Geochemistry and geochronotry of intermediate-basic dikes in Awengcuo area of north Tibet and intraplate extensional structures
-
摘要:
班公湖—怒江缝合带在中生代的构造岩浆演化是青藏高原基础地质研究的热点之一。在该缝合带南部的北冈底斯地区发育有大量的中生代火山岩及相关岩浆岩,其岩石成因与成岩地球动力学背景长期以来存在较大的争议。本文以班公湖—怒江缝合带西段阿翁错地区的中基性脉岩为研究对象,对该地区广泛发育的脉岩的形成时代、岩石成因、构造环境以及动力学背景进行了探讨。研究区辉绿岩脉以低硅(SiO2=50.03%~51.13%)、低铝(Al2O3=15.52%~16.03%、低钛(TiO2=1.22%~1.31%)、富镁(MgO=9.19%~10.37%)、富钠(Na2O=3.10%~3.58%,Na2O/K2O=1.73~1.87)为特征;闪长岩脉以相对高硅(SiO2=55.58%~56.22%)、低镁(MgO=4.69%~4.64%)、低钛(TiO2=1.01%~1.06%)、高铝(Al2O3=17.74%~18.72%)、富钠(Na2O=1.55%~5.03%,Na2O/K2O=1.81~3.61)为特征,属于钠质低钾钙碱性系列岩石。二者轻重稀土元素分馏明显,均表现为右倾型,具弱的Eu负异常,重稀土元素总体上变化不大。微量元素上均表现出以富集Rb、U等大离子亲石元素和轻稀土(LREE)元素,亏损Nb、Ta、Ti高场强元素(HFSE)为特征。年代学分析结果显示研究区闪长岩脉LA-ICP-MS锆石U-Pb年龄为(99.2±1.2)Ma,辉绿岩脉LA-ICP-MS锆石U-Pb年龄为(108.4±2.9)Ma,属于早白垩世晚期向晚白垩世过渡期间,其岩浆源区遭受了一定程度的地壳物质的混染,后经历了不同程度的铁镁矿物和斜长石的结晶分离作用。构造环境分析显示研究区中基性岩脉形成于伸展构造环境下,其产状受区域应力场控制,其动力学背景可能与班公湖—怒江特提斯洋南向俯冲消减过程中板片断离导致的软流圈上涌,诱发岛弧和岛弧后方的地幔岩浆发生补充性对流循环而形成的伸展构造背景有关。表明研究区至少在99.2 Ma时,班公湖—怒江特提斯洋俯冲消减已经完成,由早期构造挤压环境转向晚期构造伸展环境。
Abstract:The Bangong Co-Nujiang suture zone and its tectonic-magmatic evolution constitute one of the hottest scientific problems related to fundamental geology of the Tibetan Plateau. The Mesozoic volcanic-intrusive rocks are widely distributed in the north Gangdese belt,which is also located in southern Bangong Co-Nujiang suture zone. The petrogenesis and geodynamic setting of those rocks remain controversial. In this paper,the authors reported the newly found intermediate-basic dikes in Awengcuo area which is located at the west segment of Bangong Co-Nujiang suture zone so as to explore these problems,and detailed LA-ICP-MS zircon U-Pb dating geochronological and element geochemical studies were carried out for the intermediatebasic dikes. The basic dikes exhibit SiO2 content of 50.03%-51.13%,Al2O3 content of 15.52%-16.03% with TiO2 content of 1.22%-1.31%,MgO content of 6.12%-8.51%,Na2O content of 3.10%-3.58%,with Na2O/K2O ratio of 1.73-1.87. The diorite dikes have values of SiO2 (55.58%-56.22%),MgO (4.69%-4.64%),Al2O3 (1.01%-1.06%) with TiO2 (1.01%-1.06%),Na2O (1.55%-5.03%),and Na2O/K2O (1.81-3.61). The diabase veins belong to alkaline basalt series and the diorites are subalkaline-series rocks. All of their light rare elements are concentrated evidently and heavy rare elements are deficient with a right dip distribution mode of REE,slightly negative Eu anomalies and content of HREE. On primitive mantle-normalized trace element diagrams,the intermediate-basic dikes display different degrees of enrichment of LIFEs (e.g.,Rb,U),relative depletion of HFSE (Nb,Ta,Ti). The zircon U-Pb dating of diorite-dyke yielded a weighted average age of (99.2±1.2)Ma,and the basic-dyke U-Pb dating yielded an age of (108.4±2.9)Ma,indicating that the diorite-dykes in Awengcuo area were formed at the late stage of early Cretaceous. The magma source region was mainly influenced by the crustal material and underwent different degrees of fractionation crystallization of mafic minerals and plagioclases when uplifting from the high magmatic chamber. The intermediate-basic dikes were generated in a contineral intraplate setting,as shown by analyzing tectonic setting,and its attitudes were controlled by the regional tectonic stress field. The tectonic dynamics background of the dikes formed in slab break-off caused asthenosphere upwelling extension during the Bangong Co-Nujiang Tethyan Ocean's southward subduction at the late stage of early Cretaceous,indicating that the Bangong Co-Nujiang Tethyan Ocean finished the subduction at 99.2 Ma at least,and the regional stress state turned from collision to intraplate extension at the late stage.
