有机质,在氧化还原障附近形成铀矿化(表 2)。简言之,巴音戈壁盆地中南部内铀成矿在有利的构造背景下,主要受沉积相控制与层间氧化带制约。
图 6 尚丹坳陷银根地区构造形迹示意图a—乌力吉—本巴图地区; b—沙拉扎山北侧; c—银根地区; 1—盆地边界; 2—正断层; 3—逆断层; 4—性质不明断层; 5—向斜; 6—复式褶皱; 7—地质界线; 8—剥蚀天窗Figure 6. Structural trace map of Yingen area in Shangdan depressiona-Wuliji-Benbatu area; b-The north side of the Salazha Mountain; c-Yingen area; 1-Basin boundary; 2-Normal fault; 3-Reverse fault; 4-Unknown fault; 5-Syncline; 6-Compound fold; 7-Geological boundary; 8-Denudation windows表 2 巴音戈壁盆地构造-沉积演化与铀成矿作用的关系Table 2. Relationship between tectonic-sedimentary evolution and uranium mineralizationin in the Bayin Gobi Basin5. 讨论
5.1 扇三角洲类型
因格井坳陷内扇三角洲物源主要为自北向南,自早白垩世以来继承性发育。岩心及测井资料显示砂砾岩层累计厚度大,多表现出叠加正韵律岩性序列,反映出物源补给比较充足、强烈; A/S值虽然发生变化,但总体较小(林畅松,2015)。尚丹坳陷内扇三角洲继承性发育不良,岩石颗粒较细,细砂岩含量相对要高,累计厚度较薄,三角洲前积特征不明显,反映了物源供给的阶段性和微弱性,A/S值主体较大。
现代分析认为,层序地层学和“源-汇”体系研究具有内在紧密关联性。断陷湖盆扇三角洲的分布特征与A/S值密切相关(刘磊等,2015; 吴冬等,2015; 刘波等,2020)。“A”实际上对应着巴音戈壁盆地中南部的“汇”,“S”对应着巴音戈壁盆地中南部的“源”,“源-汇”体系直接控制着沉积扇体的类型和特征。“源-汇”体系主导下的断陷湖盆扇三角洲通常具备两种形态,即“锥状”扇三角洲与“片状”扇三角洲(吴冬等,2015)。所谓“锥状”扇三角洲外形呈锥形,纵向厚度较大,平面分布相对较窄,在地震剖面上,扇根多呈现杂乱、弱振幅、差连续反射特征,扇端多呈现弱振幅、中连续前积特征,横截面为丘状或透镜状; “片状”扇三角洲厚度较薄,平面分布范围较大,呈层堆积,地震反射上难以看出三角洲前积特征(李佳鸿等,2012; 刘磊等,2015)。从能量守恒与转化的角度来看,在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,在某一或者诸多节点处可以形成多种形态的复合扇三角洲,据此可进行扇三角洲垛体的定性预测(图 7)。
图 7 断陷盆地斜坡带扇三角洲发育模式图(吴东,2015)1—断裂; 2—断距; 3—剥蚀区; 4—沉积区Figure 7. Development model of fan delta in slope zone of faulted basin(Wu Dong, 2015)1-Fault; 2-Fault distance; 3-Denudation area; 4-Sedimentary area此外,按相邻的相分类,巴音戈壁盆地中南部扇三角洲又可以分为靠山型与靠扇型扇三角洲。靠山型扇三角洲往往发育于盆缘断层下降盘坡度较陡的斜坡区,并且紧邻高地物源区; 而靠扇型扇三角洲多形成于坡度相对平缓的盆缘斜坡区,它与相邻高地物源区之间通常存在明显可识别的冲积扇相(陈景山等,2007; 刘磊等,2015)。其次,由于构造控制下的斜坡坡度不同,导致这两种扇三角洲的沉积水动力条件有所差别(表 3)。换句话说,巴音戈壁盆地中南部内盆地边缘斜坡较陡和湖泛面较高, 有利于靠山型扇三角洲相的发育; 当盆地边缘斜坡较平缓和湖泛面相对较低时,则有利于靠扇型扇三角洲相的发育。事实上,两种扇三角洲可以交替、叠加演化,在进行扇三角洲垛体定性预测的同时,要对已知扇三角洲铀成矿属性进行判别。
表 3 靠山型与靠扇型扇三角洲特征对比表(据陈景山,2007)Table 3. Characteristic comparison table between hillside fan delta and fan delta(after Chen Jingshan, 2007)5.2 成矿模式
巴音戈壁盆地中南部在早白垩世中晚期((109.7±1.5)Ma~(115.5±1.5)Ma)、晚白垩世晚期—古近纪((45.4±0.6)Ma~(70.9±1.0)Ma)和新近纪((12.3±0.2)Ma~(2.5±0.0)Ma),经受了南东、北西与南西方向的应力改造作用(刘波等,2020; Liu et al., 2021a)。目的层巴音戈壁组上段发育的扇三角洲平原亚相及前缘亚相砂体,长时间暴露地表,使得含铀含氧水沿砂体向盆地(坳陷)内运移,形成较大规模的层间氧化带型铀矿化(李鹏等,2017; 刘波等,2020): 在氧化砂岩与灰色砂岩界面、氧化还原过渡带中多形成砂岩型铀矿体(图 8); 在扇三角洲分流河道砂岩与分流间湾泥岩结合的部位(同时作为氧化还原障),形成砂泥混合型矿体,在泥岩一侧发育微弱氧化作用; 垂向河道之间的分流间湾、河道间、晚期洪泛平原泥质粉砂岩中形成后生泥岩型铀矿体,尤其是溶蚀孔洞和裂隙充填黄铁矿、褐铁矿比较发育的地段。
