• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1:5万清河沟幅地质图的新认识

牛文超, 辛后田, 段连峰, 王根厚, 赵泽霖, 张国震, 郑艺龙

牛文超, 辛后田, 段连峰, 王根厚, 赵泽霖, 张国震, 郑艺龙. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1:5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 46(5): 977-994. DOI: 10.12029/gc20190503
引用本文: 牛文超, 辛后田, 段连峰, 王根厚, 赵泽霖, 张国震, 郑艺龙. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1:5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 46(5): 977-994. DOI: 10.12029/gc20190503
NIU Wenchao, XIN Houtian, DUAN Lianfeng, WANG Genhou, ZHAO Zelin, ZHANG Guozhen, ZHENG Yilong. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia-New understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. GEOLOGY IN CHINA, 2019, 46(5): 977-994. DOI: 10.12029/gc20190503
Citation: NIU Wenchao, XIN Houtian, DUAN Lianfeng, WANG Genhou, ZHAO Zelin, ZHANG Guozhen, ZHENG Yilong. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia-New understanding based on the geological map of Qinghegou Sheet (1: 50000)[J]. GEOLOGY IN CHINA, 2019, 46(5): 977-994. DOI: 10.12029/gc20190503

内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1:5万清河沟幅地质图的新认识

基金项目: 

中国地质调查局项目 DD20160039

中国地质调查局项目 DD20160039-17

详细信息
    作者简介:

    牛文超, 男, 1986年生, 硕士, 工程师, 主要从事区域地质调查和造山带构造研究工作; E-mail:billynu2003@163.com

    通讯作者:

    辛后田, 男, 1969年生, 博士, 教授级高级工程师, 主要从事岩石大地构造方面的研究; E-mail:xinht@163.com

  • 中图分类号: P54

The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia-New understanding based on the geological map of Qinghegou Sheet (1: 50000)

Funds: 

China Geology Survey Project DD20160039

China Geology Survey Project DD20160039-17

More Information
    Author Bio:

    NIU Wenchao, male, born in 1986, engineer, majors in regional geological survey and structural geology; E -mail: billynu2003@163.com

    Corresponding author:

    XIN Houtian, male, born in 1969, senior engineer, majors in petrogeotectonics; E-mail:xinht@163.com

  • 摘要:

    造山带内蛇绿混杂岩带结构与组成的精细研究可为古板块构造格局重建和古洋盆演化提供最直接证据。北山造山带内存在多条蛇绿混杂岩带,记录了古亚洲洋古生代以来的俯冲和闭合过程,然而其大地构造演化长期存在争议。红石山-百合山蛇绿混杂岩带位于北山造山带北部,主要由蛇绿(混杂)岩和增生杂岩组成,具典型的"块体裹夹于基质"的混杂岩结构特征,发育紧闭褶皱、无根褶皱、透入性面理和双重逆冲构造。蛇绿混杂岩带中岩块主要由超镁铁质-镁铁质岩(变质橄榄岩、辉石橄榄岩、异剥辉石岩、蛇纹岩)、辉长岩、玄武岩、斜长花岗岩、硅质岩等洋壳残块以及奥陶纪火山岩、灰岩等外来岩块组成,基质则主要为蛇纹岩、砂板岩及少量的绿帘绿泥片岩;在蛇绿混杂岩带北侧发育有台地相灰岩与深水浊积岩组成的沉积混杂块体,具滑塌堆积特征。蛇绿混杂岩带内发育三期构造变形,前两期为中深构造层次下形成的透入性变形,第三期为浅表层次的脆性变形,未形成区域性面理。空间上,由增生杂岩和蛇绿(混杂)岩组成的百合山蛇绿混杂岩带共同仰冲于绿条山组浊积岩之上,具有与红石山地区蛇绿混杂岩带相似的岩石组成、构造变形和时空结构特征。百合山蛇绿混杂岩带南侧发育同期的明水岩浆弧,由晚石炭世石英闪长岩-花岗闪长岩-二长花岗岩以及白山组岛弧火山岩组成,其与百合山蛇绿混杂岩带共同构成了北山造山带北部石炭-二叠纪的沟-弧体系,指示了红石山-百合山洋盆向南俯冲的极性。

    Abstract:

    Detailed studies of the texture and composition of ophiolite mélanges belt can provide important information for the reconstruction of ancient plate tectonics and the evolution of ancient ocean basins. The Beishan orogenic belt contains multiple belts of ophiolite mélanges and records Paleozoic subduction and closure processes of the Paleo-Asian Oceans. However, the tectonic evolution of the North Beishan orogenic belt (NBOB) is still hotly debated. Hongshishan-Baiheshan ophiolite mélanges belt which consists of ophiolite and accretionary complex is located in the north of the Beishan orogenic belt. The ophiolite mélanges show that typical block-in-matrix fabric is characterized by intense deformation recorded by tight fold, rootless intrafolial folds, penetrative foliations and duplex thrust faults. The mélange is composed of various exotic or native blocks, including ultramafic rock (metamorphic peridotite, pyroxene peridotite, peel pyroxenite and serpentinite), gabbro (344Ma), basalt, plagiogranite (297Ma), chert, limestone and Ordovician volcanic rocks. The matrix consists of serpentinite, sandstone and a small quantity of epidotechlorite schist. The sedimentary blocks composed of limestone and turbidite suggest a characteristic of slump deposit. The ophiolite mélanges belt developed three distinct foliations which showed middle and deep tectonic stratigraphy in the first two phase and nonpenetrative foliation in the third phase. Spatially, the Baiheshan ophiolite mélanges belt composed of ophiolite and accretionary complex was thrust over turbidite of Lvtiaoshan Formation and shared similar compositions, deformations, spatial and temporal distributions to that in Hongshishan area. The Mingshui magmatic arc consisting of quartz diorite-granodiorite-monzonitic granite and Baishan Formation arc volcanic rocks is located in the north of the Baiheshan ophiolite mélanges belt. Baiheshan ophiolite mélanges belt and the Mingshui magmatic arc constitute a Carboniferous-Permian trench-arc system within the North Beishan orogenic belt (NBOB) during the Carboniferous-Permian southward subduction of the Hongshishan-Baiheshan Ocean.

  • 稀土(Rare earth)是元素周期表中镧系元素和钪、钇共17种金属元素的总称。稀土是重要的自然资源,更是宝贵且关键的战略资源,在民用和军事方面用途十分广泛,同时也是先进装备制造业、新能源、新兴产业等高新技术产业不可或缺的原材料。在全球范围内,稀土资源分布不均,其主要分布于美国、俄罗斯、中国、印度、巴西等国家。中国稀土储量约占世界总储量的23%,却承担了世界90%以上的市场供应(中华人民共和国国务院新闻办公室, 2012)。经半个多世纪的过度开采,中国稀土资源保有储量及保障年限不断下降,鉴于此,发现和利用新类型稀土矿,可有效提高中国稀土资源储量,有力保障国家稀土资源供给安全。

