• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示

张林奎, 李光明, 曹华文, 张志, 付建刚, 夏祥标, 董随亮, 梁维, 黄勇

张林奎, 李光明, 曹华文, 张志, 付建刚, 夏祥标, 董随亮, 梁维, 黄勇. 藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示[J]. 中国地质, 2019, 46(6): 1312-1335. DOI: 10.12029/gc20190606
引用本文: 张林奎, 李光明, 曹华文, 张志, 付建刚, 夏祥标, 董随亮, 梁维, 黄勇. 藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示[J]. 中国地质, 2019, 46(6): 1312-1335. DOI: 10.12029/gc20190606
ZHANG Linkui, LI Guangming, CAO Huawen, ZHANG Zhi, FU Jiangang, XIA Xiangbiao, DONG Suiliang, LIANG Wei, HUANG Yong. Zircon geochronology and Hf isotope compositions of the granitic gneiss from Cuonadong in South Tibet and its insights for the evolution of the Proto-Tethys[J]. GEOLOGY IN CHINA, 2019, 46(6): 1312-1335. DOI: 10.12029/gc20190606
Citation: ZHANG Linkui, LI Guangming, CAO Huawen, ZHANG Zhi, FU Jiangang, XIA Xiangbiao, DONG Suiliang, LIANG Wei, HUANG Yong. Zircon geochronology and Hf isotope compositions of the granitic gneiss from Cuonadong in South Tibet and its insights for the evolution of the Proto-Tethys[J]. GEOLOGY IN CHINA, 2019, 46(6): 1312-1335. DOI: 10.12029/gc20190606

藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示

基金项目: 

国家重点研发计划项目 2018YFC0604100

国家重点研发计划项目 2016YFC0600308

中国地质调查局项目 DD20190147

详细信息
    作者简介:

    张林奎, 男, 1983年生, 硕士, 高级工程师, 主要从事矿产资源勘查与评价; E-mail:Zhang21001@163.com

  • 中图分类号: P597;P588.345

Zircon geochronology and Hf isotope compositions of the granitic gneiss from Cuonadong in South Tibet and its insights for the evolution of the Proto-Tethys

Funds: 

National Key R & D Program of China 2018YFC0604100

National Key R & D Program of China 2016YFC0600308

China Geological Survey DD20190147

More Information
    Author Bio:

    ZHANG Linkui, male, born in 1983, master, senior engineer, majors in research on mineral resource exploration and evaluation; E−mail:Zhang21001@163.com

  • 摘要:

    错那洞穹隆是藏南特提斯喜马拉雅地区新发现的一个片麻岩穹隆构造。穹隆核部发育一套早古生代眼球状片麻岩。本文在野外地质调查的基础上,利用LA-(MC)-ICP-MS对花岗质片麻岩2个样品的锆石开展U-Pb年代学和Lu-Hf同位素分析。片麻岩中的锆石发育核-幔-边结构,核部为具溶蚀港湾结构的继承锆石,幔部为具韵律(震荡)环带的岩浆锆石,边部(增生边)为重熔变质成因的黑锆石。岩浆锆石幔部的206Pb/238U年龄加权平均值为(500.6±2.6)Ma~(501.1±2.5)Ma,代表该片麻岩的早古生代岩浆结晶年龄。边部变质锆石的新生代重熔年龄为(37.7±0.5)Ma,可能代表藏南拆离系的启动时间。早古生代岩浆锆石幔部的εHft)值为-2.1~+5.3(平均值为+2.2),Hf同位素两阶段模式年龄(TDM2)为1.1~1.6 Ga(平均值为1.3 Ga),表明其源岩起源于高喜马拉雅元古宙地层的部分熔融。结合区域内早古生代岩浆活动和新生代穹隆构造变质事件,本文认为错那洞花岗质片麻岩的形成受控于早古生代原特提斯洋壳板片向冈瓦纳大陆下俯冲的造山作用,同时记录了新生代印度—欧亚大陆碰撞造山后的变质和深熔事件。

    Abstract:

    The Cuonadong dome is a newly discovered gneiss dome in the Tethys-Himalaya area of southern Tibet. Early Paleozoic augen gneiss is developed in the core of the dome. Based on field investigation, the authors conducted LA-(MC)-ICP-MS U-Pb dating and Lu-Hf isotopic analysis for two samples from the granitic gneiss. Core-mantle-rim texture is well developed in the zircons from the gneiss in CL images:the core is the inherited zircon with erosion embayed texture, the mantle is the igneous zircon with oscillatory zone, and the rim is the black zircon with re-melting metamorphic genesis. The weighted mean 206Pb/238U age of igneous zircon varies in the range of (500.6±2.6) Ma-(501.1±2.5) Ma, which represents the Early Paleozoic magmatic crystallized age, whereas the Cenozoic re-melting age of margin metamorphic zircon is (37.7±0.5) Ma, which represents the onset of the southern-Tibet detachment. The εHf(t) values and two-stage model ages (TDM2) of mantle Paleozoic igneous zircons range from -2.1 to +5.3 (averagely +2.2) and from 1.1 to 1.6 Ga (averagely 1.3 Ga), respectively, indicating that the source was derived from the partial melting of the High Himalaya Paleoproterozoic strata. Considering the regional Early Paleozoic magmatism and Cenozoic metamorphic event, the authors hold that the Cuonadong granitic gneiss was formed in the orogeny triggered by the Early Paleozoic Proto-Tethyan Oceanic subduction beneath the Gondwana continent, and recorded the Cenozoic post-collisional metamorphic and anatexis events.

  • 砷(As)在自然界普遍存在,是国际癌症研究机构(IARC)列出的第Ⅰ类明确致癌物(WHO, 2011Shahid et al., 2018)。饮用水砷浓度最敏感的毒性阈值尚未确定,世界卫生组织推荐的饮用水砷浓度限值为10 μg/L(WHO, 2011)。美国环境保护署(EPA)和国家研究委员会(NRC)指出,长期饮用浓度低至5 μg/L甚至3 μg/L的水可能会对人类健康造成慢性影响,引发癌症(Taheri et al., 2017)。饮用高砷地下水是人类遭受砷暴露风险的主要途径,全球有超过1亿人承受高砷地下水的暴露风险,其中中国有1900万(Duan et al., 2017; Li et al., 2017Cao et al., 2018Shahid et al., 2018)。

    高砷地下水在全球分布广泛,南亚、东南亚是地下水砷污染的典型地区,已经开展过深入而广泛的地球化学研究,解析高砷地下水的形成演化过程,追溯砷的来源及其溶出释放机制(Tang et al., 1996Wang et al., 1998Deng et al., 2009; Xie et al., 2012Li et al., 2013;Gan et al., 2014;Hu et al., 2015Gupta et al., 2017Zhang et al., 2017Han et al., 2017Li et al., 2018Gillispie et al., 2019Gao et al., 2020)。含砷矿物氧化溶解及还原活化是高砷地下水形成的主要机制(Gupta et al., 2017; Zhang et al., 2017; Shahid et al., 2018; Gillispie et al., 2019; Stopelli et al., 2020)。中国高砷地下水主要分布在大同盆地、江汉平原、河套盆地、银川盆地等内陆平原区;淮河流域是中国新发现的高砷地下水集中分布区,高砷地下水分布范围广,影响人口众多。根据2010年代开展的淮河流域地下水分析数据统计预测,淮河流域大部分地区的砷暴露风险概率大于0.4,统计发现流域内各村庄监测水井As浓度超过10 μg/L的比例达17%,最高检测值为620 μg/L(Li et al., 2017)。

    高砷地下水的形成是在水岩相互作用过程中多因素共同作用的结果。淮河流域富砷地下水砷污染系原生成因,以前的研究工作主要集中在地下水As的水文地球化学分布、饮水型砷中毒地方病的地理分布等方面(Zhang et al., 2010Chen et al., 2013; Li et al., 2017)。淮河流域高砷地下水的研究程度低,缺乏对高砷地下水的形成过程及其影响因素的深入解析,高砷地下水的形成演化机制不明。本次研究选择淮河平原代表性的高砷地下水小尺度流场,针对以往研究的薄弱环节,运用地下水水文地球化学分析方法,主要研究目标为:(1)分析典型高砷地下水的水文地球化学特征,评估其污染风险;(2)解析高砷地下水的形成演化过程;(3)追溯砷污染物的来源及溶出释放过程。开展高砷地下水的形成演化过程研究,为淮河流域高砷地下水的治理与公共健康风险控制提供科学依据。

    淮河流域地处中国东部,流域西起桐柏山、伏牛山,东临黄海,南以大别山、江淮丘陵、通扬运河及如泰运河分界,北以黄河、泰山为界与黄河流域毗邻,地理坐标:111°55′~121°25′E,30°55′~36°36′N,面积为27万km2。该流域处于中国南北气候过渡带,属暖温带半湿润季风气候区,年平均气温11~16℃。其地质构造上位于华北板块、扬子板块、秦岭造山系3个构造单元的交接地带(Zhang et al., 2015) (图 1)。

