• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

河西走廊平山湖盆地早白垩世构造变形期次及其碎屑锆石U-Pb年龄约束

邵浩浩, 陈宣华, 张达, 邵兆刚, 李冰, 王增振, 张义平, 徐盛林, 史建杰, 苗慧心

邵浩浩, 陈宣华, 张达, 邵兆刚, 李冰, 王增振, 张义平, 徐盛林, 史建杰, 苗慧心. 河西走廊平山湖盆地早白垩世构造变形期次及其碎屑锆石U-Pb年龄约束[J]. 中国地质, 2019, 46(5): 1079-1093. DOI: 10.12029/gc20190509
引用本文: 邵浩浩, 陈宣华, 张达, 邵兆刚, 李冰, 王增振, 张义平, 徐盛林, 史建杰, 苗慧心. 河西走廊平山湖盆地早白垩世构造变形期次及其碎屑锆石U-Pb年龄约束[J]. 中国地质, 2019, 46(5): 1079-1093. DOI: 10.12029/gc20190509
SHAO Haohao, CHEN Xuanhua, ZHANG Da, SHAO Zhaogang, LI Bing, WANG Zengzhen, ZHANG Yiping, XU Shenglin, SHI Jianjie, MIAO Huixin. The Early Cretaceous tectonic deformation stages and detrital zircon U-Pb ages of Pingshanhu Basin in Hexi Corridor[J]. GEOLOGY IN CHINA, 2019, 46(5): 1079-1093. DOI: 10.12029/gc20190509
Citation: SHAO Haohao, CHEN Xuanhua, ZHANG Da, SHAO Zhaogang, LI Bing, WANG Zengzhen, ZHANG Yiping, XU Shenglin, SHI Jianjie, MIAO Huixin. The Early Cretaceous tectonic deformation stages and detrital zircon U-Pb ages of Pingshanhu Basin in Hexi Corridor[J]. GEOLOGY IN CHINA, 2019, 46(5): 1079-1093. DOI: 10.12029/gc20190509

河西走廊平山湖盆地早白垩世构造变形期次及其碎屑锆石U-Pb年龄约束

基金项目: 

中国地质调查局“祁连—天山及周缘盆山结合带深部地质调查”项目 121201101000150013

详细信息
    作者简介:

    邵浩浩, 男, 1992年生, 硕士, 主要从事构造地质学研究和工程方面工作; E-mail:shaohaohao@jy-tz.com

    通讯作者:

    陈宣华, 男, 1967年生, 博士, 研究员, 博士生导师, 主要从事构造地质学、深地探测与深地科学研究; E-mail:xhchen@cags.ac.cn

  • 中图分类号: P542;P597

The Early Cretaceous tectonic deformation stages and detrital zircon U-Pb ages of Pingshanhu Basin in Hexi Corridor

Funds: 

China Geological Survey Project 121201101000150013

More Information
    Author Bio:

    SHAO Haohao, male, born in 1992, master, mainly engages in structural geology research and engineering work; E-mail:shaohaohao@jy-tz.com

    Corresponding author:

    CHEN Xuanhua, male, born in 1967, doctor, professor, supervisor of doctor candidates, mainly engages in structural geology study and deep earth exploration; E-mail:xhchen@cags.ac.cn

  • 摘要:

    河西走廊北部的平山湖盆地,被围限于龙首山、北大山和合黎山之间,是一个在早白垩世受南北两侧逆冲断层共同控制形成并发展的盆地。笔者通过研究盆地内下白垩统沉积特征、构造变形、生长地层以及碎屑锆石U-Pb年代学特征,划分了平山湖盆地在早白垩世的构造演化期次,并恢复其形成演化过程。盆地内发育一套由下向上总体变细的下白垩统庙沟群沉积序列,盆地内构造变形以NE-SW向挤压和近E-W向伸展为主,庙沟群上岩组的碎屑锆石最小年龄为(129.3±1.8)Ma,可能代表了地层沉积和同期地堑发育的最早时间。由此得出,在早白垩世早期发育挤压构造盆地,同构造生长地层为挤压盆地的形成与构造演化提供了时代约束;在早白垩世晚期发育伸展断陷盆地,由挤压到伸展的转换时间晚于129.3 Ma。

    Abstract:

    Pingshanhu basin, located in the north of Hexi Corridor, is bounded by the Longshou Mountain in the south, the Beida Mountain in the north, and Heli Mountain in the west. The deposition and evolution of Pingshanhu basin were controlled by overthrust fault in the Early Cretaceous. In this paper, the authors deepened the study of the Early Cretaceous Miaogou Group, mainly about the geometry of the basin, the tectonic stress field and detrital zircon. The authors made a detail discussion on the tectonic evolution of Pingshanhu Basin. In Pingshanhu Basin, Miaogou Group exhibits an upward-fining sedimentary sequence. The tectonic deformation is dominated by NE-SW trending compression and E-W trending extension. The latest zircon age is (129.3±1.8) Ma, which may represent the earlieset time of the upper rock formation and the formation age of graben. On the basis of the sedimentary facies of Early Cretaceous Miaogou Group, the tectonic style, tectonic stress field and zircon ages of clastic rocks, the authors hold that Pingshanhu Basin was a compressional basin in the early Early Cretaceous. The growth strata restricted the compressional structure ages. It was an extensional rifted basin in late Early Cretaceous. The conversion time was posterior to 129.3 Ma.

  • 赣南兴国和宁都脱贫攻坚1∶50 000水文地质调查数据集是以项目实施过程中可公开发布的信息为基础,整理编制形成,旨在为赣南兴国县和宁都县脱贫攻坚提供支撑服务。获取本数据集的工作区位于赣州市北部的兴国县和宁都县,该区地貌以中低山、丘陵为主,为江西省的山区县,属亚热带季风湿润气候。兴国县和宁都县年降水量多在1 500~1 700 mm,区内河流主要属赣江贡水支流的平固江水系和梅江水系。工作区处于南岭东西向构造带的北东端和武夷山隆起带交接复合地区,经历多期次构造活动。区内发育的兴国、宁都、赖村等多个盆地,主要分布一套白垩系陆相红色岩系,属洪积、湖积、河流相沉积,是在炎热干燥气候条件下形成的类磨拉石构造,构成砾岩−砂岩−砾岩的沉积旋回,相变较显著。发育的青塘盆地、梅窖盆地等盆地主要发育石炭系。盆地周边被震旦系、寒武系变质岩和加里东期、燕山期花岗岩环绕,松散岩类分布范围狭小且零星。地下水以大气降水补给为主,水循环以浅循环为主,多以泉或散流形式排出地表,但受地质构造、地层岩性和地形地貌影响,区内含水岩组富水性普遍较差,水质类型以重碳酸型低矿化淡水为主。