    稀土矿床按成因分类主要有碱性岩—碱性超基性岩型、碳酸岩型、花岗岩型、砂矿型以及风化壳型(徐光宪, 1995);按工业类型分类主要有稀土-磁铁矿矿床、含稀土碳酸岩矿床、花岗岩风化壳型稀土矿床、含稀土伟晶岩矿床、含稀土磷块岩矿床以及独居石砂矿床(矿产资源工业要求手册, 2014)。近年来,多位学者报道在贵州威宁地区二叠系宣威组一段黏土岩中富含稀土元素,但是由于该稀土资源的综合利用技术多年来未取得突破(黄训华, 1997; 张震和戴朝辉, 2010; 周灵洁, 2012),稀土元素的赋存状态、富集机理以及稀土矿床成因类型等方面存在较大争议。2018年以来,笔者在滇东—黔西地区开展地质调查,发现研究区内广泛发育的二叠系宣威组富稀土黏土岩系属沉积成因,有别于Wang et al.(2018)提及的南方离子吸附型稀土矿,而类似于文俊等(2021)报道的川南沐川地区宣威组底部古风化壳-沉积型铌、稀土矿,该新类型稀土矿具有矿石禀赋好、矿层厚度大且较连续、“关键稀土元素(Critical rare earth element; Pr, Nd, Tb, Dy)”占比较高等特点,并伴生有铌、锆、镓等有价元素,其中镓的平均品位高达70.5×10-6,高于工业品位(Zhang et al., 2010)。另外,在稀土资源开发利用方面取得了重大突破,针对该稀土资源研发了“选择性浸出”新工艺(徐璐等, 2020),使稀土回收率可达90%以上,该新类型稀土资源有望实现规模化工业利用。滇东—黔西地区沉积型稀土资源的发现与利用,将有力支撑国家关键稀土资源战略储备。

    滇东—黔西地区大地构造位置位于扬子板块西缘(潘桂棠等, 2009),以北西向康定—水城断裂、北东向弥勒—师宗深大断裂带以及近南北向小江断裂所挟持的三角形地带(图 1)。区内地层属华南地层大区的扬子地层区之上扬子地层分区,主体位于黔西北地层小区,部分涉及到云南的昭通地层小区及曲靖地层小区。晚中生代以前主要是海相碳酸盐岩及陆源硅质碎屑岩,以后则主要为陆相沉积。火成岩主要为海西晚期陆相溢流的峨眉山玄武岩及同源异相的浅成侵入岩。

    图  1  研究区大地构造位置图(据骆耀南, 1985; 张志斌等, 2006
    ①—怒江断裂;②—金沙江—红河断裂;③—鲜水河断裂;④—龙门山山前断裂;⑤—小金河断裂;⑥—箐河—程海断裂;⑦—安宁河—绿汁江断裂;⑧—小江断裂;⑨—康定—水城断裂;⑩—弥勒—师宗断裂
    Figure  1.  Sketch map showing geotectonic position of the research area (after Luo Yaonan, 1985; Zhang Zhibin et al., 2006)
    ①-Nujiang fault; ②-Jinsha River—Red River fault; ③-Xian Shui River fault; ④-Longmen Mountain piedmont fault; ⑤-Xiao Jian River fault; ⑥-Jing River—Chenghai fault; ⑦-Anning River—Lü zhi River fault; ⑧-Xiao River fault; ⑨-Kang ding—Shui cheng fault; ⑩-Mile—Shizong fault

    在研究区内采集了186件宣威组一段沉积型稀土矿石样品,正样经破碎研磨至200目,取缩分样50 g/件,送至中国地质科学院矿产综合利用研究所分析测试中心,利用电感耦合等离子体质谱仪(Perkinelmer Optima Nexion 350X)测得稀土配分数据;再取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点缩分样20 g/件,送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用X射线衍射仪(日本理学Ultima Ⅳ)测得主要矿物成分。选取稀土含量(TREO)较高的毛家坪矿点、鱼布沟矿点矿石副样,块样用切割机(MecatomeT330)切成3 cm×1 cm×2 cm样品,用环氧树脂镶嵌制光片坯样;松散样经研磨至40目,用环氧树脂镶嵌制砂片坯样。以上坯样用自动磨抛机(EcomeT300)制得直径为3.5 cm圆柱形待测样品,将待测样品送至中国地质科学院矿产综合利用研究所岩石与工艺矿物学研究室,利用英国蔡司(ZEISS)Sigma 500型场发射扫描电镜及配套的德国布鲁克能谱仪(EDS)获取数据,并应用矿物特征自动定量分析软件(AMICS)进行矿物参数全自动定量分析。

    研究区内富稀土岩系发育于二叠系宣威组一段(P3x1)。宣威组出露面积较广(图 2),北至昭通金阳—大关一带,向南经昭通、威宁一直延伸至宣威—六盘水等地,呈北窄南宽的形态展布。宣威组平行不整合于二叠系峨眉山玄武岩组(P2-3em)之上、整合于三叠系东川组(T1dc)之下,是一套乐平世滨岸及湖沼相与同期曲流河相伴生产出的沉积地层,并且多出现在河泛平原背景上,无独立的大型湖泊沉积体系(戴传固, 2017)。

    图  2  研究区地质简图
    Figure  2.  Sketch Geological map of the study area

    据笔者对威宁县哲觉镇小箐沟(东经103°59′ 08″,北纬26°36′37″)二叠系宣威组一段典型地层剖面(Pm201)研究,查明宣威组一段富稀土岩系主要为灰白色铝土质黏土岩与粉砂质黏土岩互层(图 3a、b),偶见植物碎屑,中部夹砾屑砂岩(图 3f),砾屑呈次圆状,粒度2~4 mm不等,由下往上砾屑粒度表现出粗—细—粗的渐变特征;岩石碎裂呈砂状、松散片状(图 3c),局部可见层理构造;稀土含量较高的岩石主要为铝土质黏土岩(图 3de)、粉砂质黏土岩(⑨~⑪层,⑬~⑮层)。

    图  3  贵州威宁哲觉镇宣威组一段(P3x1)剖面-柱状图
    a—宣威组一段典型剖面;b—宣威组一段柱状图;c、d、e—铝土质黏土岩;f—砾屑砂岩
    Figure  3.  Typical profile and histogram of the first part of Xuanwei Group (P3x1) in the Zhejue town of Weining area, Guizhou Province
    a-Typical section of the first part of Xuanwei Group; b-Histogram of the first passage of Xuanwei Group; c, d, e-Bauxitic clay rock; f-Gravel sandstone

    研究区沉积型稀土矿石主要为深灰—灰白色铝土质黏土岩(图 3cde),具微细粒—隐晶质结构、鳞片状、块状构造。据偏光显微镜、X射线衍射仪、扫描电镜(图 4a)、AMICS矿物分析系统等仪器综合测试分析,结果显示矿石由黏土矿物(高岭石≈83%、埃洛石≈2%、伊利石 < 1%、绿泥石 < 1%)、金属氧化物(锐钛矿≈5%、褐铁矿≈1%、磁铁矿 < 1%、水铝石 < 1%)、硅酸盐矿物(石英+蛋白石 < 4%、火山玻璃≈2%)、金属硫化物(黄铁矿≈0.2%)以及其他方解石、针铁矿等微量矿物组成(徐莺等, 2018)。另外,偶见极少量的氟碳铈矿(图 4b)、方铈矿、磷铝铈矿等独立稀土矿物,其总含量 < 0.1%;以及少量锆石、磷灰石、金红石等含稀土元素的非独立稀土矿物,其总含量 < 1%。

    图  4  稀土矿石扫描电镜照片
    a—扫描电镜照片;b—独立稀土矿物显微照片;Q—石英;Kl—高岭石;Lm—褐铁矿;Bsn—氟碳铈矿
    Figure  4.  Scanning electron microscope photograph of rare earth ores
    a-Scanning electron microscope photograph; b-Micrograph of independent rare earth minerals; Q-Quartz; Kl-Kaolinite; Lm-Limonite; BsnBastnaesite

