Zircon U-Pb dating and geochemistry of the volcanic rocks in the Dishuishan gold deposit in Gansu Province and its tectonic setting
-
摘要:
滴水山金矿床为北祁连造山带西段赋存于火山岩中的构造蚀变岩型金矿床。LA-ICP-MS锆石U-Pb测年结果表明,滴水山金矿区安山质晶屑凝灰岩年龄为(479.7±6.9)Ma,形成时代为早奥陶世,花岗闪长岩年龄为(426.9±6.7)Ma,时代为中志留世,含金黄铁绢英岩锆石U-Pb年龄(482.7±9.5)Ma,代表了赋矿火山岩的形成年龄,成矿时代应晚于(426.9±6.7)Ma;岩矿石地球化学特征表明,赋矿火山岩富集大离子亲石元素(LILE,如K、Rb、Th),明显亏损高场强元素(HFSE,如Nb、Ta、P、Ti),岩矿石稀土元素配分形式基本一致,呈右缓倾,轻稀土相对富集,具弱的铕负异常,形成于洋壳俯冲的岛弧环境,由俯冲板片脱水产生的流体交代地幔楔发生部分熔融而形成,在岩浆向上运移的过程中遭受了上地壳混染。花岗闪长岩SiO2=67.48%~72.68%,K2O+Na2O=7.15%~7.44%,里特曼指数δ值1.78~2.07,铝质指数A/CNK介于0.95~1.19,富集K、Rb、Th、U等大离子亲石元素和亏损Nb、P、Ti等高场强元素,稀土分配曲线呈右倾,轻稀土相对富集,具中等铕负异常,属钠质钙碱系列、弱过铝质I型花岗岩类,形成于弧-陆碰撞的火山岛弧环境,具壳幔混合成因的特点。综合区域地质资料,滴水山金矿成岩成矿构造背景为早奥陶世北祁连洋盆向阿拉善陆块之下俯冲,形成岛弧火山岩,为矿源层;中志留世,因弧-陆碰撞,形成同碰撞花岗闪长岩,晚志留世后造山作用及造山后的伸展,导致金的富集。
Abstract:Located in the west part of North Qilian orogenic zone, the Dishuishan gold deposit is one of the altered cataclastic rock type deposits hosted in volcanic rocks. LA-ICP-MS zircon U-Pb chronology indicates that the andesitic crystal tuff was emplaced at (479.7±6.9) Ma, the granodiorite was emplaced at (426.9±6.7)Ma, and the gold bearing beresite was emplaced at (482.7±9.5)Ma, which represent the ages of ore-bearing volcanic rocks, whereas metallogenic age should be later than (426.9±6.7)Ma. The geochemical data suggest that the trace elements of volcanic rocks are rich in K, Rb, Th, and relatively depleted in Nb, Ta, P, Ti. The volcanic rocks and related mineral ores have similar chondrite-normalized REE patterns, exhibiting right-dip curve, the LREE are relatively enriched and Eu negative anomaly is weak. Combined with the trace elements and the REE characteristics, the authors infer that the volcanic rocks were formed in an island-arc setting, related to subduction of Qilian oceanic crust. The volcanic magma contaminated by the upper crust probably came from the partial melting of the mantle wedge, which had undergone metasomatism induced by the subduction fluid. The chemical composition of the granodiorite reveals SiO2 values ranging from 67.48% to 72.68%, K2O+Na2O values ranging from 7.15% to 7.44%, Rittmann index ranging from 1.78 to 2.07, and aluminous index A/CNK values ranging from 0.95% to 1.19%; the trace elements show enrichment of K, Rb, Th, U and relative depletion of Nb, P Ti. The LREE are relatively enriched and Eu negative anomaly is medium. The granodiorite belongs to Na calc-alkaline series weakly peraluminous I-type granitoid, and was formed in a volcanic island-arc setting of arc-continent collision and indicated crust and mantle source. According to regional geological data, the metallogenic tectonic background of the Dishuishan gold deposit was developed from the subduction of the North Qilian ocean basin beneath Alxa land block in Early Ordovician, which formed island-arc volcanic rock, and acted as main source bed→arc-continent collision in Middle Silurian period, which formed syncollisional granodiorite after Late Silurian period, and Qilian orogeny and intraplate extension in the post orogenic stage led to the enrichment of gold.
-
走滑断裂是沉积盆地中特殊而且力学机制复杂的断裂系统,走滑断裂及其破碎带本身是重要的储油气空间,同时,高角度的走滑断裂常常沟通地层深部流体,是油气运聚的输导体系,对储层的形成与油气的分布具有重要的控制作用。近期针对大型走滑断裂及其破碎带的直接钻探在塔里木盆地奥陶系层间岩溶区的塔中I号气田、哈拉哈塘油田和轮古东气田均取得了预期效果[1-4],极大地拓展了油气勘探开发领域,也使得对塔里木盆地走滑断裂的研究与认识更进一步深化。一方面加强走滑断裂的识别、构造样式的刻画及力学机制的研究[1-7];另一方面对走滑断裂破碎带结构的研究引起关注,张庆莲等[8],潘文庆等[9]对塔里木盆地西北缘的柯坪—巴楚露头区野外裂缝地质建模明确走滑断裂控制的裂缝发育带具有明显的分带性,距断层由近及远可细分为“破碎带、劈理带、菱形裂缝带、稀疏裂缝带”;邬光辉等[10]通过野外与井下地质建模,指出塔里木盆地奥陶系沿走滑断裂带走向上断裂相具有分段性和差异性,可定性分为高渗透相和致密相区;孙东等[11]通过地震储层正演明确断层面及断裂破碎带能产生串珠状反射。这些研究成果对认识走滑断裂破碎带在三维空间复杂结构及解译其与油气富集规律提供了新的思路和方法。
