• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

赣东北朱溪矿集区构造控岩-控矿特征

欧阳永棚, 饶建锋, 廖绍平, 何细荣, 胡青华, 魏锦, 杨明桂

欧阳永棚, 饶建锋, 廖绍平, 何细荣, 胡青华, 魏锦, 杨明桂. 赣东北朱溪矿集区构造控岩-控矿特征[J]. 中国地质, 2019, 46(4): 878-893. DOI: 10.12029/gc20190417
引用本文: 欧阳永棚, 饶建锋, 廖绍平, 何细荣, 胡青华, 魏锦, 杨明桂. 赣东北朱溪矿集区构造控岩-控矿特征[J]. 中国地质, 2019, 46(4): 878-893. DOI: 10.12029/gc20190417
OUYANG Yongpeng, RAO Jianfeng, LIAO Shaoping, HE Xirong, HU Qinghua, WEI Jin, YANG Minggui. Rock-and ore-controlling structure in the Zhuxi ore concentration area in the northeastern Jiangxi Province[J]. GEOLOGY IN CHINA, 2019, 46(4): 878-893. DOI: 10.12029/gc20190417
Citation: OUYANG Yongpeng, RAO Jianfeng, LIAO Shaoping, HE Xirong, HU Qinghua, WEI Jin, YANG Minggui. Rock-and ore-controlling structure in the Zhuxi ore concentration area in the northeastern Jiangxi Province[J]. GEOLOGY IN CHINA, 2019, 46(4): 878-893. DOI: 10.12029/gc20190417

赣东北朱溪矿集区构造控岩-控矿特征

基金项目: 

中国地质调查局项目 121201103000150017

中国地质调查局项目 12120113065300

中国地质调查局项目 DD20160082

中国地质调查局项目 DD20190012

中国地质调查局项目 DD20160346

江西省地质矿产勘查开发局项目 JBGMED[2017]78

详细信息
    作者简介:

    欧阳永棚, 男, 1988年生, 硕士, 工程师, 从事地质找矿勘查工作, E-mail:yongpeng0524@163.com

    通讯作者:

    廖绍平, 男, 1969年生, 硕士, 高级工程师, 从事地质找矿勘查和科研工作, E-mail:jxlsp@126.com

  • 中图分类号: P548

Rock-and ore-controlling structure in the Zhuxi ore concentration area in the northeastern Jiangxi Province

Funds: 

China Geological Survey Program 121201103000150017

China Geological Survey Program 12120113065300

China Geological Survey Program DD20160082

China Geological Survey Program DD20190012

China Geological Survey Program DD20160346

Jiangxi Geological and Mineral Exploration and Development Bureau Foundation JBGMED[2017]78

More Information
    Author Bio:

    OUYANG Yongpeng, male, born in 1988, master, engineer, mainly engages in geological prospecting exploration; E-mail:yongpeng0524@163.com

    Corresponding author:

    LIAO Shaoping, male, born in 1969, master, senior engineer, mainly engages in geological prospecting and research; E-mail:jxlsp@126.com

  • 摘要:

    赣东北朱溪为钦杭成矿带新发现的重要钨铜多金属矿集区, 位于钦杭结合带萍(乡)乐(平)坳陷带东部逆冲推覆抬升地段。朱溪矿集区燕山期受逆冲推覆构造影响, 形成由新元古界变质基底与上古生界-中生界沉积盖层组成的构造岩片堆叠构造; 具有逆冲推覆深断裂带控岩-控矿、碳酸盐岩构造岩片赋矿、燕山晚期浅层对冲构造破矿的构造背景; 发育有燕山早期I型花岗闪长(斑)岩钼铜和S型花岗岩钨铜两个岩浆岩成矿系列, 在空间上形成张家坞—月形与塔前—朱溪两个矿田、张家坞—毛家园和塔前—朱溪上下两个成岩台阶, 下成矿台阶朱溪巨大钨铜矿床的发现打开了钦杭成矿带坳陷区“深地”找矿的一扇窗户。

    Abstract:

    Zhuxi is a newly discovered W-Cu ore concentration area in the Qinzhou-Hangzhou metallogenic belt, northeastern Jiangxi Province. It is situated in the lifting area of the thrust nappe structure in eastern Pingxiang-Leping depression, Qinzhou-Hangzhou orogenic juncture belt. Due to the Yanshanian thrust nappe tectonic events, the Zhuxi ore concentration area is dominated by Neoproterozoic metamorphic basement and Upper Paleozoic -Mesozoic tectonic slices. The ore deposits in this region are controlled by thrust nappe deep faults, hosted in carbonatite tectonic slices, and transformed by superficial hedge structures. The early Yanshanian metallogenesis can be subdivided into two groups:(1) Mo -Cu metallogenic system related to the I -type (porphyritic) granodiorite; (2) W-Cu metallogenic system related to the S-type granite. The Zhuxi area is characterized by two orefields (Taqian-Zhuxi and Zhangjiawu-Yuexing) and two magmatic steps (Maojiayuan-Zhangjiawu and Zhuxi-Taqian). The discovery of the Zhuxi giant W-Cu deposit opens a window for the deep mineral exploration in the geotectogene of the Qinzhou-Hangzhou metallogenic belt.

  • 西藏冈底斯带是青藏高原碰撞造山带内具较大成矿潜力的大型构造-岩浆成矿带,也是中国重要的斑岩铜矿带,目前在冈底斯带南缘已有甲马、驱龙、冲江、宫厅、朱诺等大型矿床及一系列中、小型矿床和矿化点(孟祥金, 2004)。近年,在冈底斯成矿带的北缘发现了许多以银铅锌为主的多金属矿床(化)点,它们构成了一条与南缘的斑岩铜矿带平行分布的银铅锌多金属成矿带。该成矿带在空间上严格受近东西向展布的措勤—旁多逆冲断裂带控制,以北东向展布的念青唐古拉为界,矿化分为东、西两段,东段矿床类型主要为矽卡岩型,如洛巴堆、龙马拉、帮浦、新嘎果、洞中松多等;西段矿床类型主要为热液型,如则学、德新、纳如松多、斯弄多、拉宗、夏龙等。总体上,东段的研究程度较高,西段的研究程度较低。

    则学地区位于冈底斯银铅锌多金属成矿带西段中东部谢通门县与南木林县交界位置,主体位于谢通门县境内,该地区金属矿产以铅锌多金属为主,代表性矿床为纳如松多铅锌多金属矿。该矿床包括东西两矿段,东矿段为隐爆角砾岩型,西矿段为矽卡岩型(纪现华等, 2012; 2014)。目前,该地区铅锌矿的研究工作主要集中于纳如松多铅锌矿含矿围岩的成岩时代、成矿时代及成因等。杨勇等(2010b)将纳如松多铅锌矿含矿斑岩与冈底斯南缘斑岩型铜矿带含矿斑岩进行系统对比,发现二者不仅成岩年龄相差较大,地球化学和岩石源区特征也存在显著差异。杨勇等(2010a)研究了纳如松多铅锌矿金属硫化物和含矿斑岩S、Pb同位素组成特征,认为二者具有一致的Pb同位素组成,粗晶斑岩和铅锌矿中的S是同一演化体系的产物,据此推测矿区斑岩是成矿物质的主要提供者。纪现华等(2012)获得纳如松多矿区与矽卡岩型矿化有关的粗晶和细晶花岗斑岩的形成年龄((62.5±0.8)Ma和(62.5± 0.9)Ma),认为纳如松多铅锌矿形成于印度-亚洲大陆主碰撞阶段。纪现华等(2014)利用绢云母ArAr定年手段获得纳如松多矿区隐爆角砾岩型铅锌矿成矿年龄(坪年龄(57.8±0.7)Ma)。刘英超等(2015)通过研究认为纳如松多铅锌矿存在隐爆角砾岩型、矽卡岩型、矿层型和脉型4种矿化,据此建立了一个独立的铅锌成矿系统并推测深部存在斑岩型铅锌矿化的可能。

    在纳如松多铅锌矿周边,产出许多热液脉型铅锌矿床(点),为冈底斯银铅锌多金属成矿带西段比较重要的矿床类型,关于该类型矿床的研究工作较少。柯贤忠等(2017)利用锆石U-Pb定年手段在纳如松多东部的德新矿区获得含铅锌矿花岗斑岩年龄(57.7±0.5 Ma),综合分析认为德新矿区含铅锌矿花岗斑岩与纳如松多纳含矿斑岩属同一岩浆成矿系统产物。本研究选择则学地区德新、轧轧龙两个热液型铅锌矿床开展S、Pb同位素研究工作,不仅可以查明则学地区热液脉型铅锌矿成矿物质来源及其与纳如松多铅锌矿的成因联系,提高此类矿床的研究程度,也为冈底斯银铅锌成矿带内同类型矿床的勘查提供依据。