图 8 断陷湖盆背景下的扇三角洲成矿模式图a—铀矿体产于氧化砂岩中; b—铀矿体产于氧化砂岩与灰色砂岩界面上; c—铀矿体产于灰色砂岩中; d、e—铀矿体产于氧化砂岩与灰色泥岩界面上; f—铀矿体产于氧化砂岩中的泥岩; 1—剥蚀区; 2—扇三角洲; 3—基底; 4—扇三角洲平原; 5—扇三角洲前缘; 6—滨浅湖; 7—砂岩; 8—泥岩; 9—褐铁矿化; 10—赤铁矿化; 11—炭化植物碎屑; 12—黄铁矿; 13—槽状交错层理; 14—正粒序; 15—平行层理; 16—水平层理; 17—流体方向; 18—铀矿体; 19—断裂; 20—裂隙; 21—高岭土化; 22—碳酸盐化; 23—电阻率测井曲线; 24—γ测井曲线Figure 8. Metallogenic model of fan delta underthe background of faulted lacustrine basina-Uranium ore body occurs in oxidized sandstone; b-Uranium ore body occurs at the interface between oxidized sandstone and grey sandstone; c-Uranium ore body occurs in grey sandstone; d/e-Uranium ore bodies occur at the interface between oxidized sandstone and grey mudstone; f-Uranium ore body occurs at mudstone in oxidized sandstone; 1-Denudation area; 2-Fan delta; 3-Basement; 4-Fan delta plain; 5-Fan delta front; 6-Shore shallow lake; 7-Sandstone; 8-Mudstone; 9-Limonition; 10-Hematite mineralization; 11-Carbonized plant debris; 12 -Pyrite; 13-Trough cross bedding; 14-Normal grain sequence; 15-Parallel bedding; 16-Horizontal bedding; 17 -Fluid direction; 18-Uranium ore body; 19 -Fracture; 20-Cranny; 21- Kaolinite; 22-Carbonation; 23-Resistivity logging curve; 24 -Gamma logging curve6. 找矿预测
综合巴音戈壁盆地中南部内铀成矿要素与典型铀矿床成矿特征(李晓翠等,2014; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020),确定主要成矿要素为: ①找矿层位为下白垩统巴音戈壁组上段; ②扇三角洲平原亚相的辫状分流河道与前缘亚相的水下分流河道、河口坝是砂岩型铀矿的有利成矿部位,而分流间湾是泥岩型铀矿的有利成矿部位; ③目的层具有稳定的“泥-砂-泥”结构; ④层间氧化还原转换带控矿—单个黄色氧化舌外侧或两个黄色氧化舌之间还原砂体内,以及氧化砂体内部灰色残留体; ⑤盆缘构造斜坡带控制成矿地质体的发育,同时控制含氧含铀水在目的层砂体中的运移; ⑥多期次构造活动形成“剥蚀天窗”,影响层间氧化带发育规模。因此,定位扇三角洲垛体是找矿预测的基础。
巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块。目前已知的塔木素铀矿床、本巴图矿产地均是位于此类有利构造部位(图 5,图 6)。进一步对比分析巴音戈壁盆地中南部内铀矿床与铀矿化(异常点)的分布可以发现,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。这些地段受不同程度的构造抬升影响,目的层巴音戈壁组上段遭受不同程度的剥蚀,如本巴图地区巴音戈壁组上段较塔木素地区剥蚀深度大于100 m,造成事实上的“剥蚀天窗”,有利于成矿流体的运移以及铀成矿。因此,在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部内铀矿重点找矿预测方向,诸如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。
由于巴音戈壁盆地中南部内构造-沉积演化的不均一性,小型凹陷以及凸起比较发育,现有工作程度比较低,制约着我们的认识。从现有钻孔的揭遇情况来看,沉积间断面附近通常发育较强的氧化还原作用,具有明显的γ异常与增高。因此定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。
7. 结论
(1) 巴音戈壁盆地中南部凹陷的构造样式主要为双断型和单断型; 从凹陷形态及其演化继承性分析,又可以分为叠合型和迁移型。
(2) 不同的凹陷构造样式控制着巴音戈壁组上段不同的沉积相组合,多期次构造叠加使得目的层逐步形成剥蚀天窗,控制着层间氧化带由凹陷边缘向凹陷中心发育,在氧化还原障附近形成铀矿化。
(3) 在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,据此可进行扇三角洲垛体的定性预测,同时要对已知扇三角洲铀成矿属性进行判别,进而对矿化类型进行预判与识别。
(4) 巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部铀矿重点找矿预测方向,如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。
(5) 由于巴音戈壁盆地中南部构造-沉积演化的不均一性,定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。
致谢: 感谢《中国地质》编辑部邀请出版此“深部地质调查工程专辑”。编辑部郝梓国、王学明两位老师对专辑的出版给予了精心指导和大力帮助,在此表示衷心感谢。 -
图 1 长江中下游成矿带及邻区构造格架及主要矿集区位置示意图(据Pan and Dong, 1999;Mao et al., 2011修改)
1—晚侏罗—早白垩世花岗岩(156~137 Ma); 2—白垩纪火山岩和次火山岩(< 135 Ma); 3—A型花岗岩带; 4—斑岩-矽卡岩-层控复合型CuAu-Mo矿床(> 135 Ma); 5—矽卡岩型Fe-Cu矿床(> 135 Ma); 6—玢岩型Fe矿床(< 135 Ma); XGF—襄樊—广济断裂; TLF—郯庐断裂; YCF—阳新—常州断裂; 左上角插图显示长江中下游成矿带位置
Figure 1. Geological subdivision of middle and lower Yangtze River metallogenic belt and neighboring areas showing the location of the major ore concentration areas (modified from Pan and Dong, 1999; Mao et al., 2011)