前期针对轮古东气田断裂系统的研究,由于受地震资料品质和勘探开发程度的限制,对走滑断裂的解释有待深入,对断裂破碎带及伴生裂缝发育特征研究较少[4],本文以最新处理完成的轮古东300 km2叠前深度偏移地震资料为基础,结合区域已有钻井资料综合分析轮古东气田走滑断裂的识别、发育特征、断裂破碎带的组合方式以及控储控藏特征,以期为该区进一步勘探开发提供指导。
1. 地质背景
轮古东气田地处新疆轮台县境内,构造上隶属于塔里木盆地塔北隆起轮南低凸起中部。奥陶纪地层发育齐全,可细分为上奥陶统桑塔木组、良里塔格组和吐木休克组(又称恰尔巴克组)、中奥陶统一间房组及中下奥陶统鹰山组和蓬莱坝组。
主要勘探目的层为一间房组和鹰山组,其次为良里塔格组,一间房组埋藏深度5050~6700 m,厚度10.5~42 m,发育台缘和台内丘滩复合体沉积,岩性以浅褐灰-灰褐色亮晶砂屑灰岩、亮晶鲕粒灰岩和亮晶藻屑砂屑灰岩为主,在AG35、AG621等井都发现托盘类生物礁。鹰山组自上而下可细分为4段:鹰一段(O1-2y1)、鹰二段(O1-2y2)、鹰三段(O1-2y3)和鹰四段(O1-2y4),本区绝大多数钻井仅钻揭鹰一段,主要发育亮晶砂屑灰岩、泥晶灰岩,为开阔台地相的台内滩和滩间海沉积。
研究区东邻草湖生油凹陷,南接满加尔生油坳陷,位于油气运移主要方向的前沿部位,构造位置十分有利。以近南北向轮东I号走滑断裂带为界,构造西缓东陡,总体为一东南倾大型斜坡(图 1),一间房组顶面构造高差1650 m,奥陶系油气主力产层一间房组在西北部受剥蚀而尖灭。储层以裂缝孔洞型储层为主,发育少量洞穴型储层,整体表现为受断裂和沉积相带分割,局部断块含少量边、底水的大型准层状凝析气藏[12-13]。
2. 断裂与裂缝特征
2.1 地震资料断裂识别
平剖结合,多方法开展工区断裂解释,小断层产状较陡,主要根据上下地层即寒武系和良里塔格顶面存在断距和挠曲,以及地震同相轴存在变化进行识别[3]。在此基础上,通过沿层切片、相干属性等技术实现断裂与裂缝的平面识别,以垂直剖面为主精细解释断层。
2.1.1 断裂平面识别
相干体技术是一种不连续的检测手段,当地下有断层、裂缝或地质异常体(如洞穴、河道、串珠等)时,地层产生横向不均匀现象,相邻地震道之间的反射波在振幅、频率及相位等方面都将发生不同程度的变化,进而达到检测断层、反映岩性异常体的目的,相干体切片比常规切片能更好地表现断层和沉积特征。从沿层相干切片结果分析,中深层断裂平面上主要分4组:走滑断层主要呈近南北、北东和北西向3组断裂,且北东向断层错断北西向断层;逆冲断裂为近东西走向,主要位于工区西部(图 2~图 3)。石炭系以上以雁列式走滑断层和逆冲断裂为主,走滑断层主要发育近南北向以及两条近北东向断裂(图 4)。
2.1.2 断裂剖面识别
根据区域构造运动背景以及断层平剖面特征,研究区断裂可划分为3期4组。中晚加里东期走滑断裂、晚海西期逆冲断裂以及喜山期走滑断裂(图 1、图 5)。
早加里东期寒武系—中下奥陶统,塔北隆起稳定沉积,无大的构造活动,断裂不发育,沉积大套灰岩地层。中晚加里东期断裂开始活动,沉积地层由碳酸盐岩向碎屑岩过渡,发育近北西和北东向走滑断层,延伸距离约10~25 km,剖面上,断裂近乎陡直,向下断入震旦系,向上消失于奥陶系桑塔木组,断距一般小于100 m(图 5-c)。该期断层是晚加里东期寒武系—下奥陶统烃源岩的原油充注的主要通道,沿断层分布形成古油藏。
晚海西期受区域性南北向挤压应力作用,工区西部发育两条近东西走向的逆冲断裂(桑塔木南断裂和桑塔木北断裂),剖面上呈“y”字形特征,其中桑塔木北断裂是一条主断裂,东西延伸约18 km,断距大,垂向断距最大达200 m,断开层位多,上至三叠系底,下至寒武系、震旦系;桑塔木南断裂是桑塔木北断裂的一条大的伴生断裂,断开层位少,上部仅断开石炭系,下部消失在奥陶纪地层中,垂向断距最大达150 m(图 5-a)。桑塔木断裂控制了局部构造形态,构造脊部裂缝发育,井间连通性好。根据挤压应力的剪切分量分析,推测该时期南北向轮东1号走滑断裂已开始发育,整体表现为压扭性特征。
喜山期受张剪应力作用,贯穿工区的南北向轮东1号走滑断裂进一步活动,表现为右旋走滑特征,并伴生一些列北东-南西向次级走滑断裂,控制工区构造格局,轮东1号断裂区内延伸21.8 km,断开层位从基底至侏罗系,断距20~100 m。石炭系以下表现为压扭性质,在工区AG35和AG35-1井附近表现最为明显,奥陶系断面倾向多变,工区南部东倾,中部西倾,北部东倾,具有典型丝带状效应;同时平面上断层两盘高低关系一直在变化,具有明显海豚效应(图 5-b)。石炭系及以上地层剖面上表现为负花状构造,断层性质由压扭转化为张扭性质,呈明显负反转构造,平面上表现为雁列式右旋走滑特征。轮东I号断裂是喜山期寒武系原油裂解气的主要充注通道,沿断裂走向裂缝发育,天然气富集。
2.2 岩心薄片裂缝特征
由于碳酸盐岩储层强非均质性,储层发育井段往往发生漏失,取心困难,岩心分析仅代表基质物性[1]。研究区岩心常规物性分析孔隙度样品1259块,渗透率样品963块,平均孔隙度1.615%,平均渗透率2.82×10-3μm2。基质孔隙度差,次生的溶蚀孔、洞和裂缝是主要的储集空间,裂缝既是储集空间,又是渗滤通道。研究区9口井428.89 m岩心统计,共发育裂缝965条,其中未充填和半充填缝649条,占裂缝总数的67.3%,以倾角 > 75°的高角度缝为主,缝密度1.22条/m(图 6~图 7)。
图 6 轮古东气田奥陶系碳酸盐岩岩心照片a—AF127井,5569.8 m,O1-2y,泥晶灰岩,高角度构造缝,缝宽2~4 mm,沿缝部分充填方解石;b—AN631井,5791.5 m,O3t,亮晶生屑灰岩,二组构造缝斜交,沿裂缝溶蚀和充填,缝面见氧化边;c—AN62井,5782.3 m,O1-2y,颗粒灰岩,晚期水平裂缝切割早期缝合线,沿晚期裂缝部分溶蚀;d—AG392井,6264.5 m,O2y,藻粘结砂砾屑灰岩,高角度构造缝,半充填方解石,岩心上见构造缝不连续延伸;e—AN621井,5766.2 m,O3t,颗粒灰岩,早期缝合线被晚期高角度构造缝切割,半充填泥质;f—AG35井,6158.4 m,O3t,砂屑生屑灰岩,早期溶洞充填角砾与巨晶方解石,晚期裂缝切割早期裂缝,沿晚期裂缝扩溶;g—AN631井,5973.1 m,O1-2y,早期网状裂缝呈龟背状充填方解石,晚期沿部分宽缝充填泥质,岩心部分大理岩化;h—AG391井,5817.2 m,O3l,生物砾屑灰岩,生物为珊瑚和藻类,为洞穴充填角砾,砾间充填泥质;i-AG392井,6345.7 m,O1-2y,亮晶颗粒灰岩,缝合线发育Figure 6. Core photos of Ordovician carbonate rock in Lungudong gas fielda-Well AF127, 5569.8 m, O1-2y, cryptite, high angle structural fracture, width of fracture 2-4 m, partly filled with calcite along fractures; b-Well AN631, 5791.5 m, O3t, calcsparite bioclastic limestone, two groups of structural fractures obliquely crossing, corroded and filled along fractures, oxidation edge distributed in fracture panel; c-Well AN62, 5782.3 m, O1-2y, grained limestone, late period horizontal fractures cutting early stage furrow lines, partly corroded along late period fractures; d-Well AG392, 6264.5 m, O2y, algal bound gritty limestone, high angle structural fracture, half filled with calcite, structural fractures discontinuously