    冈底斯银铅锌多金属成矿带大地构造处于拉萨地块中部隆格尔—工布江达断隆带中段(图 1a),冈底斯火山-岩浆弧北侧,平行于南部的冈底斯斑岩铜矿带展布(臧文栓等, 2007)。该带发育石炭—二叠纪冈瓦纳北缘海相碎屑岩-碳酸盐岩沉积,东部夹巨厚的火山岩组合,局部发育三叠纪碎屑岩夹火山岩,代表了晚古生代末至三叠纪的弧间裂谷盆地沉积。侏罗—白垩系受班公湖—怒江和雅鲁藏布江新特提斯洋壳向南和向北俯冲的影响,发育火山岩、碎屑岩夹碳酸盐岩沉积和大规模中酸性侵入岩。新生代伴随印度—亚洲大陆强烈的碰撞造山,主碰撞期(65~41 Ma)大规模发育林子宗群火山岩和中酸性侵入岩,晚碰撞期(40~26 Ma)发育措勤—旁多大规模逆冲推覆构造系,后碰撞期(25~0 Ma)发育乌郁群碎屑岩和钾质火山岩。区内构造线总体呈近东西向,以线性复式褶皱、压扭性逆冲推覆构造为主;北东向及近南北向构造形成较晚,以张性构造为主(臧文栓等, 2007)。

    图  1  西藏则学地区地质简图(据龙涛, 2013
    E3p1—帕那组下段;E2n2—年波组上段;E2n1—年波组下段;P1x—下拉组;P1a2—昂杰组上段;C2—P1l2—拉嘎组上段;C2—P1l1—拉嘎组下段;Cy2—永珠组上段;E2δoπ—始新世石英闪长斑岩;K2λπ—晚白垩世石英斑岩;K2γπ—晚白垩世花岗斑岩;K2γ—晚白垩世花岗岩;K2δ—晚白垩世闪长岩;T3γδ—晚三叠世花岗闪长岩;1—地质界线;2—正断层;3—逆断层;4—性质不明断层;5—角度不整合界线;6—飞来峰;7—铅锌多金属矿床/矿(化)点;8—铜矿(化)点;9—矿区范围
    Figure  1.  Simplified geological map of Zexue area (after Long, 2013)
    E3p1-The lower section of Pana Formation; E2n2-The upper section of Nianbo Formation; E2n1-The lower section of Nianbo Formation; P1x-Xiala Formation; P1a2- The upper section of Angjie Formation; C2- P1l2- The upper section of Laga Formation; C2- P1l1- The lower section of Laga Formation; Cy2- The upper section of Yongzhu Formation; E2δoπ- Eocene quartz diorite porphyry; K2λπ- Late Cretaceous quartz porphyry; K2γπ-Late Cretaceous granite porphyry; K2γ-Late Cretaceous granite; K2δ-Late Cretaceous diorite; T3γδ-Late Triassic granodiorite; 1-Geological Boundary; 2-Normal fault; 3-Reversed fault; 4-Unidentified fault; 5-Angle unconformity; 6-Klippe; 7-Lead-zinc polymetallic deposit / ore spot; 8-Copper deposit / ore spot; 9-Mining area

    则学地区出露地层较多,从老到新为石炭统永珠组(Cy),上石炭—下二叠统拉嘎组(C2—P1l),下二叠统昂杰组(P1a),下二叠统下拉组(P1x),古新统典中组(E1d),始新统年波组(E2n),渐新统帕那组(E3p)(图 1b)。永珠组(Cy)为一套浅海相的以细粒碎屑岩为主的粒序韵律性地层,划分为上下两段。拉嘎组(C2—P1l)为一套由滨岸三角洲、滨滩、潟湖到滨外台地、台地斜坡相的各种粒级碎屑岩为主体的互层系和韵律层系地层,划分为上下两段。昂杰组(P1a)为一套厚度不甚稳定的以碎屑岩为主夹有碳酸盐岩的混合陆架相沉积地层,划分为上下两段。下拉组(P1x)为一套含丰富、多门类化石的碳酸盐岩地层。典中组(E1d)以灰色、灰绿色、紫灰色中基性—中性熔岩夹少量火山碎屑岩为主。年波组(E2n)地层主要岩性为中酸性火山熔岩、火山碎屑岩组合,划分为上下两段。帕那组(E3p)主要为一套火山熔岩、火山碎屑岩夹碎屑岩,划分为上下两段。区内侵入岩广泛侵入古生代地层,主要为印支晚期、燕山晚期及喜山早期的中酸性侵入岩(图 1b),多呈岩株或岩枝状产出。岩性主要为晚三叠世闪长岩(T3δ)、花岗闪长岩(T3γδ)、中细粒花岗闪长岩(T3γδ1)、粗粒花岗闪长岩(T3γδ2)、二长花岗岩(T3ηγ)和二云母花岗岩(T3γ);晚白垩世闪长岩(K2δ)、花岗岩(K2γ)、花岗斑岩(K2γπ)、石英斑岩(K2λπ);始新世闪长岩(E1δ)、始新世石英闪长斑岩(E2δoπ)。火山岩属林子宗群火山岩,形成于喜山期,时代为古新世、始新世、渐新世。区内火山活动具有多期多旋回的特征,岩石属钙碱性弧火山岩系列。

    德新和轧轧龙铅锌矿床的规模较小,以热液脉型为主。德新矿区主要出露上石炭统—下二叠统拉嘎组(C2—P1l)、始新统年波组(E2n)、燕山晚期闪长岩及脉岩。铅锌矿化存在两种赋存形式,主要赋存于花岗斑岩中,其次赋存于上石炭统—下二叠统拉嘎组碎屑岩、燕山晚期侵入岩EW向断裂构造的NW次级构造部位,矿体大致呈北西—北北西走向(图 2a)。轧轧龙矿区主要出露上石炭统—下二叠统拉嘎组(C2—P1l),始新世闪长岩、凝灰岩及少量脉岩。区内有4条规模较大、品位较好的铅锌矿带,以娘热藏布为界,1条在矿区南部,3条在矿区北部(高旭, 2013)。矿体主要赋存于晚古生代地层及始新世侵入岩断裂或破碎带中,矿体大致呈北西—北北西走向(图 2b)。此外,在轧轧龙矿区及外围,也存在铜矿化和铁铅矿化,规模很小(高旭, 2013)。花岗斑岩中的铅锌矿多呈星点状或稀疏浸染状(图 3ad),赋存于构造中的铅锌矿多呈块状-脉状-细脉状(图 3bc)。矿石矿物主要为方铅矿、闪锌矿、黄铜矿、黄铁矿和毒砂等(图 3def)。

    图  2  德新和轧轧龙南矿区地质图(图 2a柯贤忠等, 2017; 图 2b据刘海和王成松, 2011
    Q—第四系;E2n—年波组火山岩;C2—P1l2—拉嘎组上段;C2—P1l1—拉嘎组下段;K2δ—晚白垩世闪长岩;E1δ—始新世闪长岩;δμ—闪长玢岩;tf—凝灰岩;q—石英脉;1—正断层;2—逆断层;3—性质不明断层;4—地质界线;5—含矿花岗斑岩;6—银铅锌多金属矿体;7—采样位置
    Figure  2.  Geological maps of Dexin and south Zhazhalong mining area (Fig. 2a after Ke Xianzhong et al., 2017; Fig. 2b after Liu Hai and Wang Chengsong, 2011)
    Q-Quaternary; E2n- The Nianbo Formation; C2—P1l2- The upper section of Laga Formation; C2—P1l1- The lower section of Laga Formation; K2δ-Late Cretaceous diorite; E1δ-Eocene diorite; δμ-Diorite porphyry; tf-Tuff; q-Quartz; 1-Normal fault; 2-Reversed fault; 3-Unidentified fault; 4-Geological boundary; 5-Ore-bearing granite porphyry; 6-Silver-lead-zinc polymetallic orebody; 7-Sampling site
    图  3  德新和轧轧龙矿区岩矿石宏观和微观照片
    a—德新矿区含矿花岗斑岩;b—德新矿区脉状矿石;c—轧轧龙矿区细脉状矿石;d—含矿花岗斑岩显微照片(正交偏光);e—德新矿区矿石显微照片(反射光);f—轧轧龙矿区矿石显微照片(反射光)
    Figure  3.  Macrophotographs and microphotographs of rocks and ores in Dexin and Zhazhalong
    (d is macrophotographs of ore-bearing granite porphyry in Dexin; b-Macrophotographs of vein lead-zinc ores in Dexin; c-Macrophotographs of fine vein lead-zinc ores in Zhazhalong; d-Microphotographs of ore-bearing granite porphyry in Dexin (crossed nicols); e-Microphotographs of vein lead-zinc ores in Dexin (reflection); f-Microphotographs of fine vein lead-zinc ores in Zhazhalong (reflection)