    赣南兴国和宁都脱贫攻坚水文地质调查数据集基本信息简表见表1

    表  1  数据库(集)元数据简表
    条目 描述
    数据库(集)名称 赣南兴国和宁都脱贫攻坚1∶50 000水文地质调查数据集
    数据库(集)作者 龚 磊,中国地质调查局水文地质环境地质调查中心
    王新峰,中国地质调查局水文地质环境地质调查中心
    宋 绵,中国地质调查局水文地质环境地质调查中心
    李红燕,中国地质调查局水文地质环境地质调查中心
    肖则佑,江西省地质矿产勘查开发局赣南地质调查大队
    胡啟锋,江西有色地质勘查二队
    王 进,江西省地质矿产勘查开发局赣南地质调查大队
    吴琳伟,江西有色地质勘查二队
    王 磊,江西有色地质勘查二队
    缪 赛,江西有色地质勘查二队
    数据时间范围 2017.1—2017.9
    地理区域 江西省赣州市兴国县、宁都县
    数据格式 *.xlsx
    数据量 69.90 KB
    数据服务系统网址 http://dcc.cgs.gov.cn
    基金项目 中国地质调查局地质调查项目(DD20179262)和国家自然科学基金项目(41330314)联合资助
    语种 中文
    数据库(集)组成 钻孔基本信息表.xlsx、钻孔地层描述表.xlsx、矿泉水点普查调查表.xlsx、矿泉水分析测试结果表.xlsx、饮用水分析测试结果表.xlsx
    下载: 导出CSV 
    | 显示表格

    本次工作过程中,所实施钻孔均依据《DZ/T 0282−2015水文地质调查规范(1∶50 000)》、《DZ/T 0148−2014 水文水井地质钻探规程》相关要求进行了数据记录,依据支撑地方政府脱贫攻坚需求,本数据集对钻孔重要信息进行了整理集成,形成地质钻孔基本信息表和钻孔地层描述表。

    钻孔涌水量采用三角堰箱和超声波流量计进行双重校核确定,钻孔水位埋深采用水位尺(型号In-Situ Water Level Meter 200)进行测量。

    在钻孔抽水试验接近结束时采取水样,送实验室检测。其中在XGZK01、XGZK02、XGZK05、XGZK06四个钻孔中采集水样进行矿泉水分析,在XGZK01、XGZK02、XGZK03、XGZK04四个钻孔中采集水样进行饮用水分析。

    2017年8月4日至8月6日,在宁都县小布镇开展了矿泉水调查,主要对泉水出露点处的水文地质条件、泉流量进行调查,并对泉水进行现场指标测试。泉流量测量方法包括统计法、容积法、三角堰法;现场指标测试采用INSITU-SmartTroll多参数检测仪对pH、电导率、溶解氧(DO)、Eh等进行检测,采用偏硅酸检测盒,对偏硅酸进行检测。选取现场偏硅酸测试值在25~50 mg/L及以上的调查点,采集矿泉水分析样送实验室进行检测。

    本次工作中根据《HJ 493−2009水质采样样品的保存和管理技术规定》、《HJ 494−2009水质采样技术指导》、《GB/T 5750.2−2006 生活饮用水标准检验方法 水样的采集和保存》制定采样技术要求,并进行水样采集、保存和送样。本数据包含矿泉水分析水样结果15个,饮用水分析水样结果4个。

    矿泉水分析检测指标依据《GB 8537−2008 饮用天然矿泉水》并结合项目工作实际确定,本次数据整理时选取了饮用天然矿泉水规范中水质界限指标和限量指标,并参照地下水质量标准,共计51项。

    饮用水分析检测指标依据《GB 5749−2006 生活饮用水卫生标准》并结合项目工作实际确定,本次数据整理时选取整理了33项。

    所有数据未经处理,皆为实验室测试结果筛选。

    赣南兴国和宁都脱贫攻坚水文地质调查数据集为Excel表格型数据,包括5个Excel数据文件,分别为“钻孔基本信息表.xlsx”、“钻孔地层描述表.xlsx”、“矿泉水点普查调查表.xlsx”、“矿泉水分析测试结果表.xlsx”和“饮用水分析测试结果表.xlsx”。

    “钻孔基本信息表.xlsx”数据文件(表2),描述本次工作中施工的7眼探采结合井的基本信息,每一个钻孔为一行,包含钻孔编号、地理位置、孔深、孔径、滤水管段、实管段、静水位埋深、钻孔单井开采量、取样情况(矿泉水分析、饮用水分析)等信息。

    表  2  钻孔基本信息表
    序号 数据项名称 数据类型 实例
    1 钻孔编号 字符串 XGZK01
    2 地理位置 字符串 江西省赣州市兴国县埠头乡西霞村
    3 孔深 浮点型 156
    4 孔径 浮点型 305
    5 滤水管段 浮点型 147.0-111.0 m
    6 实管段 浮点型 111.0-0 m
    7 静水位埋深 浮点型 15.46
    8 钻孔单井开采量 浮点型 432
    9 取样情况 字符串 矿泉水分析、饮用水分析
    下载: 导出CSV 
    | 显示表格

    “钻孔地层描述表.xlsx”数据文件(表3),描述本次工作中施工的7眼探采结合井揭露地层的信息,主要包括钻孔编号、地层时代、地层代号、层底深度(m)、岩土名称、岩土颜色、地层岩性描述等信息。

    表  3  钻孔地层描述表
    序号 数据项名称 数据类型 实例
    1 钻孔编号 字符串 XGZK01
    2 地层时代 字符串 第四系全新统
    3 地层代号 字符串 Qh
    4 层底深度 浮点型 3
    5 岩土名称 字符串 粉质粘土
    6 岩土颜色 字符串 红褐色
    7 地层岩性描述 字符串 软−可塑,稍湿
    下载: 导出CSV 
    | 显示表格

    “矿泉水点普查调查表.xlsx”数据文件(表4),主要是描述本次工作中调查的矿泉水点基本信息,共计21个调查点,每一个调查点为一行,包含野外编号、地理位置、图幅编号、泉水类型、含水层岩性、主要用途、补给来源、流量测定方法、泉的流量、动态变化特征、泉水温度、色度、味、气味、透明度、pH值、Eh、耗氧量(DO)、电导率、HCO3、取样情况、备注、调查工作时间等信息。

    表  4  矿泉水点普查调查表
    序号 数据项名称 数据类型 实例
    1 野外编号 字符串 SQ01
    2 地理位置 字符串 江西省宁都县小布镇上潮村禾担丘小组
    3 图幅编号 字符串 琳池幅G50E007008
    4 泉水类型 字符串 上升泉
    5 含水层 岩性 字符串 黑云母二长花岗岩(r25)
    6 主要用途 字符串 5户人家饮用
    7 补给来源 字符串 大气降水
    8 流量测 定方法 字符串 容积法
    9 泉的流量 浮点型 0.095
    10 动态变 化特征 字符串 水量受季节,降雨较小,基本保持不定,枯平比90%
    11 泉水温度 浮点型 19
    12 色度 字符串
    13 字符串
    14 气味 字符串
    15 透明度 字符串 透明
    16 pH值 浮点型 6.58
    17 Eh 浮点型 157
    18 耗氧量(DO 浮点型 3.36
    19 电导率 浮点型 85.5
    20 HCO3 浮点型 59.34
    21 取样情况 字符串 矿泉水全分析
    22 备注 字符串 井:井径110 cm水位埋深49 cm,井深85 cm井壁结构堆砌石,建井2015年。偏硅酸含量25-50 mm/l
    23 调查工作时间 时间型 2017/8/4
    下载: 导出CSV 
    | 显示表格