extending in core; e-Well AN621, 5766.2 m, O3t, grained limestone, late period high angle structural fractures cuting early stage furrow lines, half filled with shale; f-Well AG35, 6158.4 m, O3t, gritty bioclastic limestone, early period limestone cave filled with rubble giant crystal calcite, late period fractures cutting early period fractures. corroded along late period fractures; g-Well AN631, 5973.1 m, O1-2y, early period calcite filling fractures like turtleback, late period part of broad fractures filled with shale, core partly marbleized; h-Well AG391, 5817.2 m, O3l, bioclastic calcirudite, bioclasts consisting of coral and algae, cave filled with rubble stone, shale filling inter gravel; i-Well AG392, 6345.7 m, O1-2y, calcsparite grained limestone, developing furrow lines图 7 轮古东气田奥陶系碳酸盐岩储层铸体薄片a—AN48井,5548.5 m,O2y,泥粉晶灰岩,构造缝交织分布,沿缝见扩溶现象,红色铸体;b—AN621井,5778.3 m,O1—2y,亮晶颗粒灰岩,压溶和溶蚀缝,红色铸体;c—AN14井,5335.6 m,O3l,泥粉晶灰岩,构造缝交织分布,红色铸体;d—AG18井,5540.2 m,O2y,粉晶灰岩,构造缝交织分布,红色铸体;e—AG39井,5832.5 m,O2y,泥—亮晶颗粒灰岩,沿构造缝扩溶后,部分方解石充填,红色铸体;f—AG391井,5810.1 m,O3l,泥—亮晶颗粒灰岩,压溶缝,红色铸体Figure 7. Cast slice of Ordovician carbonate reservoir in Lungudong gas fielda-Well AN48, 5548.5 m, O2y, powder micrite limestone, structural fractures interleave, expanded corrosion along fractures, red cast; b-Well AN621, 5778.3 m, O1–2y, calcsparite grained limestone, pre-solution and corroded fractures, red cast; c-Well AN14, 5335.6 m, O3l, powder micrite limestone, structural fractures interleave, red cast; d-Well AG18, 5540.2 m, O2y, crystal powder limestone, structural fractures interleave, red cast; e-Well AG39, 5832.5 m, O2y, micrite-calcsparite grained limestone, after expanding corrosion along fractures, partly filled with calcite, red cast; f-Well AG391, 5810.1 m, O3l, micrite-calcsparite grained limestone, pre-solved fractures, red cast根据形成机理,裂缝分为构造缝、压溶缝和溶蚀缝。构造缝约占区内裂缝总数的60%,缝宽一般小于5 mm,主要为剪切缝,其次为张性缝。构造缝以垂直缝最为发育,早期构造缝平行排列,局部呈枝叉状和雁行状,多数已被方解石、泥质和沥青质全充填或半充填,局部区域多期不同产状的裂缝相互交切形成网状裂缝。压溶缝是由沉积负荷引起的压实作用和压溶作用形成,主要表现为缝合线,产状多与层面平行,呈锯齿状和肠状弯曲延伸,常被泥、铁质半充填或全充填,约占裂缝总数的20%。溶蚀缝主要由地表水和地下水沿早期的裂缝系统溶蚀扩大产生,呈弯曲分布,延伸短,缝宽一般 > 1 mm,沿断裂面上生长晶形完好的方解石晶体或晶簇,约占裂缝总数的15%(图 6~图 7)。
2.3 成像测井裂缝特征
成像测井是识别井周裂缝发育条数、产状和有效性等的直接手段。构造缝形成后,在后期应力和溶蚀改造下,会不断改变赋存状态,其中多期应力的改造作用目前测井技术不能有效识别,后期溶蚀作用造成的裂缝形态变化则能较好地从井壁图像上识别并确定[14-15]。
利用工区完钻32口井的成像测井资料,成像测井可识别的裂缝主要为构造缝、溶蚀缝和钻井诱导缝。构造缝主要为构造应力成因,裂缝形态完整,轨迹闭合;溶蚀缝由后期扩溶作用形成,缝面基本闭合,多不完整,呈不规则扩溶特征;钻井诱导缝为人工裂缝,由钻具机械诱导和地层应力释放造成,多为无效裂缝(图 8)。
图 8 轮古东气田奥陶系碳酸盐岩测井裂缝发育特征a、b、c、d—高角度构造窄裂缝,缝面形态基本完整,轨迹闭合;e、f、g、h—高角度构造窄裂缝,沿缝不规则扩溶;i、j、k、l—斜交羽状诱导微裂缝Figure 8. Ordovician carbonate logging fracture development characteristics in Lungudong gas fielda, b, c, d-High angle structural narrow fracture, fracture plane form is mostly intact, track closed; e, f, g, h-High angle structural narrow fracture, irregular broaden corrosion; i, j, k, l-Obliquely crossing pinnate lead tiny fracture平面上,工区裂缝以高角度(45°~75°)裂缝为主,走向以NE-SW为主。有效裂缝具有更强的岩石切割破坏能力,裂缝宽度和密度越大,取心收获率越低,裂缝有效性越好。纵向上,良里塔格组裂缝发育受岩性控制,裂缝发育密度与自然伽马值(泥质-泥灰质含量)成反比,自然伽马值增大,泥质-泥灰质含量增高,裂缝发育密度降低,良里塔格组内部自然伽马值从约11 API变化到60 API以上,泥质-泥灰质含量从5%上升至40%以上,当自然伽马值达到45 API,泥质-泥灰质含量超过30%时,裂缝不发育。良里塔格组裂缝平均4条/100 m,以不规则网状交切微细裂缝为主要特征,裂缝开度较小,少见大开度(窄缝以上)的构造缝,平均缝宽26.9μm,中缝及宽缝(石油行业标准SY/T 6286-1997)发育率6.9%。一间房和鹰山组岩性较纯,自然伽马值普遍低于25 API,平均约16.8 API,层组内泥质-泥灰质含量没有明显变化,泥质含量平均约2.3%。裂缝发育主要受断裂(应力强度)及构造控制,岩性控制不明显,裂缝发育程度高,开度相对较大,缝面溶蚀特征明显,一间房组14条/100 m,平均缝宽44.5μm,中缝及宽缝发育率9.1%;鹰山组6条/ 100 m,平均宽度37.5μm,中缝及宽缝发育率9.8%。
2.4 地震预测裂缝特征
裂缝的存在会造成地震波频率随方位角变化,在裂缝的法线方向,频率随方位角的衰减不同于裂缝的走向方向,地震波的衰减强度与裂缝的密度成正比,裂缝越发育,频率随方位角变化就越明显,频率椭圆扁率的大小代表了频率的各向异性强度,并且用这种强度来指示裂缝发育的强度。为得到准确的裂缝密度信息,多井结合约束裂缝密度发育门槛,利用研究区取心和成像测井对裂缝发育井和不发育井共同约束,得到最终的裂缝预测数据体并进行裂缝平面预测(图 9)。