-
1. 引言
锶作为岩石圈上部含量最大的微量元素(胡进武等,2004;黄奇波等,2011),广泛存在于自然界中但分布非常不均,锶的分布状态及其存在形态受到自然条件、人类活动等多种因素的影响,导致锶在分布上富集或贫乏(Comar et al., 1957; 范伟等2010)。在不同的时期、不同岩性的基岩地层中锶元素的丰度存在明显的差异性,一般在海相沉积的碳酸盐岩中锶的丰度最高,在含锶矿物的闪长岩、花岗岩、黏土岩以及碳酸盐岩中,锶含量相对比较富集,黏土、砂中锶的丰度最低(刘庆宣等,2004)。作为微量元素,锶主要存在于各种造岩矿物和副矿物中,也能形成一些独立的矿物,主要为存在于碳酸盐岩中的菱锶矿(SrCO3)和天青石(SrSO4),同时文石、方解石、钙长石及石膏等矿物中亦常见锶置换钙的类质同像现象(Clow et al., 1997;文冬光等,1998)。岩石中的锶是地下水中锶的主要物质来源,锶在赋存母岩中主要经风化、淋滤后在地下水流作用下进行迁移转化(文冬光等,1998;康志强等,2011;苏春田等, 2017a, b),进而进入人类及其他动植物的物质循环。前人研究表明,地下水中锶的分布与富集受渗流地层岩性、溶滤强度、水化学条件(王增银等,2003;祁晓凡等,2009;范伟等, 2010)等因素的影响。目前,各国根据锶的含量及其生理医学作用制定了锶矿泉水的标准,参照饮用天然矿泉水国家标准(GB8537- 2016),地下水的质量浓度达到0.2mg/L,可命名为富锶矿泉水,规定的限值为5mg/L。岩溶水作为山区居民主要饮用的水源,关乎百姓的生活与饮食健康,因而查明地下水中锶的分布状态,揭示锶的动态变化,分析锶的富集规律,具有较大的研究意义与实际价值。
前人对富锶地下水的研究多集中在赋存条件、水质评价等方面,多集中在非岩溶地区(孙岐发等,2019),针对西南岩溶区富锶地下水的研究还较少(祁晓凡等,2009;康志强等,2011;苏春田等, 2017a, b),针对三峡岩溶区的研究则更少。本文选取湖北秭归地区两个岩溶流域为研究区,以岩溶水系统为单元,从锶的物质来源条件入手,分析岩溶水系统中锶的水岩作用过程,研究不同含水岩组、不同水流条件下地下水中锶的分布与富集特征,探讨宜昌三峡岩溶去地下水中锶富集的条件与规律。
2. 研究区概况
2.1 自然地理概况
本文主要针对秭归地区的茅坪河和九畹溪两个岩溶流域开展研究。研究区地处长江之滨、西陵峡畔、清江以北,属于中国地形第二、三阶梯的过渡地带,为川东褶皱与鄂西山地交汇地,境内山脉为大巴山、巫山余脉,地形起伏较大。该地区属于亚热带季风气候,气候温暖、降雨充沛,年降雨量在900~1200 mm,其中汛期降雨量占绝大部分,受季风气候和山峦起伏的影响,降雨量的季节变化和空间差异明显,小气候特征比较显著。秭归县位于鄂西褶皱山地,西南高东北低,平均海拔高程千米以上,山峰耸立,河谷深切,相对高差一般在500~1300 m。其中中低山区多分布于秭归盆地周边,斜坡倾角介于15~25°,面积960 km2;大于25°以上的斜坡主要分布在长江峡谷区、中高山向中低山过渡地带,陡缓变化较大,多形成陡崖。
2.2 地质概况
研究区地处黄陵穹隆西南缘,自北东向西南从侵入岩体、前震旦纪到三叠纪地层连续出露且较齐全,区内南沱组角度不整合于侵入岩与变质岩基底之上,第四系与下伏地层为角度不整合,其余地层之间均为整合与平行不整合接触关系(南沱组与陡山沱组呈平行不整合,纱帽组与云台观组呈平行不整合)。区域内地层主要是以沉积岩为主,累计沉积岩岩层最大厚度约7567 m,其中碳酸盐岩总厚度达到3443 m,占沉积岩总厚度的45.5%,碳酸盐岩地层主要有震旦系,寒武系、奥陶系、志留系、二叠系及三叠系,岩性以灰岩、白云岩为主,非碳酸盐岩地层有志留系、泥盆系、白垩系,岩性以碎屑岩为主,尤以仙女山一带的白垩系的碎屑砾岩、砂岩为特殊,常常发育有可溶性砾岩裂隙孔洞水。
2.3 岩溶含水系统划分
前人在进行岩溶含水系统划分过程中,主要考虑了含水岩组、空间介质结构、组合特征、岩溶水径流方式、埋藏条件等因素(裴建国等,2008; 梁永平等,2015)。秭归地区属于南方岩溶的范畴,多种地层组合特征、构造条件下发育多样的岩溶水系统,既发育有管道裂隙集中排泄型系统、也有裂隙分散排泄型岩溶水系统。根据区域地层的含水性分析,大致可划分为3个岩溶含水系统(图 1):上震旦岩溶含水系统(Z2d、Z2∈1d)、下寒武—奥陶岩溶含水系统(∈1t、∈1sl、∈2q、∈2O1l、O1n、O1g、O2-3b)、石炭—三叠岩溶含水系统(P1q、P1m、P2w、T1d、T2j),进一步可细分为7个岩溶含水子系统(表 1)。本文依据空间结构、含水介质、排泄方式、代表水流、标高、流量等特征数据,并结合野外调查资料,对岩溶子含水单元排泄特征进行整理划分(表 1)。
表 1 岩溶含水子系统的介质结构及排泄特征Table 1. Structure and drainage characteristics of karst water-bearing units3. 样品采集与测试
3.1 样品采集与处理
2016—2018年期间,本文依托中国地质调查局二级项目“宜昌长江南岸岩溶流域水文地质环境地质调查”,系统地采集了研究区泉水、典型断面地表水样品,对重点岩溶泉点进行月度监测,并选送测区内主要含水岩组的岩样进行岩石矿物组成分析。针对不同岩溶水系统,选取了31组岩溶泉点作为长期监测点(长观站)(图 1),用于分析地下水的动态变化规律。本文的研究数据来源于区域水文地质调查,及31个岩溶泉长期监测点(长观站)月度样采集,共整理了415组水样数据,93组岩矿分析数据,基于此对锶的分布特征进行分析。
水样采集采用600 mLPVC瓶,现场用水样涮洗3次,同时对水样水温、pH、电导率、流量等指标进行现场测定。此后样品在12 h内送回室内,采用《中华人民共和国地质矿产行业标准DZ/T 0064.49- 93地下水水质检验方法》酸碱滴定法测试并计算碱度。同时将水样用孔径0.45 μm的醋酸纤维膜过滤后,分装于2个50 mLPET瓶中分别用于阴阳离子测试,其中阳离子测试样会使用分析纯HNO3酸化至pH<2,阴离子样则不加处理。
3.2 样品测试
水化学样品的测试在中国地质大学(武汉)地质调查研究院实验中心完成,阴离子由戴安离子色谱仪ICS2100测试,阳离子由赛默飞公司生产的ICP-OES(ICAP6300)测试;岩石样品矿物组成测试在澳实分析检测(广州)有限公司测试完成,锶等矿物组分均采用封闭酸溶-电感耦合等离子体质谱法(ICP-MS)测试。
