Research and application of while drilling temperature measurement technology under high temperature and high pressure in Well Songke-2
-
摘要:
松科二井是亚洲国家组织实施的最深大陆科学钻井。松科二井完钻后38 h测井温度为241℃,创造了我国钻井工程最高井温应用记录。松科二井井内参数测试主要采用两种方法,一是综合物探测井,在下套管前进行综合测井;另一种是不影响正常钻进工作,随钻进行井下参数测试。及时掌握井下随钻温度等信息,对高温泥浆性能的调整和动力机具应用起着关键性的支撑作用。本文针对松科二井科学钻探高温难点问题展开系列研究,研制了一种存储式井下高温测试仪器。该仪器经过多轮攻关改进设计,成功应用于松科二井现场,在现场应用的最高随钻测试温度为222℃。
Abstract:Well Songke-2 is the deepest continental scientific drilling carried out by Asian countries. The logging temperature of Well Songke-2 Songke-2 was 241℃ after drilling for 38 hours, which created the highest well temperature application record of drilling engineering in China. The parameters of Well Songke-2 are mainly tested in two ways:one is integrated logging before casing, whereas the other is downhole parameter measurement while drilling which does not affect normal drilling work. Timely grasping the information such as the temperature while drilling plays a key supporting role in the adjustment of high temperature mud performance and the application of power tools. The authors carried out a series of researches on the problem of high temperature in Well Songke-2, and developed a storage type measurement while drilling instrument. The instrument was improved and designed through multiple rounds of research and finally it has been successfully applied to Well Songke-2.
-
1. 研究目的(Objective)
前人对华北克拉通南缘燕山期花岗岩的研究主要集中于鲁山以西地区,且重点关注对象为岩基、面积较大的岩株以及与成矿作用相关中—酸性小岩体。鲁山以东地区也广泛出露燕山期花岗岩,但其岩石成因研究成果报道较少,特别是那些“不具成矿效应”的花岗岩小岩体。吴沟花岗岩位于华北克拉通南缘(图 1a),北东距舞阳约28 km,地表出露不连续(图 1b),其成因研究可为东秦岭燕山期深部构造演化提供新的约束。
2. 研究方法(Methods)
对吴沟花岗岩的斑状黑云母二长花岗岩样品WG02进行了锆石LA-ICP-MS定年,锆石分选在河北省廊坊区域所实验室完成,锆石制靶和透、反射光及阴极发光照相由北京锆年领航科技有限公司完成。斑状黑云母二长花岗岩样品中的锆石发育振荡环带表明它们为岩浆锆石(图 1c)。锆石UPb年龄测试在西北大学大陆动力学国家重点实验室完成,使用Glitter软件处理锆石测点的U-Pb同位素比值和表面年龄计算,运用Isoplot软件计算加权平均年龄和绘制U-Pb谐和图。
3. 结果(Results)
对样品WG02累计完成了30个锆石测点的分析(表 1),其中测点WG02-10的测点值明显偏离U-Pb谐和线,数据处理中不予以考虑。剩余29颗有效锆石测点的年龄可分成3组:(1)第一组由测点WG02-11组成,其Th/U比值为0.25,206Pb/207Pb年龄为(2365 ± 35)Ma,属于古元古代;(2)第二组由WG02-02、-15和-16等3颗锆石颗粒组成,Th/U比值介于0.55~0.74,206Pb/238U加权平均年龄为(144.6± 1.8)Ma;(3)由剩余25颗锆石组成,Th/U比值介于0.48~1.07,206Pb/238U加权平均年龄为(130.8±0.8)Ma(图 1d)。
表 1 吴沟花岗岩样品WG02锆石LA-ICP-MS定年结果Table 1. Zircon LA-ICP-MS dating results of sample WG02 from the Wugou granite这形成了吴沟花岗岩的锆石年龄谱。最老一组锆石应是部分熔融源区的残余锆石,表明早元古界参与形成了吴沟花岗岩。~145 Ma锆石说明吴沟花岗岩经历了混合作用,即深部岩浆/流体注入到晶出~145 Ma锆石的未完全固结岩浆房内,混合活化后携带~145 Ma锆石上侵固结成岩,~131 Ma代表了吴沟花岗岩的形成时代。
4. 结论(Conclusions)
(1) 吴沟花岗岩的锆石U-Pb年龄为(130.8±0.8) Ma,形成于早白垩世。
(2) 吴沟花岗岩的锆石U-Pb定年结果形成了锆石年龄谱,其成岩过程中经历了岩浆混合作用。
(3) 吴沟花岗岩是华北克拉通南缘燕山期岩石圈减薄过程的产物。
5. 致谢(Acknowledgements)
基金项目:河南省国土资源厅科技攻关项目“河南省东秦岭碱性侵入岩岩石成因及成矿预测研究”(2014-06)、“河南省西峡县高庄—梅子沟金矿带成矿规律及找矿技术方法研究”(2016-08)及国家自然科学基金“河南省嵩县南部正长岩的U-Pb定年、锆石Hf同位素及地球化学特征”(U1504405)共同资助。
-
-