研究区一间房组裂缝最发育,利用成像测井资料约束,FRS叠前裂缝预测表明,现今最大水平主应力方向、裂缝走向、裂缝分布范围及发育密度主要受断裂控制。
现今最大水平主应力方向指示地层岩石所承受的最大应力方向,在同样的地层岩性、相似岩石机械强度条件下,走向平行于最大水平主应力方向的裂缝系统在力学上最容易保存,与之相交或垂直的裂缝则趋于闭合。轮古东气田成像测井解释仅AN171、AG38C井周边由于应力的复杂,裂缝走向与主应力走向存在较大夹角,其余区域裂缝走向与主应力走向基本一致,裂缝走向以NE-SW向为主,指示轮古东斜坡断裂系统更容易保持开启,也更容易获得高产。不同期次、走向的断裂控制的裂缝走向略有差异,南北向轮古东I号走滑断裂周边井裂缝走向主要为NE 30°~50°;北东向走滑断裂周边井裂缝走向主要为NE 30°~80°。
平面上,裂缝主要分布在断裂周围1 km范围内,成像测井及FRS叠前裂缝预测表明,随着井点距断裂距离增大,裂缝发育强度(裂缝线密度)呈指数降低,当井点距断裂距离 < 0.25 km,裂缝发育密度快速增加,当井点距断裂距离 > 1 km,裂缝发育差或不发育(图 9,图 10),与塔里木盆地西北缘柯坪—巴楚露头区多条走滑断裂的调查结论类似,即随着距断裂距离的增大,断裂控制的裂缝密度与距断裂距离呈指数递减关系[8-9]。
3. 断裂破碎带结构及与油气关系
3.1 断裂破碎带结构
走滑断裂构造样式,一般由一系列产状陡倾的大型-巨型平移断层及其间的断夹块体组成,平面上表现为雁列式、斜列式或帚状构造样式,在剖面上表现为陡立的断层带或断夹块的相间排列[16-19]。由于力学机制复杂,走滑断裂构造样式的差异造成走滑断裂破碎带在三维空间具有复杂的结构,对断裂破碎带组合方式的刻画对储层与油气运聚关系密切[8-11, 16-19]。针对研究区气藏特征,以主干走滑断裂为主线,以次级和微断裂为骨架,以裂缝为脉络,将研究区断裂破碎带平面上划分为“羽状破碎带、转换破碎带、斜列破碎带、复合破碎带”4种组合模式(图 11)。
“羽状破碎带”指次级和微断裂发育,储层沿破碎带呈散开状发育,剖面上为正花状断裂,平面上次级裂缝沿主干断裂呈羽状分布。羽状破碎带为有利的储层发育区,轮古东目前AG341、AG353、AG391C等高产井钻探区域为羽状破碎带。AG391井钻探断裂下盘的羽状破碎带,取心和成像测井证实,鹰山组发育II类裂缝孔洞型储层51.5 m/8层,平均孔隙度2.83%;III类孔洞型储层13 m/1层,孔隙度1.8%。鹰山组裂缝发育,为高角度的窄缝,以构造剪切缝为主,底部存在少量的构造张性缝,且沿裂缝有扩溶作用,该井累产油0.16×104 t,累产气0.25×108 m3;AG391C井钻探临近的断裂上盘的羽状破碎带,效果要好于AG391井,目前已累产油0.55×104 t,累产气0.61×108 m3,一方面表明羽状破碎带局部构造高点油气更为富集;另一方也证实,羽状破碎带内部结构复杂,断裂上盘和下盘之间存在油气的侧向封堵。目前塔里木盆地塔中I号气田Z15井区已通过水平井穿主干断裂钻探羽状破碎带的多个串珠集合体,完钻13井取得预期效果,已建成黑油年产能25×104 t[2]。
“转换破碎带”指走滑断裂转换部位,应力从一条断层逐渐转至另一条断层,特定部位同时发育两条走滑断裂,裂缝主要发育于两断层叠置的转换破碎带内。研究区仅AG39井发育,剖面上为正花状断裂,平面上轮东1号断裂AG39构造分段转换形成局部构造,主要的构造变形层系位于中上奥陶统,石炭系地层无明显的构造变形,上奥陶统良里塔格组地层厚度没有明显变化。AG39井钻探构造高点,实钻证实储层发育,上奥陶统良里塔格组与下奥陶鹰山组均发育储层且测试均获得高产,成相测井解释储层以裂缝孔洞型储层为主,II类储层2.5 m/1层,孔隙度3%,III类储层66.5 m/7层,平均孔隙度1.63%,裂缝主要集中发育于良里塔格组表层,以构造张性缝为主,扩溶现象明显,裂缝走向为东西向,应力走向为北东向,与裂缝走向存在40°夹角。该井良里塔格试采,已累产油0.94×104 t,累产气1.32×108 m3。
“斜列破碎带”指裂缝在主干和次级断裂集中发育,储层沿走滑断裂呈线性分布,剖面上次级断裂与主干断裂近平行排列,呈近直立状,平面上次级断裂和裂缝分布于主干断裂的二侧,呈大角度斜交。目前轮古东区块仅轮古35-1钻遇该破碎带,测井解释II类储层4.5 m/1层,孔隙度2.7%;III类储层36 m/5层,平均孔隙度1.72%。由于该井井下落鱼未能投产,产能情况有待后续评价。
“复合破碎带”指走滑断裂和逆冲断裂相互作用,裂缝在断裂交汇部位集中发育。研究区仅发育在桑塔木断垒带东部,由于东西向的逆断裂形成于海西期,控制了桑南断垒带的构造形态,构造高部位裂缝发育且断裂的多期活动,油气多期充注与调整,该区为复式油气聚集区,已经在奥陶系、石炭系和三叠系多个层段获得工业产能,建成黑油年产能规模30万t[13]。奥陶系碳酸盐岩以裂缝孔洞型储层为主,除个别井分析困难外,近20多年的开发已基本证实,构造高部位整体连通。
3.2 断裂破碎带与油气关系
轮古东奥陶系碳酸盐岩凝析气藏优质储层的发育主要受控于岩溶作用与断裂活动,羽状破碎带以高角度断裂及伴生微裂缝发育为主,多期多组断裂裂缝叠加,是岩溶储层发育最有利部位,分布面积最广,是油气最富集的区域。
在加里东晚期,轮古东东倾斜坡形成,顺层岩溶开始发育;晚加里东末期—早海西期的地层抬升过程中,构造运动产生了大量裂缝,部分裂缝沟通地表水,顺层溶蚀形成大量次生溶蚀孔、洞和缝;在海西末期—印支初期的第二次抬升中,断裂活动形成的众多断裂及伴生裂缝,可能会使早期充填的裂缝重新开启,对储集体的改造起重要作用;燕山—喜山期,轮古东内幕储层被迅速埋藏,从中生代晚期开始的有机质热演化所产生的酸性水沿裂隙渗入,内幕原有的孔、洞、缝发生扩溶。可见,加里东期地层短期暴露,加里东期走滑断裂及其破碎带是岩溶作用的先期通道,增加了地表水及地下水与碳酸盐岩的接触面积和溶蚀范围,甚至在碳酸盐岩内部形成一个连续的淡水溶蚀系统,再加之海西期构造运动使部分裂缝开启,极大的改善了碳酸盐岩的渗滤能力[20-21]。
轮古东气田天然气主要来源于寒武系,原油主要来源于中-上奥陶统[13]。“十五”以来,中石油塔里木油田分公司针对奥陶系碳酸盐岩的科技攻关及勘探开发实践已经证实,油气的远距离和超远距离及水平运聚难度较大,主要以“原地垂向立体网状运移”为主要特征。轮古东走滑断裂及其破碎带以高角度断裂为主,沟通下部烃源岩,是油气运移的主要输导体系。由于断裂的多期活动和断层性质的相互转化,轮古东走滑断裂附近集中了未饱和凝析气藏并控制了垂向上含气饱和度的变化,天然气晚期充注时,沿断裂向上运移的大量天然气的气侵作用造成油气相态分异,从而造成轮古东现今油气分布状况,即以轻质油和天然气为主,局部缝洞体中含有早期充注的中质和重质原油。中质和重质原油主要分布于北西向次级走滑断裂及伴生裂缝不发育且晚期气侵作用较弱区域。此外,盖层控制了轮古东气田相态的保存,轮古东地区上奥陶统桑塔木组泥岩横向分布稳定,纵向上分布较集中,厚度490~660 m,且岩性致密,垂向断层对气藏的破坏作用较弱,封隔条件较好,是中下奥陶统储层的良好盖层。
4. 结论
(1)轮古东气田主干断裂分3期4组。第一期为中晚加里东期近北东、北西向走滑断裂;第二期为晚海西期近东西向逆冲断裂;第三期为喜山期近南北、北东向走滑断裂。
(2)裂缝主要为高角度(45°~75°)构造窄裂缝,沿缝存在溶蚀,走向主要为NE-SW。纵向上,裂缝发育密度与自然伽马值(泥质-泥灰质含量)成反比,一间房组裂缝发育密度最大(14条/100 m),其次为鹰山组(6条/100 m)和良里塔格组(4条/100 m);平面上,裂缝主要分布在主干断裂周边1 km范围内,随着距断裂距离增大,裂缝发育强度(裂缝线密度)呈指数降低。
(3)断裂破碎带平面上划分为“羽状破碎带、转换破碎带、斜列破碎带、复合破碎带”4种结构。走滑断裂及其破碎带是油气的主要输导体系,控制了油气的富集与油气相态的分异,羽状破碎带分布面积广,是油气最富集的区域。
致谢: 本次研究工作得到甘肃省地矿局四勘院各级领导、中国地质大学(北京)博士梁亚运、杨尚松的指导和帮助, 论文修改中匿名审稿专家提出很多宝贵意见, 在此一并表示感谢!注释➊惠剑宁, 王学银, 王党琦. 2013.甘肃省玉门市滴水山金矿普查报告[R].酒泉:甘肃省地质矿产勘查开发局第四地质矿产勘查院. -