    本文作者在研究区内优选二叠系宣威组(P3x)出露较好的区域,通过32个探槽工程、6个剥土工程地表控制及22个钻探工程深部验证,初步查明研究区二叠系宣威组(P3x)一段稀土矿层厚度2~18 m不等,单个矿石样品TREO含量最高为1.6%,圈定三处稀土矿找矿靶区(图 5):

    图  5  稀土矿找矿靶区分布图
    1—稀土矿体;2—断层;3—找矿靶区及其编号
    Figure  5.  Sketch map showing distribution of the target areas for rare earth ore
    1-Rare earth deposit; 2-Fault; 3-Target area for prospecting and its number

    (1)Ⅰ号找矿靶区:该靶区矿体形态呈层状、似层状,圈定一个矿体,矿体倾角26°~31°,矿体厚度2.96~18.92 m,矿体在地表出露较连续,沿走向延伸可达8 km,矿体TREO加权平均品位为0.21%(边界品位:0.18%,下同),该找矿靶区内推断资源量约4万t,矿床规模达小型。

    (2)Ⅱ号矿找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、三个矿体,矿体倾角12° ~17°,矿体TREO加权平均品位0.23% ~ 0.39%,矿体厚度5.85~9.23 m,其中主矿体沿倾向延伸可达1.6 km,该找矿靶区内推断资源量约25万t,矿床规模达中型,并具有达大型的潜力。

    (3)Ⅲ号找矿靶区:该靶区矿体形态呈层状、似层状,共圈定出上下两个矿层、十个矿体,矿体倾角4° ~10°不等,矿体TREO加权平均品位0.18% ~ 0.46%,矿体厚度1.29~2.99 m。其中主矿体在地表出露连续,深部钻探控制也较稳定,沿倾向延伸可达2 km,该找矿靶区内推断资源量约2万t,矿床规模为小型。

    综上所述,该区稀土资源规模大,矿体埋藏浅,产状较缓且连续,有利于大规模露天开采。

    笔者在研究区内、找矿靶区以外的昭通、鲁甸、威宁炉山—东风—二塘、六盘水大湾、宣威大井等地(图 2),采集了宣威组一段铝土质黏土岩样品,分析结果显示均有稀土矿化异常,十余处稀土TREO品位超0.1%,最高品位0.42%,算数平均品位0.2%,矿体出露厚度2~6 m不等,推测滇东—黔西地区沉积型稀土资源找矿潜力巨大,远景资源量超100万t。

    物源区岩石经风化剥蚀形成的碎屑物质再搬运至沉积区沉积成岩,通常沉积岩继承了物源区岩石的稀土配分特征,风化和成岩作用对沉积岩中稀土元素再分配影响不大(Mclennan, 1993),所以稀土可作为一种有效的示踪物质。

    在研究区内优选4条宣威组典型剖面(Pm101、Pm104、Pm205、Pm207),逐层采集岩石样品,分别按玄武岩、铁质黏土岩、铝土质黏土岩、黏土质粉砂岩、炭质黏土岩和砾岩进行稀土元素球粒陨石标准化,从稀土配分模式(图 6)可以看出宣威组富稀土岩系中所有样品均与峨眉山玄武岩均具有相对富集轻稀土元素、亏损重稀土元素、呈现右倾模式的特征;不同的是,大部分铁质黏土岩、黏土质粉砂岩与玄武岩具有更加相近的配分模式,即都只表现出轻微的负Eu异常;而铝土质黏土岩层作为主要的含矿层却表现为明显的负Eu异常(田恩源等, 2020)。

    图  6  全岩球粒陨石稀土配分图(据田恩源等, 2020修改;标准化数值据Sun and McDonough, 1989)
    1—玄武岩;2—铁质粉砂质黏土岩;3—铝土质黏土岩;4—炭质粘土岩;5—黏土质粉砂岩;6—砂质砾岩
    Figure  6.  Chondrite-normalized REE patterns of the samples (modifiled from Tian Enyuan et al., 2020; standardized values modifiled from Sun and McDonough, 1989)
    1-Basalt; 2-Fe-Silty clay rock; 3-Bauxitic clay rock; 4-Carbonaceous clay rock; 5-Clayey siltstone; 6-Sandy conglomerate

    滇东—黔西地区沉积型稀土矿石中关键稀土元素(CREO)高于国内正在开发利用的四川冕宁碳酸岩型、白云鄂博碳酸岩型、山东微山碳酸岩型以及部分南方离子吸附型等大型、超大型稀土矿床,同样也高于国外即将开发利用的美国芒廷帕斯碳酸岩型、格陵兰岛碱性岩型等超大型稀土矿床。另外,该沉积型稀土资源与离子吸附型、古砂矿型稀土矿对比,在矿石品位、资源规模、集中程度、开采方式、环境影响等方面具有较大的优势,其开发前景巨大(图 7ab)。

    图  7  世界典型稀土矿床“关键稀土元素(CREE)”含量对比图(矿床序号如表 1所示)
    a—关键稀土元素含量-资源量对比图;b—关键稀土元素含量-矿石品位对比图
    Figure  7.  CREE content comparison diagram of typical rare earth deposits in the world (the sequence number of deposits is shown in Table 1)
    a-CREO-Resource comparison diagram; b-CREO-ore content comparison diagram
    表  1  世界典型稀土矿床对比表
    Table  1.  Comparison table of typical rare earth deposits in the world
    下载: 导出CSV 
    | 显示表格

    笔者开展该沉积型稀土矿原矿铵盐浸出对比实验,结果表明稀土原矿中仅有少量(< 5%)稀土元素以离子吸附状态赋存于矿石中。通过多轮技术攻关,利用选择性浸出技术控制焙烧温度和焙烧时间,准确破坏稀土矿中高岭石的特定结构,脱去其层状结构中的羟基,变为高活性的偏高岭石,但偏高岭石仍保持了片状的结构特征。焙烧温度低于550℃,高岭石未转化为偏高岭石,稀土无法有效浸出,焙烧温度高于850℃,高岭石结构被完全破坏,硅和铝晶型会发生变化,对稀土元素进行重新包裹,导致稀土元素无法有效浸出,焙烧过程中不使用添加剂避免产生额外的有害废气。该技术通过协同控制焙烧和浸出条件,选择性浸出偏高岭石中的稀土元素,稀土元素浸出率高于90%,同时主要杂质铝、铁、钛和硅浸出率均<5%,有效抑制杂质大量进入富稀土料液。该技术申请了国家发明专利(徐璐等, 2020)。该技术的推广应用,有望使研究区内的稀土资源实现规模化工业利用。