4. 分析与讨论
4.1 锶的物源条件分析
通过对93组岩矿分析数据分析可知,不同地质年代的沉积地层中锶的含量大不相同(表 2),在震旦系地层中,灯影组地层锶含量比陡山沱组高,灯影组锶含量可达到2900 μg/g,均值为1121 μg/g,且组内不同段含量差异明显,如灯影组二段的白云质灰岩中锶含量介于800~2600 μg/g,其含量较一段和三段的白云岩大,灯影组地层整体变异系数为88.2%(n=10);寒武系上统娄山关组白云岩中锶含量介于77~2500 μg/g,变异系数为62.5%(n=11),锶含量均值大但分布上存在差异性;奥陶系地层锶含量均不高,介于100~400 μg/g,变异系数相对较低;嘉陵江组地层锶的含量较高,均值为2861 μg/g,变异系数也较高,为137.3%(n=17)。
表 2 秭归岩溶地层中锶含量概况统计Table 2. Statistics of Sr contents in karst strata in the Zigui area可知,秭归地区富锶地层主要为灯影组、娄山关组、嘉陵江组。从沉积相来看,上述沉积地层均为干旱气候条件下碳酸盐台地浅滩、潮坪-潟湖沉积(徐长昊,2016),为封闭性较好的沉积环境,是蒸发沉积富锶地层发育的良好条件。
同时对区内浅层包气带内岩样分析发现,表层岩石中天青石矿物较少,锶含量偏低且与CaO的相关性较好,而与MgO、SO3、Al2O3的相关性一般。主要是由于表层岩石受到较强的淋滤作用而导致锶的流失,此外浅循环系统中的锶会以类质同像形式存在于方解石矿物中。
对由钻孔揭露深层封闭地层岩样分析发现,锶主要以天青石形式存在,常常与石膏矿物共存。如钻孔ZK05揭露的娄山关组地层中,锶含量普遍较高且与SO3有较好的相关性(R2=0.737,n=10)。另在对钻孔ZK03揭露的奥陶系岩心分析发现,随着MgO含量的增大,岩性逐渐白云岩化,同时锶含量逐渐减小(图 2);此外,锶的含量会随着碳酸盐中泥质含量的增大(SiO2含量增大)而减小(图 2)。
4.2 锶的水岩作用过程分析
通过对茅坪河与九畹溪两个流域岩溶地下水样分析,从富锶水化学类型、水岩作用程度、物理化学条件等方面,对该区地下水锶分布与富集展开讨论。
针对研究区所采集的415组水样,从Piper三线图(图 3)来看,地下水中锶含量大于2 mg/L时,水中阳离子以Ca2+、Mg2+为优势离子,阴离子以SO42-为主;地下水中锶含量在0.70~10 mg/L时,水中阳离子以Na+为主,阴离子以Cl-为主;地下水中锶含量小于0.70 mg/L时,水中阴离子以HCO3-为主。因此,锶浓度相对较高的地下水化学类型主要包括SO4型和Cl型,其中尤以SO4型地下水的锶浓度最高。
岩溶地下水中离子组分主要来源于对母岩的溶滤作用,其决定着地下水中主要水化学过程(康志强等,2011; 苏春田等,2017a)。母岩中锶含量影响着水流系统地下水中锶的分布(文冬光等,1998;苏春田等,2017b)。地下水中锶离子主要来源于富锶矿物(天青石、菱锶矿),赋存在方解石、文石及白云石类质同像形态的锶,以及铝硅酸盐中的锶等的溶解(徐兴国,1984),具体的化学反应方程式如下:
(1) (2) (3) 表层岩溶泉可反映局部水流系统的水化学特征。基于所采集的334处表层岩溶泉,绘制出研究区锶在表层岩溶水中的分布规律,发现全区存在5处富锶地下水分布区(图 4),且这些富锶地下水分布与富锶地层的分布表现出一致性,二叠系阳新组岩溶水,三叠系嘉陵江组岩溶水,寒武系娄山关组岩溶水,寒武系水井沱组岩溶水及震旦系灯影组岩溶水。其中杨新组表层岩溶水中Sr含量介于0.26~ 0.76 mg/L;嘉陵江组介于0.23~0.60 mg/L;娄山关组介于0.13~0.43 mg/L;水井沱组与灯影组介于0.22~0.72 mg/L。
对于排泄区,选取研究区内4处锶含量较高的地层中出露的地下水点为例,即白龙潭、龙洞、迷宫泉和龙王洞(表 1)。从锶离子与硫酸根离子、重碳酸根离子的浓度关系(图 5)发现,嘉陵江组白龙潭岩溶泉水锶含量较高,与硫酸根离子有较好的一致性(R2=0.707,n=5),另知嘉陵江组岩矿分析中SO3含量较高,反映出在该泉域的径流途径上有天青石的存在;娄山关组迷宫泉与重碳酸根离子和硫酸根离子均呈现较好的相关性(R2=0.668,n=10;R2= 0.768,n=13),反映出径流途径中存在两种富锶矿物溶解。此外,针对地下水中丰、枯两季表现出差异性(图 5),主要是由于研究区具有典型南方岩溶管道-裂隙水系统,地下水径流路径和径流时间短、水岩作用不充分(罗明明等,2015),表现出枯季地下水中锶含量普遍比丰水期的要高。由上可知,岩溶水中锶离子含量与各岩溶水系统中富锶矿物含量密切相关,流经的地层岩性差异导致各岩溶水流系统表现出不同的水岩作用过程,或受石膏、天青石矿物溶解的影响,或受菱锶矿溶解的影响,或受多种锶源的混合补给。
4.3 地下水流系统中锶的分布规律
对于锶在多级水系系统中的分布规律,本文以泗溪流域庙坪—鱼泉洞多级水流系统为例(图 1b),不同级次的地下水中锶含量及饱和程度易表现出差异性(表 3,图 6)。庙坪洼地表层岩溶泉为局部水流系统,锶含量均值为0.08 mg/L,si_Str与si_Cel均比较低(表 3),多为方解石中类质同像锶的溶解释放;鱼泉洞泉水为中间水流系统,地下水锶含量均值为0.22 mg/L,si_Stron与SI_Cel相比于局部水流系统稍高但未达到饱和(表 3),但冬季其锶的饱和指数相对夏季要高,主要由于冬季水流滞缓,水岩作用相对充分(表 3);以钻孔ZK04揭露的区域水流系统,其锶均值在2.33 mg/L,si_Str、si_Cel、si_Cal、si_Dol均趋于饱和(图 6)。可知地下水与母岩水岩相互作用的时间与水流路径长短决定了地下水中富锶矿物的饱和程度及地下水中锶含量(张群利等,2011;苏春田等,2017a)。
表 3 不同级次水流水化学信息统计表Table 3. Hydrochemistry of different water flow levels此外,通过对钻孔ZK04及钻孔ZK05中锶含量分析(表 3,图 6),发现两者锶离子浓度均很大。在两孔钻进施工中,均有H2S与CH4等还原性气体溢出,且岩心中有机炭的含量相对较高,尤其是ZK05岩矿组分中发现有单质S存在。推知两孔均混有碳酸盐岩和硫酸盐岩(富含大量的石膏),且均为相对封闭的还原环境。