图 1 滴水山金矿区大地构造位置(a, 据夏林圻等, 2016修改)及地质简图(b, 据资料➊修编)
1-第四系全新统洪冲积物; 2-上奥陶统妖魔山组; 3-下奥陶统阴沟群上组; 4-下奥陶统阴沟群中组; 5-花岗闪长岩; 6-闪长玢岩; 7-花岗闪长岩脉; 8-闪长岩脉; 9-蚀变碎裂岩带; 10-金矿体及编号; 11-地质界线; 12-平移断层; 13-推测/实测性质不明断层; 14-实测逆冲断层; 15-探槽位置及编号; 16-钻孔位置及编号; 17-岩层产状; 18-采样位置; 19-实测剖面位置及编号; 20-综合异常及编号
Figure 1. Geotectonic location (modified from Xia Linqi et al., 2016) and geological map (modified from Hui Jianning et al., 2013➊) of Dishuishan gold orefield
1-Quaternary Holocene alluvial-pluvial deposit; 2-Yaomoshan Formation of Upper Ordovician; 3-Upper Yingou Group of Lower Ordovician; 4-Middle Yingou Group of Lower Ordovician; 5-Caledonian granodiorite; 6-Caledonian diorite porphyrite; 7- Granodiorite vein; 8-Diorite vein; 9-Altered cataclastic rock band; 10-Gold orebody and its serial number; 11-Geological boundary; 12-Parallel displacement fault; 13-Inferred/ measured unknown fault; 14-Measured thrust fault; 15-Exploratory trench location and serial number; 16-Drill hole and its serial number; 17-Attitude of rocks; 18-Sampling location; 19-Measured profile location and serial number; 20-Comprehensive anomaly and its serial number
图 2 滴水山金矿区阴沟群及其南侧花岗闪长岩体实测剖面
1-第四系全新统残坡积物; 2-岩屑砂岩; 3-安山质晶屑凝灰岩; 4-安山质岩屑晶屑角砾凝灰岩; 5-安山岩; 6-糜棱岩化安山质晶屑凝灰岩; 7-花岗闪长岩; 8-金矿化蚀变碎裂岩; 9-石英脉; 10-蚀变碎裂岩; 11-金矿体; 12-性质不明断层
Figure 2. Measured section of Yingou Group and granodiorite body in Dishuishan gold field
1-Quaternary Holocene residual-slope deposits; 2-Lithic sandstone; 3-Andesitic crystal tuff; 4-Andesitic debris crystal breccia tuff; 5-Andesite; 6-Mylonitic andesitic crystal tuff; 7-Granodiorite; 8-Gold mineralized altered cataclastic rock; 9-Quartz vein; 10-Altered cataclastic rock; 11-Gold orebody; 12-Fault character unknown
图 3 滴水山金矿区火山岩岩相学特征
a-安山质晶屑凝灰岩标本; b-安山质岩屑晶屑角砾凝灰岩标本; c-斜长石、角闪石晶屑及后期蚀变形成的绿泥石, 透射光; d-斜长石和辉石的晶屑残留体及后期蚀变形成的绿泥石, 透射光; e-斜长石、角闪石晶屑及后期蚀变形成的绿泥石, 正交偏光; f-斜长石和辉石的晶屑残留体及后期蚀变形成的绢云母, 正交偏光; Pl-斜长石; Hb-角闪石; Chl-绿泥石; Ser-绢云母
Figure 3. Petrography of Yingou Group volcanic rocks and mineragraphy of the ore in Dishuishan gold orefield
a- Specimen of andesitic crystal tuff; b- Specimen of andesitic debris crystal breccia tuff; c- Crystal fragment of plagioclase and amphibole and chlorite formed by late alteration, transmitted light; d- Crystalline residue of plagioclase and pyroxene and chlorite formed by late alteration, transmitted light; e-Crystal fragment of plagioclase and amphibole and chlorite formed by late alteration, crossed nicols; f-Crystalline residue of plagioclase and pyroxene and sericite formed by late alteration, crossed nicols; Pl-Plagioclase; Hb-Hornblende; Chl-Chlorite; Ser-Sericite;
图 4 滴水山金矿区矿石矿相学特征和花岗闪长岩岩相学特征
a-强硅化黄铁绢英岩型金矿石地表露头; b-自形晶结构、环边结构黄铁矿产于石英脉中, 见有晚期毒砂, 呈针柱状, 单偏光; c-花岗闪长岩标本; d-斜长石残斑、角闪石、钾长石、石英及后期蚀变形成的绢云母, 正交偏光; Pl-斜长石; Hb-角闪石; Ser-绢云母; Qz-石英; Or-钾长石; Ars-毒砂; Py-黄铁矿
Figure 4. Mineragraphy of the ore and petrography of granodiorite in Dishuishan gold orefield
a-Surface outcrop of strongly silicified beresite type gold ore; b-Euhedral crystal structure, rimmed structure pyrite from quartz veins, developing late arsenopyrite, plainlight; c- Specimen of granodiorite, plainlight; d- Crystalline residue of plagioclase and pyroxene, amphibole, potassium feldspar, quartz and sericite formed by late alteration, crossed nicols; Pl-Plagioclase; Hb-Hornblende; Ser-Sericite; Qz-Quartz; Or-potassium feldspar; Ars-Arsenopyrite; Py-Pyrite
图 5 赋矿火山岩Zr/P2O5−TiO2图解(据Winchester, 1977; Zhu et al., 2012)
Figure 5. Zr/P2O5−TiO2 diagram (after Winchester, 1977; Zhu et al., 2012) of volcanic rocks