    滇东—黔西地区稀土矿的成因研究程度不高,且存在较大争议,目前主要有三种观点:一是风化淋滤型,杨瑞东等(2006)王伟(2008)以及Yang et al.(2008)通过分析稀土含矿层的地球化学特征,认为该矿床属与峨眉山玄武岩有关的风化壳型,峨眉山玄武岩及凝灰岩被强烈风化淋漓形成高岭石黏土岩,母岩中辉石的稀土元素被解析出来,被高岭石颗粒吸附,使稀土富集,形成稀土矿床;葛枝华(2018)同样赞同风化淋滤型稀土的观点,认为玄武岩风化过程实质就是一种脱硅富铝的过程,辉石、长石类矿物强烈分解,铁铝钛等氧化物明显增加,Ca、Na、Mg、K强烈迅速淋失,SiO2的含量不断降低,元素的迁移活动顺序是CaO>MgO>Na2O>SiO2,认为稀土元素通过风化淋滤作用在风化壳中不断富集起来。二是沉积-改造型,张海(2014)认为稀土矿床的形成与母岩的风化作用、沉积成岩作用以及地下流体作用有关,是沉积-再造型稀土矿床;黄训华(1997)周灵洁(2012)张海(2014)吴承泉等(2019)通过稀土物源、地球化学特征分析,认为稀土矿物源不仅是峨眉山玄武岩,还应包括后期喷发的中酸性火成岩,经风化剥蚀后形成富集稀土的玄武岩质、凝灰质及少量长英质碎屑,经水介质搬运至沉积盆地形成高岭石硬质黏土岩,成岩过程中遭受一定程度的热液蚀变,促进稀土元素再富集;三是部分学者通过对比研究二叠纪峨眉山玄武岩及其同期长英质凝灰岩的地球化学特征,认为稀土异常富集与峨眉山玄武岩同期的碱性岩浆活动产生的凝灰岩有关,并接受了后期低温热液改造(Xu et al., 2001; Zhou et al., 2002; Long et al., 2004; Dai et al., 2010; Zhao et al., 2016)。

    笔者研究发现,区域上宣威组富稀土岩系整体呈层状产出,从滇东到黔西横向演化和相变特征清晰;富稀土岩系底部常见河道相砾岩,辫状河沉积体系发育,层内偶见植物碎屑化石,层间发育水平层理等典型沉积构造;稀土含量较高的岩石主要为灰白色铝土质黏土岩,矿物组成主要为高岭石以及少量来自玄武岩及凝灰岩的典型矿物;由稀土配分模式看出铁质黏土岩和黏土质粉砂岩与玄武岩相比具有继承性,而铝土质黏土岩呈现出有别于玄武岩的明显负Eu异常特征(田恩源等, 2020);滇东—黔西地区位于上扬子陆块西缘,晚震旦世以来,长期处于相对稳定的台地沉积环境,区内无岩浆活动,不具备热液型稀土及南方离子吸附型稀土的成矿条件。基于以上认识,本文认为峨眉山玄武岩及同期的凝灰岩为富稀土岩系提供了主要的物质来源,而富稀土岩系中铝土质黏土岩很可能在沉积成岩过程中混入了大量上地壳富稀土物源区的物质,使得铝土质黏土岩中稀土异常富集。综上所述,本文认为滇东—黔西地区稀土资源成因类型为沉积型,是一种新类型的稀土资源。

    该稀土矿中稀土元素的赋存状态存在较大争议,前人分析矿石中稀土元素含量的高低可能与矿物组分有密切关系(周灵洁, 2012; Zhou et al., 2013; Zhang et al., 2016; Zhao et al., 2016, 2017; He et al., 2018)。在风化过程中,如果含稀土元素的副矿物抗风化能力弱,稀土元素则容易从副矿物中释放出来,以离子形式迁移富集于黏土矿物中,黏土矿物含量越高,稀土含量往往也相应比较高,稀土含量与黏土矿物含量就有较高的正相关性,据此推测认为稀土元素极有可能以离子吸附相和富含稀土元素的残余独立矿物相组成,与高岭石等黏土矿物含量密切相关;徐莺等(2018)利用电子探针、X射线衍射等现代分析测试手段并结合矿石选冶试验,认为稀土元素以类质同象为主、离子吸附相为辅的形式赋存于高岭石质黏土岩中;黄训华(1997)吴承泉等(2019)通过分析在强烈风化条件下母岩被解析形成的稀土元素可能存在的赋存状态,认为稀土元素可能以离子吸附态、胶体吸附态等的混合态赋存于高岭石硬质黏土岩中。以上研究并未提供确凿证据证明稀土元素赋存状态。本文作者开展多组原矿铵盐浸出对比实验,稀土元素浸出率不超过20%,间接说明了稀土原矿中以离子吸附态赋存的稀土元素占比很低;据矿石岩矿鉴定,查明以独立稀土矿物形式赋存的稀土元素占比<0.1%,以类质同像(非独立稀土矿物)形式赋存的稀土元素占比也很低;而通过550℃~850℃焙烧选择性浸出技术,准确破坏稀土元素载体矿物——高岭石的特定结构,稀土元素浸出率高于90%。基于以上研究,推测稀土元素极有可能以某种形态赋存于高岭石矿物晶体层间间隙中。

    随着全球新材料、新技术、新能源、高新电子、高端装备制造、先进军事装备等战略性产业迅猛发展,加快了对原材料的结构性调整,一批新兴战略性关键矿产成为各国竞相争夺的资源。根据稀土各元素特有的性质,轻稀土中的Pr、Nd,重稀土中的Tb、Dy等元素由于其在高强度永磁行业、新能源汽车产业、高端声光电材料等方面具备不可替代的地位,这些制约着全球新兴产业、高新科技健康发展的稀土元素称之为“关键稀土元素(CREE)”。据上海有色网公布的2020年6月稀土氧化物实时交易均价(据上海有色网未公布Tm2O3、Yb2O3、Lu2O3成交均价)显示(图 8),Pr、Nd、Tb、Dy关键稀土氧化物价格分别29.5万元/t、28.0万元/t、419万元/t、194万元/t,合计约占所有单一稀土氧化物价格总和的88%,可见关键稀土元素具有极高的经济价值和重要的战略地位。

    图  8  稀土氧化物价格对比柱状图
    Figure  8.  Price comparison bar chart of rare earth oxide

    滇东—黔西地区发现的沉积型稀土矿具有矿层厚、矿石品位高、资源潜力大、矿石中关键稀土元素(CREE)占比高等特点,特别是矿石选冶新工艺取得重大突破,使该类型稀土矿可能实现规模化工业利用。该沉积型稀土矿的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。

    (1)滇东—黔西地区发育于二叠系宣威组的稀土矿,其成因类型属沉积型。

    (2)稀土元素极有可能以某种形式赋存于高岭石矿物晶体层间间隙中。

    (3)该沉积型稀土矿具有矿体厚度大、矿石品位高、资源潜力大、开采成本低、矿石中关键稀土元素(CREO)占比高等优点,其开发利用前景较好。

    (4)该沉积型稀土资源的发现既丰富了全球稀土资源工业类型,又支撑了国家关键稀土资源战略储备。

    致谢: 中国地质调查局天津地质调查中心赵凤清研究员对本文的初稿进行了审阅,匿名审稿专家和郝梓国主编对本文提出了很多中肯的修改意见,让本文得到了很大的提升,在此一并致以诚挚的感谢。中国地质调查局基础部区调处公王斌在本文的写作过程当中给予了很多帮助,李奎芳、张超、任邦方、张永参加了部分野外工作,在此一并致以谢意!
  • 图  1   北山造山带(a、b)及清河沟地区地质简图(c)

    (图a和b为北山造山带,底图据Xiao et al., 2010;c据内蒙古1: 5万清河沟幅区域地质矿产图修编

    Figure  1.   Simplified geological map of Beishan orogenic belt (a, b) and Qinghegou area (c)

    (a and b, modified from Xiao et al., 2010; c, modified from geological map of Qinghegou area (1: 50000))

    图  2   百合山蛇绿混杂岩带结构及物质组成特征

    a—蛇绿混杂岩大比例尺图;b—增生杂岩大比例尺图;c—蛇绿混杂岩剖面图;d~i—蛇绿混杂岩带野外露头特征;j~k—灰岩与砂岩接触部位软沉积变形和灰岩中揉皱特征;l—与俯冲相关的叠瓦状逆冲构造