    图  1  淮河流域安徽太和县地质背景、采样部署及水文地质剖面
    Figure  1.  Geological background, sampling sites and hydrogeological profile of Taihe County of Anhui Province in Huaihe River Basin

    研究区安徽省太和县位于淮河流域中部,以冲积平原地貌为主,海拔高程一般15~50 m,地势由西北向东南微倾。研究区分布最广的地下水类型为松散岩类孔隙水,水文地质分区划分为淮河中游淮北冲积平原区。自新近纪(23 Ma)以来,淮河流域形成了巨厚的新近系、第四系松散沉积物,为区域地下水的形成与分布提供了良好的水文地质条件。研究区地下水系统自上而下划分为浅层、中深层、深层含水系统(Li et al., 2018)。浅层地下水赋存于50 m以浅的全新统、上更新统地层,与大气降水、地表水关系密切,地下水埋深一般为2~4 m,均在极限蒸发深度以内,蒸发是浅层地下水的主要排泄途径。中深层地下水赋存于50~150 m的中、下更新统地层,深层地下水主要赋存于150~500 m的新近系(图 1)。由于中、深层地下水埋藏较深(埋深大于50 m),含水层之间有着黏性土层相隔,不能直接接受大气降水的补给,径流缓慢,人工开采是深层地下水的主要排泄途径。

    太和县是淮河平原典型的高砷地下水分布区(图 1),本次研究选择太和县马集镇及相邻区的高砷地下水小尺度流场为天然实验场,采集测试地下水样品。本次研究采用精度为1 km×1 km(局部1 km×0.5 km)的近似网格法布设采样点。本次研究于2019年5、9月采集样品,共采集地下水样64件。采集的地下水样品,主要取自研究区井深不到50 m的浅井,水位埋深4~50 m,含水层为第四系砂层、细砂层、粉砂层。

    地下水样品水化学分析了As、K+、Na+、Ca2+、Mg2+、Cl-、SO42-、HCO3-、F-、Br-、总碱度和总酸度。阳离子(Na+, K+, Ca2+, Mg2+)采用电感耦合等离子体发射光谱法(ICP-OES)测定,阴离子(HCO3-, SO42-, Cl-, F-, Br-)用离子色谱法测定,总碱度、总酸度采用酸滴定法测定,地下水As浓度测试采用荧光光谱仪(AFS-820,中国),As检出限为0.05 μg/L,精密度<1.0%。样品测试分析由中国地质调查局南京地质调查中心实验测试中心完成。研究区地下水化学分析结果见表 1

    表  1  淮河流域安徽太和县地下水化学测试分析(2019年6月、9月采样)
    Table  1.  Chemical assay data of groundwater quality in Taihe County of Anhui Province in Huaihe River Basin (sampled in June and September 2019)
    下载: 导出CSV 
    | 显示表格

    根据热力学原理,水岩反应中矿物的溶解与沉淀由各种矿物在地下水中的饱和指数(SI) 决定,利用SI可以识别水质和水化学演化过程(Zhu et al., 2011Han et al., 2014Taheri et al., 2017)。SI的数学表达式为:

    其中IAP是离子活性积,Ks是矿物的平衡常数。SI<0、SI = 0、SI>0分别为矿物处于溶解、平衡、沉淀阶段的热力学判据,通常认为0.5>SI>-0.5为近饱和状态。

    地下水化学分析以SPSS 19.0为平台对数据进行描述统计、相关分析、回归分析,以Phreeqc 3.40为平台选择确定矿物相,计算矿物饱和指数,专题图以Coreldraw X4、AquaChem 3.70为平台制作。

    根据地下水化学测试分析结果,依据国家地下水质量标准GB/T 14848-2017分类标准(MLR,2017),地下水中As、Cu、Mo、Ba、Na+、Cl-、SO42-、HCO3-、CO32-、NO3-、NO2-、F-、COD、I、TDS、Mn、HBO2等的均值、标准差与质量分类见表 1。影响太和马集研究区松散岩类孔隙水水质的主要无机组分是砷、钡、钠、氯、氟、碘、锰、硝酸盐、硫酸盐、硼、溶解性总固体,其中砷、氟、锰、钠、硼是最主要影响因子,单项指标超过地下水质量Ⅲ类标准的样品比例均超过50%(表 1表 2)。

    表  2  安徽太和县地下水化学统计分析与评价
    Table  2.  Statistics and evaluation of groundwater chemistry of Taihe Conty, Anhui Province in Huaihe River Basin
    下载: 导出CSV 
    | 显示表格

    依据世界卫生组织推荐的饮用水质量标准(WHO, 2011),影响研究区地下水水质的主要因素是As、F浓度。研究区浅层地下水砷浓度为(5.75±5.42) μg/L,呈现明显的空间变异性;超过世界卫生组织饮用水推荐准则值(10 μg/L)样品比例为23%,呈现高暴露风险。地下水氟浓度为(1.29±0.40) mg/L,超过推荐限值(1.5 mg/L)样品比例达31%。

    本次研究采集分析的地下水均为浅层孔隙水,含水岩组为全新统和上更新统含水岩组。根据水化学分析结果,研究区浅层地下水的总溶解固体(TDS)浓度为(719.29±310.20) mg/L,其中大部分样品为低盐度淡水(<1000 mg/L),26%在微咸水(1000~3000 mg/L)范围内。地下水的化学成分受主要离子(SO42-、Cl-、HCO3-、Na+、Ca2+、Mg2+)控制。阴离子成分以HCO3-为主,SO42-和Cl-次之,浓度分别为(617.93±220.25)、(83.73±73.09)、(54.03±58.81) mg/L。阳离子以Na+为优势离子,其次为Ca2+、Mg2+,浓度分别为(186.04±120.17)、(46.17±27.91)、(39.48±12.39) mg/L。

    研究区测试样品总碱度(516±169) mg/L,总酸度(20.00±4.63) mg/L,地下水呈碱性。测试样品总碱度与HCO3-浓度极显著正相关,相关系数R=0.997(P≤0.01),故水样中总碱度表现为HCO3-碱度,总碱度大小总体上反映了HCO3-含量的大小。高砷地下水总碱度主要分布在400~700 mg/L(图 2),研究区碳酸盐岩矿物风化作用和离子交换反应升高了地下水的碱度。

    图  2  淮河流域安徽太和县高砷地下水总碱度图解
    Figure  2.  Diagram of total alkalinity of high-arsenic groundwater in Taihe County of Anhui Province, Huaihe River Basin

    优势离子决定了地下水的类型,按piper三线图统计,研究区水化学类型以HCO3-Na为主,其次为HCO3-Na·Mg、HCO3-Na·Ca,HCO3-Na·Ca·Mg型。高砷地下水的水化学类型主要为HCO3-Na型(图 3)

    图  3  淮河平原安徽太和县地下水piper图
    Figure  3.  Piper diagram of the groundwater in Taihe County of Anhui Province, Huaihe River Basin

    Cl和Br也是地下水中普遍存在的溶质,由于Cl、Br在天然水中的保守行为和高溶解度,离子交换反应与矿物表面吸附等过程不能显著改变Cl和Br的浓度。岩盐(NaCl)矿物结构中不含较大的Br离子,其Cl/Br比值一般为104~105(摩尔比),岩盐溶解随着氯离子浓度的增加将产生Cl/Br比值的快速增加;相比之下,地下水的蒸发过程可以改变地下水中Cl和Br的绝对浓度,但不会改变地下水岩盐饱和之前的Cl/Br比值。因此应用Cl、Br及Cl/Br比值可以识别区分地下水的溶解、蒸发等演化过程(Cartwright et al., 2006Deng et al., 2009Xie et al., 2012Xing et al., 2013Han et al., 2014Taheri et al., 2017)。

    研究区测试样品的Cl-浓度范围0.70~210 mg /L,均值(54.03±58.81) mg/L,Br-浓度范围为10.7~324 μg/L,均值(104±87.9) μg/L。Cl-浓度与Br-浓度显著正相关,相关系数0.75(P≤0.01)。样品的Cl-、Br-浓度较低,Cl/Br(mol)均值为1097±1044,比值变化范围51.0~4603。样品中大部分的Cl/Br比值超过600,显示显著的空间变异性;As超标地下水(>10 μg/L)的Cl/Br比值范围544~3093,均值993。测试样品Cl/Br比值最高值超过4600,地下水Cl浓度不超过6 mmol /L,地下水溶解少量的岩盐是Cl/Br比值快速增大最可能的机制,较大的Cl/Br比值变化范围反映出各测试样品岩盐溶解量的不同。Cl/Br比与Cl浓度之间的关系(图 4)表明,蒸发作用、岩盐溶解作用是控制浅层地下水分布的主导过程,高砷地下水Cl/Br比值随Cl浓度的增加而相对不变,说明高砷地下水更大程度受到蒸发作用的影响。

    图  4  淮河流域安徽太和县地下水Cl/Br比值与Cl相关图
    Figure  4.  Correlation between Cl/Br ratio and Cl of groundwater in Taihe County of Anhui Province, Huaihe River Basin