在这种封闭缺氧还原环境中,地下水中的SO42-在有机炭和脱硫细菌作用下,容易发生脱硫酸作用(刘硕等,2016),其化学反应式为:
(4) (5) 当地层中含有大量铁的时候S2-便会与铁结合,逐渐生成黄铁矿,而硫化氢气体极易溶于水(溶解比例约为1∶3),在氧气充足的时候,H2S会被氧化成硫酸与碳酸盐结合形成石膏矿物沉淀,但当氧气不足的时候,少部分的H2S会被氧化成单质S,更大一部分仍以气体的形式存在于封闭的还原条件中,这也就是ZK05孔岩心组分中单质S存在的原因。硫酸根离子的转化,促进了石膏、天青石的溶解过程,致使地下水中锶离子富集,甚至使天青石溶解达到饱和,同时菱锶矿的溶解也增大了地下水中锶的含量(罗璐等,2015)。
5. 结论
本文通过对秭归岩溶流域锶的分布与迁移进行分析,得到以下结论:
(1)研究区内嘉陵江组、娄山关组、灯影组地层中的锶含量最高,代表着潮坪-潟湖沉积相;区内浅层岩石中天青石矿物较少,锶含量偏低;深层封闭地层岩样中锶主要以天青石形式存在,常常与石膏矿物共存。
(2)富锶岩溶水的水化学类型主要包括SO4型和Cl型,尤以SO4型地下水的锶浓度最高;母岩中锶的含量决定了地下水中锶的浓度,且锶主要通过溶滤作用进入地下水中。
(3)地下水水流系统中水岩作用程度及地下水的滞留时间均影响地下水中锶的浓度,浅循环岩溶地下水流系统中锶均未达到饱和,少数深循环区域地下水流系统中锶浓度趋近饱和状态。对于富含石膏、天青石的封闭还原环境有利于地下水中锶的富集。
致谢: 匿名审稿人提出的宝贵修改意见和建议使得本文质量有了很大的提升,在此特别感谢! -
图 1 研究区大地构造位置(a,据Zhang et al., 2004)和区域地质简图(b)
Figure 1. Sketch map showing tectonic setting (a, after Zhang et al., 2004) and regional simplified geological map (b) of the study area
图 4 藏北阿翁错地区Nb/Y − Zr/TiO2图解(a, 据Winchester and Floyd, 1977)和SiO2−Na2O+K2O岩石系列划分图解(b, 据Irvine and Baragar, 1971)
Figure 4. Zr/TiO2−Nb/Y diagram (a, after Winchester and Floyd, 1977) and SiO2−Na2O+K2O diagram (b, after Irvine and Barager, 1971) of intermediate-basic dikes from Awengcuo area, north Tibet
图 5 研究区中基性脉岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b) (球粒陨石、原始地幔、N-MORB、E-MORB以及OIB数据均引自Sun and McDonough, 1989)
Figure 5. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns of intermediate-basic dikes (after Sum and McDonough, 1989)
图 6 研究区脉岩La/Yb-Th/Ta图解(底图据Condie, 1997)
Figure 6. La/Yb-Th/Ta diagram of dikes from Awengcuo area (base map after Condie, 1997)
图 7 藏北阿翁错地区中基性岩脉Nb-Zr-Y(a)、Zr-Zr/Y(b)、Ta/Hf-Th/Hf(c)构造判别图解
a—Nb-Zr-Y图解(据Meschede, 1986);b—Zr-Zr/Y图解(据Pearce, 1982);c—Th/Hf-Ta/Hf图解(据汪云亮等, 2001)
Figure 7. Tectonic discrimination diagrams for intermediate-basic dikes from Awengcuo area, north Tibet
a-Nb-Zr-Y diagram (after Meschede, 1986); b-Zr/Y-Zr diagram (after Pearce, 1982); c-Ta/Hf-Th/Hf diagram (after Wang et al., 2001)
表 1 阿翁错地区闪长岩脉样品锆石LA-ICP-MS U-Pb分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb analyses of of diorite dike, Awengcuo area, north Tibet
表 2 阿翁错地区辉绿岩脉样品锆石LA-ICP-MS U-Pb分析结果
Table 2 LA-ICP-MS zircon U-Th-Pb analyses of diabase dike, Awengcuo area, north Tibet
表 3 阿翁错地区中基性脉岩主量元素(%)和微量元素(10-6)组成
Table 3 Major elements (%), trace elements and REE composition (10-6) of the intermediate-basic dikes, Awengcuo area, north Tibet
-
Allen C M. 2010, Evolution of a post-batholith dike swarm in central coastal Queensland, Australia:Arc-front to backarc?[J]. Lithos, 51(4):331-349.
Ancochea E, Brändle J L, Huertas M J, Cubas C.R, Hernan F. 2003.The felsic dikes of La Gomera (Canary Islands):Identification of cone sheet and radial dike swarms[J]. Journal of Volcanology and Geothermal Research, 120(3):197-206.