    “矿泉水分析测试结果表.xlsx”数据文件(表略,参见数据集),共计15个样品,主要包括基本信息5项(送样编号、野外编号、取样日期、收样日期、完成日期)、感官性指标4项(色度、浑浊度、臭和味、肉眼可见物)、界限指标8项(Li、Sr、Zn、I、H2SiO3、Se、游离CO2、溶解性总固体)、限量指标16项[Sb、As、Cu、Ba、Cd、总Cr、Pb、Hg、Mn、Ni、Ag、溴酸盐、硼酸盐(B)、NO3、F、耗氧量]、污染物指标3项(挥发酚类、氰化物、NO2)、微生物指标2项(菌落总数、大肠菌群)、其他指标20项(pH、K+、Na+、Ca+、Mg+、Al3+、NH4+、Cl、SO42−、HCO3、CO32−、OH、可溶SiO2、总硬度、暂时硬度、永久硬度、负硬度、总碱度、总酸度、TFe)等信息。

    “饮用水分析测试结果表.xlsx”数据文件(表略,参见数据集),共计4个样品,主要包括基本信息5项(送样编号、野外编号、取样日期、收样日期、完成日期)、微生物指标1项(大肠菌群)、毒理指标9项(As、Cd、总Cr、Pb、Hg、Se、氰化物、F、NO3)、一般化学指标23项(pH、K+、Na+、Ca2+、Mg2+、Al3+、NH4+、Cl、SO42−、HCO3、CO32−、Fe3+、Mn、Cu、游离CO2、可溶SiO2、Ag、I、NO2、PO43−、溶解性总固体、耗氧量、挥发酚类)等信息。

    (1)勘探数据质量

    水文地质钻孔数据的质量控制包括数据的检查整理、单点数据的核查,对获取的各项水文地质特征数据的过程均按照《 DZ/T 0282−2015水文地质调查规范(1∶50 000)》、《 DZ/T 0148−2014 水文水井地质钻探规程》等标准进行验收,确保数据的真实、准确。

    (2)调查数据质量

    矿泉水点普查数据的质量控制包括对数据填写的完整性、规范性、准确性进行检查,所有数据的整理包括人工填写检查和电子记录核查,并按照三级管理体系要求进行检查。

    (3)水质样品测试数据质量

    所采水样的测试工作均由国土资源部南昌矿产资源监督检测中心(江西省地质调查研究院)承担。

    水质样品测试的准确度控制采用插入标准溶液样和加标回收两种方法进行。单个统计标准溶液样的测量值在其给定参考值的2倍不确定范围内为合格。加标回收率在90%~110%范围内为合格。

    水质样品测试的精密度控制采用重复测试的方法进行,每一批次水质样品随机抽取20%作为检查测试样,编成密码一同测试。按《DZ/T0130.6 −2006地质矿产实验室测试质量管理规范 第6部分:水样分析》标准中水质测试相对偏差允许限(Y=11.0 C·X −0.28)判断是否合格(马洪云等, 2018)。

    每一批次样品,实验室均同时进行2个空白试验以控制全过程空白变化,空白值均不高于本测试方法检出限的2/3。

    测试选择的分析方法的检出限均达到或优于相关规范的要求。

    该数据集可为红层缺水区解决饮用水困难、兴国县和宁都县两县的区域规划建设、赣南苏区精准脱贫产业布局等,提供基础地质数据支撑。该数据集包含的7个钻孔,总体上有五大具体成果:

    第一,本次项目所钻的水文钻孔除了科研功能以外,同时具有生产功能,这7个钻孔总出水量可达4 565 m3/d,彻底改变了当地约3 000名群众旱季缺水的窘况,钻孔的成功实施受到当地群众的赞誉;

    第二,本次项目实施的XGZK05孔,井口水温28.9 ℃,单井涌水量达到2 125 m3/d,验证了红层缺水区的找水方向,为探索总结红层盆地蓄水构造模式提供了基础数据资料,并可在此基础上进一步完善红层缺水区水文地质调查方法技术体系;

    第三,本项目工程实施过程中还实现了兴国县地热勘查的点上突破,本数据集可支撑兴国县地热勘探靶区的圈定;

    第四,数据集建设过程中获取的钻孔水样测试结果,发现XGZK01孔为稀有的富锂富锶优质天然饮用矿泉水,其中锂含量是国家标准的8倍,该处矿泉水的发现为兴国县开辟了特色矿泉水产业的绿色脱贫之路;

    第五,数据集建设过程中发现,在宁都县小布镇发现偏硅酸矿泉水出露点10处,泉流量合计4.936 L/S (426 m3/d)。小布镇矿泉水调查数据和矿泉水分析测试结果,拓宽了小布镇未来特色小镇建设的发展之路。

    该数据集是在兴国县和宁都县开展1∶50 000水文地质调查基础工作过程中,项目成果及时服务支撑脱贫攻坚的一个体现。项目结合地方扶贫需求与项目本身理论研究的需求,为当地施工7个水文钻孔,解决了3 000名群众缺水困境,矿泉水普查的实施为当地找到了优质矿泉水资源,还发现了兴国县的地热资源;通过开展地质扶贫找水工作,推动了红层盆地地下水赋存规律研究,探索水文地质调查、遥感解译技术运用、地球物理勘探技术方法组合和成果解释的新模式。

    致谢:赣南兴国和宁都脱贫攻坚水文地质调查数据集是一项系统性工作,是项目组全体成员辛勤工作和慷慨付出的成果。另外,在数据集建设过程中,项目组得到了本单位技术委员会专家的指导和建议,在此对他们表示诚挚的谢意。同时,对江西有色地质勘查二队、赣南地质大队在项目实施阶段给予的数据、资料方面的支持表示感谢。

    The 1∶50 000 Hydrogeological Survey Dataset for Poverty Alleviation in Xingguo County and Ningdu County, South Jiangxi (also referred to as the Dataset) has been developed on the basis of publicly available information, with the aim to provide support for poverty alleviation in those counties in the province. The working area involved in the Dataset is located in Xingguo and Ningdu counties to the north of Ganzhou City. The area lies in a mountainous area, with the dominant landforms consisting of mid–low mountains and hills and a subtropical monsoon humid climate. In Xingguo and Ningdu counties, the annual precipitation ranges mostly from 1 500~1 700 mm and the main rivers fall within the Pinggujiang and Meijiang watersheds, both streams being tributaries of Gongshui River, the eastern source of Ganjiang River. In terms of geologic setting, the working area is situated at the intersection of the northeast end of the EW-strike tectonic zone of Nanling and the upheaval zone of Wuyi Mountain, having gone through multiple tectonic activities through several eras. In multiple basins developed in the working area, including Xingguo, Ningdu and Laicun, the continental-facies red rock series of the Cretaceous System are mainly distributed. With diluvial, lacustrine and fluvial sedimentary facies, these red rock series are a molasse-like structure formed in a hot and dry climate, constituting a sedimentary cycle of conglomerate–sandstone–conglomerate with a significant change in facies. In other basins developed in the area such as Qingtang and Meijiao, Carboniferous System rocks are mainly distributed. In addition, these basins are surrounded by metamorphic rocks formed in the Sinian and Cambrian systems as well as Caledonian and Yanshanian granites, with loose rocks sporadically distributed in a small area. With atmospheric precipitation as the main recharge of groundwater, the shallow cycle constitutes the dominant water cycle, most of which is discharged out of the ground surface in the form of springs or disperse flows. However, due to the influence of geological tectonics, stratal lithology, as well as topography and landform, the water-bearing formation complex is generally poor in water yield properties and fresh water of bicarbonate type and low mineralization is mainly developed in the area.