    Ca/Na、Mg/Na、HCO3/Na(mol)比值可以表示地下水矿化度的强弱,也可以得到地下水来源及水质演化的相关信息,在一定程度上为区域水文地球化学演化过程提供判断依据(Zhu et al., 2011; Liu et al., 2018)。从研究区地下水Mg /Na-Ca/Na、HCO3/Na-Ca/Na关系图(图 5)可知,随着Ca/Na比值的增大,地下水的Mg /Na、HCO3/Na比值逐渐增加。地下水主要阳离子浓度比值主要分布于蒸发盐矿物溶解与硅酸盐矿物风化作用之间,少部分分布于硅酸盐矿物风化作用与碳酸盐矿物溶解作用之间,表明研究区地下水受到蒸发盐溶解、硅酸盐风化、碳酸盐溶解等过程的共同影响。高砷地下水的离子比值主要分布于蒸发盐矿物溶解与硅酸盐矿物风化作用之间,显示高砷地下水更大程度受到蒸发盐溶解与硅酸盐矿物风化过程的影响。

    图  5  淮河流域安徽太和县高砷地下水Ca/Na-Mg/Na、HCO3/Na-Ca/Na图解
    Figure  5.  Diagram of Ca/Na-Mg/Na and HCO3/Na-Ca/Na of groundwater in Taihe County of Anhui Province, Huaihe River Basin

    Na/Cl比值(mol)是表征地下水中Na+富集程度的一个水文地球化学参数,可以用来反映离子交换程度(Xing et al., 2013Han et al., 2014Yang et al., 2016Taheri et al., 2017)。淮河流域属于干旱—半干旱地区,蒸发作用强烈,导致岩盐在沉积层累积,岩盐溶解是平原盆地区地下水中Na+和Cl-的主要来源之一。如果岩盐溶解为Na+与Cl-的主要来源,则Na/Cl(mol)-的比值应为1∶1,高于此比值的Na+则可能有其他来源。本次研究全区采集地下水样Na/Cl比值为9.63±57.4,绝大部分样品远大于1∶1,呈现显著的空间变异性,Na/Cl比值随Cl浓度的增加呈下降趋势;高砷地下水(10>As≥5 μg/L)、污染地下水(As≥10 μg/L)的Na/Cl比值分别为43.1±85.1、15.7±16.0,全部位于岩盐溶解线上方(图 6)。由此推断,研究区地下水的Na+并不仅仅来源于岩盐溶解,地下水总体上可能经历强烈的阳离子交换作用,而且高砷地下水的离子交换作用更为显著。

    图  6  淮河流域安徽太和县高砷地下水Na-Cl图解
    Figure  6.  Na-Cl diagram of groundwater in Taihe County of Anhui Province, Huaihe River Basin

    水岩相互作用控制着地下水中主要离子浓度及其赋存状态。本次研究利用PHREEQC 3.7计算矿物饱和指数,结果表明:近饱和矿物方解石(0.41)、文石(0.26)、菱镁矿(0.04) 的SI值接近0,处于准平衡状态;未饱和矿物岩盐(-6.52)、石膏(-1.99)、硬石膏(-2.23)、萤石(-1.02)的SI值小于-0.5,表明存在岩石溶解的趋势;白云石(0.70) 的SI大于0.5,存在化学沉淀的趋势(表 3)。地下水中Cl-、F-、SO42-部分源自岩盐、萤石及石膏、硬石膏矿物的溶解释出。

    表  3  淮河流域安徽太和县地下水矿物饱和指数
    Table  3.  Saturation indices of groundwater in Taihe County of Anhui Province, the Huaihe River Basin
    下载: 导出CSV 
    | 显示表格

    在自然环境pH、Eh条件下,砷元素主要以无机氧化态As(Ⅴ)和还原态As(Ⅲ)元素价态存在。沉积物(土壤)中含砷矿物通常以砷酸盐、亚砷酸盐和硫化物等矿物相存在,在还原条件下,砷黄铁矿是砷的稳定宿主,其伴生砷与地下水砷分布高度相关(Hu et al., 2015; Taheri et al., 2017; Duan et al., 2017; Zhang et al., 2017; Shahid et al., 2018; Gillispie et al., 2019)。地下水动态、氧化还原电位(Eh)、酸碱度(pH)的变化影响沉积物砷的吸附-解析过程,进而影响水体砷的浓度,高pH、低Eh还原条件促进沉积物中砷的解吸和溶解进入地下水而在溶液中积累(高存荣等, 2010; 王杰等, 2015; Duan et al., 2017; Taheri et al., 2017; Zhang et al., 2017; Gillispie et al., 2019)。

    地下水中的SO42-可能源自石膏溶解与硫化物氧化,全区地下水SO42-/Ca2+ (mol) 比值为0.76,地下水的SO42-不仅仅源于石膏矿物的溶解,还有硫化物的氧化。测试样品中的As和SO42-浓度之间正相关(相关系数R=0.584)。分析样品中As<3 μg/L、3 μg/L≤As<5 μg/L、5 μg/L≤As<10 μg/L与As≥10 μg/L地下水的SO42-浓度均值分别为0.74、1.09、0.92与0.93 mmol/L,高砷地下水呈现相对高的硫酸盐浓度。

    经X射线衍射物相分析,淮河流域浅层(0.2~1 m)沉积物主要矿物成分为石英、钾长石、方解石和黏土矿物,含量分别为47.1%、3.79%、8.27%和33.4%。部分样品中含有少量黄铁矿和菱铁矿,含量分别为2.5%和47.1%,未检测到赤铁矿,反映还原性地下水环境。据地下水化学数据与表层沉积物物相分析结果推测淮河流域沉积物中砷在还原条件下可能以含砷硫化物相存在,由于长期大量开采地下水,地下水流系统环境改变,破坏了含水层固液相动态交换的平衡,触发As从固相释放到地下水中。碳酸盐矿物的溶解通常会增加碱度(pH)值,在高pH条件下,含砷硫化物的氧化速率增加,地下水SO42-浓度增高,促进As向水体的释出。pH值的增大也促进As从金属氧化物(Fe、Mn)中解析从而增加水中As浓度(Duan et al., 2017; Taheri et al., 2017; Zhang et al., 2017; Gillispie et al., 2019)。因此推测含水层沉积物含砷矿物氧化溶解与还原活化是导致原生砷向地下水释出的主要过程。研究区地下水表现出的高矿化度和强烈蒸发作用可能与农业灌溉有较大关系,含水层中原生的矿物组分是造成高砷水的最主要原因。另外,高强度的深层地下水抽取灌溉也可能是导致的高砷水进入浅水含水层的原因之一。

    高砷地下水的形成是多因素综合作用的结果,是一个复杂的水文地质过程。高砷地下水的形成是含砷矿物集聚、固相砷的溶解析出及富集砷的水文地质条件等在水岩相互作用过程中多因素综合作用的结果。本次研究选择流域内典型的高砷地下水小尺度流场为天然实验场,解析高砷地下水的形成演化过程,追溯砷的来源及其溶出释放机制。

    (1) 研究区地下水砷含量为(5.75±5.42) μg/L,具有明显的空间变异性,超过世界卫生组织饮用水推荐准则值的测试样品比例为23%,呈现高暴露风险,饮用高砷地下水可能是威胁人类健康的主要途径。

    (2) 根据水化学成分解析,研究区地下水经历蒸发作用、岩盐溶解、水岩相互作用等过程的共同影响。高砷地下水的化学类型主要为HCO3-Na型,高砷地下水更大程度受到蒸发作用、阳离子交换作用的影响。

    (3) 研究区高砷地下水系原生成因,高砷地下水的As源自含水层沉积物原生砷的溶出释放。碱性环境下,含水层沉积物含砷矿物氧化溶解与还原活化可能是高砷地下水形成的主要机制。

    致谢: 中国地质大学(北京)相鹏、王佳琳和章永梅,西安地质调查中心李艳广等在锆石的测试分析方面给予了帮助;成都地质调查中心卿诚实、向安平、马国桃、董磊和吴建阳,成都理工大学代作文、缪华清、吴昊和宋旭波等参加了野外工作;两位审稿专家和编辑对文章的修改提出了诸多宝贵的意见,在此一并表示真诚谢意!
  • 图  1   青藏高原大地构造背景与早古生代岩浆岩活动事件

    Figure  1.   Sketch map showing the Early Paleozoic magmatic events in the southern part of the Tibetan Plateau

    图  2   喜马拉雅造山带大地构造背景与穹隆构造分布简图(地质简图据Guillot et al., 2008修改)

    Figure  2.   Geological map and tectonic background of Himalaya showing the distribution of the domes (geological map modified from Guillot et al., 2008)

    图  3   错那洞片麻岩穹隆、淡色花岗岩和花岗质片麻岩分布简图

    Figure  3.   Generalized geological map of the Cuonadong genesis dome showing the distribution of leucogranite and granitic gneiss