Bao Peisheng, Xiao Xuchang, Su Ni, Wang Jun. 2007. Geochemical characterristics and isotopic dating for the Dongcuo Ophiolite Tibet Plateau[J]. Science in China (ser. D), 37(3):298-307 (in Chinese).
Chen Yulu, Zhang Kuanzhong, Yang Zhimin, Luo Tao. 2006. Discovery of a complete ophiolite section in the Jueweng area, Nagqu County, in the central segment of the Bangong Co-Nujiang junction zone, Qinghai-Tiebet Plateau[J]. Geological Bulletin of China, 25(6):694-699(in Chinese with English abstract).
Condie K C, 1997. Sources of Proterozoic mafic dyke swarms:Constraints from Th/Ta and La/Yb ratios[J]. Precambrian Reasearch, 81:3-14. doi: 10.1016/S0301-9268(96)00020-4
Condie K C. 1989. Geochemical changes in baslts and andesites across theArchean-Proterozoicboundary:Identificationandsignificance[J]. Lithos, 23(1/2):1-18.
Dini A, Innocenti F, Rocchi S, Tonarini S, Westerman D S. 2002. The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy[J]. Geological Magazine, 139(3):257-279. doi: 10.1017/S0016756802006556
Dong Chuanwang, Zhang Dengrong, Xu Xisheng. 2006. SHRIMP UPb Dating and Lithigeochemistry of basic-intermediate dike swarms fron Jinjiang, Fujian Province[J]. Acta Petrologica Sinica, 22(6):1696-1702 (in Chinese with English abstract).
Dong MingChun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and dykes in Linzhou Basin, Southern Tibet[J]. Acta Petrologica Sinica, 31(5):1268-1284 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505006
Fan J J, Li C, Xue C M, Wang M.2014. Petrology geochemistry and geochronology of the Zhonggang ocean island northern Tiber:Implications for the evolution of the Bangongco-Nujiang oceanic arm of Neo-tethys[J]. International Geology Review, 56(12):1504-1520. doi: 10.1080/00206814.2014.947639
Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3):463-513. doi: 10.1093/petrology/19.3.463
Geng Quanru, Pan Guitang, Wang Liquan, Peng Zhiming, Zhang Zhang. 2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J]. Geological Bulletin of China, 30(8):1261-1274(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201108013
Halls H C. 1982. The importance and potential of mafic dykes warms in studies of geodynamic processes[J]. Geoscience Canada, 9(3):145-154.
Hart S R, Davis K E. 1978. Nickel Partitioning between olivine and silicate melt[J]. Earth amd Planetary Science Letters, 40:203-219. doi: 10.1016/0012-821X(78)90091-2
Hart S R, Hauri E H. 1992. Mantle plumes and entrainment:Isotopic evidence[J]. Science, 256(5056):517-520. doi: 10.1126/science.256.5056.517
Hoek J D, Seitz H M. 1995. Continental mafic dyke swarms as tectonic indicators:An example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 75(3/4):121-139.