    本文用于S、Pb同位素分析测试的样品均采自德新和轧轧龙铅锌矿床不同矿体(图 2,DXI-Qp、DXI-Gn、DXW2、DXII及DXIII等均为采样点号)的露天坑道或探槽或平垌中的原生矿石或含方铅矿、闪锌矿、黄铁矿花岗斑岩。德新矿区分别采集S同位素和Pb同位素样品14件,包含9件硫化物样品和5件含矿花岗斑岩样品;轧轧龙矿区分别采集S同位素和Pb同位素样品19件和15件,均为硫化物样品。分析方法及步骤如下:选取具代表性样品,经手工进行逐级破碎、过筛,在双目镜下挑选40~60目、纯度 > 99%的单矿物样品5g以上。将挑纯后的单矿物样品在玛瑙钵里研磨至200目以下,送实验室分析。S、Pb同位素样品分析测试均在核工业北京地质研究院分析测试研究中心完成。其中,硫同位素样品是将硫化物单矿物与氧化亚铜按一定比例研磨、混合均匀后,进行氧化反应,生成SO2并用冷冻法收集,然后用MAT251气体同位素质谱仪分析硫同位素组成,测量结果以V-CDT为标准,分析精度优于±0.2‰;铅同位素样品先用混合酸分解,然后用树脂交换法分离出铅,蒸干后用热表面电离质谱法进行铅同位素测量,仪器型号为ISOPROBET,测量精度为对1μg 206Pb/204Pb低于0.05%,208Pb/206Pb一般不大于0.005‰。

    则学地区铅锌矿金属矿物与斑岩硫化物δ34SVCDT组成见表 1。德新矿区方铅矿的δ34SVCDT为3.5‰~5.6‰,均值为4.90‰(n=4);闪锌矿δ34SVCDT为7.0‰~7.1‰,均值为7.05‰(n=2);黄铁矿δ34SVCDT为6.8‰~7.4‰,均值为7.10‰(n=3)。硫化物硫同位素组成为比较均一的正值,变化较小,总体平均值为6.1‰,由于参与统计样品数量较少,“塔式效应”不明显(图 4),仍显示出硫同位素具有较均一的来源。5件含矿花岗斑岩全岩样品δ34SVCDT变化范围为4.4‰~6.2‰,均值为5.7‰,与硫化物硫同位素总体均值(6.1‰)相差不大,德新矿区含矿花岗斑岩中的矿石矿物主要为黄铁矿、方铅矿和闪锌矿(柯贤忠等, 2017),含矿花岗斑岩全岩硫同位素组成可代表矿区硫化物平均硫同位素组成。

    表  1  西藏则学地区铅锌矿含矿花岗斑岩和硫化物硫同位素组成
    Table  1.  Sulfur isotopic compositions of ore-bearing granite and sulfides from the lead-zinc deposits in Zexue area, Tibet
    下载: 导出CSV 
    | 显示表格
    图  4  西藏则学地区铅锌矿硫同位素组成频数直方图
    Figure  4.  Histograms of sulfur isotopic compositions of the lead-zinc deposits in Zexue area, Tibet

    轧轧龙矿区方铅矿的δ34SVCDT为2.7‰~5.8‰,均值为4.1‰(n=13);闪锌矿δ34SVCDT为5.7‰~8.3‰,均值为6.9‰(n=4);黄铁矿δ34SVCDT为7.3‰~8.0‰,均值为7.7‰(n=2)。19件金属硫化物样品硫化物硫同位素组成总体平均值为5.1‰,为比较均一的正值,变化较小,“塔式效应”明显(图 4),表明硫同位素具有较均一的来源。

    酒井和巴金斯基(格里年科,1980郑永飞等,2000)认为热力学平衡条件下,热液矿床中硫化物的同位素组成存在如下关系:PbS(方铅矿) < CuFeS2(黄铜矿) < ZnS(闪锌矿) < FeS1-x(磁黄铁矿) < FeS2(黄铁矿) < MoS2(辉钼矿)。德新和轧轧龙矿区硫化物δ34SVCDT平均值基本呈黄铁矿—闪锌矿—方铅矿的顺序递减变化(δ34S方铅矿 < δ34S闪锌矿 < δ34S黄铁矿),表明德新和轧轧龙铅锌矿中硫化物结晶时,结晶的硫化物与热液中的硫同位素已基本达到分馏平衡。

    则学地区铅锌矿金属矿物与斑岩硫化物铅同位素组成见表 2。德新铅锌矿硫化物206Pb/204Pb变化范围为18.543~18.653(平均值18.597),207Pb/204Pb变化范围为15.618~15.763(平均值15.686),208Pb/204Pb变化范围为38.846~39.351(平均值39.061);含矿花岗斑岩206Pb/204Pb变化范围为18.485~18.657(平均值18.595),207Pb/204Pb变化范围为15.681~15.708(平均值15.694),208Pb/204Pb变化范围为39.079~39.175(平均值39.125)。轧轧龙铅锌矿硫化物206Pb/204Pb变化范围为18.519~18.692,平均值为18.622,207Pb/204Pb变化范围为15.625~15.798,平均值为15.714;208Pb/204Pb变化范围为38.884~39.439,平均值为39.169。

    表  2  西藏则学地区铅锌矿含矿花岗斑岩和硫化物铅同位素组成与参数
    Table  2.  Lead isotopic compositions and parameters of ore-bearing granite and sulfides from the lead-zinc deposits in Zexue area, Tibet
    下载: 导出CSV 
    | 显示表格

    德新铅锌矿硫化物、含矿花岗斑岩和轧轧龙铅锌矿硫化物铅同位素组成显示,所有样品同位素比值比较稳定,变化均很小。利用H-H单阶段铅演化模式(宜昌地质矿产研究所, 1979; Hoefs, 1997; Faure and Mensing, 2005),计算得到则学地区铅锌矿床矿石硫化物铅同位素的参数见表 2。其中,μ值的变化范围9.48~9.82,平均值为9.64高于正常铅范围(8.686~9.238)(地质部宜昌地质矿产研究所同位素地质研究室, 1979);ω值的变化范围37.54~ 40.94,平均值为39.19。μ值比较稳定,变化 < 1%;ω值介于35~41(宜昌地质矿产研究所, 1979);上述特征显示则学地区铅锌矿具有正常铅同位素的特征。

    硫是铅锌矿床中最重要的成矿元素之一,矿石中硫同位素组成能提供矿石硫来源及成因(杨斌等,2018)、硫同位素分异程度以及成矿系统封闭性等诸多信息(Basuki et al., 2008)。则学地区铅锌矿床中的硫化物主要为方铅矿、闪锌矿、黄铁矿和黄铜矿等,矿物组合简单且基本未见硫酸盐矿物,反映成矿热液中不同价态的硫元素间及不同成矿阶段的硫同位素分馏作用都比较弱。此外,德新和轧轧龙铅锌矿中硫同位素组成指示硫化物结晶时,结晶的硫化物与热液中的硫同位素已基本达到分馏平衡。故矿床中几种简单硫化物的硫同位素组成基本代表了成矿流体的硫同位素组成(Ohmoto, 1972; Ohmoto and Rye, 1979)。

    德新铅锌矿硫化物δ34SVCDT为3.5‰~7.4‰,平均值为6.1‰;含矿花岗斑岩全岩样品δ34SVCDT为4.4‰~ 6.2‰,平均值为5.7‰;轧轧龙铅锌矿金属硫化物δ34SVCDT为2.7‰~8.3‰,平均值为5.1‰。则学地区铅锌矿硫化物及含矿花岗斑岩δ34SVCDT值落在花岗岩、变质岩和沉积岩硫同位素组成范围内(图 5),德新和轧轧龙铅锌矿床中矿体主要呈脉状产于不同时代地层裂隙或构造破碎带中,且沉积岩硫同位素组成变化范围极大,故排除S同位素来源于矿区及周边沉积地层的可能性;则学地区铅锌矿硫化物和含矿花岗斑岩δ34SVCDT平均值相差不大,与花岗岩类δ34SVCDT值区间(-4‰~9‰)(魏菊英和王关玉, 1988)重合,且花岗岩类硫同位素组成变化范围较小,暗示则学地区铅锌矿硫的来源可能主要由花岗岩类提供,但不排除变质岩(如变质基底)提供少量硫源的可能。

    图  5  则学地区铅锌矿硫化物硫同位素组成分布图
    (底图据韩吟文等, 2003
    Figure  5.  Sulfur isotopic composition distribution patterns of sulfides from the lead-zinc deposits in Zexue area

    纳如松多铅锌矿硫化物、粗斑斑岩和细斑斑岩δ34SVCDT分别为2.5‰~5.5‰、7.0‰~7.4‰和14.8‰~ 18.7‰,与德新和轧轧龙两矿区硫化物及含矿花岗斑岩类似,也落入花岗岩、变质岩和沉积岩硫同位素组成范围内(图 5),结合纳如松多铅锌矿产出特征,推测硫化物和粗斑斑岩硫的来源也可能主要由花岗岩类提供,但不排除变质岩(如变质基底)提供少量硫源的可能。细斑斑岩δ34SVCDT值显著大于硫化物和粗斑斑岩δ34SVCDT值,落入变质岩、沉积岩和蒸发硫酸盐硫同位素组成范围(图 4),但数值较集中,可以排除沉积岩提供硫源的可能。杨勇等(2010a)认为有两个原因可能造成纳入松多铅锌矿细斑斑岩δ34SVCDT值较高,分别为地壳硫的混染(如岩浆穿过膏岩层)和岩浆去气作用(H2S相对亏损34S,H2S去气能够引起熔体富集34S);纪现华等(2012)通过LA-ICP-MS锆石U-Pb方法获得纳如松多铅锌矿粗斑和细斑斑岩年龄分别为(62.54± 0.77) Ma、(62.47±0.91) Ma;二者具有相似的常量和微量元素组成(杨勇等, 2010a),说明二者可能来源于相同的岩浆源区或者是同一岩浆活动不同阶段的产物;细斑斑岩较高的δ34SVCDT值可能由岩浆去气作用造成。