    图  4   错那洞穹隆花岗质片麻岩特征和照片

    a—错那洞穹隆“三层结构”宏观地质现象; b—花岗质片麻岩、伟晶岩脉和淡色花岗岩脉之间的交切关系; c—PM01-B5样品手标本照片; d—PM01-B5样品显微镜下照片; e—PM01-B11样品手标本照片; f—PM01-B11样品显微镜下照片; Pl—斜长石; Kfs—钾长石; Bt—黑云母; Ms—白云母; Qtz—石英

    Figure  4.   Characteristics and petrographical photographs of the Cuonadong granitic gneiss

    a-Macroscopic geological photograph of the"three-layer structure"from the dome; b-The relationships of the granitic gneiss, pegmatite veins and leucogranite; c-Hand specimen of the granitic gneiss (PM01-B5); d-Petrographical photographs of the granitic gneiss (PM01-B5); e-Hand specimen of the granitic gneiss (PM01-B11); f-Petrographical photographs of the granitic gneiss (PM01-B11); Pl-Plagioclase; Kfs-Potassium feldspar; Bt-Biotite; Ms-Muscovite; Qtz-Quartz

    图  5   错那洞花岗质片麻岩(PM01-B5)锆石阴极发光(CL)照片(a),锆石U-Pb谐和图(b和c)和206Pb/238U年龄加权平均值图(d)

    Figure  5.   CL images (a), U-Pb concordia diagrams (b and c) and weighted mean 206Pb/238U ages(d) of zircons from Cuonadong granitic gneiss (PM01-B5)

    图  6   错那洞花岗质片麻岩(PM01-B11)锆石阴极发光(CL)照片(a),锆石U-Pb谐和图(b和c)和206Pb/238U年龄加权平均值图(d)

    Figure  6.   CL images (a), U-Pb concordia diagrams (b and c) and weighted mean 206Pb/238U ages(d) of zircons from Cuonadong granitic gneiss (PM01-B11)

    图  7   错那洞花岗质片麻岩锆石εHf(t) (a)和TDM2 (b)柱状图及锆石U-Pb年龄-εHf(t)图解(c)

    Figure  7.   Histogram of εHf(t) (a) and TDM2 (b), and plots of εHf(t) values versus U-Pb ages diagram(c) of zircons from the Cuonadong granitic gneiss

    图  8   冈瓦纳大陆边缘早古生代构造-岩浆岩活动(a)及喜马拉雅地体早古生代构造演化模式图(b,c)

    (据文献Veevers, 2004; Cawood et al., 2007; Zhu et al., 2012; Wang et al., 2013; Hu et al., 2015修改)

    Figure  8.   Early Paleozoic tectonic-magmatic events in the margin of Gondwana (a) and schematic illustrations of tectonic evolution of the Himalayan orogeny during early Paleozoic (b and c)

    (modified from Veevers, 2004; Cawood et al., 2007; Zhu et al., 2012; Wang et al., 2013; Hu et al., 2015)

    表  1   西藏隆子县错那洞花岗质片麻岩锆石LA-ICP-MS U-Pb定年分析数据

    Table  1   Zircon LA-ICP-MS U-Pb dating analytical data of the Cuonadong granitic gneiss from Lhünzê County in Tibet

    下载: 导出CSV

    表  2   西藏隆子县错那洞花岗质片麻岩锆石LA-MC-ICP-MS Lu-Hf同位素分析数据

    Table  2   Zircon LA-MC-ICP-MS Lu-Hf isotope analytical data of the Cuonadong granitic gneiss from Lhünzê County in Tibet

    下载: 导出CSV
  • Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 414(6865):738-742. doi: 10.1038/414738a

    Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148:243-258. doi: 10.1016/S0012-821X(97)00040-X

    Cai F L, Ding L, Laskowski A K, Kapp P, Wang H Q, Xu Q, Zhang L Y. 2016. Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet[J]. Earth and Planetary Science Letters, 435:105-114. doi: 10.1016/j.epsl.2015.12.027

    Cai Zhihui, Xu Zhiqin, Duan Xiangdong, Li Huaqi, Cao Hui, Huang Xuemeng. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau[J]. Acta Petrologica Sinica, 29(6):2123-2140 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306019

    Cao H W, Huang Y, Li G M, Zhang L K, Wu J Y, Dong L, Dai Z W, Lu L. 2018. Late Triassic sedimentary records in the northern Tethyan Himalaya:Tectonic link with Greater India[J]. Geoscience Frontiers, 9:273-291. doi: 10.1016/j.gsf.2017.04.001

    Cawood P A, Johnson M R W, Nemchin A A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 255:70-84. doi: 10.1016/j.epsl.2006.12.006

    Chatterjee N, Bhattacharya A, Duarah B P, Mazumdar A C. 2011. Late Cambrian reworking of paleo-Mesoproterozoic granulites in Shillong-Meghalaya gneissic complex (Northeast India):Evidence from PT pseudosection analysis and monazite chronology and implications for east Gondwana assembly[J]. The Journal of Geology, 119(3):311-330. doi: 10.1086/659259

    Chen F K, Li X H, Wang X L, Li Q L, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 96(6):1179-1194. doi: 10.1007/s00531-006-0146-y

    Cottle J M, Larson K P, Kellett D A. 2015. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen[J]. Journal of Structural Geology, 78:119-133. doi: 10.1016/j.jsg.2015.06.008

    Cottle J M, Searle M P, Horstwood M S, Waters D J. 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U (-Th)-Pb geochronology[J]. The Journal of Geology, 117(6):643-664.

    DeCelles P G, Carrapa B, Gehrels G E, Chakraborty T, Ghosh P. 2016. Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt:The view from Northeastern India[J]. Tectonics, 35(12):2995-3027. doi: 10.1002/2016TC004298

    Diedesch T F, Jessup M J, Cottle J M, Zeng L S. 2016. Tectonic evolution of the middle crust in southern Tibet from structural and kinematic studies in the Lhagoi Kangri gneiss dome[J]. Lithosphere, 8(5):480-504. doi: 10.1130/L506.1

    Ding H X, Zhang Z M, Dong X, Tian Z L, Xiang H, Mu H C, Gou Z B, Shui X F, Li W C, Mao L J. 2016a. Early Eocene (c. 50 Ma)collision of the Indian and Asian continents:Constraints from the North Himalayan metamorphic rocks, southeastern Tibet[J]. Earth and Planetary Science Letters, 435:64-73. doi: 10.1016/j.epsl.2015.12.006

    Ding H X, Zhang Z M, Dong X, Yan R, Lin Y H, Jiang H Y. 2015.Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 27:1616-1629. doi: 10.1016/j.gr.2014.02.003

    Ding H X, Zhang Z M, Hu K M, Dong X, Xiang H, Mu H C. 2016b.P-T-t-D paths of the North Himalayan metamorphic rocks:implications for the Himalayan orogeny[J]. Tectonophysics, 683:393-404. doi: 10.1016/j.tecto.2016.06.035

    Dong Meiling, Dong Guochen, Mo Xuanxue, Zhu Dicheng, Nie Fei, Xie Xufei, Wang Xia, Hu Zhaochu. 2012. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 28(5):1453-1464 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205009

    Dong Xin, Zhang Zeming, Wang Jinli, Zhao Guochun, Liu Feng, Wang Wei, Yu Fei. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau:Petrology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 25(7):1678-1694 (in Chinese with English abstract).

    Fu J G, Li G M, Wang G H, Huang Y, Zhang L K, Dong S L, Liang W. 2017. First field identification of the Cuonadong dome in southern Tibet:Implications for EW extension of the North Himalayan gneiss dome[J]. International Journal of Earth Sciences, 106(5):1581-1596. doi: 10.1007/s00531-016-1368-2

    Fu Jiangang, Li Guangming, Wang Genhou, Huang Yong, Zhang Linkui, Dong Suiliang, Liang Wei. 2018. Establishment of the North Himalayan double gneiss domes:evidence from field identification of the Cuonadong dome, south Tibet[J]. Geology in China, 45(4):783-802(in Chinese with English abstract).

    Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites[J]. Geology, 45:39-42. doi: 10.1130/G38336.1

    Gao L E, Zeng L S, Gao J H, Shang Z, Hou K J, Wang Q. 2016.Oligocene crustal anatexis in the Tethyan Himalaya, southern Tibet[J]. Lithos, 264:201-209. doi: 10.1016/j.lithos.2016.08.038

    Gao L E, Zeng L S, Hou K J, Guo C L, Tang S H, Xie K J, Hu G Y, Wang L. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet[J]. Chinese Science Bulletin, 58(28/29):3546-3563.

    Gao L E, Zeng L S, Xie K J. 2012. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet[J]. Chinese Science Bulletin, 57(6):639-650. doi: 10.1007/s11434-011-4805-4

    Gao L E, Zeng L S. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimica et Cosmochimica Acta, 130:136-155. doi: 10.1016/j.gca.2014.01.003

    Gao Lie, Zeng Lingsen, Xu Zhiqin, Wang Li. 2015. Himalaya in the Caledonia time:A record from the Malashan Gyirongarea, southern Tibet[J]. Acta Petrologica Sinica, 31(5):1200-1218 (in Chinese with English abstract).