1- Late Jurassic - Early Cretaceous granite (156- 137 Ma); 2- Cretaceous volcanic and subvolcanic (< 135 Ma); 3- A- type granites; 4-Porphyry-skarn-stratabound complex Cu-Au-Mo deposits (> 135 Ma); 5-Skarn Fe-Cu deposit (> 135 Ma); 6-Porphyry-type Fe deposits (< 135 Ma); XGF-Xiangfan-Guangji fault; TLF-Tancheng-Lujiang fault; YCF-Yangxin-Changzhou fault. Insert map shows the location of the middle and lower Yangtze River metallogenic belt
图 2 长江中下游成矿带及典型矿集区多尺度综合地球物理探测工作部署图(据吕庆田等,2015)
1—主要断裂;2—固定地震台站;3—流动地震台站;4—MT测深点;5—反射地震剖面,浅蓝色为非SinoProbe剖面;6—广角反射接收点;7—广角反射激发点。TLF—郯庐断裂;XHF—响水—淮阴断裂;CHF—滁河断裂;MSF—茅山断裂;JNF—江南断裂;SDF—寿县—定远断裂;XMF—晓天—磨子潭断裂;XGF—襄樊—广济断裂
Figure 2. Map showing the layout and location of multi-scale integrated geophysical exploration over the middle and lower Yangtze Metellogenic belt and major ore concentration areas(after Lü et al., 2015)
1-Major faults; 2- Permanent seismic stations; 3- Portable broad-band seismic stations; 4-MT sounding points; 5-Reflection seismic profile, yellow represents non-SinoProbe profiles; 6-Wide-angle stations; 7-Wide-angle shot points. TLF-Tan-Lu Fault; XHF-Xiangshui-Huaiyin Fault; CHF-Chehe Fault; MSF-Maoshan fault; JNF-Jiangnan Fault; SDF-Shouxian-Dingyuan Fault; XMF-Xiaotian-Mozitan Fault; XGF-Xiangfan-Guangji Fault
图 3 长江中下游及邻区区域大地电磁反演结果(据Qiu et al., 2018修改)
a—0~50 km体积电导率图像;b—20 km深度电阻率切片图像;TLF—郯城—庐江断裂;XGF—襄樊—广济断裂;YCF—阳新—常州断裂;JSF—江山—绍兴断裂
Figure 3. The three-dimensional MT inversion results in the middle and lower reaches of Yangtze River and adjacent areas
a- The volume conductivity image from 0 to 50 km; b-The resistivity slice of 20 km in depth; TLF-Tancheng-Lujiang fault; XGF- Xiangfan-Guangji fault; YCF-Yangxing-Changzhou fault; JSF-Jiangshan-Shaoxing fault(modified from Qiu et al., 2018)
图 4 NW-11-01深地震反射偏移剖面片段(a)及地质解释图(b)(据Lü et al., 2015)
注:地质解释背景为地震线条图上。注意沿江凹陷及宁芜火山岩盆地之下的“鳄鱼嘴”构造,以及长江深断裂(CJF)及主逆冲断裂(MTF)的组成和空间形态。TWT—双程走时;Pt–Pz—元古宙—古生代地层;Pz—古生代地层;Mz—中生代地层;E, F, G, 和H表示相对独立的中地壳块体
Figure 4. Part of raw (a) and interpreted (b) migrated seismic line of NW-11-01(after Lü et al., 2015)
Note:The geological interpretation is made on the skeletonized seismic section. Note the"crocodile"structure beneath Yangtze River bed and Ningwu volcanic basin and the spatial features and composition of the Yangtze River deep fault (CJF) and the major thrust fault (MTF). TWT-Two Way Travel Time; Pt-Pz-Proterozoic-Paleozoic strata; Pz-Paleozoic strata; Mz-Mesozoic strata; E, F, G, and H represent comparatively middle crust blocks
-
Chang Yinfo, Liu Xiangpei, Wu Changyan. 1991. Iron-copper Metallogenic Belt in the Middle and Lower Yangtze River[M]. Beijing:Geological Publishing House, 1-379(in Chinese).
Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research, 111:B09312. http://cn.bing.com/academic/profile?id=52e8e6a3cdd0425f9567e0fa9a2921c7&encoded=0&v=paper_preview&mkt=zh-cn
Deemer S J, Hurich C A. 1994. The reflectivity of magmatic underplating using the layered mafic intrusion analog[J]. Tectonophysics, 232:239-255. doi: 10.1016/0040-1951(94)90087-6
Deng Jinfu, Wu Zongxu. 2001. Lithospheric thinning event in the lower Yangtze craton and Cu-Fe metallogenic belt in the middle and lower Yangtze River reaches[J]. Geology of Anhui, 11(2):86-91(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahdz200102002
Dong Shuwen, Qiu Ruilong. 1993. Tectonic and Magmatic Activities in the Anqing-Yueshan Area[M]. Beijing:Geological Publishing House, 1-158(in Chinese).
Drummond B J, Goleby B R, 1993. Seismic reflection images of major ore-controlling structure in the Eastern Goldfields[J]. Western Australia:Expl. Geophys., 24, 473-478. doi: 10.1071/EG993473
Dulfer H, Skirrow R G, Champion D C, Highet L M, Czarnoat K, Coglan R, Milligan R R. 2016. Potential for intrusion-hosted NiCu-PGE sulfide deposits in Australia:A continental-scale analysis of mineral system prospectivity[J]. Geoscience Australia Record, 129. https://www.worldcat.org/oclc/936595460
Fan Yu, Zhou Taofa, Yuan Feng, Qian Cunchao, Lu Sanming, Cooke D. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong(Lujiang-Zongyang) area and their geological significances[J]. Acta Geologica Sinica, 24(8):1715-1724(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808005
Fan Yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang, Cooke D. 2010. Geochronology of the diorite porphyrites in NingWu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 26(9):2715-2728(in Chinese with English abstract). https://www.researchgate.net/publication/285876606_Geochronology_of_the_diorite_porphyrites_in_Ning-Wu_basin_and_their_metallogenic_significances
Fan yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang, Xie Jie, Yang Xifei. 2011. Geochronology of the porphyry-like type iron deposits in Ning-Wu Basin:Evidence from 40Ar-39Ar phlogopite dating[J]. Acta Geologica Sinica, 85(5):810-820(in Chinese with English abstract).
Fouch M J, James D E, VanDecar J C, Lee S, Kaapvaal Seismic Group. 2004. Mantle seismic structure beneath the Kaapvaal and Zimbabwe Cratons[J]. S. Afr. J. Geol., 107:33-44. doi: 10.2113/107.1-2.33
Griffin W L, Begg G C, Suzanne Y O'Reilly. 2013. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geosci., 6:905-910. doi: 10.1038/ngeo1954
Hagemann S G, Cassidy K. 2000. Archean orogenic lode gold deposits[C]//Hagemann S G, Brown P E (eds.). Gold in 2000, SEG Reviews in Economic Geology, 13: 9-68.
Hagemann S G, Angerer T, Duuring P, Rosière C A, Figueiredo E, Silva R C, Lobato L, Hebsler A S, Walde D H G. 2016. BIFhosted iron mineral system:A review[J]. Ore Geol. Rev., 76:317-359. doi: 10.1016/j.oregeorev.2015.11.004
Heinson G, Direen N G, Gill R M. 2006. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia[J]. Geology, 34(7):573-576. doi: 10.1130/G22222.1
Heinson G, Didana Y, Soeffky P, Thiel S, Wise T. 2018. The crustal geophysical signature of a world-class magmatic mineral system[J]. Scientific Report, 8:10608. DOI: 10.1038/s41598-018-29016-2.