    则学地区铅锌矿硫化物和含矿花岗斑岩与纳如松多铅锌矿硫化物和粗斑斑岩δ34SVCDT值均落入岩浆岩硫同位素组成范围内,且均值相差不大。德新和轧轧龙铅锌矿均在纳如松多矿区10 km范围内,已有的研究显示,德新铅锌矿与纳如松多铅锌矿属同一成矿系统产物,存在成因上的联系(柯贤忠等, 2017);3个矿床相似的S同位素组成特征不仅进一步证实德新与纳如松多成因上的联系,也暗示轧轧龙与纳如松多之间也可能存在成因上的联系。

    铅同位素组成是一种示踪成矿物质来源的有力工具,在矿床研究中,铅同位素的应用已经非常广泛。大量的研究成果表明,铅同位素不仅可以用来测定矿床成矿年龄,尤其在成矿物质来源研究方面,铅同位素组成具有非常重要的意义(Doe and Stacey, 1974; Zartman and Doe, 1981)。

    矿石铅是指在各种热液环境中沉淀出来的,不含U、Th的金属矿物(矿石矿物),如方铅矿、黄铁矿等矿物中的铅(魏菊英和王关玉, 1988; 张理刚, 1988; 赵平等, 2002)。矿石铅之所以可以用来示踪成矿物质来源主要有两方面的原因:一方面,矿石矿物中U、Th等放射性元素含量极低,与矿物中Pb含量相比可忽略。因此,它可以反映金属来源区初始U-Th-Pb体系及Pb同位素组成特征;另一方面,铅同位素分子质量分数大,在进入成矿热液并随之运移的过程中,即使热液物化条件发生变化,它们的同位素组成一般也不会发生变化(沈渭洲, 1987; 高文亮等, 2006)。因此,通过矿石铅同位素组成的分析可逆推源区的UTh-Pb体系特征,从而获得有关成矿物质来源的信息(吴开兴等, 2002; 陈晓峰, 2010)。

    通常认为铅同位素源区特征值,尤其是μ值的变化提供地质体经历地质作用的信息,反映铅的来源。具有高μ值(大于9.58)的铅或者位于零等时线右侧的放射成因铅通常被认为是来自U、Th相对富集的上部地壳物质(地质部宜昌地质矿产研究所同位素地质研究室, 1979; 吴开兴等, 2002)。则学地区铅锌矿矿床矿石铅同位素μ值非常集中(9.48~9.82,平均值为9.64),高于9.58,显示铅源具以上地壳物质为主的特征。

    Doe and Zartman(1979)根据世界不同构造环境的显生宙岩石和矿产的铅同位素组成建立了铅同位素构造模式图解。将德新及轧轧龙矿区硫化物、含矿花岗斑岩和临近的纳如松多铅锌矿硫化物及含矿花岗斑岩铅同位素组成数据投影到铅同位素构造模式图解(图 6)。在206Pb/204Pb-207Pb/204Pb图解中,3个矿床不同类型样品铅同位素均落入造山带演化线与上地壳演化线之间及上地壳演化线之上区域,且大多数样品落入上地壳演化线及其之上区域;在206Pb/204Pb-208Pb/204Pb图解中,3个矿床不同类型样品铅同位素均落入下地壳演化线与造山带演化线之间靠近造山带演化线一侧区域,由于造山作用过程中可能存在地壳重熔或壳幔相互作用,因此德新、轧轧龙铅锌矿区硫化物及含矿花岗斑岩的矿石铅可能主要来自于上地壳物质,且与纳如松多铅锌矿硫化物和含矿花岗斑岩的矿石铅具有相似的特征,进一步表明3个矿床可能存在成因上的联系。

    图  6  则学地区含矿花岗斑岩和硫化物207Pb/204Pb-206Pb/204Pb和208Pb/204Pb-206Pb/204Pb图解(底图据Zartman and Doe, 1981
    Figure  6.  207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams of ore-bearing granite and sulfides from the lead-zinc deposits in Zexue area (after Zartman and Doe, 1981)

    朱炳泉等(1998)认为Th、Pb的变化及Th、Pb与U、Pb同位素组成的相互关系能为揭示地质过程与物质来源提供非常丰富的信息。在广泛搜集世界各地不同时代和成因的铅同位素资料基础上,根据构造环境与成因不同,提出将铅的3种同位素表示成同时代地幔的相对偏差△α、△β、△γ,并通过△γ-△β成因分类图解,追踪矿石铅的源区的方法。该模式消除了时间因素的影响,理论上比全球性的演化模式具有更好的示踪意义(郑明华等, 2001)。利用Geokit软件计算得到德新、轧轧龙和纳如松多铅锌矿矿石铅与同时代地幔的相对偏差△β、△γ值见表 2。德新矿床硫化物△β范围为18.86~28.79,均值23.51,△γ范围为40.31~58.73,均值48.50;含矿花岗斑岩△β范围为23.25~24.96,均值24.10,△γ范围为49.07~53.87,均值50.74。轧轧龙矿床硫化物△β范围为19.47~31.14,均值25.40,△γ范围为42.90~61.75,均值52.13。德新和轧轧龙铅锌矿绝大多数样品△β、△γ值均大于上地壳对应的△β、△γ值(表 2),暗示两个矿床铅源以上地壳物质为主,由于造山作用过程中可能存在地壳重熔或壳幔相互作用,因此不能排除少量铅源由幔源物质提供的可能性。纳如松多矿床硫化物△β范围为21.42~29.38,均值26.73,△γ范围为46.57~59.92,均值55.16;含矿花岗斑岩△β范围为20.50~30.10,均值23.57,△γ范围为45.30~61.62,均值51.47。3个矿床样品△β、△γ变化范围基本一致,均值相差较小,表明3个矿床铅的成矿物质来源基本一致。

    将所得到的△β、△γ数据投影到铅同位素的△γ-△β成因分类图解(图 7)。德新、轧轧龙和纳如松多铅锌矿不同类型样品的数据点几乎全部落入上地壳来源铅范围之内,但靠近上地壳与地幔混合的俯冲带铅(岩浆作用)范围。德新和轧轧龙矿床有极少量硫化物样品数据点落入上地壳与地幔混合的俯冲带铅(岩浆作用)范围内。已有研究表明,纳如松多矿石硫化物的铅同位素表现出与矿区斑岩一致的铅同位素组成,矿区斑岩提供了成矿物质。此外,德新铅锌矿含矿花岗斑岩与纳如松多铅锌矿含矿花岗斑岩成岩成矿年龄基本一致,形成于印度—亚洲大陆主碰撞阶段,二者属同一成矿系统产物。综合认为,德新和轧轧龙矿床硫化物与德新含矿花岗斑岩、纳如松多硫化物及含矿花岗斑岩具有一致的铅同位素组成,主要来自上地壳物质。与纳如松多矿区斑岩一样,德新矿区斑岩可能起源于主碰撞时期的上地壳,在形成过程中有少量俯冲铅的加入;则学地区的花岗斑岩可能为热液脉状铅锌矿化提供了成矿物质。

    图  7  则学地区铅锌矿铅同位素△γ-△β成因判别图解(底图据朱炳泉等, 1998
    Figure  7.  γ-△β genetic discrimination diagram of lead isotope for the lead-zinc deposits in Zexue area (after Zhu et al., 1998)

    (1)德新铅锌矿硫化物δ34SVCDT为3.5‰~7.4‰,平均值为6.1‰;含矿花岗斑岩全岩样品δ34SVCDT为4.4‰~6.2‰,平均值为5.7‰;轧轧龙铅锌矿金属硫化物δ34SVCDT为2.7‰~8.3‰,平均值为5.1‰。则学地区铅锌矿硫的来源可能主要由花岗岩类提供。

    (2)则学地区铅锌矿样品同位素比值比较稳定,变化均很小,显示正常铅同位素的特征,铅源可能主要来自上地壳物质,少量来自幔源物质。

    (3)德新、轧轧龙热液脉型铅锌矿和纳如松多铅锌矿存在成因上的联系,可能属于同一成矿系统产物;则学地区花岗斑岩可能为热液脉状铅锌矿化提供了成矿物质。

    注释

    ❶ 刘海, 王成松. 2011.西藏自治区谢通门县轧轧龙矿区铅锌矿普查报告[R].西藏自治区地质矿产勘查开发局第二地质大队.