    Gardiner N J, Kirkland C L, Van Kranendonk M J. 2016. The juvenile hafnium isotope signal as a record of supercontinent cycles[J]. Scientific Reports, 6:38503. doi: 10.1038/srep38503

    Gehrels G E, DeCelles P G, Martin A, Ojha T P, Pinhassi G, Upreti B N. 2003. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 13(9):4-9. doi: 10.1130/1052-5173(2003)13<4:IOTHOA>2.0.CO;2

    Gehrels G E, DeCelles P G, Ojha T P, Upreti B N. 2006a. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya[J]. Geological Society of America Bulletin, 118(1/2):185-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90eb95cfbb59e5bdba2b3feb48903bf1

    Gehrels G E, DeCelles P G, Ojha T P, Upreti B N. 2006b. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 28:385-408. doi: 10.1016/j.jseaes.2005.09.012

    Godin L, Parrish R R, Brown R L, Hodges K V. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U-Pb geochronology and 40Ar/39Ar thermochronology[J]. Tectonics, 20(5):729-747. doi: 10.1029/2000TC001204

    Gou G N, Wang Q, Wyman D A, Xia X P, Wei G J, Guo H F. 2017. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet:Evidence for melting of continental crust and sediment recycling[J]. Solid Earth Sciences, 2(2):43-54. doi: 10.1016/j.sesci.2017.03.003

    Gou Z B, Zhang Z M, Dong X, Xiang H, Ding H X, Tian Z L, Lei H C. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya[J]. Lithos, 256-257:300-310. doi: 10.1016/j.lithos.2016.04.009

    Gou Zhengbin, Zhang Zeming, Dong Xin, Ding Huixia, Xiang Hua, Lei Hengcong, Li Wenchao, Tang Lei. 2015. Petrogenesis and tectonic significance of the Early Paleozoic granitic gneisses from the Yadong area, southern Tibet[J]. Acta Petrologica Sinica, 31(12):3674-3686 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512012

    Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9

    Gu Pingyang, He Shiping, Li Rongshe, Shi Chao, Dong Zengchan, Wu Jilian, Zha Xianfeng, Wang Yi. 2013. Geochemical features and tectonic significance of granitic gneiss of Laguigangri metamorphic core complexes in southern Tibet[J]. Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002

    Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008.Tethyan and Indian subduction viewed from the Himalayan highto ultrahigh-pressure metamorphic rocks[J]. Tectonophysics, 451:225-241. doi: 10.1016/j.tecto.2007.11.059

    Guynn J, Kapp P, Gehrels G E, Ding L. 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 43:23-50. doi: 10.1016/j.jseaes.2011.09.003

    Hodges K V, Parrish R R, Searle M P. 1996. Tectonic evolution of the central Annapurna range, Nepalese Himalayas[J]. Tectonics, 15(6):1264-1291. doi: 10.1029/96TC01791

    Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025

    Hou Z Q, Zhang H R. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026

    Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W, Sun Q Z. 2012. Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen[J]. Earth and Planetary Science Letters, 349/350:38-52. doi: 10.1016/j.epsl.2012.06.030

    Hu P Y, Li C, Wang M, Xie C M, Wu Y W. 2013. Cambrian volcanism in the Lhasa terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Sciences, 77:91-107. doi: 10.1016/j.jseaes.2013.08.015

    Hu P Y, Zhai Q G, Jahn B M, Wang J, Li C, Lee H Y, Tang S H. 2015.Early Ordovician granites from the South Qiangtang terrane, northern Tibet:Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 220-223:318-338. doi: 10.1016/j.lithos.2014.12.020

    Hu Peiyuan, Li Cai, Su Li, Li Chunbin, Yu Hong. 2010. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau:Age records of Pan-African movement and Indo-China movement[J]. Geology in China, 37(4):1050-1061 (in Chinese with English abstract).

    Hu X M, Garzanti E, Wang J G, Huang W T, An W, Webb A. 2016. The timing of India-Asia collision onset-facts, theories, controversies[J]. Earth-Science Reviews, 160:264-299. doi: 10.1016/j.earscirev.2016.07.014

    Iizuka T, Yamaguchi T, Itano K, Hibiya Y, Suzuki K. 2017. What Hf isotopes in zircon tell us about crust-mantle evolution[J]. Lithos, 274-275:304-327. doi: 10.1016/j.lithos.2017.01.006

    Ji W Q, Wu F Y, Chung S L, Wang X C, Liu C Z, Li Q L, Liu Z C, Liu X C, Wang J G. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 44(4):283-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa53cbdf8c558114f33b6042071d7b0c

    Ji Wenhua, Chen Shoujian, Zhao Zhenming, Li Rongshe, He Shiping, Wang Chao. 2009. Discovery of the Cambiran volcanic rocks in the Xainza area, Gangdese orogenic belt, Tibet, China and its significance[J]. Geological Bulletin of China, 28(9):1350-1354(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909026

    Johnson M R W, Oliver G J H, Parrish R R, Johnson S P. 2001.Synthrusting metamorphism, cooling, and erosion of the Himalayan Kathmandu Complex, Nepal[J]. Tectonics, 20(3):394-415. doi: 10.1029-2001TC900005/

    King J, Harris N, Argles T, Parrish R, Zhang H F. 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J]. Geological Society of America Bulletin, 123(1):218-239. doi: 10.1130-B30085.1/

    Kumar S, Pieru T, Rino V, Hayasaka Y. 2017a. Geochemistry and UPb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India:evidence of synchronous mafic-felsic magma mixing-fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle[J]. Geological Society, London, Special Publications, 253-289.

    Kumar S, Rino V, Hayasaka Y, Kimura K, Raju S, Terada K, Pathak M. 2017b. Contribution of Columbia and Gondwana supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India:Constraints from U-Pb SHRIMP zircon geochronology and geochemistry[J]. Lithos, 277:356-375. doi: 10.1016/j.lithos.2016.10.020

    Kusky T M, Abdelsalam M, Tucker R D, Stern R J. 2003. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 123(2):81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd4d3cb402f309ea7e2e1cf366211551

    La Roche R S, Godin L, Cottle J M, Kellett D A. 2016. Direct shear fabric dating constrains early Oligocene onset of the South Tibetan detachment in the western Nepal Himalaya[J]. Geology, 44(6):403-406. doi: 10.1130/G37754.1

    Langille J, Lee J, Hacker B, Seward G. 2010. Middle crustal ductile deformation patterns in southern Tibet:Insights from vorticity studies in Mabja Dome[J]. Journal of Structural Geology, 32:70-85. doi: 10.1016/j.jsg.2009.08.009

    Lee J, Whitehouse M J. 2007. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages[J]. Geology, 35(1):45-48. doi: 10.1130/G22842A.1

    Li Cai, Xie Yaowu, Sha Shaoli, Dong Yongsheng. 2008. SHRIMP UPb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China[J]. Geological Bulletin of China, 27(1):64-68(in Chinese with English abstract).

    Li G J, Wang Q F, Huang Y H, Chen F C, Dong P. 2015. Discovery of Hadean-Mesoarchean crustal materials in the northern Sibumasu block and its significance for Gondwana reconstruction[J]. Precambrian Research, 271:118-137. doi: 10.1016/j.precamres.2015.10.003

    Li G J, Wang Q F, Huang Y H, Gao L, Yu L. 2016b. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block:Implications for the early Paleozoic tectonic evolution along East Gondwana[J]. Lithos, 245:76-92. doi: 10.1016/j.lithos.2015.10.012

    Li G W, Sandiford M, Liu X H, Xu Z Q, Wei L J, Li H Q. 2014.Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication[J]. Gondwana Research, 25:1680-1689. doi: 10.1016/j.gr.2013.06.019

    Li Wangchao, Zhang Zeming, Xiang Hua, Gou Zhengbin, Ding Huixia. 2015. Metamorphism and anatexis of the Himalayan orogen:Petrology and geochronology of HP pelitic granulites from the Yadong area, Southern Tibet[J]. Acta Petrologica Sinica, 31(5):1219-1234 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505003

    Li X H, Mattern F, Zhang C K, Zeng Q G, Mao G Z. 2016a. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China:Implications to palaeogeography and palaeotectonic evolution[J]. Tectonophysics, 666:12-22. doi: 10.1016/j.tecto.2015.10.005

    Liang We, Zheng Yuanchuan. 2019. Hydrothermal sericite Ar-Ar dating of Jisong Pb-Zn deposit, Southern Tibet[J]. Geology in China, 46(1):126-139(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009

    Lin Bin, Tang Juxing, Zheng Wenbao, Leng Qiufeng, Lin Xin, Wang Yiyun, Meng Zhan, Tang Pan, Ding Shuai, Xu Yunfeng, Yuan Mei. 2016. Geochemical characteristics, age and genesis of Cuonadong leucogranite, Tibet[J]. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002

    Lin Shiliang, Cong Feng, Gao Yongjuan, Zou Guangfu. 2012. LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 31(2/3):258-263 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202008