Huston D L, Mernagh T P, Hagemann S G, Doublier M P, Fiorentini M, Champion D C, Jaques A L, Czarnota K, Cayley R, Skiroow R, Bastrakov E. 2016. Tectonometallogenic systems-the place of mineral systems within tectonic evolution, with an emphasis on Australian examples[J]. Ore Geol. Rev., 76:168-210. doi: 10.1016/j.oregeorev.2015.09.005
Jiang G M, Zhang G B, Lü Q T, et al. 2013.3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics[J]. Tectonophysics, 606:36-48. doi: 10.1016/j.tecto.2013.03.026
Jiang Guoming, Zhang Guibin, Lü Qingtian, Shi Danian, Xu Yao. 2014. Deep geodynamics of mineralization beneath the MiddleLower Reaches of Yangtze River:Evidence from teleseismic tomography[J]. Acta Petrologica Sinica, 30(4):907-917(in Chinese with English abstract).
Jones A G, Evans R L, Muller M R, Hamilton M P. 2009. Area selection for diamonds using magnetotellurics:Examples from southern Africa[J]. Lithos 112S, 83-92. http://cn.bing.com/academic/profile?id=e5c18bf1e9a1eb0fea419ef45ce6dd3f&encoded=0&v=paper_preview&mkt=zh-cn
Lewis P, Downes P J. 2008. Mineral systems and processes in New South Wales:A project to enhance understanding and assist exploration[J]. N. S. W. Geol. Surv. Quarterly Notes, 128, 1-15.
Li Wenda, Mao Jianren, Zhu Yunhe, Xie Huaguang. 1998. Mesozoic Volcanic Rocks and Deposits in Southeastern China[M]. Beijing:Seismological Press, 1-156(in Chinese).
Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous ridge subduction along the Lower Yangtze River belt, Eastern China[J]. Economic Geology, 104:303-321. doi: 10.2113/gsecongeo.104.2.303
Lü Q T, Yan J Y, Shi D N, Dong S W, Tang J T, Wu M A, Chang Y F. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic area:An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics, 606:60-78. doi: 10.1016/j.tecto.2013.04.006
Lü Qingtian, Dong Shuwen, Shi Danian, Tang Jingtian, Jiang Guoming, Zhang Yongqian, Xu Tao and SinoProbe-03-CJ Group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A review from SinoProbe[J]. Acta Petrologica Sinica, 30(4):889-906(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404001
Lü Q T, Shi D N, Liu Z D, Zhang Y Q, Dong S W, Zhao J H. 2015. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas:insights from deep seismic reflection profiling[J]. Journal of Asian Earth Science, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022
Lü Qingtian, Dong Shuwen, Tang Jingtian, Shi Danian, Chang Yinfo and SinoProbe-03-CJ Group. 2015a. Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depyh:A synthesis from SinoProbe-03[J]. Chinese Journal of Geophysics, 58(12):4319-4343(in Chinese with English abstract).
Lü Qingtian, Liu Zhendong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015b. The nature of Yangtze River deep fault zone:Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58(12):4344-4359(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5155dbd9fdd1b84cebf82ac3b930269c&encoded=0&v=paper_preview&mkt=zh-cn
Lü Qingtian, Shi Danian, Yan Jiayong, Liu Zhendong. 2018.The Mesozoic mineral systems of South China:Lithospheric structure and deep processes constrained from integrated geophysical data-preliminary results[J]. Acta Geologica Sinica, 92(z1):15. http://cn.bing.com/academic/profile?id=f2f69803c8919b60dc6b210ec4d77928&encoded=0&v=paper_preview&mkt=zh-cn
Mao J W, Wang Y T, Lehmann B, Yu J J, Du A D, Mei Y X, Li Y F, Zang W S, Stein H J, Zhou T F. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 29(3/4):307-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50bbaac0ff73025a56c1a391edc3b5cc
Mao J, Xie G, Duan C, Pirajno F, Ishiyama D, Chen Y. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-AuMo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China[J]. Ore Geology Reviews, 43:294-314. doi: 10.1016/j.oregeorev.2011.07.010
McBridea J H, Whiteb R S, Smallwoodc J R, England R W. 2004.Must magmatic intrusion in the lower crust produce reflectivity?[J] Tectonophysics, 388:271-297. doi: 10.1016/j.tecto.2004.07.055
McCuaig T C, Beresford S, Hronsky, J M A. 2010. Translating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 38:128-138. doi: 10.1016/j.oregeorev.2010.05.008
McCuaig T C, Hronsky J M A. 2014. The mineral system concept:the key to exploration targeting[J]. Soc. Econ. Geol. Spec. Publ., 18:153-176. http://cn.bing.com/academic/profile?id=5728300def13630acaca3fac0de7c9ea&encoded=0&v=paper_preview&mkt=zh-cn
Norman R P. 2003. Geophysical developments and mine discoveries in the 20th century[J]. The Leading Edge, 6:558-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0ebf8bd4f573de0fad0169afae19285
Ouyang L B, Li H Y, Lü Q T, Yang Y J, Li X F, J iang G M, Zhang G B, Shi D N, Zheng D, Sun S J, Tan J, Zhou M. 2014. Crustal and uppermost mantle velocity structure and its relationship to the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 408:378-389. doi: 10.1016/j.epsl.2014.10.017
Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 15:177-242. doi: 10.1016/S0169-1368(99)00022-0
Qiu G G, Fang H, Lü Q Y, Pen Y, He D S, He M X. 2018. Lithospheric Electrical Characteristics of Eastern Jiangnan Orogen, South China[C]//Proceedings of the International Workshop on Environment and Geoscience-Volume 1: 415-420. DOI: 10.5220/0007431204150420.
Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 98:1515-1533. doi: 10.2113/gsecongeo.98.8.1515
Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China:Constraints from passive source seismic experiment on the Mesozoic intracontinental mineralization[J]. Tectonophysics, 606:48-60. doi: 10.1016/j.tecto.2013.01.012
Skinner B J. 2005. Introduction: A Century of Excellence[J]. Economic Geology, 100th Anniv. Vol.: 1-4.
Skirrow R G (ed.). 2009. Uranium ore-forming systems of the Lake Frome region, South Australia: Regional spatial controls and exploration criteria[J]. Geoscience Australia Record, 40: 148.
Sodoudi F, Yuan X, Liu Q, Kind R, Chen J. 2006. Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions[J]. Geophysical Journal International, 166:1363-1367. doi: 10.1111/j.1365-246X.2006.03080.x
Tang Yongcheng, Wu Yanchang, Chu Guozheng. 1998. Geology of Copper-gold Polymetallic Deposits along the Yangtze River in Anhui Province[M]. Beijing:Geological Publishing House, 1-351(in Chinese).
Tao Kuiyuan, Mao Jianren, Yang Zhuliang, Zhao Yu, Xing Guangfu, Xue Huaimin. 1998. Mesozoic petro-tectonic associations and records of the geodynamic processes in southeast China[J]. Earth Science Frontiers, 5(4):183-192(in Chinese with English abstract).
Turneaure F S. 1955. Metallogenetic provinces and epochs[J]. Economic Geology, 50th Anniv. Vol.: 38-98.
Vigneresse J L. 1995a. Control of granite emplacement by regional deformation[J]. Tectonophysics, 249:173-186. doi: 10.1016/0040-1951(95)00004-7
Vigneresse J L. 1995b. Crustal regime of deformation and ascent of granitic magma[J]. Tectonophysics, 249:187-202. doi: 10.1016/0040-1951(95)00005-8
Walshe J L, Cooke D R, Neumayr P. 2005. Five questions for fun and profit: a mineral system perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits[C]//Mineral Deposit Research: Meeting the Global Challenge.Springer, Berlin, Heidelberg, 477-480. doi: 10.1007%2F3-540-27946-6_124
Wang Qiang, Zhao Zhenhua, Xiong Xiaolin, Xu Jifeng. 2001. Melting of the underplated basaltic lower crust:Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China[J]. Geochimica, 30(4):353-362(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5232c3533ed845beab496041f1fba9e3&encoded=0&v=paper_preview&mkt=zh-cn
Wang Qiang, Zhao Zhenhua, Xu Jifeng, Bai Zhenghua, Wang Jianxin, Liu Chengxin. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(delaminated) lower crustal melting and the genesis of porphyry copper deposit[J]. Acta Petrologica Sinica, 20(2):351-360(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a33ba686564aa234575f6fb09982b1a2&encoded=0&v=paper_preview&mkt=zh-cn
Witherly K. 2012. The evolution of minerals exploration over 60 years and the imperative to explore undercover[J]. The Leading Edge, 3:292-295. http://cn.bing.com/academic/profile?id=c5970898b95395fe82b55370bd21ec4b&encoded=0&v=paper_preview&mkt=zh-cn
Witherly K. 2014. Geophysical Expressions of Ore Systems-Our Current Understanding[J]. Society of Economic Geologists, Inc.Special Publication 18, 177-208.