图 6 赋矿火山岩及矿石的微量元素原始地幔标准化蛛网图(a)及其稀土元素球粒陨石标准化配分模式图(b) (原始地幔值和球粒陨石值据Sun et al., 1989)
Figure 6. Primitive mantle−normalized trace elements patterns (a) and chondrite−normalized REE patterns (b) for the volcanic rocks and ores (normalized values after Sun et al., 1989)
图 7 花岗闪长岩SiO2-(Na2O+K2O)图解(据Middlemost, 1994))
1-橄榄辉长岩; 2a-碱性辉长岩; 2b-亚碱性辉长岩; 3-辉长闪长岩; 4-闪长岩; 5-花岗闪长岩; 6-花岗岩; 7-硅英岩; 8-二长辉长岩; 9-二长闪长岩; 10-二长岩; 11-石英二长岩; 12-正长岩; 13-副长石辉长岩; 14-副长石二长闪长岩; 15-副长石二长正长岩; 16-副长正长岩; 17-副长深成岩; 18-霓方钠岩/磷霞岩/粗白榴岩; Ir-Irvine分界线; 上方为碱性, 下方为亚碱性
Figure 7. SiO2−(Na2O+K2O) diagram of granodiorite (after Middlemost, 1994)
1- Olivine gabbro; 2a- Alkali gabbro; 2b- Sub- alkaline gabbro; 3- Gabbro diorite; 4- Diorite; 5- Granodiorite; 6- Granite; 7-Quartzolite; 8-Monzogabbro; 9-Mmonzodiorite; 10-Monzonite; 11- Quartz monzonite; 12- Syenite; 13- Olivine gabbro; 14- Foid monzodiorite; 15- Foid monzosyenite; 16- Foid plagisyenite; 17-Foidolite; 18-Tawite/ urtite/ italite; Ir-Irvine dividing line, above the line is alkali, below is sub−alkali
图 8 花岗闪长岩Na2O对K2O (a) (据Middlemost, 1972)和A/CNK对A/NK (b)图解(据Maniar et al., 1989)
Figure 8. Na2O−K2O (a) (after Middlemost, 1972) and A/CNK−A/NK (b) (after Maniar et al., 1989) diagrams of granodiorite
图 9 花岗闪长岩微量元素原始地幔蛛网图(a)及其稀土元素球粒陨石标准化配分模式图(b) (原始地幔值和球粒陨石值据资料Sun et al., 1989)
Figure 9. Primitive mantle−normalized trace elements patterns (a) and chondrite−normalized REE patterns (b) for the granodiorite (normalized values after Sun et al., 1989)
图 12 花岗闪长岩C/MF−A/MF图解(a)(据Alther et al., 2000)和Rb/Sr−Rb/Ba图解(b)(据Sylvester, 1998)
Figure 12. C/MF−A/MF diagram (after Alther et al., 2000) and Rb/Sr−Rb/Ba diagram(after Sylvester, 1998) of granodiorite
图 13 研究区赋矿火山岩和花岗闪长岩Y+Nb对Rb (a)与Yb+Ta对Rb (b)图解(据Pearce et al., 1984)
Figure 13. (Y+Nb)−Rb (a) and (Yb+Ta)−Rb (b) diagrams of volcanic rocks and granodiorite (after Pearce et al., 1984)
图 14 花岗闪长岩SiO2-Nb (a)(底图据毛景文等, 2004)和R1-R2图解(b)(底图据Bachelor, 1985)
Figure 14. SiO2−Nb diagram (a)(after Mao et al., 2004) and R1−R2 diagram (b) (after Bachelor, 1985) of granodiorite
表 1 滴水山矿区和寒山矿区赋矿火山岩及金矿石主量元素(%)、微量元素和稀土元素(10-6)分析结果
Table 1 Major elements(%), trace elements and REE analyses(10-6)of volcanic rocks and ore in Dishuishan and Hanshan gold orefield
表 2 滴水山矿区和寒山矿区花岗闪长岩主量元素(%)、微量元素、稀土元素(10−6)分析及CIPW计算结果
Table 2 Major elements, trace elements, REE and CIPW calculation results of granodiorite in Dishuishan and Hanshan gold orefield
表 3 滴水山金矿区LA−ICP−MS锆石U−Pb测试结果
Table 3 LA−ICP−MS zircon U−Pb dating results in Dishuishan gold orefield
-
Alther R, Holl A, Hegener E, Langer C, Kreuzer H. 2000. High potassium, calc-alkaline I-type plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 50(1/3):51-73. doi: 10.1016-S0024-4937(99)00052-3/
Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1):59-79. https://www.sciencedirect.com/science/article/abs/pii/S000925410200195X
Bachelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters[J]. Chemical Geology, 48:43-45. doi: 10.1016/0009-2541(85)90034-8
Castro A, Patino Douce A E, Corretge L G. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain:An experimental test of granite petrogenesis[J]. Contributions to Mineralogy and Petrology, 135(2-3):255-276. doi: 10.1007/s004100050511
Chappell B W. 1999. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46:535-551. doi: 10.1016/S0024-4937(98)00086-3
Chappell B W, White AJR. 1974. Two contrasting granite types[J]. Pacific Geology, 8:173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/
Condie K C. 1982. Plate Tectonics and Crustal Evolution (Second Edition)[M]. Oxford:Pergamon Press.