    Liu Qisheng, Ye Peisheng, Wu Zhonghai. 2012. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 31(2/3):250-257 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202007

    Liu S, Hu R Z, Gao S, Feng C X, Huang Z l, Lai S C, Yuan H L, Liu X M, Coulson I M, Feng G Y, Wang T, Qi Y Q. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic Ⅰ-type granite from the TengchongBaoshan Block, Western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 36:168-182. doi: 10.1016/j.jseaes.2009.05.004

    Liu X C, Wu F Y, Yu L J, Liu Z C, Ji W Q, Wang J G. 2016a.Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J]. Tectonophysics, 667:163-175. doi: 10.1016/j.tecto.2015.12.001

    Liu Xun, You Guoqing. 2015. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China, 42(1):1-17(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi2015010002

    Liu Y M, Li C, Xie C M, Fan J J, Wu H, Jiang Q Y, Li X. 2016b.Cambrian granitic gneiss within the central Qiangtang terrane, Tibetan Plateau:Implications for the early Palaeozoic tectonic evolution of the Gondwanan margin[J]. International Geology Review, 58(9):1043-1063. doi: 10.1080/00206814.2016.1141329

    Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    Liu Y, Siebel W, Massonne H J, Xiao X C. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet[J]. The Journal of Geology, 115(2):215-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=940e36a8b563569569e63d283f5203ce

    Liu Z C, Wu F Y, Ding L, Liu X C, Wang J G, Ji W Q. 2016c. Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J]. Lithos, 240-243:337-354. doi: 10.1016/j.lithos.2015.11.026

    Liu Z C, Wu F Y, Ji W Q, Wang J G, Liu C Z. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 208/209:118-136. doi: 10.1016/j.lithos.2014.08.022

    Liu Z, Zhou Q, Lai Y, Qing C S, Li Y X, Wu J Y, Xia X B. 2015. Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya:Implications for the break-up of Eastern Gondwana[J]. Lithos, 236/237:190-202. doi: 10.1016/j.lithos.2015.09.006

    Ludwig K R. 2012. User's Manual for Isoplot 3.75:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center.

    Majumdar D, Dutta P. 2016. Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India:Evidence from geochemistry and isotope geology[J]. Journal of Asian Earth Sciences, 117:256-268. doi: 10.1016/j.jseaes.2015.12.015

    Miller C, Thoni M, Frank W, Grasemann B, Klotzli U P G, Draganits E. 2001. The early Palaeozoic magmatic event in the Northwest Himalaya, India:Source, tectonic setting and age of emplacement[J]. Geological Magazine, 138(3):237-251. doi: 10.1017/S0016756801005283

    Najman Y, Jenks D, Godin L, Boudagher-Fadel M, Millar I, Garzanti E, Horstwood M, Bracciali L. 2017. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54 Ma in the Western Himalaya[J]. Earth and Planetary Science Letters, 459:301-310. doi: 10.1016/j.epsl.2016.11.036

    Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018

    Pan Xiaoping, Li Rongshe, Wang Chao, Yu Pusheng, Gu Pingyang, Zha Xianfeng. 2012. Geochemical characteristics of the Cambrian volcanic rocks in Banglecun area on the northern margin of Gangdise, Nyima County, Tibet[J]. Geological Bulletin of China, 31(1):63-74 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201201007

    Peng Zhiming, Geng Quanru, Wang Liquan, Zhang Zhang, Guan Junlei, Cong Feng, Liu Shusheng. 2014. Zircon U-Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco, central Qiangtang, Qinghai-Tibet Plateau[J]. Chinese Science Bullatin, 59:2621-2629 (in Chinese). doi: 10.1360/N972014-00014

    Prince C I, Vance D, Harris N. 1998. Controls on and timing of metamorphism in the Himalaya[J]. Mineralogical Magazine, 48(2):1210-1211.

    Pullen A, Kapp P, Gehrels G E, Ding L, Zhang Q H. 2011.Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 123(3/4):585-600.

    Qi Xuexiang, Li Tianfu, Meng Xiangjin, Yu Chunlin. 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet, and its constraint on antimony-gold polymetallic mineraogenesis[J]. Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract).

    Quigley M C, Liangjun Y, Gregory C, Corvino A, Sandiford M, Wilson C J L, Xiaohan L. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 446:97-113. doi: 10.1016/j.tecto.2007.11.004

    Regis D, Warren C J, Young D, Roberts N M W. 2014. Tectonometamorphic evolution of the Jomolhari massif:Variations in timing of syn-collisional metamorphism across western Bhutan[J]. Lithos, 190/191:449-466. doi: 10.1016/j.lithos.2014.01.001

    Şengör A M C, Altıner D, Cin A, Ustaömer T, Hsü K J. 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land[J]. Geological Society, London, Special Publications, 37(1):119-181. doi: 10.1144/GSL.SP.1988.037.01.09

    Shi Chao, Li Rongshe, He Shiping, Wang Chao, Gu Pingyang, Ji Wenhua, Zha Xianfeng, Zhang Haidi. 2012. Geochemistry, zircon U-Pb dating and Pb-Sr-Nd isotopic composition of the gneissic biotite granodiorite in Mainling County, Tibet[J]. Acta Petrologica et Mineralogica, 31(6):818-830 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201206004

    Shi Chao, Li Rongshe, He Shiping, Wang Chao, Pan Shujuan, Liu Yin, Gu Pingyang. 2010. LA-ICP-MS zircon U-Pb dating for gneissic garnet-bearing biotite granodiorite in the Yadong area, southern Tibet, China and its geological significance[J]. Geological Bulletin of China, 29(12):1745-1753 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201012003

    Simpson R L, Parrish R R, Searle M P, Waters D J. 2000. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 28(5):403-406. doi: 10.1130/0091-7613(2000)28<403:TEOMCD>2.0.CO;2

    Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219:311-324. doi: 10.1016/S0012-821X(04)00012-3

    Song P, Ding L, Li Z, Lippert P C, Yue Y. 2017. An early bird from Gondwana:Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys[J]. Earth and Planetary Science Letters, 475:119-133. doi: 10.1016/j.epsl.2017.07.023

    Song S G, Ji J Q, Wei C J, Su L, Zheng Y D, Song B, Zhang L F. 2007.Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implications[J]. Chinese Science Bulletin, 52(17):2402-2406. doi: 10.1007/s11434-007-0301-2

    Song S G, Niu Y L, Wei C J, Ji J Q, Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-an eastern extension of the Lhasa Block[J]. Lithos, 120:327-346. doi: 10.1016/j.lithos.2010.08.021

    Spencer C J, Harris R A, Dorais M J. 2012. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India:Constrained by U-Pb and Hf isotopes in zircons[J]. Gondwana Research, 22:26-35. doi: 10.1016/j.gr.2011.10.004

    Sun X, Zheng Y Y, Wang C M, Zhao Z Y, Geng X B. 2016. Identifying geochemical anomalies associated with Sb-Au-Pb-Zn-Ag mineralization in north Himalaya, southern Tibet[J]. Ore Geology Reviews, 73:1-12. doi: 10.1016/j.oregeorev.2015.10.020

    Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya[J]. Geology, 27(5):395-398. doi: 10.1130/0091-7613(1999)027<0395:TOPMIT>2.3.CO;2

    Veevers J J. 2004. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup:Supercontinental tectonics via stratigraphy and radiometric dating[J]. Earth-Science Reviews, 68:1-132. doi: 10.1016/j.earscirev.2004.05.002

    Visonà D, Rubatto D, Villa I M. 2010. The mafic rocks of Shao La(Kharta, S. Tibet):Ordovician basaltic magmatism in the greater himalayan crystallines of central-eastern Himalaya[J]. Journal of Asian Earth Sciences, 38:14-25. doi: 10.1016/j.jseaes.2009.12.004

    Wagner T, Lee J, Hacker B R, Seward G. 2010. Kinematics and vorticity in Kangmar Dome, southern Tibet:Testing midcrustal channel flow models for the Himalaya[J]. Tectonics, 29(6):1-26.

    Walker B M, Martin M W, Bowring S A, Searle M P, Waters D J, Hodges K V. 1999. Metamorphism, melting, and extension:Age constraints from the High Himalayan Slab of southeast Zanskar and Northwest Lahaul[J]. The Journal of Geology, 107(4):473-495. doi: 10.1086/314360

    Wang C M, Deng J, Lu Y J, Bagas L, Kemp A I S, McCuaig T C. 2015a. Age, nature, and origin of Ordovician Zhibenshan granite from the Baoshan terrane in the Sanjiang region and its significance for understanding Proto-Tethys evolution[J]. International Geology Review, 57(15):1922-1939. doi: 10.1080/00206814.2015.1043358

    Wang J M, Rubatto D, Zhang J J. 2015b. Timing of partial melting and cooling across the greater Himalayan crystalline complex (Nyalam, Central Himalaya):In-sequence Thrusting and its implications[J]. Journal of Petrology, 56(9):1677-1702. doi: 10.1093/petrology/egv050

    Wang X X, Zhang J J, Santosh M, Liu J, Yan S Y, Guo L. 2012.Andean-type orogeny in the Himalayas of south Tibet:Implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 154:248-262. doi: 10.1016/j.lithos.2012.07.011

    Wang Xiaoxian, Zhang Jinjiang, Wang Jiamin. 2016a. Early paleozoic magmatism in Himalayan orogen:The geochronological study on augen gneisses from Gyirong and Nyalam areas, southern Tibet[J]. Advances in Earth Science, 31(4):391-402 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201604006

    Wang Xiaoxian, Zhang Jinjiang, Wang Meng. 2016b. Early Paleozoic orogeny in the Himalayas:Evidences from the zircon U-Pb chronology and Hf isotope compositions of the Palung granitic gnesis in Nepal[J]. Earth Science Frontiers, 23(2):190-205 (in Chinese with English abstract).