    Figure  2.   The texture and composition of the Baiheshan ophiolite mélanges belt

    a-Large scale topographical map of ophiolite mélanges; b-Large scale topographical map of accretionary wedge; c-Cross section of the Baiheshan ophiolite mélanges belt; d-i-Photographs of field occurrences of ophiolite mélange; j-k-Deformation characteristics of limestone and sandstone; l-Imbricate thrust structure related to the subduction

    图  3   蛇绿混杂岩带中不同块体及基质显微结构照片(正交偏光)

    a—变质橄榄岩(岩块);b—辉石橄榄岩(岩块);c—异剥辉石岩(岩块);d—辉长岩(岩块);e—玄武岩(岩块);f—斜长花岗岩(岩块);g—蛇纹岩(基质);h—长石岩屑砂岩(基质);i—硅泥质岩(基质);矿物代号:Srp—蛇纹石;Ol—橄榄石;Cpx—单斜辉石;Ab—角闪石;Pl—斜长石;Chl—绿泥石;Qz—石英;Act—阳起石;Tr—透闪石

    Figure  3.   Photomicrographs of various blocks and matrix within the Baiheshan ophiolite mélanges belt (cross-polarized light)

    a-Metamorphic peridotite (block); b-Pyroxene peridotite (block); c-Diallagite pyroxenolite (block); d-Gabbro (block); e-Basalt (block); f-Plagiogranite (block); g-Serpentinite (matrix); h-Sandstone (matrix); i-Siliceous argillaceous rock (matrix); Srp-Serpentine; Ol-Olivine; Cpx-Clinopyroxene; Ab-Amphibole; Pl-Plagioclase; Chl-Chlorite; Qz-Quartz; Act-Actinolite; Tr-Tremolite

    图  4   百合山蛇绿混杂岩带变形特征

    a~c—早期韧性流变引起的“σ”型眼球及强糜棱岩化带;d—砂板岩中形成的无根钩状褶皱;e—砂板岩中转折端形成的“M”型小褶皱;f—早期石英脉因强烈挤压形成的肠状褶皱;g—粉砂岩中形成的杆状构造;h—最晚期变形引起的膝折(脆性);i—灰岩与砂岩中逆冲断层

    Figure  4.   Deformation characteristics of the Baiheshan ophiolite mélanges belt

    a-c-Eyeball structures and strong mylonitization zone by the ductile shearing in the depth; d-Rootless fold within the sandstone; e-The"M"type small fold of sandstone in the thickened bending; f-Ptygmatic folding within the quartz vein; g-Rod structure in the siltstone; h-Kink fold by last deformation; i-Thrust fault within the limestone and sandstone

    图  5   斜长花岗岩锆石阴极发光图像及年龄谐和曲线

    Figure  5.   Cathodoluminescence (CL) images and LA-ICP-MS U-Pb concordia diagrams of zircons from plagiogranite within the Baiheshan ophiolite mélanges belt

    表  1   百合山蛇绿混杂岩带内不同类型的岩块和基质划分方案

    Table  1   The partition scheme of different types of block and matrix in the Baiheshan ophiolite mélanges belt

    下载: 导出CSV

    表  2   百合山地区斜长花岗岩LA-MC-ICP-MS锆石U-Pb同位素分析结果

    Table  2   LA-ICP-MS zircon U-Pb dating results of plagiogranite within the Baiheshan ophiolite mélanges belt

    下载: 导出CSV
  • Anonymous. 1972. Penrose field conference on ophiolites[J]. Geotimes, 17:24-25.

    Ao S J, Xiao W J, Han C M, Li X H, Qu J F, Zhang J E, Guo Q Q, Tian Z H. 2012. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China:Implications for the architecture of the Southern Altaids[J]. Geological Magazine, 149:606-625. doi: 10.1017/S0016756811000884

    Agard P, Yamato P, Monié P, Burov E. 2009. Timing and mechanisms of oceanic blueschist and eclogite exhumation:Implications for subduction mechanics[J]. Agu Fall Meeting Abstracts, 92(1/2):53-79. https://www.researchgate.net/publication/252962423_Timing_and_Mechanisms_of_Oceanic_Blueschist_and_Eclogite_Exhumation_Implications_for_Subduction_Mechanics

    Buchan C, P fander J, Kroner A, Brewer T S, Tomurtogoo O, Tomurhuu D, Cunningham D, Windley B F. 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt:Implications of granite geochronology in the Bayankhongor ophiolite zone[J]. Chemical Geology, 192 (1/2):23-45. https://www.sciencedirect.com/science/article/abs/pii/S0009254102001389

    Cawood P A, Kroner A. 2009. Earth accretionary orogens in space and time[J]. Geological Society of London Special Publication, 318:1-36. doi: 10.1144/SP318.1

    Cleven N R, Lin S F, Xiao W J. 2015.The Hongliuhe fold-and-thrust belt:Evidence of terminal collision and suture-reactivation after the Early Permian in the Beishan orogenic collage, Northwest China[J]. Gondwana Research, 27(2):796-810. doi: 10.1016/j.gr.2013.12.004

    Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123:387-411. doi: 10.1130/B30446.1

    Dilek Y, Furnes H. 2014. Ophiolites and Their Origins[J]. Elements, 10(2):93-100. doi: 10.2113/gselements.10.2.93

    France L, Koepke J, Ildefonse B, Cichy S B, Deschamps F. 2010.Hydrous partial melting in the sheeted dike complex at fast spreading ridges:Experimental and natural observations[J]. Contributions to Mineralogy and Petrology, 160(5):683-704. doi: 10.1007/s00410-010-0502-6

    Gillis K M, Coogan L A. 2002. Anatectic migmatites from the roof of an ocean ridge magma chamber[J]. Journal of Petrology, 43(11):2075-2095. doi: 10.1093/petrology/43.11.2075

    He Shiping, Zhou Huiwu, Ren Bingchen, Yao Wenguang, Fu Lipu. 2005. Crustal evolution of Palaeozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology, 38 (3):6-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200503002

    Huang Zengbao, Jin Xia. 2006. Geological characteristics and its setting for volcanic rocks of Baishan Formation in Hongshishan area of Gansu Province[J]. Gansu Geology, 15(1):19-24 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb200601003

    Jia Yuanqin, Zhao Zhixiong, Xu Hai, Wang Xinliang, Liu Qiang, Wang Jinrong. 2016. Zircon LA-ICP-MS U-Pb dating of and tectonic setting of rhyolites from Baishan Formation in Fengleishan area of the Beishan orogenic belt[J]. Geology in China, 43 (1):91-98 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601006

    Jian Ping, Liu Dunyi, Zhang Qi, Zhang Fuqin, Shi Yuruo, Shi Guanghai, Zhang Lvqiao, Tao Hua. 2003. Shrimp dating of ophiolite and leucocratic rocks within ophiolite[J]. Earth Science Frontiers, 10(4):439-456(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200304012

    Festa A, Dilek Y, Pini G A, Codegone G. 2012. Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations:Redefining and classifying mélanges[J]. Tectonophysics, 568/569:7-24. doi: 10.1016/j.tecto.2012.05.021

    Fu Changlei, Yan Zhen, Wang Zongqi, Niu Manlan, Guo Xianqing, Yu Liangjun, Li Jiliang. 2018. Texture and composition of the Lajishankou accretionary wedge of the South Qilian belt, NW China[J]. Acta Petrologica Sinica, 34(7):2049-2064(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201807014

    Kröner A, Windley B F, Badarch G, Tomurtogoo O, Hegner E, Jahn B M, Gruschka S, Khain E V, Demoux A, Wingate M T D. 2007.Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the ArabianNubian-Shield[J]. Geol. Soc. Am. Mem., 200:181-209.