  • 图  1   朱溪矿集区地质矿产简图(据饶建锋等,2017修改)

    1—地质界线;2—角度不整合界线;3—实测/推测断裂;4—逆冲推覆断裂;5—构造窗;6—正常岩层产状;7—倒转岩层产状;8—基性岩脉;9—中性岩脉;10—酸性岩脉;11—铜矿(化)点;12—钨矿(化)点;13—金矿(化)点;14—铜金矿点;15—铜钼金矿点;16—铜铅锌矿点;17—钨铜矿床;18—钨钼铜矿床。Q—第四系;K—白垩系;J—侏罗系;T—三叠系;P—二叠系;C—石炭系;Pt31aW—新元古界万年群;Pt31aS—新元古界双桥山群;γφ53—燕山晚期钠长花岗岩;γδπ52—燕山早期花岗闪长斑岩;γπ52—燕山早期花岗斑岩;γ52—燕山早期花岗岩;ν43/βμ43—华力西晚期辉长岩/辉绿岩;γδπ2—晋宁期花岗闪长斑岩;①—丽阳-罗家滩逆冲推覆断裂带;②—凰岗-湘湖逆冲推覆断裂带;③—塔前-赋春逆冲推覆深断裂带;④—横路-大游山逆冲推覆断裂带;⑤—临港-乐河逆冲推覆断裂带

    Figure  1.   Geological and mineral resources map of the Zhuxi ore concentration area (modified from Rao et al., 2017)

    1-Geological boundary; 2-Angular unconformity boundary; 3-Measured/inferred fracture; 4-Thrust nappe fracture; 5-Tectonic window; 6-Normal strata attitude; 7-Reversed strata attitude; 8-Basic vein; 9-Neutral vein; 10-Acid vein; 11-Copper ore spot; 12-Tungsten ore spot; 13-Gold ore spot; 14-Copper-gold deposit; 15-Copper-molybdenum gold ore; 16-Copper-lead-zinc deposit; 17-Tungsten-copper deposit; 18-Tungsten- molybdenum-copper deposit. Q-Quaternary; K-Cretaceous; J-Jurassic; T-Triassic; P-Permian; C-Carboniferous; Pt31aW-Neoproterozoic Wannian Group; Pt31aW-Neoproterozoic Shuangqiaoshan Group; γφ53-Late Yanshanian albite granite; γδπ52-Early Yanshanian granodiorite porphyry; γπ52-Early Yanshanian granite porphyry; γ52-Early Yanshanian granite; ν43/βμ43-Late Hualixi gabbro/diabase; γδπ2-Jinning period granodiorite porphyry; ①-Liyang-Luojiatan thrust nappe fault zone; ②-Huanggang-Xianghu thrust nappe fault zone; ③-Taqian-Fuchun thrust nappe deep fault zone; ④-Henglu-Dayoushan thrust nappe fault zone; ⑤-Lingang-Lehe thrust nappe fault zone

    图  2   朱溪矿集区构造剖面(据钟南昌,1992修改)

    1—浮土;2—石英砂岩;3—砂岩;4—硅质岩;5—炭质泥岩;6—泥岩;7—白云岩;8—灰岩;9—生物碎屑灰岩;10—千枚岩;11—平行不整合/角度不整合界线;12—逆冲推覆断裂;Q—第四系;T3asq—上三叠统安源组三丘田段;T3as—上三叠统安源组三家冲段;T3az—上三叠统安源组紫家冲段;P3c—上二叠统长兴组;P3ll—上二叠统乐平组老山段;P3lg—上二叠统乐平组官山段;P2ms—中二叠统鸣山组;P2x—中二叠统小江边组;P2q—中二叠统栖霞组;P2l—中二叠统梁山组;P1m—下二叠统马平组;C2h—上石炭统黄龙组;Pt31aW—新元古界万年群;γ52—燕山早期花岗岩;γδπ2—晋宁期花岗闪长斑岩

    Figure  2.   Structural section of the Zhuxi ore concentration area (modified from Zhong, 1992)

    Structural section of the Zhuxi ore concentration area (modified from Zhong, 1992) 1-Floating soil; 2-Quartz sandstone; 3-Sandstone; 4-Siliceous rock; 5-Carbonaceous mudstone; 6-Mudstone; 7-Dolomite; 8-Limestone; 9-Bioclastic limestone; 10-Phyllite; 11-Parallel/angular unconformity boundary; 12-Thrust nappe fracture; Q-Quaternary; T3asq-Upper Triassic Anyuan Formation Sanqiutian member; T3as-Upper Triassic Anyuan Formation Sanjiachong member; T3az-Upper Triassic Anyuan Formation Zijiachong member; P3c-Upper Permian Changxing Formation; P3ll-Upper Permian Leping Formation Laoshan member; P3lg-Upper Permian Leping Formation Guanshan member; P2ms-Middle Permian Mingshan Formation; P2x-Middle Permian Xiaojiangbian Formation; P2q-Middle Permian Qixia Formation; P2l-Middle Permian Liangshan Formation; P1m-Lower Permian Maping Formation; C2h-Upper Carboniferous Huanglong Formation; Pt31aW-Neoproterozoic Wannian Group; γ52-Early Yanshanian granite; γδπ2-Jinning period granodiorite porphyry

    图  3   塔前—赋春断裂带内“对冲”构造特征(张达提供)

    Figure  3.   Characteristics of hedging structures in the Taqian−Fuchun fault zone (after Zhang Da)

    图  4   塔前—赋春断裂带构造剖面素描图(钟南昌,1992)

    1—粉砂岩;2—砾岩;3—灰岩;4—泥质灰岩;5—大理岩;6—绿泥石片岩;7—角度不整合界线;8—逆冲推覆断裂;T3—上三叠统;T1—下三叠统;P3—上二叠统;P2—中二叠统;C2—上石炭统;Pt31aW—新元古界万年群

    Figure  4.   Sketch map of the structural section in the Taqian-Fuchun fault zone (after Zhong, 1992)

    1-Siltstone; 2-Conglomerate; 3-Limestone; 4-Muddy limestone; 5-Marble; 6-Chlorite schist; 7-Angular unconformity boundary; 8-Thrust nappe fracture; T3-Upper Triassic; T1-Lower Triassic; P3-Upper Permian; P2-Middle Permian; C2-Upper Carboniferous; Pt31aW-Neoproterozoic Wannian Group

    图  5   涌山桥矿区6线剖面图(江西省地质矿产勘查开发局,2015)

    Q—第四系;T3asq—上三叠统安源组三丘田段;T3as—上三叠统安源组三家冲段;T3az—上三叠统安源组紫家冲段;T1q—下三叠统青龙组;P3c—上二叠统长兴组;P3lw+s—上二叠统乐平组王潘里段+狮子山段;P3ll—上二叠统乐平组老山段;P3lg—上二叠统乐平组官山段;P2m—中二叠统茅口组;Pt31aW—新元古界万年群;七、八—煤层编号;S—砂(砾)岩层

    Figure  5.   Geological section along No. 6 exploration line of the Yongshanqiao mining area (after JBGMED, 2015)

    Q-Quaternary; T3asq-Upper Triassic Anyuan Formation Sanqiutian member; T3as-Upper Triassic Anyuan Formation Sanjiachong member; T3az-Upper Triassic Anyuan Formation Zijiachong member; T1q-Lower Triassic Qinglong Formation; P3c-Upper Permian Changxing Formation; P3lw+s-Upper Permian Leping Formation Wangpanli and Shizishan member; P3ll-Upper Permian Leping Formation Laoshan member; P3lg-Upper Permian Leping Group Guanshan member; P2m-Middle Permian Maokou Formation; Pt31aW-Neoproterozoic Wannian Group; 七, 八- Coal seam number; S-Sand (Gravel) rock formation

    图  6   塔前—毛家园矿区地质简图(江西省地质矿产勘查开发局物化探大队,2013修改)

    1—晚古生代—中生代沉积盖层;2—新元古代万年群;3—似斑状花岗闪长岩;4—中酸性岩脉(墙);5—花岗斑岩脉;6—角岩化带;7—钨钼矿体;8—逆冲推覆构造;9—勘探线及钻孔

    Figure  6.   Geological sketch map of the Taqian-Maojiayuan mining area (modified from Geophysical & Geochemical Exploration Party of JBGMED, 2013)

    1-Late Paleozoic-Mesozoic sedimentary caprock; 2-Neoproterozoic Wannian Group; 3-Porphyritic granite; 4-Medium-acid vein (wall); 5-Granite porphyry vein; 6-Angular lithification zone; 7-Tungsten-Molybdenum orebody; 8-Thrust nappe structure; 9-Exploration line and drill hole

    图  7   塔前矿区8线剖面图(江西省地质矿产勘查开发局物化探大队,2013修改)

    1—浮土;2—粉砂岩;3—灰岩;4—大理岩;5—矽卡岩;6—千枚岩;7—角砾岩;8—实测/推测地质界线;9—推测角度不整合界线;10—断裂;11—铜矿体及编号;12—钨钼矿体及编号;Q—第四系;T3a—上三叠统安源组;P2m—中二叠统茅口组;P2q—中二叠统栖霞组;Pt31aW—新元古界万年群;δπ—闪长斑岩;γδπ—花岗闪长斑岩