    Wang Xiaoxian, Zhang Jinjiang, Yang Xiongying, Zhang Bo. 2011.Zircon SHRIMP U-Pb ages, Hf isotopic features and their geological significance of the Greater Himalayan crystalline complex augen gneiss in Gyirong area, south Tibet[J]. EarthScience Frontiers, 18(2):127-139 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102011

    Wang Y J, Xing X W, Cawood P A, Lai S C, Xia X P, Fan W M, Liu H C, Zhang F F. 2013. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana[J]. Lithos, 182-183:67-85. doi: 10.1016/j.lithos.2013.09.010

    Wei Y S, Liang W X, Shang Y M, Zhang B S, Pan W Y. 2017.Petrogenesis and tectonic implications of~130 Ma diabase dikes in the western Tethyan Himalaya (western Tibet)[J]. Journal of Asian Earth Sciences, 143:236-248. doi: 10.1016/j.jseaes.2017.04.008

    Weinberg R F. 2016. Himalayan leucogranites and migmatites:nature, timing and duration of anatexis[J]. Journal of Metamorphic Geology, 34:821-843. doi: 10.1111/jmg.12204

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001

    Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001

    Wu Jianyang, Li Guangming, Zhou Qing, Dong Suiliang, Xia Xiangbiao, Li Yingxu. 2015. A preliminary study of the metallogenic system in the Zhaxikang integrated exploration area, southern Tibet[J]. Geology in China, 42(6):1674-1683 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201506002

    Wu Yuanbao, Zheng Yongfei. 2004. Study on the origin mineralogy of zircon and its restriction to U-Pb age[J]. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    Wu Zhenhan, Ye Peisheng, Wu Zhonghai, Zhao Zhen. 2014. LA-ICPMS zircon U-Pb ages of tectonic-thermal events in the Yalaxiangbo dome of Tethys Himalayan belt[J]. Geological Bulletin of China, 33(5):595-605 (in Chinese with English abstract).

    Xie C M, Li C, Fan J J, Su L. 2017a. Ordovician sedimentation and bimodal volcanism in the Southern Qiangtang terrane of northern Tibet:Implications for the evolution of the northern Gondwana margin[J]. International Geology Review, 59(16):2078-2105. doi: 10.1080/00206814.2017.1309584

    Xie C M, Li C, Su L, Wu Y W, Xie Y W. 2013. Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent:Constraints from geochronology and geochemistry[J]. Science China Earth Sciences, 56(12):2066-2079. doi: 10.1007/s11430-013-4724-0

    Xie Chaoming, Li Cai, Su Li, Wu Yanwang, Wang Ming, Yu Hong. 2010. LA-ICP-MS U-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China[J]. Geological Bulletin of China, 29(12):1737-1744 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201012002

    Xie Y L, Li L M, Wang B G, Li G M, Liu H F, Li Y X, Dong S L, Zhou J J. 2017b. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China:Evidence for a magmatic link[J]. Ore Geology Reviews, 80:891-909. doi: 10.1016/j.oregeorev.2016.08.007

    Xing X W, Wang Y J, Cawood P A, Zhang Y Z. 2017. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan[J]. International Journal of Earth Sciences, 106(5):1469-1486. doi: 10.1007/s00531-015-1282-z

    Xu W C, Zhang H F, Parrish R, Harris N, Guo L, Yuan H L. 2010.Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications[J]. Tectonophysics, 485:231-244. doi: 10.1016/j.tecto.2009.12.023

    Xu Xiaoyin, Cai Zhihui, Chen Xijie, Li Huaqi, Cao Hui, Huang Xuemeng, Duan Xiangdong. 2017. Characteristics of the Paleozoic metabasite in Baoshan Terrane:Implications for the tectonic evolution[J]. Geological Bulletin of China, 36(7):1104-1117 (in Chinese with English abstract).

    Xu Z Q, Dilek Y, Cao H, Yang J S, Robinson P, Ma C Q, Li H Q, Jolivet M, Roger F, Chen X J. 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105:320-337. doi: 10.1016/j.jseaes.2015.01.021

    Xu Z Q, Wang Q, Pêcher A, Liang F H, Qi X X, Cai Z H, Li H Q, Zeng L S, Cao H. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 32(2):191-215. doi: 10.1002/tect.20021

    Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zeming, Zeng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1):1-42 (in Chinese with English abstract).

    Xu Zhiqin, Yang Jinsui, Liang Fenghua, Qi Xuexiang, Liu Fulai, Zeng Lingsen, Liu Dunyi, Li Haibing, Wu Cailai, Shi Rendeng, Chen Songyong. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane:Inference from SHRIMP U-Pb zircon ages[J]. Acta Petrologica Sinica, 21(1):3-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501001.htm

    Yan D P, Zhou M F, Robinson P T, Grujic D, Malpas J, Kennedy A, Reynolds P H. 2012. Constraining the mid-crustal channel flow beneath the Tibetan Plateau:data from the Nielaxiongbo gneiss dome, SE Tibet[J]. International Geology Review, 54(6):615-632. doi: 10.1080/00206814.2010.548153

    Yang X Y, Zhang J J, Qi G W, Wang D C, Guo L, Li P Y, Liu J. 2009b.Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment system[J]. Science in China (Series D):Earth Sciences, 52(8):1046-1058. doi: 10.1007/s11430-009-0111-2

    Yang Xiaosong, Jin Zhenmin, Ma Jin. 2004. Anatexis in Himalayan crust:Evidence from geochemical and chronological investigations of Higher Himalayan Crystallines[J]. Science in China (Series D), 34(10):926-934 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG200509002.htm

    Yang Xuejun, Jia Xiaochuan, Xiong Changli, Bai Xianzhou, Huang Boxin, Luo Gai, Yang Chaobi. 2012. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 31(2/3):264-276 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201202009

    Yang Z S, Hou Z Q, Meng X J, Liu Y C, Fei H C, Tian S H, Li Z Q, Gao W. 2009a. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 36(1/3):194-212. doi: 10.1016-j.oregeorev.2009.04.004/

    Yin A, Dubey C S, Kelty T K, Webb A A G, Harrison T M, Chou C Y, Célérier J. 2010. Geologic correlation of the Himalayan orogen and Indian craton:Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya[J]. Geological Society of America Bulletin, 122(3/4):360-395. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/122/3-4/360/125482/geologic-correlation-of-the-himalayan-orogen-and

    Yin A, Harrison T M. 2000. Geologic evolution of the HimalayanTibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211

    Zeng L S, Gao L E, Tang S H, Hou K J, Guo C L, Hu G Y. 2015.Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 412:287-316. doi: 10.1144/SP412.8

    Zeng L S, Gao L E, Xie K J, Jing L Z. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 303:251-266. doi: 10.1016/j.epsl.2011.01.005

    Zeng L S, Liu J, Gao L E, Xie K J, Wen L. 2009. Early Oligocene anatexis in the Yardoigneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 54(1):104-112. doi: 10.1007/s11434-008-0362-x

    Zhang H F, Harris N, Parrish R, Zhang L, Zhao Z D. 2004. U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications[J]. Chinese Science Bulletin, 49(19):2087-2092. doi: 10.1360/04wd0198

    Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012a.Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 21:939-960. doi: 10.1016/j.gr.2011.11.004

    Zhang S Z, Li F Q, Li Y, Liu W, Qin Y D. 2014. Early Ordovician strongly peraluminous granite in the middle section of the Yarlung Zangbo junction zone and its geological significance[J]. Science China Earth Sciences, 57(4):630-643. doi: 10.1007/s11430-013-4721-3

    Zhang Z M, Dong X, Santosh M, Liu F, Wang W, Yiu F, He Z Y, Shen K. 2012b. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton[J]. Gondwana Research, 21:123-137. doi: 10.1016/j.gr.2011.02.002

    Zhang Z M, Xiang H, Ding H X, Dong X, Gou Z B, Tian Z L, Santosh M. 2017a. Miocene orbicular diorite in east-central Himalaya:Anatexis, melt mixing, and fractional crystallization of the Greater Himalayan Sequence[J]. Geological Society of America Bulletin. 10.1130/b31586.1:B31586.1.