Condie K C. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern United States[J]. The Journal of Geology, 94(6):845-864. doi: 10.1086/629091
Deng Jun, Lv Guxian, Yang Liqiang, Guo Tao, Fang Yun, Shu Bing. 1999. The transformation of tectonic stress field and interfacial metallogensis[J]. Acta Geoscientica Sinica, 19(3):244-250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB803.003.htm
Ellam R M, Hawkesworth C J. 1988. Elemental and isotopic variations in subduction related basalts:Evidence for a three component model[J]. Contributions to Mineralogy and Petrology, 98(1):72-80. doi: 10.1007/BF00371911
Frey F A, Prinz M. 1978. Ultramafic inclusions from San Carlos, Arizona:Petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38(1):129-176. doi: 10.1016/0012-821X(78)90130-9
Ge Xiaohong, Liu Junlai. 1999. Formation and tectonic background of the northern Qilian Orogenic belt[J]. Earth Science Frontiers, 6(4):223-230 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy199904004
Gerdes A, Worner G, Henk A. 2000. Post-collisional granite generation and HAT-Lp metamorphism by radiogenic heating:the example from the Variscan South Bohemian Batholith[J]. Journal of the Geological Society of London, 157(5):577-587.
Hawkins J W. 2003. Geology of supra-subduction zones-implications for the origin of ophiolites[C]//Dilek Y and Newcomb S(eds.).Ophiolite Concept and the Evolution of Geological Thought.Colorado: Geological Society of America Special Paper, 373: 227-268.
Jia Qunzi, Yang Zhongtang, Xiao Chaoyang, Zou Xianghua, Ye Dejin, Duan Yongmin, Zhao Junwei, Su Lianghong. 2002. Subdivision of Qilian metallogenic belt and ore-forming regularities[J]. Mineral Deposits, 21:140-143 (in Chinese with English abstract).
Jiang Zongsheng, Zhang Zuoheng, Hou Kejun, Hong Wei, Wang Zhihua, Li Fengming, Tian Jingquan. 2012. Geochemistry and zircon U-Pb age of volcanic rocks from the Chagangnuoer and Zhibo iron deposits, western Tianshan, and their geological significance[J]. Acta Petrologica Sinica, 28(7):2074-2088 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207010
Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks[M]. Berlin:Springer-Verlag.
Le Roex A P, Dick H J B, Erlank A J. 1983. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees East[J]. Journal of Petrology, 92(10):267-318. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000001963565
Li Fenqi, Wang Chengshan, Yi Haisheng, Tang Zhongli, Liu Baichong, Ma Yunhai. 2003. Ore-forming conditions and gold prospecting criteria in Changma region, West Gansu province[J]. Xinjiang Geology, 21(4):468-473 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200304018.htm
Li Ping, Liu Hongxu, Ding Bo, Tian Mingming. 2018. The Ziron UPb geochronology and dynamics mechanism for the formation of monzonitic granite in the Qiongbola area, south of Yili basin[J]. Geology in China, 45(4):720-739 (in Chinese with English abstract).
Li Wenyuan. 2004. Main mineral deposit associations in the Qilian Mountains and their metallogenic dynamics[J]. Acta Geoscientica Sinica. 25(3):313-320 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200403007
Mao Jingwen, Yang Jianmin, Zhang Zhaochong, Wu Maobing, Wang Zhiliang, Zhang Zuoheng, Ye Dejin, Zuo Guochao. 1998a.Geology, Geochemistry and genesis of the Hanshan ductile-brittle shear zone gold deposit in Gansu Province[J]. Mineral Deposits, 17(1):1-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199801001
Mao Jingwen, Zhang Zuoheng, Yang Jianmin, Zhang Zhaochong, Wang Zhiliang, Ye Dejin. 1998b. Geology and metallogenic geochemistry of the Yinzuishan gold deposit, Gansu Province[J]. Mineral Deposits, 17(4):297-306 (in Chinese with English abstract).
Mao Jingwen, Zhang Zuoheng, Yang Jianmin, Zuo Guochao, Zhang Zuoheng, Ye Dejin, Wang Zhiliang, Ren Fenshou, Zhang Yu Jun, Peng Cong, Liu Yuzhou, Jiang Mei. 2003. Minerogenetic Series and Prospecting Evaluation of Copper Gold Iron Tungsten Polymetallic Deposit in the West Sector of the Northern Qilian Mountains[M]. Beijing:Geological Publishing House, 1-143 (in Chinese).
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost E K. 1972. A simple classification of volcanic rocks[J]. Bulletin of Volcano, 36:382-397. doi: 10.1007/BF02596878
Middlemost E K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4):215-224.
Miller C F. 1985. Are strongly peraluminous magmas derived from politic sedimentary source?[J]. Journal of Geology, 93(6):673-689. doi: 10.1086/628995
Patino A E, Johnston A D. 1991. Phase eruilibria and melting productivity in the politic system:Implication for the origin the peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 107:202-218. doi: 10.1007/BF00310707
Patino A E, McCarthy T C. 1998. Melting of crustal rocks during continental collision and subduction[C]//Hacker B R, Liou J G (eds.). When Continental Collide: Geodynamics of Ultra-high Pressure Rocks. Netherlands: Kluwer Academic Publishers, 27-55.
Pearce J A, Harris B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25:956-983. doi: 10.1093/petrology/25.4.956
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22:247-253. doi: 10.1016/0024-4937(89)90028-5
Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 184(1/2):123-138. https://www.sciencedirect.com/science/article/abs/pii/S0009254101003552
Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//L R R (ed.). Treatise on Geochemistry. Oxford: Elsevier, 1-64.
Sisson T W, Ratajeski K, Hankins W B, Glazner A F. 2004.Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 148(6):635-661. doi: 10.1007-s00410-004-0632-9/
Song Shuguang, Niu Yaoning, Zhang Lifei, Zhang Guibin. 2009. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation:An example from North Qilian and North Qaidam HP-UHP belts[J]. Acta Petrologica Sinica, 25(9):2067-2077 (in Chinese with English abstract).
Song Shuguang, Zhang Guibin, Zhang Cong, Zhang Lifei, Wei Chunjing. 2013a. Dynamic process of oceanic subduction and continental collision:petrological constraints of HP-UHP belts in Qilian-Qaidam, the northern Tibetan Plateau[J]. Chin. Sci. Bull., 58:2240-2245 (in Chinese). doi: 10.1360/972013-586
Song S G, Zhang L F, Niu Y L, Li S, Xiao H X. 2013b. Tectonics of the North Qilian orogen, NW China[J]. Gondwana, 23:1378-1401. doi: 10.1016/j.gr.2012.02.004
Song Zhongbao, Ren Youxiang, Li Zhipei, Yang Jianguo, Liu Xiaozhou. 2003. Review on isotopic dating in the western part of the North Qilian Mountains[J]. Northwestern Geology, 36(4):1-7(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200304001
Song Zhongbao, Li Zhipei, Ren Youxiang, Yang Jianguo, Li Yazhi, Xie Chunlin. 2005a. Chronology and geological significance of Chelugou dacite porphyry in North Qilian Mountains[J]. Geological Science and Technology Information, 24(3):15-19 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200503003
Song Zhongbao, Ren Youxiang, Li Zhipei, Yang Jianguo, Li Yazhi. 2005b. A preliminary study on the metallogenetic age of Hanshan gold deposit, North Qilian Mountain[J]. Geology and Prospecting, 41(3):12-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200503003.htm
Sun Baolu, Qian Qing, Zhang Jian Xin. 2017. Ziron U-Pb geochronology, Hf-O isotopes, whole-rock geochemistry of the Dafosi and Jin fosi granite plutons, Gansu Province and geological implications[J]. Acta Petrologica Sinica, 33(10):3091-3108 (in Chinese with English abstract).