    Figure  7.   Geological section along No. 6 exploration line of the Taqian mining area (modified after Geophysical & Geochemical Exploration Party of JBGMED, 2013)

    1-Floating soil; 2-Siltstone; 3-Limestone; 4-Marble; 5-Skarn; 6-Phyllite; 7-Breccia; 8-Measured/ inferred geological boundary; 9-Inferred angular unconformity boundary; 10-Fracture; 11-Copper orebody and its serial number; 12-Tungsten-molybdenum orebody and its serial number. Q-Quaternary; T3a-Upper Triassic Anyuan Formation; P2m-Middle Permian Maokou Formation; P2q-Middle Permian Qixia Formation; Pt31aWNeoproterozoic Wannian Group; δπ-Diorite porphyry; γδπ-Granodiorite porphyry

    图  8   朱溪矿区地质图(据江西省地质矿产勘查开发局九一二大队,2015修改)

    1—透闪石-阳起石化带;2—绿色蚀变带;3—地质界线;4—角度不整合界线;5—逆冲推覆断裂;6—实测/推测断裂;7—矿体平面投影范围;8—以往施工钻孔;9—912队普查完工钻孔;10—勘探线及编号;Q—第四系;T3—上三叠统;T1—下三叠统;P2-3—中-上二叠统;P1m—下二叠统马平组;C2h—上石炭统黄龙组;Pt31aW—新元古界万年群;γπ—花岗斑岩;δμ—闪长玢岩;χ—煌斑岩;γδπ2—晋宁期花岗闪长斑岩

    Figure  8.   Geological map of the Zhuxi deposit (modified from No. 912 Geological Surveying Party of JBGMED, 2015)

    1-Tremolite-actinolite belt; 2-Green alteration belt; 3-Geological boundary; 4-Angular unconformity boundary; 5-Thrust nappe fracture; 6-Measured/inferred fracture; 7-Orebody plane projection range; 8-Previous drill hole; 9-Prospecting completed drill hole; 10-Exploration line and its serial number. Q-Quaternary; T3-Upper Triassic; T1-Lower Triassic; P2-3-Middle-Upper Permian; P1m-Lower Permian Maping Formation; C2h-Upper Carboniferous Huanglong Formation; Pt31aW-Neoproterozoic Wannian Group; γπ-Granite porphyry; δμ-Diorite porphyry; χ-Lamprophyre; γδπ2-Jinning period granodiorite porphyry

    图  9   朱溪矿床42线剖面图(据江西省地质矿产勘查开发局九一二大队,2015修改)

    1—浮土;2—砂岩;3—灰岩;4—泥质灰岩;5—含炭灰岩;6—燧石灰岩;7—硅质灰岩;8—白云岩;9—千枚岩;10—蚀变带界线;11—地质界线;12—角度不整合界线;13—断裂;14—铜矿体;15—钨矿体;Q—第四系;T3a—上三叠统安源组;P3c—上二叠统长兴组;P3lp—上二叠统乐平组;P2m—中二叠统茅口组;P2q3—中二叠统栖霞组上段;P2q2—中二叠统栖霞组中段;P2q1—中二叠统栖霞组下段;P1m—下二叠统马平组;C2h—上石炭统黄龙组;Pt31aW—新元古界万年群;γ—花岗岩;γπ—花岗斑岩;δ—闪长岩

    Figure  9.   Geological section along No. 42 exploration line of the Zhuxi deposit (modified after No. 912 Geological Surveying Party of JBGMED, 2015)

    1-Floating soil; 2-Sandstone; 3-Limestone; 4-Muddy limestone; 5-Carbonaceous limestone; 6-Chert limestone; 7-Siliceous limestone; 8-Dolomite; 9-Phyllite; 10-Alteration boundary; 11-Geological boundary; 12-Angular unconformity boundary; 13-Fracture; 14-Copper orebody; 15-Tungsten orebody; Q-Quaternary; T3a-Upper Triassic Anyuan Formation; P3c-Upper Permian Changxing Formation; P3lp-Upper Permian Leping Formation; P2m-Middle Permian Maokou Formation; P2q3-Upper member of Middle Permian Qixia Formation; P2q2-Middle member of Middle Permian Qixia Formation; P2q1-Lower member of Middle Permian Qixia Formation; P1m-Lower Permian Maping Formation; C2h-Upper Carboniferous Huanglong Formation; Pt31aW-Neoproterozoic Wannian Group; γ-Granite; γπ-Granite porphyry; δ-Diorite

    图  10   横路—张家坞—月形矿带综合地质图

    1—地质界线;2—角度不整合界线;3—逆冲推覆断裂;4—正断层;5—走滑断层;6—实测/推测性质不明断裂;7—蚀变界线;8—钻孔;9—水系沉积物异常;10—地磁异常;11—土壤异常;Q—第四系;T3a—上三叠统安源组;P3lp—上二叠统乐平组;P2m—中二叠统茅口组;P1m—下二叠统马平组;C2h—上石炭统黄龙组;Pt31aW—新元古界万年群;γπ—花岗斑岩;γδπ—花岗闪长斑岩;δμ—闪长玢岩;βμ—辉绿岩;χ—煌斑岩;①—横路—大游山深断裂带;②—月形地堑式正断层

    Figure  10.   Geological map of the Henglu-Zhangjiawu-Yuexing ore belt

    1-Geological boundary; 2-Angular unconformity boundary; 3-Thrust nappe fracture; 4-Normal fault; 5-Strike slip fault; 6-Measured/inferred unidentified fault; 7-Alteration boundary; 8-Drill hole; 9-Stream sediment geochemical anomaly; 10-Ground high accuracy magnetic survey anomaly; 11-Soil geochemical anomaly; Q-Quaternary; T3a-Upper Triassic Anyuan Formation; P3lp-Upper Permian Leping Formation; P2m-Middle Permian Maokou Formation; P1m-Lower Permian Maping Formation; C2h-Upper Carboniferous Huanglong Formation; Pt31aW-Neoproterozoic Wannian Group; γπ-granite porphyry; γδπ-Granodiorite porphyry; δμ-Diorite porphyry; βμ-diabase; χ-Lamprophyre; ①-Henglu-Dayoushan deep fault zone; ②-Yuexing mantle type normal fault

    图  11   月形矿区36线剖面图

    1—浮土;2—砂岩;3—灰岩;4—大理岩;5—白云岩;6—千枚岩;7—角度不整合界线;8—正断层及编号;9—矽卡岩;10—铜矿体及编号;11—钻孔及编号。Q—第四系;P3lp—上二叠统乐平祖;P1m—下二叠统马平组;C2h—上石炭统黄龙组;Pt31aW—新元古界万年群;γδπ—花岗闪长斑岩岩;γπ—花岗斑岩

    Figure  11.   Geological section along No. 36 exploration line of the Yuexing deposit

    1-Floating soil; 2-Sandstone; 3-Limestone; 4-Marble; 5-Dolomite; 6-Phyllite; 7-Angular unconformity boundary; 8-Normal fault and its serial number; 9-Skarn; 10-Copper orebody and its serial number; 11-Drill hole and its serial number. Q-Quaternary; P3lp-Upper Permian Leping Formation; P1m-Lower Permian Maping Formation; C2h-Upper Carboniferous Huanglong Formation; Pt31aW-Neoproterozoic Wannian Group; γδπ-Granite; γπ-Granite porphyry

  • Chen G H, Shu L S, Shu L M, Zhang C, Ouyang Y P. 2016. Geological characteristics and mineralization setting of the Zhuxi tungsten(copper) polymetallic deposit in the Eastern Jiangnan Orogen[J]. Science China:Earth Sciences, 59(4):803-823. doi: 10.1007/s11430-015-5200-9

    He Xiaolong, Zhang Da, Chen Guohua, Di Yongjun, Huo Hailong, Li Ning, Zhang Zhihui, Rao Jianfeng, Wei Jin, Ouyang Yongpeng. 2018. Genesis of Zhuxi copper-tungsten deposit in Jiangxi Province:Insights from mineralogy and chronology[J]. Journal of Jilin University (Earth Science Edition), 48(4):1050-1070 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201804009.htm

    Hu Zhenghua, Liu Dong, Liu Shanbao, Lang Xinghai, Zhang Jiaqing, Chen Yuchuan, Shi Guanghai, Wang Yiyun, Lei Tianhao, Nie Longmin, Sha Min, Gong Liangxin, Liu Zhanqing. 2015. Rockforming and ore-forming ages and significance of Taqian Mo (W) deposit, Leping, Jiangxi, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 42(3):312-322(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201503007.htm

    Huang Lei, Zhou Hui, Luo Xicheng, Yang Minggui. 2017. On geological tectonic belt and ore controlling characteristics of Qibaoshan mine in west Jiangxi[J]. Geology of Jiangxi, 18(3):182-190 (in Chinese with English abstract).