Hou Hesheng, Wang Chengshan, Zhang Jiaodong, MA Feng, Fu Wei, Wang Pujun, Huang Yongjian, Zou Changchun, Gao Youfeng, Gao Yuan, Zhang Laiming, Yang Jin, Guo Rui. 2018. Deep continental scientific drilling engineering in Songliao Basin:Progress in earth science research[J]. Geology in China, 45(4):641-657(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804002
Hu Yule, Zhang Hui, Wang Wenshi. 2018. Key Technology of Deep Core Drilling[M]. Wuhan:China University of Geosciences Press, 274-280(in Chinese).
Hu Yule, Zhang Hui. 2013. Deep Geothermal Drilling and Well Formation Technology[M]. Wuhan:China University of Geosciences Press, 2-10(in Chinese).
Kong Fanjun, Liu Yonggui. 2005. Study and application of the MWD pressure and temperature system[J]. Petroleum Geology & Oilfield Development in Daqing, 24(1):76-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSK20050100Q.htm
Liu Yonggui, Shao Tianbo. 2004. A kind of measuring tool for downhole pressure and temperature[J]. Petrolum Drilling Techniques, 32(6):27-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT200406014.htm
Liu Yuejin. 2007. Present state and development of core drilling machine[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 34(1):39-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tkgc200701012
Maldonado B, Arrazola A, Morton B. 2006. Ultradeep HP/HT Completions: Classification, Design Methodologies, and Technical Challenges[C]. Offshore Technology Conference, OTC-17927-MS. https://www.onacademic.com/detail/journal_1000039081034510_389d.html
Parker T, Cooper P. 2016. Taking the Heat: Logging While Drilling at Extreme Temperatures. Society of Petroleum Engineers[C]//IADC/SPE Asia Pacific Drilling Technology Conference, IADC/SPE-180592-MS.
Ran Hengqian, Zhang Jinchang, Xie Wenwei, Zhang Yongqin, Song Zhibin, Xiang Junwen, Liu Fanbai, Feng Qizeng, Yan Taining, Jia Meiling, Tao Shixian, Hu Jiliang. 2011. Application study of geodrilling technology[J]. Acta Ceologica Sinica, 11(11):1806-1822(in Chinese with English abstract).
Shan Wenjun, Tao Shixian, Fu Fan, Yue Weimin, Zhao Zhitao. 2014.High Temperature Drilling Fluid Technology[J]. Drilling Fluid & Completion Fluid, 31(5):10-13(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dkyqt201702031
Sur A, Rashid K, Winslow D, Mcpheeters S. 2016. Analysis of bottlenecks in the efficient thermal dissipation from the electronics in a drilling tool[C]//IADC/SPE Asia Pacific Drilling Technology Conference, IADC/SPE-178778-MS.
Wang H, Ge Y, Shi L, 2017. Technologies in deep and ultra-deep well drilling:Present status, challenges and future trend in the 13th Five-Year Plan period (2016-2020)[J]. Natural Gas Industry B, 37(4):319-326. http://cn.bing.com/academic/profile?id=efe7055f540c2bd499be24f4bd3b5a89&encoded=0&v=paper_preview&mkt=zh-cn
Wang L. 2015. Halliburton launched the "Two high" with while drilling measurement system[J]. Overseas Logging Technology, 9(2):63-63(in Chinese).