    Basic information on the Dataset is summarized in Table 1.

    表  1  Metadata Table of Database (Dataset)
    Items Description
    Database (dataset) name 1∶50 000 Hydrogeological Survey Dataset for Poverty Alleviation in Xingguo and Ningdu Counties, South Jiangxi
    Database (dataset) authors Gong Lei, Hydrogeological and Environmental Geological Survey, China Geological Survey
    Wang Xinfeng, Hydrogeological and Environmental Geological Survey, China Geological Survey
    Song Mian, Hydrogeological and Environmental Geological Survey, China Geological Survey
    Li Hongyan, Hydrogeological and Environmental Geological Survey, China Geological Survey
    Xiao Zeyou, Gannan Geological Survey Group, Jiangxi Bureau of Geology and Minerals Exploration
    Hu Qifeng, The Second Team of Jiangxi Provincial Non-ferrous Metals Geological Exploration Bureau
    Wang Jin, GanNan Geological Survey Group, Jiangxi Bureau of Geology and Minerals Exploration
    Wu Linwei, The Second Team of Jiangxi Provincial Non-ferrous Metals Geological Exploration Bureau
    Wang Lei, The Second Team of Jiangxi Provincial Non-ferrous Metals Geological Exploration Bureau
    Miu Sai, The Second Team of Jiangxi Provincial Non-ferrous Metals Geological Exploration Bureau
    Data acquisition time 2017.01—2017.09
    Geographic area Xingguo County and Ningdu County, Ganzhou City, Jiangxi Province
    Data format *.xlsx
    Data size 69.90 KB
    Data service system URL http://dcc.cgs.gov.cn
    Fund project Jointly funded by China Geological Survey Project (DD20179262) and a project of the National Natural Science Foundation of China (No.41330314)
    Language Chinese
    Database (dataset) composition Basic information of boreholes.xlsx, Stratum description of boreholes.xlsx, Preliminary survey of mineral water.xlsx, Analysis and test result of mineral water.xlsx, and Analysis and test result of drinking water.xlsx
    下载: 导出CSV 
    | 显示表格

    During the preparation of the Dataset, the data of all the boreholes drilled were recorded in accordance with Specification for Hydrogeological Survey (1∶50 000) (DZ/T 0282−2015) and the Specification for Hydrological Well Drilling (DZ/T 0148−2014). Furthermore, important data of boreholes were sorted out and integrated based on the need of the local government for poverty alleviation. As a result, Basic information of boreholes.xlsx and Stratum description of boreholes.xlsx were formed.

    The water yield of boreholes was dually determined and verified by the triangular weir method and supersonic flowmeters. The water level depth of the boreholes was measured with a water level meter (type: In-Situ Water Level Meter 200).

    Water samples were taken at the end of the borehole pumping test and then were sent to relevant labs for detection. Among these water samples, mineral water analysis was conducted on those obtained from four boreholes with numbers XGZK01, XGZK02, XGZK05 and XGZK06 while drinking water analysis was conducted on those obtained from four more boreholes with numbers XGZK01, XGZK02, XGZK03 and XGZK04.

    A mineral water survey was conducted in Xiaobu Town, Ningdu County from August 4 to August 6 in 2017, focusing on hydrogeological condition and spring flow in the places where spring water is exposed, as well as on-site indicator tests of the spring water. The statistical method, volumetric method, and triangular weir method were adopted to measure the spring flow. INSITU-SmartTroll, a multi-parameter survey meter, was used to conduct an on-site test of the indices including pH, electrical conductivity, dissolved oxygen (DO) and Eh. A metasilicic acid detection box was used to measure the metasilicic acid. Water samples for mineral water analysis were taken at survey points with an on-site test value of metasilicic acid of 25~50 mg/L or above. Then the samples were sent to relevant labs for further detection.

    The technical requirements for sampling were developed in accordance with HJ 493−2009 Water Quality SamplingTechnical Regulation of Preservation and Handling of Samples, HJ 494−2009 Water QualityGuidance on Sampling Techniques, and GB/T 5750.2−2006 Standard Examination Methods for Drinking WaterCollection and Preservation of Water Samples. Furthermore, the water samples were collected, preserved and delivered according to the technical requirements. There are 15 analysis results for mineral water and four analysis results for drinking water in the Dataset.

    Test indices for mineral water analysis were determined in accordance with GB 8537−2008 Drinking Natural Mineral Water combined with actual conditions. Meanwhile, relevant standards for groundwater quality were also referred to. As a result, a total of 51 indices including lower limit and upper limit indices of water-quality specified in GB 8537−2008 Drinking Natural Mineral Water were selected during data collation. Test indices for drinking water analysis were determined in accordance with GB 5749−2006 Standard for Drinking Water Quality combined with actual conditions. As a result, 33 indices were selected during data collation.

    All data were original without being processed; they were the selected test results from the labs.

    The Dataset contains five Excel files named Basic information of boreholes.xlsx, Stratum description of boreholes.xlsx, Preliminary survey of mineral water.xls, Analysis and test result of mineral water.xlsx, and Analysis and test result of drinking water.xlsx.

    The data file Basic information of boreholes.xlsx (Table 2) describes the basic information from the seven boreholes drilled for prospecting combined with exploration. The information of each borehole is listed in a row, including number, geographical location, depth, and diameter of the borehole; depth range of filter tube and normal pipe; static water depth; single well water yield; and sampling (mineral water analysis and drinking water analysis).

    表  2  File Structure of Basic information of boreholes.xlsx
    No. Name of data item Data type Example
    1 Borehole number String XGZK01
    2 Geographical location String Xixia Village, Butou Town, Xingguo County, Ganzhou City, Jiangxi Province
    3 Borehole depth Float 156
    4 Borehole diameter Float 305
    5 Depth range of filter tube Float 147.0~111.0 m
    6 Depth range of normal pipe Float 111.0~0 m
    7 Static water depth Float 15.46
    8 Single well water yield Float 432
    9 Sampling String Mineral water analysis, drinking water analysis
    下载: 导出CSV 
    | 显示表格

    The data file Stratum description of boreholes.xlsx (Table 3) describes the stratum information revealed by the seven boreholes drilled for prospecting combined with exploration. The following data are mainly included in the file: borehole number, era and code of the stratum, stratum bottom depth (m), name and color of rock and soil, and stratum lithology description.

    表  3  File Structure of Stratum description of boreholes.xlsx
    No. Name of data item Data type Example
    1 Borehole number String XGZK01
    2 Stratum era String Holocene Series, Quaternary System
    3 Stratum code String Qh
    4 Stratum bottom depth Float 3
    5 Name of rock and soil String Silty clay
    6 Color of rock and soil String Reddish brown
    7 Stratum lithology description String Soft-plastic, slightly wet
    下载: 导出CSV 
    | 显示表格

    The data file Preliminary survey of mineral water.xls (Table 4) mainly describes the basic information on survey points for mineral water. There are 21 survey points in the file with the information of each survey point listed in one row, which includes field number, geographic location, and map sheet number of the survey point; spring water type; aquifer lithology of survey point; main purpose, recharge source, flow measurement method, flow, and dynamic feature of spring; temperature, chroma, taste, smell, transparency, pH value, Eh, oxygen consumption (DO), electrical conductivity, and HCO3 of water; sampling; remarks; and survey date and time.