    Zhang Z M, Xiang H, Dong X, Li W C, Ding H X, Gou Z B, Tian Z L. 2017b. Oligocene HP metamorphism and anatexis of the Higher Himalayan crystalline sequence in Yadong region, east-central Himalaya[J]. Gondwana Research, 41:173-187. doi: 10.1016/j.gr.2015.03.002

    Zhang Z M, Zhao G C, Santosh M, Wang J L, Dong X, Liou J G. 2010.Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 28:719-733.

    Zhang Z, Dong X, Xiang H, Ding H, He Z, Liou J G. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet:Post-collisional metamorphism and anatexis[J]. Journal of Metamorphic Geology, 33:1-21. doi: 10.1111/jmg.12107

    Zhang Zeming, Wang Jinli, Shen Kui, Shi Chao. 2008. Paleozoic circum-Gondwana orogens:Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 24(7):1627-1637 (in Chinese with English abstract).

    Zhao S W, Lai S C, Gao L, Qin J F, Zhu R Z. 2016a. Evolution of the Proto-Tethys in the Baoshan block along the East Gondwana margin:constraints from Early Palaeozoic magmatism[J]. International Geology Review, 59(1):1-15. doi: 10.1080/00206814.2016.1198994?scroll=top

    Zhao S W, Lai S C, Qin J F, Zhu R Z. 2016b. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau:Constraints from granitic gneisses and granitoid intrusions[J]. Gondwana Research, 35:238-256. doi: 10.1016/j.gr.2015.05.007

    Zheng Y C, Hou Z Q, Fu Q, Zhu D C, Liang W, Xu P Y. 2016. Mantle inputs to Himalayan anatexis:Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 264:125-140. doi: 10.1016/j.lithos.2016.08.019

    Zhu D C, Chung S L, Mo X X, Zhao Z D, Niu Y, Song B, Yang Y H. 2009. The 132 Ma Comei-Bunbury large igneous Province:Remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 37(7):583-586. doi: 10.1130/G30001A.1

    Zhu D C, Mo X X, Pan G T, Zhao Z D, Dong G C, Shi Y R, Liao Z L, Wang L Q, Zhou C Y. 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet:Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J]. Lithos, 100:147-173. doi: 10.1016/j.lithos.2007.06.024

    Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y L, Liu S A, Wu F Y, Mo X X. 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5:14289. doi: 10.1038/srep14289

    Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 328:290-308. doi: 10.1016/j.chemgeo.2011.12.024

    Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002

    蔡志慧, 许志琴, 段向东, 李化启, 曹汇, 黄学猛. 2013.青藏高原东南缘滇西早古生代早期造山事件[J].岩石学报, 29(6):2123-2140. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306019
    董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 谢许峰, 王霞, 胡兆初. 2012.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J].岩石学报, 28(5):1453-1464. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201205009
    董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞. 2009.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石UPb年代学[J].岩石学报, 25(7):1678-1694. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200907013
    付建刚, 李光明, 王根厚, 黄勇, 张林奎, 董随亮, 梁维. 2018.北喜马拉雅双穹隆构造的建立:来自藏南错那洞穹隆的厘定[J].中国地质, 45(4):783-802. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180410&flag=1
    高利娥, 曾令森, 许志琴, 王莉. 2015.喜马拉雅造山带加里东期构造作用:以马拉山-吉隆构造带为例[J].岩石学报, 31(5):1200-1218. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505002
    苟正彬, 张泽明, 董昕, 丁慧霞, 向华, 雷恒聪, 李旺超, 唐磊. 2015.藏南亚东地区早古生代花岗质片麻岩的成因与构造意义[J].岩石学报, 31(12):3674-3686. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512012
    辜平阳, 何世平, 李荣社, 时超, 董增产, 査显锋, 吴继莲, 王轶. 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义[J].岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MCICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
    胡培远, 李才, 苏犁, 李春斌, 于红. 2010.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J].中国地质, 37(4):1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019
    计文化, 陈守建, 赵振明, 李荣社, 何世平, 王超. 2009.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义[J].地质通报, 28(9):1350-1354. doi: 10.3969/j.issn.1671-2552.2009.09.026
    解超明, 李才, 苏黎, 吴彦旺, 王明, 于红. 2010.藏北安多地区花岗片麻岩锆石LA-ICP-MSU-Pb定年[J].地质通报, 29(12):1737-1744. doi: 10.3969/j.issn.1671-2552.2010.12.002
    李才, 谢尧武, 沙绍礼, 董永胜. 2008.藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年[J].地质通报, 27(1):64-68. doi: 10.3969/j.issn.1671-2552.2008.01.005
    李旺超, 张泽明, 向华, 苟正彬, 丁慧霞. 2015.喜马拉雅造山带核部的变质作用与部分熔融:亚东地区高压泥质麻粒岩的岩石学与年代学研究[J].岩石学报, 31(5):1219-1234. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505003
    梁维, 郑远川. 2019.藏南吉松铅锌矿成矿时代的厘定:热液绢云母Ar-Ar年龄[J].中国地质, 46(1):126-139. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190108&flag=1
    林彬, 唐菊兴, 郑文宝, 冷秋锋, 林鑫, 王艺云, 孟展, 唐攀, 丁帅, 徐云峰, 袁梅. 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J].岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
    林仕良, 丛峰, 高永娟, 邹光富. 2012.滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 31(2/3):258-263. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201202008
    刘训, 游国庆. 2015.中国的板块构造区划[J].中国地质, 42(1):1-17. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150101&flag=1
    刘琦胜, 叶培盛, 吴中海. 2012.滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J].地质通报, 31(2/3):250-257. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201202007
    潘晓萍, 李荣社, 王超, 于浦生, 辜平阳, 查显锋. 2012.西藏冈底斯北缘尼玛地区帮勒村一带寒武纪火山岩LA-ICP-MS锆石U-Pb年龄及其地球化学特征[J].地质通报, 31(1):63-74. doi: 10.3969/j.issn.1671-2552.2012.01.007
    彭智敏, 耿全如, 王立全, 张璋, 关俊雷, 丛峰, 刘书生. 2014.青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].科学通报, 59(26):2621-2630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201426013
    戚学祥, 李天福, 孟祥金, 于春林. 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J].岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020
    时超, 李荣社, 何世平, 王超, 辜平阳, 计文化, 查显锋, 张海迪. 2012.西藏米林县片麻状黑云花岗闪长岩地球化学特征、锆石U-Pb定年及Pb-Sr-Nd同位素组成[J].岩石矿物学杂志, 31(6):818-830. doi: 10.3969/j.issn.1000-6524.2012.06.004
    时超, 李荣社, 何世平, 王超, 潘术娟, 刘银, 辜平阳. 2010.藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石UPb测年及其地质意义[J].地质通报, 29(12):1745-1753. doi: 10.3969/j.issn.1671-2552.2010.12.003
    王晓先, 张进江, 王佳敏. 2016a.喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J].地球科学进展, 31(4):391-402. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201604006
    王晓先, 张进江, 王盟. 2016b.喜马拉雅早古生代造山作用:来自尼泊尔帕朗花岗质片麻岩锆石U-Pb年代学和Hf同位素证据[J].地学前缘, 23(2):190-205. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602019
    王晓先, 张进江, 杨雄英, 张波. 2011.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J].地学前缘, 18(2):127-139. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102011
    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
    吴福元, 刘志超, 刘小驰, 纪伟强. 2015.喜马拉雅淡色花岗岩[J].岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
    吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    吴珍汉, 叶培盛, 吴中海, 赵珍. 2014.特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据[J].地质通报, 33(5):595-605. doi: 10.3969/j.issn.1671-2552.2014.05.001
    吴建阳, 李光明, 周清, 董随亮, 夏祥标, 李应栩. 2015.藏南扎西康整装勘查区成矿体系初探[J].中国地质, 42(6):1674-1683. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150602&flag=1
    许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录[J].岩石学报, 21(1):3-14. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501001
    许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016.青藏高原大陆动力学研究若干进展[J].中国地质, 43(1):1-42. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160101&flag=1
    徐晓尹, 蔡志慧, 陈希节, 李化启, 曹汇, 黄学猛, 段向东. 2017.保山地体寒武纪基性火山岩及其大地构造意义[J].地质通报, 36(7):1104-1117. doi: 10.3969/j.issn.1671-2552.2017.07.002
    杨晓松, 金振民, 马瑾. 2004.喜马拉雅造山带地壳深熔作用:来自聂拉木群混合岩的地球化学和年代学证据[J].中国科学(D辑:地球科学), 34(10):926-934. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200410005
    杨学俊, 贾小川, 熊昌利, 白宪洲, 黄柏鑫, 罗改, 杨朝碧. 2012.滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石UPb年龄及其地质意义[J].地质通报, 31(2/3):264-276. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2012Z1008.htm
    张泽明, 王金丽, 沈昆, 石超. 2008.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J].岩石学报, 24(7):1627-1637. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807019
图(8)  /  表(2)
计量
  • 文章访问数:  3445
  • HTML全文浏览量:  562
  • PDF下载量:  4178
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-30
  • 修回日期:  2019-11-05
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2019-12-24

目录

/

返回文章
返回
x 关闭 永久关闭