Yan Bing. 2019. Research on while drilling temperature measurement technology for circulating fluid in high temperature geothermal well[J]. Petrochemical Technology, 40(1):228-229(in Chinese).
Zhao Zhixue, Han Yuan, Meng Xiangguang, Bai Xiaojie, GaoXiang. 2010. Development and application of the instrument for LWD measurement of downhole pressure and temperature[J]. China Petroleum Machinery, 38(1):44-47(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syjx201001014
单文军, 陶士先, 付帆, 岳伟民, 赵志涛. 2014.抗240℃高温水基钻井液体系的室内研究[J].钻井液与完井液, 31(5):10-13. doi: 10.3969/j.issn.1001-5620.2014.05.003 侯贺晟, 王成善, 张交东, 马峰, 符伟, 王璞珺, 黄永建, 邹长春, 高有峰, 高远, 张来明, 杨瑨, 国瑞. 2018.松辽盆地大陆深部科学钻探地球科学研究进展[J].中国地质, 45(4):641-657. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?flag=1&file_no=20180401&journal_id=geochina 胡郁乐, 张惠, 王稳石. 2018.深部岩心钻探关键技术[M].武汉:中国地质大学出版社, 274-280. 胡郁乐, 张惠. 2013.深部地热钻井与成井技术[M].武汉:中国地质大学出版社, 2-10. 孔凡军, 刘永贵. 2005.随钻压力温度测量系统的研究与应用[J].大庆石油地质与开发, 24(01):76-79. doi: 10.3969/j.issn.1000-3754.2005.01.027 刘永贵, 邵天波. 2004.井下压力温度测试工具的开发应用[J].石油钻探技术, 32(6):27-31. doi: 10.3969/j.issn.1001-0890.2004.06.010 刘跃进. 2007.岩心钻探设备的现状与发展[J].探矿工程(岩土钻掘工程), 34(1):39-43 doi: 10.3969/j.issn.1672-7428.2007.01.012 冉恒谦, 张金昌, 谢文卫, 张永勤, 宋志彬, 向军文, 刘凡柏, 冯起赠, 鄢泰宁, 贾美玲, 陶士先, 胡继良. 2011.地质钻探技术与应用研究[J].地质学报, 11(11):1806-1822. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201111004 王丽忱. 2015.哈里伯顿推出"两高"随钻测量系统[J].国外测井技术, 9(2):63-63. 闫冰. 2019.高温地热井循环流体温度随钻测量技术研究[J].石化技术, 40(1):228-229. doi: 10.3969/j.issn.1006-0235.2019.01.152 赵志学, 韩玉安, 孟祥光, 白晓捷, 高翔. 2010.随钻测量井下压力、温度仪器的研制及应用[J].石油机械, 38(1):44-47. http://d.old.wanfangdata.com.cn/Periodical/syjx201001014 -
期刊类型引用(5)
1. 马玉见,刘亚剑,梁涛,卢仁,包刚,雷万杉. 华北克拉通南缘角子山花岗岩的锆石U-Pb定年、岩石地球化学特征及构造背景. 西北地质. 2024(01): 95-109 . 百度学术
2. 卢仁,梁涛,卢欣祥. 华北克拉通南缘大纸房和嵖岈山花岗岩的锆石U-Pb定年、地球化学特征及成因启示. 地质科学. 2023(02): 529-555 . 百度学术
3. 梁涛,卢仁. 豫西崤山白石崖岩株的深部过程——锆石年龄谱和稀土元素证据. 地质论评. 2023(05): 1741-1762 . 百度学术
4. 李山坡,乔欣欣,陈俊魁,郑凯,潘小娜,吴祥珂,张哨波,张荣臻,高传宝. 河南方城大庄铌-稀土矿床碱性正长岩成矿机理研究. 中国地质. 2022(04): 1224-1235 . 本站查看
5. 梁涛,卢仁,刘小丽. 东秦岭神林花岗岩的锆石U-Pb定年、地球化学特征及构造背景. 地质论评. 2021(05): 1245-1262 . 百度学术
其他类型引用(0)