Hoskin P W, Black L P. 2000. Metamorphic zircon formation by solid, state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1046/j.1525-1314.2000.00266.x
Hou Guiting, Li Jianghai, Halls H C, Qian Xianglin. 2003. The flow structures and mechanics of Late Precambrian mafic dyke swarms in North China Craton[J].Acta Geologica Sinica, 77(2):210-215(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200302009
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055
Jiang Junhua, Wang Ruijiang, Qu Xiaoming. 2011. Crustal extension of the Bangong Lake Arc Zone, western Tibetan Plateau, after the closure of the Tethys Oceanic basin[J]. Earth Science-Journal of China University of Geoscience, 36(6):1021-1032 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201106007
Jiang Sihong, Nie Fengjun, Hu Peng, Liu Yan, Lai Xinrong. 2007.Geochemical characteritics of the mafic dyke swarms in South Tibet[J]. Acta Geologica Sinica, 81(1):60-70 (in Chinese)
Jiang Y H, Jiang S Y, Zhao K D, Ling Hongfei. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China:Implications for a back-arc extension setting[J]. Geological Magazine, 143(4):457-474. doi: 10.1017/S0016756805001652
Jung C, Jung S, Hoffer E. 2006. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany[J]. Journal of Petrology, 47(8):1637-1671. doi: 10.1093/petrology/egl023
Jung S, Masberg P. 1998. Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany):Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J]. Journal of Volcanology and Geothermal Research, 86(1):151-177.
Kang Lei, Xiao Peixi, Gao Xiaofeng, Zhu Haiping, Xi Rengang, Guo Lei, Dong Zengchan. 2012. The age and origin of the Kongjirap Pluton in Northwestern Tibetan Plateau and its tectonic significance[J].Acta Geologica Sinica, 86(7):1063-1076 (in Chinese with English abstract).
Kang Zhiqiang, Xu Jifeng, Wang Baodi, Chen Jianlin. 2010. Qushenla Formation volcanic rocks in north Lhasa block:Products of Bangong Co-Nujiang Tethy's southward subduction[J]. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract).
Lai Shaocong, Liu Chiyang, Yi Haisheng, O'Reilly S Y, Zhang Ming. 2003. The In situ La-ICP-MS analysis and trace element features for the feldspars form Cenozoic trachyandesite in North Qiangtang, Tibetan Plateau[J]. Chinese Journal of Geology, 38(4):539-545 (in Chinese with English abstract).
Lei Chuanyang, Wu Jianliang, Yin Xianke, Liu Wen, Wang Bo, Li Wei, Yuan Huayun, Zhang Wei, Yin Tao, Pei Yalun. 2019.Geochronology, geochemistry and geodynamic significance of Awengcuo composite pluton and its dark microgranular enclaves in the north of Tibet[J]. Geological Bulletin of China, 38(4):494-508(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904003
Li Dewei. 2008. Three-stage tectonic evolution and metallogenic evolution in the Qinghai-Tibet Plateau and its adjacent area[J]. Earth Science-Journal of China University of Geosciences, 33(6):723-742 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.089
Li Hualiang, Gao Cheng, Li Zhenghan, Zhang Zhang, Peng Zhimin, Guan Junlei. 2016. Age and tectonic significance of Jingzhushan Formation in Bangong Lake Area, Tibet[J]. Geotectonica et Metallogenia, 40(4):663-673 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604004
Li Xianhua, Hu Ruizhong, Rao Bing. 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China[J]. Geochmica, 26(2):14-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700050343
Liu Y S, Hu Z C, Cao S, Günther D, Xu J, Gao C G, Chen H H. 2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2):34-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c
Liu Y S, Hu Z C, Zong K Q, Gao C G, Xu J, Chen H H. 2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
Luo Zhaohua, Lu Xinxiang, Wang Bingzhang. 2008. Post-orogenic dike complexes and implications for metallogenesis[J]. Earth Science Frontiers, 15(4):1-12(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60034-2
Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan. 2006.Petrogenesis of the post-orgenic dike complex-Constraints to Lithosphere delamination[J]. Acta Petrologica Sinica, 22(6):1672-1684 (in Chinese with English abstract).
Mayborn K R, Lesher C E, Connelly J N. 2008. Geochemical constraints on the late-stage evolution of basaltic magma as revealed by composite dikes within the Kangamiut dike swarm, West Greenland[J]. Lithos, 104(1/4):428-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=42744c30e3e7519252bc658519b221b4
Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3):207-218.
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(03):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[J]. Andesites, 8:525-548.
Poland M P, Fink J H, Tauxe L. 2004. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado:AMS and thin section analysis[J]. Earth and Planetary Science Letters, 219(1):155-169.
Qiu Ruizhao, Zhou Su, Deng Jinfu, Li Jinfa, Xiao Qinghui, Cai Zhiying. 2004. Dating of grabbro in the Shemalagou ophiolite in the western segment of the bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the banggong Co-Nujiang ophiolite belt[J]. Geology in China, 31(3):262-268 (in Chinese with English abstract).
Ren Junhu, Liu Yiqun, Zhou Dingwu, Feng Qiao, Zhang Kun, Dong Zhongliang, Qin Pingli. 2010. Geochemical characteristics and LaICP-MS Zircon U-Pb dating of basic dykes in the Xiaomiao Area, Eastern Kunlun[J]. Journal of Jilin University (Earth Science Edition), 40(4):859-868(in Chinese with English abstract).
Righter K. 2000. A comparison of basaltic volcanism in the Cascades and western Mesico:Composition diversity in continental arcs[J]. Tectonophysics, 318:99-117. doi: 10.1016/S0040-1951(99)00308-X
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of geophysics, 33(3):267-309. doi: 10.1029/95RG01302
Scarrow J H, Leat P T, Wareham C D, Millar I L. 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith:A record of arc evolution[J]. Contribution to Mineralogy Petrology, 131(2/3):289-305.