Wyborn L A I, Heinrich C A, Jaques A L. 1994. Australian Proterozoic mineral systems:Essential ingredients and mappable criteria[J]. AusIMM Publ. Ser. 5 (94):109-115. https://www.researchgate.net/publication/263884864_Australian_Proterozoic_mineral_systems_essential_ingredients_and_mappable_criteria
Xie G Q, Mao J W, Li R L, Qü W J, Pirajno F, Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China[J]. Mineralogy and Petrology, 90 (3/4):249-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea84b58963853d355ecd3186ae522e01
Xie G Q, Mao J W, Zhao H J, Duan C, Yao L. 2012. Zircon U-Pb and phlogopite 40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt, China[J]. Mineralium Deposita, 47(6):633-652. doi: 10.1007/s00126-011-0367-2
Xing Fengming, Xu Xiang. 1999. Anhui Yangtze Magmatite Belt and Mineralization[M]. Hefei:Anhui People's Publishing House, 1-170(in Chinese).
Xu Jifeng, Wang Qiang, Xu Yigang, Zhao Zhenhua, Xiong Xiaolin. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area:Constraint to origin of the magma with HREE and Y depletion[J]. Acta Petrologica Sinica, 17(4):576-584(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=058eb0df380c6c2aaa7fd88c1561f37c&encoded=0&v=paper_preview&mkt=zh-cn
Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 30:1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Yan Jiayong, Lü Qingtian, Meng Guixiang, Zhao Jinhua, Deng Zhen, Liu Yan. 2011. Tectonic framework research of the lower and middle Yangtze metallogenic belt based on gravity and magnetic multi-scale edge detection[J]. Acta Geologica Sinica, 85(5):909-914(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201105022
Yu Chongwen. 1994. Metallogenic dynamics-theoretical systems and methodologies[J]. Earth Science Frontiers, 1(3):54-82(in Chinese with English abstract).
Yu Chongwen. 2001a. Fractal growth of ore-forming dynamical systems at the edge of chaos-A new metallogeny and methodology(First half)[J]. Earth Science Frontiers, 8(3):9-28(in Chinese with English abstract).
Yu Chongwen. 2001b. Fractal growth of ore-forming dynamical systems at the edge of chaos-A new metallogeny and methodology(Second half)[J]. Earth Science Frontiers, 8(4):471-489(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104032
Zhai Yusheng, Yao Shuzhen, Lin Xinduo. 1992. Iron-copper (gold) Metallogenic Regularity in the Middle and Lower Reaches of the Yangtze River[M]. Beijing:Geological Publishing House, 1-120(in Chinese).
Zhai Yusheng. 1998. The tectonic evolution and metallogenic system of the paleocontinental margin[C]//Department of Geology, Peking University. Proceedings of the International Geosciences Symposium, Peking University. Beijing: Seismological Press, 769-778(in Chinese with English abstract).
Zhai Yusheng. 1999. On the metallogenic system[J]. Earth Science Frontiers, 6(1):14-27(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002003
Zhang C, Ma C Q, Holtz F. 2010. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China):Implications for delamination of the lower continental crust and melt-mantle interaction[J]. Lithos, 119:467-484. doi: 10.1016/j.lithos.2010.08.001
Zhang Guomin, Wang Suyun, Li Li, Zhang Xiaodong, Ma Hongsheng. 2002. Seismic source depth and its tectonic significance in China.[J] Science Bulletin, 47(9):663-668(in Chinese).
Zhang K, Lü Q T, Yan J Y, Shao L S, Guo D, Zhang Y W. 2019. The subduction and continental collision of the North China and Yangtze Blocks:Magnetotelluric evidence from the SusongAnqing section of Western Anhui, China[J]. Geophys. J. Int., 216:2114-2128. doi: 10.1093/gji/ggy541
Zhang Minghui, Xu Tao, Lü Qingtian, Bai Zhiming, Wu Chenglong, Wu Zhenbo, Teng Jiwen. 2015.3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas:Insight from the wide angle seismic data[J]. Chinese Journal of Geophysics, 58(12):4360-4372(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2e832dd8f43f6ff2d0c3dc007a01a749&encoded=0&v=paper_preview&mkt=zh-cn
Zhou Taofa, Wu M G, Fan Y, Duan C, Yuan F, Zhang L J, Liu J, Qian B, Pirajno F and Cooke D. R. 2011. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, eastern China[J]. Ore Geology Reviews, 43 (1):154 -169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f039f9af9a67065a5fa13a6913017504
Zhou Taofa, Fan Yu, Yuan Feng. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 24(8):1665 -1678(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808001