    Kusky T, Windley B, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M. 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history:A record of 3.8 billion years of sea floor spreading, subduction, and accretion[J]. Gondwana Research, 24:501-547. doi: 10.1016/j.gr.2013.01.004

    Li Min, Ren Bangfang, Teng Xuejian, Zhang Yong, Duan Xiaolong, Niu Wenchao, Duan Lianfeng. 2018. Geochemical cherteristics, Zircon U-Pb age and Hf isotope and geological significance of granitoid in Beishan Orogenic Belt[J]. Earth Science, 43(12):4586-4605(in Chinese with English abstract).

    Li Min, Xin Houtian, Ren Bangfang, Ren Yunwei, Zhang Kuo, Duan Xiaolong, Niu Wenchao, Duan Lianfeng. 2019. Petrogenesis and structure significance of Late Palaeozoic granitoids in Hazhu area, Inner Mongolia[J]. Earth Science, 44(1):328-343 (in Chinese with English abstract).

    Li Xiangmin, Yu Jiyuan, Wang Guoqiang, Wu Peng. 2012.Geochronology of Jijitaizi ophiolite of Beishan aea, Gansu Provice, and its geological significance[J]. Geological Bulletin of China, 31(12):2025-2031(in Chinese with English abstract).

    Li Tingdong, Xiao Qinghui, Pan Guitang, Lu Songnian, Ding Xiaozhong, Liu Yong. 2019. Aconsideration about the development of Ocean Plate Geology[J]. Earth Science, 44(5):1441-1451(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905003.htm

    Lister G, Forster M. 2009. Tectonic mode switches and the nature of orogenesis[J]. Lithos, 113:274-291. doi: 10.1016/j.lithos.2008.10.024

    Liu Xueya, Wang Quan. 1995. Tectonics of the orogenic belts in Beishan Mts., western China and their evolution[J]. Geological Research, 28:37-48(in Chinese with English abstract).

    Lu Jincai, Shi Jizhong, Niu Yazhuo, Song Bo, Zhang Yuxuan, Yu Long. 2018. The Carboniferous-Permian sequence stratigraphy and sedimentary evolution of Beishan-Yin'e region, western Inner Mongolia[J]. Acta Petrologica Sinica, 34(10):3101-3115(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201810017

    Ludwing K R. 2003. Isoplot/Ex, A Geochronological Toolkit for Microsoft Excel, Version 3.00[J]. Berkeley Geochronology Center.Special Publication, 4:1-43.

    Moore J C, Silver E A. 1987. Continental margin tectonics:Submarine accretionary prisms[J]. Reviews of Geophysics, 25(6):1305-1312. doi: 10.1029/RG025i006p01305

    Niu Wenchao, Ren Bangfang Ren Yunwei, Sun Lixin, Duan Xiaolong, Duan Lianfeng, Li Min, Zhang Jiahui. 2017. Discovery of Neoproterozoic Gneissic Granite from the Beishan area, Inner Mongolia:Zircon U-Pb Chronologic Evidence[J]. Geology in China, 44(2):409-410(in Chinese with English abstract).

    Niu Wenchao, Ren Bangfang, Ren Yunwei, Duan Xiaolong, Duan Lianfeng, Sun Lixin, Li Min, Zhang Jiahui. 2019. Neoproterozoic magmatic records in the north Beishan Orogenic Belt:Evidence of the gneissic granites from the Hazhu area, Inner Mongolia[J]. Earth Science, 44(1):284-297(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201901020

    Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhi Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2008. Definition, classification, characteristics and diagnostic in dications of tectonic facies[J]. Geological Bulletin of China, 27(10):1614-1637(in Chinese with English abstract).

    Pan Guitang, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Ren Fei, Peng Zhimin, Wang Jiaxuan. 2019. Recignition of the oceanic Subduction-Accretion Zone from the orogenic belt in continents and its important scientific significance[J]. Earth Science, 44(5):1544-1561(in Chinese with English abstract).

    Peng Yinbiao, Yu Shengyao, Zhang Jianxin, Li Sanzhong, Sun Deyou. 2018. Timing of Early Paleozoic oceanic crust subduction in North Altun:Evidence from plagiogranite and granodiorite[J]. Geology in China, 45(2):334-350(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802009

    Ren Bangfang, Ren Yunwei, Niu Wenchao, Duan Lianfeng, Sun Linxin, Li Min, Tian Jian, Duan Xiaolong, Zhang Yongqing. 2019.Ziron U-Pb ages and Hf isotope characteristics of the volcanic rocks from Queershan group in the Hazhudongshan area of Beishan, Inne Mongolia and their geological significance[J]. Earth Science, 44(1):298-311(in Chinese with English abstract).

    Ren Yunwei, Ren Bangfang, Niu Wenchao, Sun Lixin, Li Min, Zhang Kuo, Zhang Jiahui, Duan Lianfeng. 2019. Carboniferous volcanics from the Baishan formation in the Hazhu Area, Inner Mongolia:Implications for the Late Paleoic active continental margin magmatism in the Northern Beishan[J]. Earth Science, 44(1) 312-327(in Chinese with English abstract).

    Sengör A M C, Natal'In B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364:299-307. doi: 10.1038/364299a0

    Shi Y R, Li L L, Krner A, Ding J, Zhang W, Huang Z B, Jian P. 2017.Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt[J]. Acta Geochimica, 36(2):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdqhx-e201702015

    Shervais J W, Choi S H, Sharp W D, Ross J, Zoglman-Schuman M, Mukasa S B. 2011. Serpentinite matrix mélange:Implications of mixed provenance for mélange formation[J]. Geological Society of America Special Paper, 480:1-30.

    Song D F, Xiao W J, Windley B F, Han C M, Tian Z H. 2015. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, Southern Central Asian Orogenic Belt[J]. Lithos, 224-225:195-213. doi: 10.1016/j.lithos.2015.03.005

    Song D F, Xiao W J, Han C M, Tian Z H, Li Y C. 2018. Accretionary processes of the central segment of Beishan:Constraints from structural deformation and 40Ar-39Ar geochronology[J]. Acta Petrologica Sinica, 34(7):2087-2098(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201807016

    Michael S, Gregory F M, Gaku K, Yujin K, Achim J K, Siegfried L, JinOh P, Elizabeth J S, Xin Su, Michael B U, Xixi Zhao. 2009.Origin and evolution of asplay fault in the Nankai accretionary wedge[J]. Nature Geoscience, 2:648-652. doi: 10.1038/ngeo609

    Sun Lixin, Zhang Jiahui, Ren Bangfang, Niu Wenchao, Ren Yunwei, Zhang Kuo. 2017. Geochemical characteristics and U-Pb age of Baiyunshan ophiolite mélange in the Beishan Orogenic Belt and their geological implications[J]. Acta Petrologica et Mineralogica, 36(2):131-147(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201702001

    Tian Z H, Xiao W J, Windley B F, Lin L N, Han C M, Zhang J E, Wan B, Ao S J, Song D F, Feng J Y. 2014. Structure, age and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélanges, Beishan, southernmost Altaids[J]. Gondwana Research, 25(2):820-841. doi: 10.1016/j.gr.2013.05.006

    Wakabayashi J, Dilek Y. 2011. Introduction:Characteristics and tectonic settings of mélanges, and their significance for societal and engineering problems[J]. The Geological Society of America Special Paper, 480. http://d.old.wanfangdata.com.cn/Periodical/gjjyxzxyxb201003013