    表  4  File Structure of Preliminary survey of mineral water.xls
    No. Name of data item Data type Example
    1 Field number String SQ01
    2 Geographical location String Hedanqiu Team, Shangchao Village, Xiaobu Town, Ningdu County, Jiangxi Province
    3 Map-sheet number String Lingchi Map Sheet G50E007008
    4 Spring water type String Ascending spring
    5 Aquifer Lithology String Biotite adamellite (r25)
    6 Main purpose String Supply for five households
    7 Recharge source String Atmospheric precipitation
    8 Flow measurement method String Volumetric method
    9 Flow of spring Float 0.095
    10 Dynamic feature String Water volume is affected by season, rainfall is small and basically invariable, with ratio of dry and normal seasons of a year to one year of 90%
    11 Spring water temperature Float 19
    12 Chroma String None
    13 Taste String None
    14 Smell String None
    15 Transparency String Transparent
    16 pH value Float 6.58
    17 Eh Float 157
    18 Oxygen consumption (DO) Float 3.36
    19 Electrical conductivity Float 85.5
    20 HCO3 Float 59.34
    21 Sampling String Total chemical analysis of mineral water
    22 Remarks String Well: diameter: 110 cm; depth of water level: 49 cm; well depth: 85 cm; well wall structure: stone piled and laid; well built in 2015. Content of metasilicic acid: 25−50 mm/l
    23 Survey date and time Time August 4, 2017
    下载: 导出CSV 
    | 显示表格

    The data file Analysis and test result of mineral water.xlsx (please refer to the Dataset for the file structure) involves 15 samples in total and mainly includes five with basic information (sample number, field number, sampling date, sample receiving date, completion date), four sensory indices (chroma, turbidity, smell and taste, and visible materials), eight lower limit indices (Li, Sr, Zn, I, H2SiO3, Se, free CO2, and total dissolved solids), 16 upper limit indices (Sb, As, Cu, Ba, Cd, total Cr, Pb, Hg, Mn, Ni, Ag, bromate, borate (B), NO3, F, and oxygen consumption), three pollutant indices (volatile phenol, cyanide, NO2), two microbiological indices (total number of bacterial colonies, and coliforms), and 20 other indices (pH, K+, Na+, Ca+, Mg+, Al3+, NH4+, Cl-, SO42−, HCO3, CO32−, OH, soluble SiO2, total hardness, temporary hardness, permanent hardness, negative hardness, total alkalinity, total acidity, and TFe).

    The data file Analysis and test result of drinking water.xlsx (please refer to the Dataset for the file structure) involves four samples in total and mainly includes five pieces of basic information (sample number, field number, sampling date, sample receiving date, completion date), one microbiological index (coliform), nine toxicological indices (As, Cd, total Cr, Pb, Hg, Se, cyanide, F, NO3), and 23 general chemical indices (pH, K+, Na+, Ca2+, Mg2+, Al3+, NH4+, Cl, SO42−, HCO3, CO32−, Fe3+, Mn, Cu, free CO2, soluble SiO2, Ag, I, NO2, PO43−, total dissolved solids, oxygen consumption, and volatile phenol).

    (1) Quality control of exploration data

    The data quality control of hydrogeological boreholes includes checks and collation of data as well as verification of single-point data. Various data of hydrogeological characteristics acquired were accepted according to DZ/T 0282−2015 Specification for Hydrogeological Survey (1∶50 000), DZ/T 0148−2014 Specification for Hydrological Well Drilling, etc., in order to ensure the authenticity and accuracy of the data.

    (2) Quality control of survey data

    In terms of data quality control of preliminary survey points for mineral water, relevant checks including check of data filled in manually and verification of electronic records during collation of all data were carried out, so as to ensure the data were filled in completely, normatively, and accurately. A three-level management system was adopted during the checks.

    (3) Quality control of test data of water samples

    All water samples were tested in the Nanchang Supervision and Inspection Center of Mineral Resources, Ministry of Land and Resources (Geological Survey of Jiangxi Province).

    Standard solution sample insertion and standard recovery tests were adopted to guarantee the accuracy of water sample tests. Test value being within two times of uncertainty range of a given reference value and the recovery rate ranging from 90%~110% were taken respectively as the acceptance criteria of the two methods.

    Repeated tests were adopted to ensure the precision of water sample tests. 20% of the water samples in each batch were randomly selected for verification. They were encoded and tested at the same time. The permitted limit of relative deviation (Y=11.0 C·X−0.28) of water quality tests stipulated in DZ/T0130.6-2006 The Specification of Testing Quality Management for Geological LaboratoriesPart6: Water Analysis (Ma HY et al., 2018) was adopted as the acceptance criterion.

    For each batch of the samples, two blank tests were conducted at the same time in the lab in order to control the change of the blank tests throughout the whole process. All of the blank values were not higher than two-thirds of the detection limits. The detection limits of the analysis methods selected for water sample tests reached or exceeded the requirements in the applicable codes.

    The Dataset can provide basic geological data on red beds for the settlement of the drinking water shortage in water-shortage areas, for regional planning and construction in Xingguo County and Ningdu County and thus provides for the industrial layout of accurate poverty alleviation in original Soviet political areas of South Jiangxi. Five main specific achievements were made through seven boreholes contained in the Dataset:

    Firstly, in addition to the scientific research function, these hydrogeological boreholes drilled can be put into production, since the total water yield of the seven is about 4 565 m3/d. In this way, the predicament of water shortage suffered in summer by about 3 000 local people can be completely changed. Therefore, these successfully drilled boreholes were highly praised by local people.

    Secondly, the borehole XGZK05 with a water temperature of 28.9 ℃ at the wellhead and a water yield of 2 125 m3/d verifies the orientation of water exploration in water-shortage areas in red beds and provides basic data and information for exploration and a summary of the water-storage structure patterns in basins in red beds. Furthermore, the method and technical system for hydrogeological survey in the areas can be improved.

    Thirdly, breakthroughs were made in the geothermal survey points in Xingguo County. Based on this, geothermal exploration target areas in that area can be further delineated.

    Fourthly, according to the test results of water samples obtained in the boreholes, the water in the borehole XGZK01 is a rare mix of Li-rich and Sr-rich natural drinking mineral water, with Li content eight times the relevant national standard. This opens up the way of green poverty alleviation for Xingguo County, i.e. via a major mineral water industry.

    Lastly, it is found that there are ten places where metasilicic acid mineral water exposed in Xiaobu Town, Ningdu County, with a total flow of 4 936 L/S (426 m3/d). The survey data as well as the results of analysis and tests of the mineral water in Xiaobu Town will provide an extensive way for the town to be developed into a substantial town in the future.

    The Dataset was obtained through the basic work of the 1∶50 000 hydrogeological survey in Xingguo County and Ningdu County, reflecting that the achievements can timely serve the need for poverty alleviation. With this local need and the theoretical research under consideration, seven hydrological boreholes were drilled, by which the drinking water shortage suffered by about 3 000 people has been addressed. Furthermore, not only high-quality mineral water resources but also geothermal resources were discovered in Xingguo County during the primary survey for mineral water. In addition, water exploration by the geological survey for poverty alleviation also promotes research on the occurrence law of groundwater in basins in red beds, the exploration of new patterns involving hydrogeological survey combined with the application of remote-sensing interpretation technology and geophysical exploration technology as well as result explanation.