Zhou Taofa, Fan Yu, Wang Shiwei, White N C. 2017. Metallogenic regularity and metallogenic model of the middle-lower Yangtze River Valley metallogenic belt[J]. Acta Petrologica Sinica, 33(11):3353-3372(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711002
Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326:269-287. doi: 10.1016/S0040-1951(00)00120-7
Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 29(1):26-33. http://cn.bing.com/academic/profile?id=8265c4b55de950ade7768c2a1625f1f4&encoded=0&v=paper_preview&mkt=zh-cn
常印佛, 刘湘培, 吴言昌. 1991.长江中下游铜铁成矿带[M].北京:地质出版社, 71-76. 邓晋福, 吴宗絮. 2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带[J].安徽地质, 11(2):86-91. doi: 10.3969/j.issn.1005-6157.2001.02.002 董树文, 邱瑞龙. 1993.安庆-岳山地区构造作用及岩浆活动[M].北京:地质出版社, 1-158. 范裕, 周涛发, 袁峰, 钱存超, 陆三明, David R.C. 2008.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义[J].岩石学报, 24(8):1715-1724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808005 范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, David R C.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J].岩石学报, 26(9):2715-2728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009016 范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, 谢杰, 杨西飞. 2011.宁芜盆地玢岩型铁矿床的成矿时代:金云母40Ar-39Ar同位素年代学研究[J].地质学报, 85(5):810-820. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105015 江国明, 张贵宾, 吕庆田, 史大年, 徐峣. 2014.长江中下游地区成矿深部动力学机制:远震层析成像证据[J].岩石学报, 30 (4):907-917. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404002 李文达, 毛建仁, 朱云鹤, 谢华光. 1998.中国东南部中生代火山岩与矿床[M].北京:地震出版社, 1-156. 吕庆田, 董树文, 史大年. 2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述[J].岩石学报, 30(4):889-906. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201404001 吕庆田, 董树文, 汤井田, 史大年, 常印佛, SinoProbe-CJ项目组. 2015a.多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J].地球物理学报, 58(12):4319-4343. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201512002.htm 吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015b.长江深断裂带的构造性质:深地震反射证据[J].地球物理学报, 58(12):4344-4359. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201512003.htm 唐永成, 吴言昌, 储国正. 1998.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社, 1-351. 陶奎元, 毛建仁, 杨祝良, 赵宇, 邢光福, 薛怀民. 1998.中国东南部中生代岩石构造组合和复合动力学过程的记录[J].地学前缘, 5(4):183-192. doi: 10.3321/j.issn:1005-2321.1998.04.001 王强, 赵振华, 熊小林, 许继峰. 2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J].地球化学, 30 (4):353-362. doi: 10.3321/j.issn:0379-1726.2001.04.008 王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报, 20(2):351-360. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402015 邢凤鸣, 徐祥. 1999.安徽扬子岩浆岩带与成矿[M].合肥:安徽人民出版社, 1-170. 许继峰, 王强, 徐义刚, 赵振华, 熊小林. 2001.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制[J].岩石学报, 17(4):576-584. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200104008 严加永, 吕庆田, 孟贵祥, 赵金花, 邓震, 刘彦. 2011.基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J].地质学报, 85(5):900-914. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105022 於崇文. 1994.成矿作用动力学——理论体系和方法论[J].地学前缘, 1(3):54-82. doi: 10.3321/j.issn:1005-2321.1994.03.006 於崇文. 2001a.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(上)[J].地学前缘, 8(3):9-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy200103002 於崇文. 2001b.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(下)[J].地学前缘, 8(4):471-489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104032 翟裕生, 姚书振, 林新多. 1992.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社, 1-120. 翟裕生. 1998.古大陆边缘构造演化和成矿系统[C]//北京大学地质系主编.北京大学国际地质科学学术研讨会论文集.北京: 地震出版社, 769-778. 翟裕生. 1999.论成矿系统[J].地学前缘, 6(1):14-27. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705007 张国民, 汪素云, 李丽, 张晓东, 马宏生. 2002.中国大陆地震震源深度及其构造意义[J].科学通报, 47(9):663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004 张明辉, 徐涛, 吕庆田, 白志明, 武澄泷, 武振波, 滕吉文. 2015.长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束[J].地球物理学报, 58(12):4360-4372. doi: 10.6038/cjg20151203 周涛发, 范裕, 袁峰. 2008.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报, 4(8):1665-1678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200808001 周涛发, 范裕, 王世伟, Noel C W. 2017.长江中下游成矿带成矿规律和成矿模式[J].岩石学报, 33(11):3353-3372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711002 -
期刊类型引用(2)
1. 孙砚泽,李世臻,刘卫彬,刘岩,柯昌炜,徐耀辉. 大兴安岭西缘贺斯格乌拉凹陷白垩系烃源岩生烃潜力与天然气成因. 地质通报. 2021(09): 1484-1492 . 百度学术
2. Shi-zhen Li,Wei-bin Liu,Dan-dan Wang,Wen-hao Zhang,Yan-hua Lin,Shu Tao,Yao-hui Xu. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology. China Geology. 2019(04): 439-457 . 必应学术
其他类型引用(0)