    Huo Hailong, Zhang Da, Chen Zhengle, Bi Minfeng, Chen Guohua, He Xiaolong, Li Ning, Li Xingjian, Xue Wei, Ouyang Yongpeng. 2018. Deformation characteristics and geochronological constraints of Mesozoic nappe structure in Jingdezhen area, northeastern Jiangxi[J]. Journal of Geomechanics, 24(1):9-24 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201801002

    Jiangxi Bureau of Geology and Mineral Exploration and Development. 2015. China Mineral Geology (Jiangxi Paper)[M]. Beijing:Geological Publishing House (in Chinese).

    Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014. Cretaceous tectonic evolution of south China:A preliminary synthesis[J]. EarthScience Reviews, 134, 98-136. http://cn.bing.com/academic/profile?id=16bb76dfd1d0a8a45638b06cc5eb24a4&encoded=0&v=paper_preview&mkt=zh-cn

    Li Yan, Pan Xiaofei, Zhao Miao, Chen Guohua, Zhang Tianfu, Zhang Cheng. 2014. LA-ICP-MS zircon U-Pb age, geochemical feature and relations to the W-Cu mineralization of granitic porphyry in Zhuxi skarn deposit, Jingdezhen, Jiangxi[J]. Geological Review, 60(3):693-708 (in Chinese with English abstract).

    Liu Shanbao, Liu Zhanqing, Wang Chenghui, Wang Denghong, Zhao Zheng, Hu Zhenghua. 2017. Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi[J]. Geoscience Frontiers, 24(5):17-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201705003

    Liu Shanbao, Wang Chenghui, Liu Zhanqing, Liu Jianguang, Wan Haozhang, Chen Guohua, Zhang Cheng, Zhang Shude, Zhang Xiaolin. 2014. Northeast Jiangxi Taqian-Fuchun metallogenic belt magmatite time limit and sequence division and its significance[J]. Rock and Mineral Analysis, 33(4):598-611 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ykcs201404023

    Liu Yi, Luo Xuequan, Zhang Xuehui, Ban Yizhong, Zeng Yong, Zhou Zongyao, Lou Fasheng. 2016. Geological characteristics of minerogenesis and prospecting in Eastern Qinzhou-Hangzhou CuAu-Pb-Zn-W metallogenic belt[J]. Acta Geologica Sinica, 90(7):1551-1572 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201607019.htm

    Liu Zhanqing. 2016. The Tectono Magmatism and Mineralization Mechanism of The Zhuxi Ultra-Large Cu-W Deposit in the North of Jiangxi Province[D]. Beijing: Institute of Mineral Resources, Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Ouyang Y P, Chen G H, He X R, Rao J F, Zeng X H. 2014.Geochemical characteristics of granite from the Zhuxi coppertungsten polymetallic deposit in Jingdezhen region, Jiangxi Province[J]. Acta Geologica Sinica (English Edition), 88(S2):104-105. doi: 10.1111/1755-6724.12368_18

    Ouyang Yongpeng, Rao Jianfeng, Yao Zaiyu, Zhou Xianrong, Chen Guohua. 2018. Mineralization and prospecting direction of the "Zhuxi type" skarn deposit[J]. Geological Science and Technology Information, 37(3):148-158 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201803020

    Pan X F, Hou Z Q, Li Y, Chen G H, Zhao M, Zhang T F, Zhang C, Wei J, Kang C. 2017. Dating the giant Zhuxi W-Cu deposit (TaqianFuchun Ore Belt) in South China using molybdenite Re-Os and muscovite Ar-Ar system[J]. Ore Geology Reviews, 86:719-733. doi: 10.1016/j.oregeorev.2017.02.024

    Pan X F, Hou Z Q, Zhao M, Chen G H, Rao J F, Li Y, Wei J, Ouyang Y P. 2018. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China:Implication for petrogenesis, geodynamical setting and mineralization[J]. Lithos, 304-307:155-179. doi: 10.1016/j.lithos.2018.01.014

    Rao Jianfeng, Yao Zaiyu, Ouyang Yongpeng. 2017. TectonizationMagmation-Mineralization of the Taqian-Fuchun W-Cu polymetallic mineralization concentration area[J]. Advances in Geosciences, 7(5):632-644 (in Chinese with English abstract). doi: 10.12677/AG.2017.75064

    Song M J, Shu L S, Santosh M. 2016. Early Mesozoic granites in the Nanling Belt, South China:Implications for intracontinental tectonics associated with stress regime transformation[J]. Tectonophysics, 676:148-169. doi: 10.1016/j.tecto.2016.03.023

    Song S W, Mao J W, Xie G Q, Yao Z Y, Chen G H, Rao J F, Ouyang Y P. 2018a. The formation of the world-class Zhuxi scheelite skarn deposit:Implications from the petrogenesis of scheelite-bearing anorthosite[J]. Lithos, 312-313:153-170. doi: 10.1016/j.lithos.2018.05.002

    Song S W, Mao J W, Zhu Y F, Yao Z Y, Chen G H, Rao J F, Ouyang Y P. 2018b. Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, South China:A case study at the giant Zhuxi W-Cu skarn deposit[J]. Lithos, 304-307:180-199. doi: 10.1016/j.lithos.2018.02.002

    Su X J, Wang X L, Sun T, Xu X S, Dai M N. 2011. Trace elements, UPb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China:Implications for petrogenesis and W-Sn mineralization[J]. Lithos, 127(3/4):486-482. http://cn.bing.com/academic/profile?id=1bbdda5cdb722807cff3877a1ec08cda&encoded=0&v=paper_preview&mkt=zh-cn

    Wan Haozhang, Liu Zhanqing, Liu Shanbao, Chen Yuchuan, Wang Chenghui, Chen guohua, Liang Lijie, Li Saisai, Zhang Shude, Liu Xiaolin. 2015. LA-ICP-MS zircon U-Pb dating of granodioritic porphyry located Zhuxi copper-tungsten mine in northeast Jiangxi and its geological significance[J]. Rock and Mineral Analysis, 34(4):494-502 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201504021

    Wang W, Liu S W, Feng Y G, Li Q G, Wu F H, Wang Z Q, Wang R T, Yang P T. 2012. Chronology, petrogenesis and tectonic setting of the neoproterozoic tongchang dioritic pluton at the northwestern margin of the yangtze block:constraints from geochemistry and zircon U-Pb-Hf isotopic systematics[J]. Gondwana Research, 22(2), 699-716. doi: 10.1016/j.gr.2011.11.015

    Wang Xianguang, Liu Zhanqing, Liu Shanbao, Wang Chenghui, Liu Jianguang, Wan Haozhang, Chen Guohua, Zhang Shude, Liu Xiaolin. 2015. LA-ICP-MS zircon U-Pb dating and petrologic geochemistry of fine-grained granite from Zhuxi Cu-W deposit, Jiangxi Province and its geological significance[J]. Rock and Mineral Analysis, 34(5):592-599 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201505015

    Wu Xiaoping, Ouyang Yongpeng, Zhou Yaoxiang, Zhong Shijun, Chen Guohua. 2015. Geochemical characteristics of magmatite and their constraints on mineralization of the Zhuxi tungsten-copper polymetallic deposit in Jingdezhen, Jiangxi Province[J]. Geology in China, 42(6):1885-1896 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201506016

    Xiang Xinkui. 1992. The Cenozoic tectonic evolution and minerogenesis of the Taqian-Fuchun metallogenic belt in northeastern Jiangxi[J]. Geology and Prospecting, 28(1):20-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT199201005.htm

    Xie Tao, Feng Yi, Luo Luchuan, Meng Delei, He Ling. 2015. Study on ore-controlling characteristics of Zhuxi W-Cu deposit in Jingdezhen, Jiangxi province[J]. Acta Mineralogica Sinica, 35(S1):79-80 (in Chinese).

    Xu Xianbing, Zhang Yueqiao, Jia Dong, Shu Liangshu, Wang Ruirui. 2009. Early Mesozoic geotectonic processes in South China[J]. Geology in China, 36(3):573-593 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200903007

    Yang Minggui, Huang Shuibao, Lou Fasheng, Tang Weixin, Mao Subin. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area[J]. Geology in China, 36(3):528-543 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200903004

    Yang Minggui, Mei Yongwen. 1997. Characteristics of geology and metatllization in the Qinzhou-Hangzhou Paleoplate Juncture[J]. Geology and Mineral Resources of South China, 9(3):52-59 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700239261

    Yang Minggui, Wang Guanghui, Xu Meigui, Hu Qinghua. 2016a.Basic characteristics of the Marina Pacific tectonic activities in Jiangxi Province and its adjacent areas[J]. East China Geology, 37(1):10-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc201601002

    Yang minggui, Wu Fujiang, Song Zhirui, Lv Shaojun. 2015. North Jiangxi:A geological window of South China[J]. Acta Geologica Sinica, 89(2):222-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201502002.htm

    Yang Menggui, Xu Meigui, Hu Jinghua, Wang Guanghui, Chu Bengdun. 2016b. The structural composite metallogenic characteristics of Hubei Anhui Jiangxi giant ore concentration area[J]. Earth Science Frontiers, 23(4):129-136 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201604011

    Yang Minggui, Yu Zhongzhen, Tang Weixin, Xu Meigui. 2018. On strategy for deep prospecting[J]. Geology of Jiangxi, 19(1):1-18(in Chinese with English abstract).