    Acknowledgements: As a systematic work, the Dataset was achieved owing to the hard work and industrious effects of all members of the project team. In addition, we would like to extend our sincere appreciation to the experts of the Technical Committee for their guidance and suggestions. Meanwhile, we would also like to extend our sincere appreciation to the Second Team of Jiangxi Provincial Non-ferrous Metals Geological Exploration Bureau and GanNan Geological Survey Group for their support in data and information providing.

  • 图  1   平山湖盆地区域地质图❶❷

    (线A—A’, B—B’为图切剖面线;黄色折线为实测剖面线;蓝色虚线框内为平山湖盆地边界)

    Figure  1.   Regional geological map of Pingshanhu Basin❶❷

    (Line A—A'and B—B'are secant section lines, the yellow broken line is the measured section line, and the blue dotted line is the boundary of basin)

    图  2   平山湖盆地1:20万构造剖面(深部断裂据张进等,2007)

    Figure  2.   1:200, 000 structural sections of Pingshanhu basin(The deep faults are modified fromZhang et al., 2007)

    图  3   平山湖盆地1:5万构造剖面(深部断裂据张进等,2007)

    Figure  3.   1:50, 000 structural sections of Pingshanhu basin(The deep fault are modified from Zhang et al., 2007)

    图  4   平山湖盆地挤压和伸展构造应力场

    (黑色折线为剖面线;赤平投影为褶皱两翼产状和正断层赤平投影;灰色阴影为褶皱枢纽;紫色区域为伸展区;红五角星为代表性样品点)

    Figure  4.   The compresses and stretches tectonic stress field in Pinshanhu basin

    (The black broken line is section line, the stereographic projections are for folds and normal faults, the gray shadow is fold hub, the purple area is the extension area, and the red five-pointed stars are location of samples)

    图  5   平山湖盆地内发育的生长地层

    (a, b—仁宗口背斜北翼生长地层;c—平易背斜南翼生长地层)

    Figure  5.   The growth strata in Pingshanhu basin

    (a, b-The growth strata on the north wing slope of Renzongkou anticline; c-The growth strata on the south wing slope of Pingyi anticline)

    图  6   平山湖盆地样品碎屑锆石阴极发光图

    Figure  6.   Cathodoluminescence images of detrital zircon samples from Pingshanhu basin

    图  7   平山湖盆地样品碎屑锆石U-Pb年龄谐和图

    Figure  7.   Concordia diagram of the clastic zircons U-Pb data of the samples from Pingshanhu basin

    图  8   平山湖盆地样品碎屑锆石U-Pb年龄谱图

    Figure  8.   Histogram plot of the clastic zircons U-Pb data of the samples from Pingshanhu basin

    图  9   平山湖盆地构造演化模式

    Figure  9.   The tectonic evolutionary model of Pingshanhu basin

    表  1   平山湖盆地的褶皱产状赤平投影统计

    Table  1   The stereographic projection of attitudes of the folds in Pingshanhu basin

    下载: 导出CSV

    表  2   平山湖盆地的正断层产状赤平投影统计

    Table  2   The stereographic projection of the normal faults in Pingshanhu basin

    下载: 导出CSV

    表  附表1   平山湖盆地样品CQL2017-L1-25碎屑锆石U-Pb同位素测年数据表

    Table  附表1   Zircon U-Pb age data from sample CQL2017-L1-25 in Pingshanhu basin

    下载: 导出CSV

    表  附表2   平山湖盆地样品CQL2017-L1-42碎屑锆石U-Pb同位素测年数据表

    Table  附表2   Zircon U-Pb age data from sample CQL2017-L1-42 in Pingshanhu basin

    下载: 导出CSV

    表  附表3   平山湖盆地样品CQL2017−L1−88碎屑锆石U−Pb同位素测年数据表

    Table  附表3   Zircon U-Pb age data from sample CQL2017-L1-88 in Pingshanhu basin

    下载: 导出CSV

    表  附表4   平山湖盆地样品CQL2017-L1-154碎屑锆石U−Pb同位素测年数据表

    Table  附表4   Zircon U-Pb age data from sample CQL2017-L1-154 in Pingshanhu basin

    下载: 导出CSV

    表  附表5   平山湖盆地样品CQL2017-L1-183碎屑锆石U−Pb同位素测年数据表

    Table  附表5   Zircon U-Pb age data from sample CQL2017-L1-183 in Pingshanhu basin

    下载: 导出CSV
  • Cao Ke. 2013.Cretaceous terrestrial stratigraphic correlation in China[J]. Geological Review, 59(1):24-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201301005.htm

    Chen Jiangyuan, Jiang Minzhong, Chang Shushuai, Duan Chenyu, Niu Jiaji. 2017. An analysis of uranium ore-searching prospect of airborne radiocactive anomaly zone on the southern margin of Pingyi depression in the Chaoshui Basin[J]. Geophysical & Geochemical Exploration, 41(1):102-110(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201701016

    Chen Jie, Lu Yanzhu. 2001a.Growth unconformity, growth strata and structural deformation of foreland basins in western China[C]//Lu Yanzhu et al. (eds.). Neotectonics and Environment. Beijing: Seismological Press, 407-421(in Chinese).

    Chen Jie, Lu yanchou, Ding Guoyu. 2001b. Records of late Cenozoic mountain building in western Tarim basin:Molasses, growth strata and growth unconformity[J]. Quaternary Sciences, 21(6):528-539(in Chinese with English abstract). http://www.oalib.com/paper/1572261

    Chen Jing, Rong Xiao, Yang Kun, Guo Changlin. 2015. Analysis on sandstone type uranium deposit metallogenic potential of Bancaohe area in the west of Chaoshui basin[J]. World Nuclear Geoscience, 32(2):85-90(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201502005

    Chen Jun, Liu Yongqing, Kuang Hongwei, Liu Yanxue, Peng Nan, Xu Huan, Dong Chao, Liu Hai, Xue Peilin, Xu Jialin. 2013.Sedimentary characteristics and their basin analysis significance of the Lower Cretaceous Hekou Group in Zhongpu area of Lanzhou-Minhe Basin, Gansu Province[J]. Journal of Palaeogeography, 15(2):155-168(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201302002

    Chen Xuanhua, Shao Zhaogang, Xiong Xiaosong, Gao Rui, Xu Shenglin, Zhang Yiping, Li Bing, Wang Ye. 2019. Early Cretaceous overthrusting of Yumu Mountain and hydrocarbon prospect on the northern margin of the Qilian Orogenic Belt[J]. Acta Geoscientica Sinica, 40(3):377-392(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxb201903001

    Chen Zuyi. 1988-1989. Analysis of regional metallogenic conditions for uranium deposits in Chaoshui (generalized) basin[C]//Annual Report of Beijing Geological Research Institute of Nuclear Industry, 178-185(in Chinese).