    Wakabayashi J. 2015. Anatomy of a subduction complex:Architecture of the Franciscan complex, California, at multiple length and time scales[J]. International Geology Review, 57:669-746. doi: 10.1080/00206814.2014.998728

    Wakita K, Metcalfe I. 2005. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asian Earth Sciences, 24:670-702. https://www.sciencedirect.com/science/article/pii/S136791200400080X

    Wakita K. 2015. OPS mélange:A new term for mélanges of convergent margins of the word[J]. International Geology Review, 57:529-539. doi: 10.1080/00206814.2014.949312

    Wang Genhou, Han Fanglin, Yang Yunjun, Li Yuanqing, Cui Jiangli. 2009. Discovery and geologic significance of Late Paleozoic accretionary complexes in central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 28(9):1181-1187 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909003

    Wang Guocan, Zhang Pan. 2019. A new understanding on the emplacement of ophiolitic mélanges and its tectonic significance:Insights from the structural analysis of the remnant oceanic Basin-Type ophiolitic mélanges[J]. Earth Science, 44(5):1688-1704 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905020

    Wang Guoqiang, Li Xiangmin, Xu Xueyi, Yu Jiyuan, Wu Peng. 2014.Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 30(6):1685 -1694(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406011

    Wang Xiaohong, Yang Jianguo, Xie Xie, Wang Lei. 2013. The genetic type and tectonic significance of Hongshishan basic-ulteabasic Rocks in Beishan, Gansu Province[J]. Northwestern Geology, 46 (1):40-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBDI201301009.htm

    Wei Zhijun, Huang Zengbao, Jin Xia, Sun Yongjun, Huo Jinchang. 2004. Geological characteristics of ophiolite migmatitic complex of Hongshishan region, Gansu[J]. Northwestern Geology, 37(2):13-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200402003

    Windley B F, Alexeiev D, Xiao W J, Kroner A, Badarch G. 2007.Tectonic models for accretion of the Central Asian Orogenic Belt.[J] Journal of the Geological Society, 164:31-47. doi: 10.1144/0016-76492006-022

    Xiao W J, Mao Q G, Windley B F, Han C M, Qu J F, Zhang J E, Ao S J, Guo Q Q, Cleven N R, Lin S F, Shan Y H, Li J L. 2010, Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310:1553-1594. doi: 10.2475/10.2010.12

    Xiao W J, Ao S J, Yang L, Han C M, Wan B, Zhang J E, Zhan Z Y, Li R, Chen Z Y, Song S H. 2017. Anatomy of composition and nature of plate convergence:Insights for alternative thoughts for terminal India-Eurasia collision[J]. Science China (Earth Sciences), 60:1015-1039. doi: 10.1007/s11430-016-9043-3

    Yan Zhen, Wang Zongqi, Fu Changlei, Niu Manlan, Ji Wenhua, Li Rongshe, Qi Shengsheng, Mao Xiaochang. 2018. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 37(2/3):167-191 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2018Z1001.htm

    Yang Hequn, Li Ying, Zhao Guobin, Li Wenyuan, Wang Xiaohong, Jiang Hanbing, Tan Wenjuan, Sun Nanyi. 2010. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology, 43(1):26-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201001002

    Zhang Kexin, Yin Hongfu, Zhu Yunhai, Wang Guocan, Feng Qinglai, Gong Yiming. 2003. Smith Strata and Non-Smith Strata[J]. Earth Science, 23(6):24-30(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200304001

    Zhang Kexin, He Weihong, Xu Yadong, Luo Mansheng, Song Bowen, Kou Xiaohu, Zhang Zhiyong, Xiao Qinghui, Pan Guitang. 2016.Palaeo geographic distribution and tectonice bolytion of OPS in China[J]. Earth Science Frontiers, 23(6):24-30(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DXQY201606007.htm

    Zhang Jin, Ma Zongjin, Ren Wenjun, Lei Yongliang. 2007. The role of olistostrome in thrusting-A case study from the Miboshan Formation of Middle Ordovician in the Niushou Mountain, Ningxia[J]. Earth Science Frontiers, 14(4):85-95(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200704011.htm

    Zhang Jin, Deng Jinfu, Xiao Qinghui, Lu Songnian, Pan Guitang, Zhang Zhiyong, Feng Yanfang. 2012. New advances in the study of ophiolites[J]. Geological Bulletin of China, 31(1):1-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201201001

    Zhao Zhixiong, Jia Yuanqin, Xu Hai, Wang Jinrong, Wang Xinliang, Liu Qiang. 2015. LA-ICP-MS Zicon U-Pb age of Quartz diorite from the Jiaochagou Area in Beishan Orogenic Belt, Inner Mongolia, and its tectonic significance[J]. Acta Geologica Sinica, 89(7):1210-1218 (in Chinese with English abstract).

    Zhao Zhixiong, Xiong Yu, Jia Yuanqin, Wang Jinrong, Xu Hai, Gao Jian, Wang Xinliang, Liu Qiang. 2018. The continental arcs magmatic at the Dulongbao Area in Beishan orogenic belt in Late Carboniferous:Evidences from zircon U-Pb dating and geochemistry of the granodiorite[J]. Geological Review, 64(3):597-609 (in Chinese with English abstract).

    Zuo Guochao, He Guoqi. 1990. Plate Tectonics and Metallogenic Regularities in Beishan Region[M]. Beijing:Peking University Press, 1-226 (in Chinese).