    Yang Minggui, Zeng Zailin, Lai Zhijian, Wu Xinhua. 2008. The "multi-position in one" mode and dynamic mechanism of mineralization of tungsten deposit in Jiangxi[J]. Journal of Geomechanics, 14(3):241-250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200803008.htm

    Zhang Yueqiao, Xu Xianbing, Jia Dong, Shu Liangshu. 2009.Deformation record of the change from Indosinian collision related tectonic system to Yanshanian subduction related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm

    Zhong J, Chen Y J, Pirajno F. 2017. Geology, geochemistry and tectonic settings of the molybdenum deposits in South China:A review[J]. Ore Geology Reviews, 81(2):829-855. http://cn.bing.com/academic/profile?id=d90e72d4788ba1c0ca2da15e238df19d&encoded=0&v=paper_preview&mkt=zh-cn

    Zhong Nanchnag. 1992. Nappe structure in the Pingxiang-Leping area, Jiangxi[J]. Regional Geology of China, 19(1):1-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD199201000.htm

    Zhou Baozhi. 2000. Character of nappe structure and forecast of coalfield in Pingle Sag east section[J]. Journal of East China Geological Insitiute, 23(2):134-140 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb200002010

    胡正华, 刘栋, 刘善宝, 郎兴海, 张家菁, 陈毓川, 施光海, 王艺云, 雷天浩, 聂龙敏, 沙珉, 龚良信, 刘战庆. 2015.江西乐平塔前钼(钨)矿床成岩成矿时代及意义[J].成都理工大学学报(自然科学版), 42(3):312-322. doi: 10.3969/j.issn.1671-9727.2015.03.07
    黄雷, 周辉, 罗喜成, 杨明桂. 2017.赣西七宝山矿集带地质构造控矿特征[J].江西地质, 18(3):182-190. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-JXDZ201711001003.htm
    贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 2018.江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J].吉林大学学报(地球科学版), 48(4):1050-1070. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201804009
    霍海龙, 张达, 陈正乐, 毕珉烽, 陈国华, 贺晓龙, 李宁, 李兴俭, 薛伟, 欧阳永棚. 2018.江西景德镇地区中生代推覆构造变形特征与年代学约束[J].地质力学学报, 24(1):9-24. http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201801002
    江西省地质矿产勘查开发局. 2015.中国矿产地质志(江西卷)[M].北京:地质出版社.
    李岩, 潘小菲, 赵苗, 陈国华, 张天福, 刘茜, 张诚. 2014.景德镇朱溪钨(铜)矿床花岗斑岩的锆石U-Pb年龄、地球化学特征及其与成矿关系探讨[J].地质论评, 60(3):693-708. http://d.old.wanfangdata.com.cn/Periodical/dzlp201403020
    刘善宝, 刘战庆, 王成辉, 王登红, 赵正, 胡正华. 2017.赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其SmNd定年[J].地学前缘, 24(5):17-30. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201705006.htm
    刘善宝, 王成辉, 刘战庆, 刘建光, 万浩章, 陈国华, 张诚, 张树德, 张小林. 2014.赣东北塔前-赋春成矿带岩浆岩时代限定与序列划分及其意义[J].岩矿测试, 33(4):598-611. doi: 10.3969/j.issn.0254-5357.2014.04.023
    刘一, 骆学全, 张雪辉, 班宜忠, 曾勇, 周宗尧, 楼法生. 2016.钦杭Cu-Au-Pb-Zn-W成矿带(东段)主要地质成矿特征及潜力分析[J].地质学报, 90(7):1551-1572. doi: 10.3969/j.issn.0001-5717.2016.07.020
    刘战庆. 2016.江西北部朱溪超大型铜钨矿床构造-岩浆作用与成矿机制[D].北京: 中国地质科学院矿产资源研究所.
    欧阳永棚, 饶建锋, 尧在雨, 周显荣, 陈国华. 2018.朱溪式矽卡岩型矿床成矿作用及找矿方向[J].地质科技情报, 37(3):148-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201803020
    饶建锋, 尧在雨, 欧阳永棚. 2017.塔前-赋春钨铜多金属矿集区构造-岩浆-成矿作用[J].地球科学前沿, 7(5):632-644.
    万浩章, 刘战庆, 刘善宝, 陈毓川, 王成辉, 陈国华, 梁力杰, 李赛赛, 张树德, 刘小林. 2015.赣东北朱溪铜钨矿区花岗闪长斑岩LAICP-MS锆石U-Pb定年及地质意义[J].岩矿测试, 34(4):494-502. http://www.cnki.com.cn/Article/CJFDTotal-YKCS201504020.htm
    王先广, 刘战庆, 刘善宝, 王成辉, 刘建光, 万浩章, 陈国华, 张树德, 刘小林. 2015.江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究[J].岩矿测试, 34(5):592-599. http://d.old.wanfangdata.com.cn/Periodical/ykcs201505015
    吴筱萍, 欧阳永棚, 周耀湘, 钟仕俊, 陈国华. 2015.景德镇朱溪钨铜多金属矿床岩浆岩地球化学特征及其对成矿的约束[J].中国地质, 42(6):1885-1896. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150616&flag=1
    项新葵. 1992.赣东北塔前-赋春成矿带中新生代构造演化与成矿作用[J].地质与勘探, 28(1):20-27. http://www.cnki.com.cn/Article/CJFDTotal-DZKT199201005.htm
    谢涛, 冯毅, 罗渌川, 孟德磊, 贺玲. 2015.江西景德镇朱溪钨铜矿床控矿特征研究[J].矿物学报, 35(S1):79-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9132965
    徐先兵, 张岳桥, 贾东, 舒良树, 王瑞瑞. 2009.华南早中生代大地构造过程[J].中国地质, 36(3):573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007
    杨明桂, 黄水保, 楼法生, 唐维新, 毛素斌. 2009.中国东南陆区岩石圈结构与大规模成矿作用[J].中国地质, 36(3):528-543. doi: 10.3969/j.issn.1000-3657.2009.03.004
    杨明桂, 梅勇文. 1997.钦-杭古板块结合带与成矿带的主要特征[J].华南地质与矿产, 9(3):52-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700239261
    杨明桂, 王光辉, 徐梅桂, 胡青华. 2016a.江西省及邻区滨太平洋构造活动的基本特征[J].华东地质, 37(1):10-18. http://d.old.wanfangdata.com.cn/Periodical/hsdzykc201601002
    杨明桂, 吴富江, 宋志瑞, 吕少俊. 2015.赣北:华南地质之窗[J].地质学报, 89(2):222-233. http://d.old.wanfangdata.com.cn/Periodical/dqxb201603015
    杨明桂, 徐梅桂, 胡青华, 王光辉, 祝平俊. 2016b.鄂皖赣巨型矿集区的构造复合成矿特征[J].地学前缘, 23(4):129-136. http://d.old.wanfangdata.com.cn/Periodical/dxqy201604011
    杨明桂, 余忠珍, 唐维新, 徐梅桂. 2018.论"深地"找矿攻略[J].江西地质, 19(1):1-18.
    杨明桂, 曾载淋, 赖志坚, 吴新华. 2008.江西钨矿床"多位一体"模式与成矿热动力过程[J].地质力学学报, 14(3):241-250. doi: 10.3969/j.issn.1006-6616.2008.03.006
    张岳桥, 徐先兵, 贾东, 舒良树. 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J].地学前缘, 16(1):234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
    钟南昌. 1992.江西萍乡-乐平地区推覆构造[J].中国区域地质, 19(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004039292
    周宝直. 2000.萍乐坳陷东段推覆构造特征及煤田预测[J].华东地质学院学报, 23(2):134-140. doi: 10.3969/j.issn.1674-3504.2000.02.010
  • 期刊类型引用(4)

    1. 李明,陈天一. 西藏录龙地区铅锌矿的成矿控制因素及矿床地质特征. 中国金属通报. 2021(03): 111-112 . 百度学术
    2. 凌晨,李光明,张志,张林奎,曹华文. 西藏冈底斯成矿带拉屋锌铜多金属矿床成矿物质来源:硫化物LA-MC-ICP-MS原位S同位素约束. 西北地质. 2021(02): 43-54 . 百度学术
    3. 郑昱. 铅锌矿露天坑底及边帮矿体回采实践. 世界有色金属. 2020(07): 244-245 . 百度学术
    4. 尤廷海,黄鹏,周维德. 西藏谢通门县宗荣曲铅锌矿成矿地质特征及找矿远景分析. 中国金属通报. 2020(09): 42-44 . 百度学术

    其他类型引用(3)

图(11)
计量
  • 文章访问数:  2544
  • HTML全文浏览量:  479
  • PDF下载量:  4011
  • 被引次数: 7
出版历程
  • 收稿日期:  2019-01-01
  • 修回日期:  2019-06-18
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-08-24

目录

/

返回文章
返回
x 关闭 永久关闭