    Duan Jun, Qian Zhuangzhi, Jiao Jiangang, Lu Jie, Feng Yanqing. 2015.Genesis of Xijing Intrusion from Longshoushan Terrane and the Tectonic Significance[J]. Journal of Jilin University (Earth Science Edition), 45(3):832-846(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201503016

    Nigro F, Renda P. 2004. Growth pattern of underlithified strata during thrust-related folding[J]. Journal of Structural Geology, 26:1913-1930. doi: 10.1016/j.jsg.2004.03.003

    Fereshth Ghaseminia, Jahanbakhsh Daneshian, Bahman Soleimany, Massih Afghah. 2016. The role of stratigraphy in growth strata studies:A case study of the Early Cretaceous deposits in the Persian Gulf, SW Iran[J]. Open Journal of Geology, 6:1513-1524. doi: 10.4236/ojg.2016.612107

    Geng Yuansheng, Wang Xinshe, Shen Qihan, Wu Chunming. 2007.Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia[J]. Geology in China, 34(2):251-261(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702006

    Geng Yuansheng, Wang Xinshe, Wu Chunming, Zhou Xiwen. 2010a.Late-Paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area:Evidence from geochronology[J]. Acta Petrologica Sinica, 26(4):1159-1170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201004014.htm

    Geng Yuansheng, Zhou Xiwen. 2010b. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance:Evidence from geochronology[J]. Acta Petrologica et Mineralogica, 29(6):779-795 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006014.htm

    Guo Qingyin, Chen Zuyi, Liu Hongxu, Yu Jinshui. 2006.Minerogenetic charactetristic and exploration direction of uranium in western Gansu province and adjacent area[J]. Uranium Geology, 22(6):321-335(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200606002

    Guo Rongtao, Guo Lina, Zhou Shengyou, Zhang Yushuang, Zhao Jing. 2015. Sequence stratigraphic succession of the Cretaceous clastic rock System in Zhangye City:Sedimentological response to the Cretaceous uplift of the Qilian Mountains[J]. Acta Sedimentologica Sinica, 33(5):878-890(in Chinese with English abstract).

    Guo Zhaojie, Fang Shihu, Zhangrui, Zhang Zhicheng, Wu Chaodong, Shao Kuizheng. 2006. Growth strata and their application timing deformation of foreland thrust-fold belts in the north margin of Tianshan[J]. Oil & Gas Geology, 27(4):475-481(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200604006

    Jiao Jiangang, Jin Shufang, Rui Huichao, Zhang Guopeng, Ning Quanfei, Shao Leqi. 2017. Petrology, Geochemistry and chronology study of the Xiaokouzi Mafic-Ultramafic intrusion in the eastern section of Longshou Mountains, Gansu[J]. Acta Geologica Sinica, 91(4):736-747(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201704003

    Ju Huijiao, Li Xiaojun. 2016. Quantitative Analysis for Structures in Proposed First Mining Area, Pingshanhu Exploration Area[J]. Coal Geology of China, 28(4):23-26(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz201604005

    Li Jinyi, Zhang Jin, Liu Jianfeng, Qu Junfeng, Li Yaping, Sun Guihua, Zhu Zhixin, Feng Qianwen, Wang Lijia, Zhang Xiaowei. 2014.Major deformation systems in the Mainland of China[J]. Earth Science Frontiers, 21(3):226-245. http://d.old.wanfangdata.com.cn/Periodical/dxqy201403025

    Li Xiong. 2010. The structural characteristics of Chaoshui basin and the control of hydrocarbon accumulation conditions[J]. Petroleum Geology and Engineering, 24(2):17-20 (in Chinese).

    Liu Jinhui, Wang Lianshe, Zhu Ba. 2005. The study on Uranium OreForming Hydrogeochemistry of Chaoshui Basin[J]. Journal of East China Institute of Technology, 28(2):101-106(in Chinese with English abstract).

    Li Zhigang, LiuZeng Jing, Jia Dong, Sun Chuang, Wang Wei, Yuan Zhaode, Liu Baojin. 2016. Quaternary activity of the range front thrust system in the Longmen Shan piedmont, China, revealed by seismic imaging and growth strata[J]. Tectonics, 2807-2827. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2015TC004093

    Mei Mingxiang, Su Dechen. 2014a. Sequence-stratigraphic succession for the course clastic rock system of the hekou group in the Gulang County of Gansu Province:Sedimentological response to the Cretaceous uplift of the Qilian Mountains[J]. Geological Review, 60(3):541-554 (in Chinese with English abstract).

    Mei Mingxiang, Su Dechen. 2014b. Cretaceous sedimentary succession of eolian sandstones in Zhangye Region of Gansu Province:Sedimentological response to the Cretaceous uplift of Qilian Mountains[J]. Journal of Paleogeography, 16(2):143-156(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201402001

    Peng Nan, Liu Yongqing, Kuang Hongwei, Chen Jun, Xue Peilin, Xu Jialin, Liu Hai, Liu Yanxue, Xu Huan, Dong Chao. 2013. The provenance of Lower Cretaceous basin in the Qilian MountainBeishan area:Evidence from paleocurrents, gravels, sandstone compositions and detrital zircon geochronology[J]. Geological Bulletin of China, 23(2/3):456-475(in Chinese with English abstract).

    Qi Cheng, Song Zhentao, Han dongyu. 2017. Metallogenic conditions and prospecting direction in Jiling Rock[J]. Geological Review, 63:103-104 (in Chinese).

    Song Jieji. 1993. Cretaceous system in Gansu[J]. Acta Geologica Gansu, (S1):1-50 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hhqkx-e201806008

    Vergés J, Marzo M, Muñoz J A. 2002. Growth strata in foreland settings[J]. Sedimentary Geology, 146:1-9. doi: 10.1016/S0037-0738(01)00162-2

    Wang Chongxiao, Ma Guofu, Zhou Zaihua. 2005. Structure evolution and sedimentary filling of Jiuquan Basin in Mesozoic-Cenozoic period, NW China[J]. Petroleum Exploration and Devrlopment, 32(1):33-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200501010.htm

    Wang Xiaofeng, Zhang Zhicheng, Guo Zhaojie, Zhang Chen, Gong Jianye. 2008. Sedimentary characteristics of the lower Cretaceous and reconstruction of the prototype basin in the Jiuxi Basin[J]. Oil & Gas Geology, 29(3):303-311(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200803004

    Wang Zhengqi, Guan Taiyang. 2004. Uranium pre-concentration in Miaogou Formation, Lower Cretaceous and its prospecting significance in Chaoshui basin[J]. Uranium Geology, 20(4):279-285(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200405005

    Wu Cailai, Xu Xueyi, Gao Qianming, Li Xiangmin, Lei Min, Gao Yuanhong, Ronald B Frost, Joseph L Wooden. 2010. Early Palaeozoic granitoid magmatism and tectonic evolutong in North Qilian, NW China[J]. Acta Petrologica Sinica, 26(4):1027-1044(in Chinese with English abstract).

    Yang Kun, Geng Haijun, Guo Changlin. 2017. The Geological Structure and the Relationship between the Uranium Metallogenesis in the West of the Chaoshui Basin[J]. Geological Review, 63(supp.):99-100 (in Chinese with English abstract).