    付长垒, 闫臻, 王宗起, 牛漫兰, 郭现轻, 俞良军, 李继亮. 2018.南祁连拉脊山口增生楔的结构与组成特征[J].岩石学报, 34(7):2049-2064. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201807014
    何世平, 周会武, 任秉探, 姚文光, 付力浦..2005.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 38(3):6-15. doi: 10.3969/j.issn.1009-6248.2005.03.002
    黄增保, 金霞. 2006.甘肃北山红石山蛇绿混杂岩带中基性火山岩构造环境分析[J].中国地质, 33(5):1030-1037. doi: 10.3969/j.issn.1000-3657.2006.05.011
    贾元琴, 赵志雄, 许海, 王新亮, 刘强, 王金荣. 2016.北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境[J].中国地质, 43(1):91-98. doi: 10.3969/j.issn.1000-3657.2016.01.006
    简平, 刘敦一, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘, 10(4):439-456. doi: 10.3321/j.issn:1005-2321.2003.04.012
    李敏, 任邦方, 滕学建, 张永, 段霄龙, 牛文超, 段连峰. 2018.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义[J].地球科学, 43(12):4586-4605. http://d.old.wanfangdata.com.cn/Periodical/dqkx201812023
    李敏, 辛后田, 任邦方, 任云伟, 张阔, 段霄龙, 牛文超, 段连峰. 2019.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义[J].地球科学, 44(1):328-343. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901023
    李向民, 余吉远, 王国强, 武鹏. 2012.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 31(12):2025-2031. doi: 10.3969/j.issn.1671-2552.2012.12.011
    李廷栋, 肖庆辉, 潘桂棠, 陆松年, 丁孝忠, 刘勇. 2019.关于发展洋板块地质学的思考[J].地球科学, 44(5):1441-1451. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201905003
    刘雪亚, 王荃.1995.中国西部北山造山带的大地构造及其演化[J].地学研究, 28:7-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240926
    卢进才, 史冀忠, 牛亚卓, 宋博, 张宇轩, 余龙.2018.内蒙古西部北山-银额地区石炭纪-二叠纪层序地层与沉积演化[J].岩石学报, 34(10):3101-3115. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201810017
    牛文超, 任邦方, 任云伟, 孙立新, 段霄龙, 段连峰, 李敏, 张家辉. 2017.内蒙古北山地区发现新元古代片麻状花岗岩:锆石U-Pb定年证据[J].中国地质, 44(2):409-410. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170219&flag=1
    牛文超, 任邦方, 任云伟, 段霄龙, 段连峰, 孙立新, 李敏, 张家辉. 2019.北山北带新元古代岩浆记录:来自内蒙古哈珠地区片麻状花岗岩的证据[J].地球科学, 44(1):284-297. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901020
    潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2008.大地构造相的定义、划分、特征及其鉴别标志[J].地质通报, 27(10):1614-1637. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200810004
    潘桂棠, 肖庆辉, 张克信, 尹福光, 任飞, 彭智敏, 王嘉轩. 2019.大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J].地球科学, 44(5):1544-1561. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905012
    彭银彪, 于胜尧, 张建新, 李三忠, 孙德有. 2018.北阿尔金地区早古生代洋壳俯冲时限:来自斜长花岗岩和花岗闪长岩的证据[J].中国地质, 45(2):334-350. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180209&flag=1
    任邦方, 任云伟, 牛文超, 段连峰, 孙立新, 李敏, 田健, 段霄龙, 张永清. 2019.内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U-Pb年龄、Hf同位素特征及其地质意义[J].地球科学, 44(1):298-311. http://d.old.wanfangdata.com.cn/Periodical/dqkx201901021
    任云伟, 任邦方, 牛文超, 孙立新, 李敏, 张阔, 张家辉, 段连峰. 2019.内蒙古哈珠地区石炭纪白山组火山岩:北山北部晚古生代活动陆缘岩浆作用的产物[J].地球科学, 44(1)312-327. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201901024.htm
    孙立新, 张家辉, 任邦方, 牛文超, 任云伟, 张阔. 2017.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志, (2):131-147. doi: 10.3969/j.issn.1000-6524.2017.02.001
    宋东方, 肖文交, 韩春明, 田忠华, 李咏晨. 2018.北山中部增生造山过程:构造变形和40Ar-39Ar年代学制约[J].岩石学报, 34(7):2087-2098. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201807016
    王根厚, 韩芳林, 杨运军, 李元庆, 崔江利. 2009.藏北羌塘中部晚古生代增生杂岩的发现及其地质意义[J].地质通报, 28(9):1181-1187. doi: 10.3969/j.issn.1671-2552.2009.09.003
    王国灿, 张攀. 2019.蛇绿混杂岩就位机制及其大地构造意义新解:基于残余洋盆型蛇绿混杂岩构造解析的启示[J].地球科学, 44(5):1688-1704. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905020
    王国强, 李向民, 徐学义, 余吉远, 武鹏. 2014.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 30(6):1685-1694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201406011
    王小红, 杨建国, 谢燮, 王磊. 2013.甘肃北山红石山基性-超基性岩体的成因类型及构造意义[J].西北地质, 46(1):40-55. doi: 10.3969/j.issn.1009-6248.2013.01.005
    魏志军, 黄增保, 金霞, 孙永君, 火军昌. 2004.甘肃红石山地区蛇绿混杂岩地质特征[J].西北地质, 37(1):13-18. doi: 10.3969/j.issn.1009-6248.2004.01.003
    闫臻, 王宗起, 付长垒, 牛漫兰, 计文化, 李荣社, 祁生胜, 毛晓长. 2018.混杂岩基本特征与专题地质填图[J].地质通报, 37(2/3):167-191. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201802001
    杨合群, 李英, 赵国斌, 李文渊, 王小红, 姜寒冰, 谭文娟, 孙南一. 2010.北山蛇绿岩特征及构造属性[J].西北地质, 43(1):26 -36. doi: 10.3969/j.issn.1009-6248.2010.01.002
    张克信, 殷鸿福, 朱云海, 王国灿, 冯庆来, 龚一鸣. 2003.史密斯地层与非史密斯地层[J].地球科学, 28(4):361-369. doi: 10.3321/j.issn:1000-2383.2003.04.001
    张克信, 何卫红, 徐亚东, 骆满生, 宋博文, 寇晓虎, 张智勇, 肖庆辉, 潘桂棠. 2016.中国洋板块地层分布及构造演化[J].地学前缘, 23(6):24-30. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606002
    张进, 马宗晋, 任文军, 雷永良. 2007.滑塌堆积在逆冲构造中的作用——以宁夏牛首山中奥陶统米钵山组为例[J].地学前缘, 14(4):85-95. doi: 10.3321/j.issn:1005-2321.2007.04.009
    张进, 邓晋福, 肖庆辉, 陆松年, 潘桂棠, 张智勇, 冯艳芳. 2012.蛇绿岩研究的最新进展[J].地质通报, 31(1):1-9. doi: 10.3969/j.issn.1671-2552.2012.01.001
    赵志雄, 贾元琴, 许海, 王金荣, 王新亮, 刘强. 2015.北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义[J].地质学报, 89(7):1210-1218. doi: 10.3969/j.issn.0001-5717.2015.07.005
    赵志雄, 熊煜, 贾元琴, 王金荣, 许海, 高鉴, 王新亮, 刘强. 2018.北山独龙包地区晚石炭世陆缘弧岩浆作用-花岗闪长岩锆石U-Pb年龄及地球化学证据[J].地质论评, 64(3):597-609. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201803007.htm
    左国朝, 何国琦. 1990.北山板块构造及成矿规律[M].北京:北京大学出版社, 1-226.
  • 期刊类型引用(9)

    1. 孔祥科,李义,王平,韩占涛,刘圣华,张兆吉,王妍妍. 制革污泥渗滤液中特征污染物对土壤氨氮转化及微生物群落结构的影响. 中国地质. 2024(05): 1676-1685 . 本站查看
    2. 谷培科,陆海建,梁小阳,王俊,邓一荣. 华南地区某地块地下水污染特征与成因分析. 农业与技术. 2024(22): 96-99 . 百度学术
    3. 李晓源,程庆禧,张宇霆,陆海建,邓一荣. 华南典型工业地块地下水污染特征与成因分析. 生物化工. 2024(06): 114-117 . 百度学术
    4. 陈秀梅. 基于因子-聚类分析的地下水中阳离子来源研究. 环境监控与预警. 2023(02): 15-21 . 百度学术
    5. 陈秀梅. 南通市深层地下水中氨氮的影响因素研究. 环境监测管理与技术. 2023(04): 72-75 . 百度学术
    6. 吕晓立,郑跃军,韩占涛,李海军,杨明楠,张若琳,刘丹丹. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因. 地学前缘. 2022(03): 88-98 . 百度学术
    7. 吕晓立,刘景涛,韩占涛,朱亮,李海军. 城镇化进程中珠江三角洲高锰地下水赋存特征及成因. 环境科学. 2022(10): 4449-4458 . 百度学术
    8. 郑艺文,李福杰,刘晓煌,常铭,赵宏慧,赖明,张子凡. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应. 中国地质. 2022(05): 1361-1373 . 本站查看
    9. 曹建文,夏日元,唐仲华,赵良杰,王喆,栾崧,王松. 粤港澳大湾区地下水资源特征及开发潜力. 中国地质. 2021(04): 1075-1093 . 本站查看

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  3335
  • HTML全文浏览量:  491
  • PDF下载量:  4116
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-07-13
  • 修回日期:  2019-09-29
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-10-24

目录

/

返回文章
返回
x 关闭 永久关闭