Shi Rengdeng. 2007. Restricting to age of the Bangong-Nujiang ocean from Banggong Lake SSZ ophiolite[J]. Chinese Sciencec Bulletin, 52(2):223-227 (in Chinese with English abstract). doi: 10.1360/csb2007-52-2-223
Sui Qingling, Wang Qing, Zhu Dicheng, Zhao Zhidan, Chen Y, Santosh M, Hu Z C, Yuan H L, Mo X X. 2013. Compositional diversity of ca.110 Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 168:144-159.
Sun S S, McDonough W F. 1989. Implications for Mantle Composition and Processes Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[M]. Geological Society, London, Special Publications, 42(1): 313-345.
Taylor B, Martinez F. 2003. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 210(3):481-497.
Von Blanckenburg F, Davis J H. 1995. Slab break off:A model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 14:120-131. doi: 10.1029/94TC02051
Walker G P L, Eyre P R, 1995. Dike complexes in America Samoa[J]. J. Volc. Geother. Res., 69:241-245. doi: 10.1016/0377-0273(95)00041-0
Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic-setting of basalts[J]. Acta Petrologiea Sinica, l7(3):413-421 (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009
Wang Jian, Fu Xiugen. 2018. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 45(2):237-259 (in Chinese with English abstract).
Wang Zhongheng, Wang Yongsheng, Xie Yuanhe, Sun Zhonggang, Qu Yonggui, Li Cunzhi, Jiang Xuefei. 2005. The Tarenben oceanicisland basalts in the middle part of the Bangong-Nujiang suture zone, Xizang and their geological implations[J]. Sedimentary Geology and Tethyan Geology, 25(1/2):153-162 (in Chinese with English abstract).
Weaver B L. 199l. The origin of ocean island basalt endmember composition:Trace element and isotopic constraints[J]. Earth Planet Sci. Lett., 104:381-397. doi: 10.1016/0012-821X(91)90217-6
Wilson M. 1993. Magmatic differentiation[J]. Journal of the Geological Society, 150(4):611-624. doi: 10.1144/gsjgs.150.4.0611
Wilson M. 1989. Igneous Petrogenesis[M]. London:Unwin Hyman, 101-149.
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
Xia Linqi, Xia Zuchuan, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1):77-89 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701011
Xie Guiqing, Hu Ruizhong, Jia Dacheng. 2002. Geological and Geochemical characteristics and its significance of mafic dikes from Northwest Jiangxi Province[J]. Geochimica, 31(4):329-338(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200204004
Xu X W, Zhang B L, Qin K Z, Mao Q, Cai X P. 2007. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China[J]. Lithos, 99(3/4):339-362.
Yang J H, Chung S L, Zhai M G, Zhou Xinhua. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:Evidence for vein-plus-peridotite melting in the lithospheric mantle[J]. Lithos, 73(3):145-160.
Ye Lijuan, Zhao Zhidan, Liu Dong, Zhu Dicheng, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng. 2015. Late Cretaceous diabase and granite dike in Namling, Tibet:Petrogenesis and implications for extension[J]. Acta Petrologica Sinica, 31(5):1298-1312 (in Chinese with English abstract).
Yang Shao, Li Dewei, Chen Guifan, Li Hualiang, Zhang Shuo, Zhou Tao. 2018. The discovery of the Wuluqiong magnetite deposit in Tibet and its geological characteristics[J]. Geology in China, 45(6):1214-1227 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201806012
Yue Yahui, Ding Lin. 2006. 40Ar/39Ar geochronology, geochemistry characteristics and genesis of the Linzhou basic dikes, Tibet[J]. Acta Petrologica Sinica, 22(4):855-866 (in Chinese with English abstract).
Zhang K J, Xia B D, Wang G M, Li Y T, Ye H F. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 116(9):1202-1222. doi: 10.1130/B25388.1
Zhang Liangliang, Zhu Dicheng, Zhao Zhidan, Liao Zhongli, Wang Liquan, Mo Xuanxue. 2011. Early Cretaceous granitoids in Xainza, Tibet:Evidence of slab break-off[J]. Acta Petrologica Sinica, 27(7):1938-1948.
Zhang Xin, Wu Cailai, Chen Hongjie. 2017. The U-Pb zircon dating of the granite dike in Nanzhao pluton and it's constraints on tectonic setting in Yanshanian[J]. Geology in China, 44(5):938-958(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201705009
Zheng YongFei. 1999. Chemical Geodynamics[M]. Beijing:Science Press, 137-143(in Chinese with English abstract).
Zhu D C, Li S M, Cawood P A, Wang Q, Zhao Z D, Liu S A, Wang L Q. 2015. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245:7-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be4c438f22b463f182154e4494786812
Zhu Dicheng, Mo Xuanxue, Zhao Zhidan. 2008. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance[J]. Acta Petrologica Sinica, 24(3):401-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001
Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Zhao Zhidan, Dong Guocheng, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J]. Acta Petrotogica Sinica, 22(3):534-546 (in Chinese with English abstract).
Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S, Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008
鲍佩声, 肖序常, 苏犁, 王军. 2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑), 37(3):298-307. 陈玉禄, 张宽忠, 杨志民, 罗涛. 2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报, 25(6):694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007 董传万, 张登荣, 徐夕生. 2006.福建晋江中-基性岩脉的锆石SHRIMP U-Pb定年和岩石地球化学[J].岩石学报, 22(6):1696-1702. 董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘永胜, 邹子昊. 2015.西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因[J].岩石学报, 31(5):1268-1284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505006 耿全如, 潘桂堂, 王立全, 彭智敏, 张璋. 2011.班公湖-怒江、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 30(8):1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013 侯贵廷, 李江海, Halls HC, 钱祥麟. 2003.华北前寒武纪镁铁质岩脉的流动构造及侵位基质[J].地质学报, 77(2):210-215. doi: 10.3321/j.issn:0001-5717.2003.02.009 江军华, 王瑞江, 曲晓明. 2011.青藏高原西部班公湖岛弧特提斯洋盆闭合后的地壳伸展作用[J].地球科学——中国地质大学学报, 36(6):1021-1032. 江思宏, 聂凤军, 胡朋, 刘妍, 赖欣荣. 2007.藏南基性岩墙群的地球化学特征[J].地质学报, 81(1):60-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200701008 康磊, 校培喜, 高晓峰, 朱海平, 奚仁刚, 过磊, 董增产. 2012.青藏高原西北缘红其拉普岩体的岩石成因、时代及其构造意义[J].地质学报, 86(7):1063-1076. doi: 10.3969/j.issn.0001-5717.2012.07.003 康志强, 许继峰, 王保弟, 陈建林. 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 26(10):3106-16. 雷传扬, 吴建亮, 尹显科, 刘文, 王波, 李威, 袁华云, 张伟, 尹滔, 裴亚伦. 2019.藏北阿翁错复式岩体及其暗色微粒包体年龄、地球化学与地球动力学意义[J].地质通报, 38(4):494-508. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904003 赖绍聪, 刘池阳, 伊海生, O'Reilly S. Y, 张明. 2003.北羌塘新生代火山岩长石矿物激光探针原位测试及其微量元素特征初探[J].地质科学, 38(4):539-545. doi: 10.3321/j.issn:0563-5020.2003.04.015 李德威. 2008.青藏高原及邻区三阶段构造演化与成矿演化[J].地球科学——中国地质大学学报, 33(6):723-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200806001 李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016.西藏班公湖地区竟柱山组时代及其构造意义[J].大地构造与成矿学, 40(4):663-673. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604004 李献华, 胡瑞忠, 饶冰. 1997.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学, 26(2):14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004 罗照华, 卢新祥, 王秉璋, 2008.造山后脉岩组合与内生成矿作用[J].地学前缘, 15(4):1-12. doi: 10.3321/j.issn:1005-2321.2008.04.001 罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006.造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束[J].岩石学报.22(6):1672-1684. 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006.冈底斯造山带的时空结构及演化[J].岩石学报, 22(3):521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 邱瑞照, 周肃, 邓晋幅, 李金发, 肖庆辉, 蔡志勇. 2004.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 31(3):262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004 任军虎, 柳益群, 周鼎武, 冯乔, 张琨, 董忠良, 秦萍莉. 2010.东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J].吉林大学学报(地球科学版), 40(4):859-868. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201004015 史仁灯. 2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016 汪云亮, 张成江.修淑芝. 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报, 17(3):413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 王剑, 付修根. 2018.论羌塘盆地沉积演化[J].中国地质, 45(2):237-259. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180203&flag=1 王忠恒, 王永胜, 谢元和, 孙忠刚, 鲁宗林, 曲永贵, 李存直, 姜雪飞. 2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质, 25(1/2)153-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200501029 夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 26(1), 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011 谢桂青, 胡瑞忠, 贾大成. 2002.赣西北基性岩脉的地质地球化学特征及其意义[J].地球化学, 31(4):329-338. doi: 10.3321/j.issn:0379-1726.2002.04.004 杨绍, 李德威, 陈桂凡, 李华亮, 张硕, 周涛. 2018.西藏乌鲁穷含铜磁铁矿床的发现及地质特征[J].中国地质, 45(6):1214-1227. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180611&flag=1 叶丽娟, 赵志丹, 刘栋, 朱弟成, 董国臣, 莫宣学, 胡兆初, 刘永胜. 2015.西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景[J].岩石学报, 31(5):1298-1312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505008 岳雅慧, 丁林. 2006.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因[J].岩石学报, 22(4):855-866. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604009 张亮亮, 朱弟成, 赵志丹, 廖忠礼, 王立全, 莫宣学. 2011.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 27(7):1938-1948. 张昕, 吴才来, 陈红杰. 2017.秦岭南召岩体中花岗岩脉的锆石UPb定年:对燕山期构造环境的约束[J].中国地质, 44(5):938-958. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170508&flag=1 郑永飞.化学地球动力学[M].北京:科学出版社, 1999:137-143. 朱弟成, 莫宣学, 赵志丹. 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 24(3):401-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803001 朱弟成, 潘桂堂, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2(3):534-546. -
期刊类型引用(5)
1. 王鹤源,王泽堃,谷思莹,杨烁暄,赵梓垚,陈旭. 宜昌—武汉长江沿岸典型砾石层对比分析. 高校地质学报. 2024(01): 47-55 . 百度学术
2. 林旭,李玲玲,刘静,吴中海,李长安,刘维明,向宇,刘海金,陈济鑫. 长江早更新世向江汉盆地输送碎屑物质:来自碎屑锆石U-Pb年龄的约束. 地球科学. 2023(11): 4214-4228 . 百度学术
3. 孙杨,谢远云,迟云平,康春国,吴鹏. 大兴安岭东麓龙江县白土山组地层特征:化学风化、沉积循环、源-汇体系和沉积环境. 山地学报. 2022(01): 14-28 . 百度学术
4. 魏松林,孙全,陈平,杜林诚. 基于航测无人机的卵石三轴粒径计算及精度评估. 工程勘察. 2022(11): 68-74 . 百度学术
5. 王令占,杨博,涂兵. 鄂东南咸宁北部冲洪积物的ESR年代及意义. 华南地质. 2021(02): 127-135 . 百度学术
其他类型引用(3)