    Zapata T, Allmendinger R W. 1996. Growth strata l records of instantaneous and progressive limb rotation in the Pre-cordillera thrust belt and Bermejo basin, Argentina[J]. Tectonics, 15:1065-1083. doi: 10.1029/96TC00431

    曹珂. 2013.中国陆相白垩系地层对比[J].地质论评, 59(1):24-40. doi: 10.3969/j.issn.0371-5736.2013.01.004
    陈江源, 江民忠, 常树帅, 段晨宇, 牛家骥. 2017.潮水盆地平易凹陷南缘航放异常区铀找矿前景分析[J].物探与化探, 41(1):102-110. http://d.old.wanfangdata.com.cn/Periodical/wtyht201701016
    陈杰, 卢演俦. 2001a.中国西部前陆盆地生长不整合、生长地层与构造变形[C]//卢演俦等主编.新构造与环境.北京: 地震出版社, 407-421.
    陈杰, 卢演俦, 丁国瑜. 2001b.塔里木西缘晚新生代造山过程的记录:磨拉石建造及生长地层和生长不整合[J].第四纪研究, 21(6):528-539. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200106009
    陈静, 荣骁, 杨昆, 郭长林. 2015.潮水盆地西部半槽河地区砂岩型铀矿成矿潜力分析[J].世界核地质学, 32(2):85-90. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx201502005
    陈军, 柳永清, 旷宏伟, 刘燕学, 彭楠, 许欢, 董超, 刘海, 薛沛霖, 徐加林. 2013.甘肃兰州-民和盆地中铺地区河口群沉积特征及其盆地分析意义[J].古地理学报, 15(2):155-168. http://www.cnki.com.cn/Article/CJFDTotal-GDLX201302004.htm
    陈宣华, 邵兆刚, 熊小松, 高锐, 徐盛林, 张义平, 李冰, 王叶. 2019.祁连山北缘早白垩世榆木山逆冲推覆构造与油气远景[J].地球科学, 40(3):377-392. http://d.old.wanfangdata.com.cn/Periodical/dqxb201903001
    陈祖伊. 1988-1989.潮水(广义)盆地铀矿区域成矿条件分析[C]//核工业北京地质研究院年报, 178-185.
    段俊, 钱壮志, 焦建刚, 鲁浩, 冯延清. 2015.甘肃龙首山岩带西井镁铁质岩体成因及其构造意义[J].吉林大学学报(地球科学版), 45(3):832-846. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201503016
    耿元生, 王新社, 沈其韩, 吴春明. 2007.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质, 34(2):251-261. doi: 10.3969/j.issn.1000-3657.2007.02.006
    耿元生, 王新社, 吴春明, 周喜文. 2010a.阿拉善变质基底古元古代晚期的构造热事件[J].岩石学报, 26(4):1159-1170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004013
    耿元生, 周喜文. 2010b.阿拉善地区新元古代岩浆事件及其地质意义[J].岩石矿物学杂志, 29(6):779-795. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201006014
    郭庆银, 陈祖伊, 刘红旭, 于金水. 2006.北山-走廊地区中-新生代构造演化及盆地产铀远景评价[J].铀矿地质, 22(6):321-335. doi: 10.3969/j.issn.1000-0658.2006.06.001
    郭荣涛, 郭丽娜, 周生友, 张玉双, 赵婧. 2015.张掖鹦鸽嘴剖面白垩系碎屑岩层序地层序列:祁连山白垩纪隆升的沉积学响应[J].沉积学报, 33(5):878-890. http://d.old.wanfangdata.com.cn/Periodical/cjxb201505004
    郭召杰, 方世虎, 张锐, 张志诚, 吴朝东, 邵奎政. 2006.生长地层及其在判断天山北缘前陆冲断褶皱带形成时间上的应用[J].石油与天然气地质, 27(4):475-481. doi: 10.3321/j.issn:0253-9985.2006.04.006
    焦建刚, 靳树芳, 芮会超, 张国鹏, 宁权飞, 邵乐奇. 2017.甘肃龙首山东段小口子镁铁-超镁铁质岩体岩石学、地球化学及年代学研究[J].地质学报, 91(4):736-747. doi: 10.3969/j.issn.0001-5717.2017.04.003
    琚惠姣, 李晓君. 2016.平山湖勘探区首采区地质构造定量分析[J].中国煤炭地质, 28(4):23-26. doi: 10.3969/j.issn.1674-1803.2016.04.05
    李雄. 2010.潮水盆地构造特征及其对油气成藏条件的控制[J].石油地质与工程, 24(2):17-20. doi: 10.3969/j.issn.1673-8217.2010.02.005
    刘金辉, 王联社, 朱捌. 2005.潮水盆地铀成矿水文地球化学研究[J].东华理工学院学报, 28(2):101-106. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb200502001
    梅冥相, 苏德辰. 2014a.甘肃古浪河口群粗碎屑岩系的层序地层序列:祁连山白垩纪隆升的沉积学响应[J].地质论评, 60(3):541-554. http://d.old.wanfangdata.com.cn/Periodical/dzlp201403006
    梅冥相, 苏德辰. 2014b.甘肃张掖地区白垩系风成砂岩沉积序列:祁连山白垩纪隆升的沉积学响应[J].古地理学报, 16(2):143-156. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201402001
    彭楠, 柳永清, 旷红伟, 陈军, 薛沛霖, 徐加林, 刘海, 刘燕学, 许欢, 董超. 2013.北祁连-北山地区早白垩世盆地物源分析——来自古水流、砾石组分、砂岩组分和碎屑锆石年龄的证据[J].地质通报, 23(2/3):456-475. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2013Z1021.htm
    祁程, 宋振涛, 韩栋昱. 2017.芨岭岩体铀成矿条件及找矿方向[J].地质论评, 63:103-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201704001
    宋杰己. 1993.甘肃省的白垩系[J].甘肃地质学报, (增刊1):1-50. http://www.cnki.com.cn/Article/CJFDTotal-GSDZ1993S1000.htm
    王崇孝, 马国福, 周在华. 2005.酒泉盆地中、新生代构造演化及沉积充填特征[J].石油勘探与开发, 32(1):33-36. doi: 10.3321/j.issn:1000-0747.2005.01.009
    王晓丰, 张志诚, 郭召杰, 张臣, 龚建业. 2008.酒西盆地早白垩世沉积特征及原型盆地恢复[J].石油与天然气地质, 29(3):303-311. doi: 10.3321/j.issn:0253-9985.2008.03.004
    王正其, 管太阳. 2004.潮水盆地下白垩统庙沟组铀的预富集及其找矿意义[J].铀矿地质, 20(4):279-285. http://d.old.wanfangdata.com.cn/Periodical/ykdz200405005
    吴才来, 徐学义, 高前明, 李向民, 雷敏, 郜源红, Ronald B Frost, Joseph L WOODEN. 2010.北祁连早古生代花岗质岩浆作用及构造演化[J].岩石学报, 26(4):1027-1044. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004003
    杨昆, 耿海军, 郭长林. 2017.潮水盆地西部构造与铀成矿的关系[J].地质论评, 63(增刊):99-100. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2017S1049.htm
  • 期刊类型引用(3)

    1. 李琳莉. 长江流域地下水资源分布及开发情况. 大众标准化. 2022(05): 103-105 . 百度学术
    2. 黄长生,周耘,张胜男,王节涛,刘凤梅,龚冲,易秤云,李龙,周宏,魏良帅,潘晓东,邵长生,黎义勇,韩文静,尹志彬,李晓哲. 长江流域地下水资源特征与开发利用现状. 中国地质. 2021(04): 979-1000 . 本站查看
    3. 邢光坤. 水文地质条件分析在农村安全饮水工程中的重要性探究. 农家参谋. 2021(18): 191-192 . 百度学术

    其他类型引用(1)

图(9)  /  表(7)
计量
  • 文章访问数:  2718
  • HTML全文浏览量:  445
  • PDF下载量:  3780
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-06-09
  • 修回日期:  2019-09-04
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-10-24

目录

/

返回文章
返回
x 关闭 永久关闭