Sun S S, McDonough W F. 1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins. London: Geological Society Special Publication, 42: 313-345.
Sun Zhiyuan, Long Lingli, Wang Yuwang, Luo Zhaohua, Zhao Lutong, Xie Hongjing. 2018. Geochronology, geochemistry and genesis of Na-rich volcanic rocks of the Zhaibeishan copper deposit in Eastern Tianshan Mountains[J]. Geology in China, 45(5):943-962(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201805006
Sylvesler P J. 1998. Post-collisional peraluminous granites[J]. Lithos, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3
Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2):241-265.
Tong Xiaohua, Ye Dejin. 2004. Metallogenic prognosis of composite informations on gold ore deposite in Yingzuishan-Chelugou-shan in western section of North Qilian[J]. Acta Geologica Gansu, 13(2):79-84 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb200402012
Turner G, Wang S, Burgess R. 1988. Argon and other noble gases in fluid inclusions[J]. Chemical Geology, 70(1/2):42. doi: 10.1016-0009-2541(88)90300-2/
Wang Guoliang, Ye Zhanfu, Qi Shengsheng, Li Jie, Liu Jiandong. 2013. LA-ICP-MS ziron U-Pb dating and geochemical characteristics of late grante in Longwang mountain of northern Qilian[J]. Mineral Resources and Geology, 27(6):462-470 (in Chinese with English abstract).
Wang Nan, Wu Cailai, Ma Changqian. 2017. The Paleozoic granitic magmatism of the eastern Altyn tagh fault belt and its continental dynamic significance[J]. Acta Geoscientica Sinica, 38(S1):33-37(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb2017z1010
Wang Nan, Wu Cailai, Lei Min, Chen Hongjie, Li Mingze. 2018. Mineralogical characteristics of Qingshan granitic pluton in north Qilian Orogenic belt and their constraints on petrogenesis[J]. Earth Science, 43(4):1253-1265 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804020
Wang Xueyin, He Pingping. 2015. Geochemical characteristics of Dishuishan gold deposit in Gansu province[J]. Gansu Geology, 24(3):58-62 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xbdz201801010
Wang Yongsheng, Wang Jianguo, Liu Yuxiang. 2011. Metallogenic fluid characteristics and genetic analysis of gold deposit in the west sector of the Northern Qilian Mountains[J]. China Science and Technology Information. 14:25-27 (in Chinese).
Wang Yongsheng. 2012. Research on Mineralizing Fluid Geochemistry Characteristics and Genesis of Yingzuishan Gold Deposit, Gansu Province[D]. Beijing: China University of Geoscience, 1-68 (in Chinese with English abstract).
Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. 2010. Rare earth Element Geochemistry[M]. Beijing:Science Press, 1-535 (in Chinese).
Weaver B L, Tarney J. 1984. Empirical approach to estimating the composition of the continental crust[J]. Nature, 31(1):310-575. doi: 10.1038-310575a0/
Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7):1217-1232. doi: 10.1016/0016-7037(95)00038-2
Wilson M. 1989. Igneous Petrogenesis:A Global Tectonic Approach[M].London:Unwin Hyman, 466.
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20:325-342. doi: 10.1016/0009-2541(77)90057-2
Wright J B. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite gneiss[J]. Geological Magazine, 106(4):370-384. doi: 10.1017/S0016756800058222
Wu Cailai, Yang Jingsui, Yang Hongyi, Wooden J, Shi Rendeng, Chen Songnian, Zheng Qiuguang. 2004. Dating of two types of granite from north Qilian, China[J]. Acta Petrologica Sinica, 20(3):425-432 (in Chinese with English abstract).
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007.Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
Wu Maobing, Mao Jingwen, Yang Jianmin, Zhang Zhaochong, Zuo Guochao. 1999. Deformation of the Hanshan shear zone and its relationship to gold mineralization in west part of North Qilianshan[J]. Geology and Prospecting, 35(4):12-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt199904004
Xia Linqi, Xia Zuchun, Ren Youxiang, Zuo Guochao, Qiu Jiaxiang, Peng Ligui, Wang Dawei, Yang Weirang, Wu Jieren, Xia Weihua, Tan Gongjiong, Yu Pusheng. 1998a. Volcanism and Mineralization of Qilian Mountains and its Adjacent Area[M]. Beijing:Geological Publishing House, 10-80 (in Chinese).
Xia Linqi, Xia Zuchun, Xu Xueyi. 1998b. Early Palaeozoic mid-ocean ridge-ocean island and back-arc basin volcanism in the North Qilian Mountains[J]. Acta Geologica Sinica, 72(4):301-312 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800071685
Xia Linqi, Xia Zuchun, Xu Xueyi, Zhao Jiangtian, Yang Hequn, Zhao Donghong. 1999. Proterozoic continental flood basalts from Qilian Mountains[J]. Geological Review, 45:1028-1037 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002327
Xia Linqi, Xia Zuchun, Ren Youxiang. Xu Xueyi, Yang Hequn, Li Zhipei, Yang Jianguo, Li Wenyuan, Zhao Donghong, Song Zhongbao, Li Xiangmin, Yu Pusheng. 2001. Tectonic-Volcanic Magama-Metallogenic Dynamics of North Qilian Mountains[M]. Beijing:China Land Publishing House, 1-130, 231-255 (in Chinese).
Xia Linqi, Li Xiangmin, Yu Jiyuan, Wang Guoqiang. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4):1087-1138 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201604001
Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back-arc basins in the Northern Qilian Mountains[J]. Geology in China, 43(4):1087-1138 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dizi200301005.htm
Xia Zuchun, Xia Linqi, Xu Xueyi. 1996. The Late-ProterozonicCambrian active continental rift volcanism in Northern Qilian Mountains[J]. Acta Geoscientica Sinica, 17(3):282-291 (in Chinese with English abstract).
Xiao Qinghui, Deng Jinfu, Ma Daquan, Hong Dawei, Mo Xuanxue, Lu Xinxiang, Li Zhichang, Wang Xiongwu, Ma Changqian, Wu Fuyuan, Luo Zhaohua, Wang Tao. 2002. The Ways of Investigation on Granitoids[M]. Beijing:Geological Publishing House, 230 (in Chinese).
Xu Lulu, Chai Fengmei, Li Qiang, Zeng Hong, Geng Xinxia, Xia Fang, Deng Gang. 2015. Geochemistry and ziron U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu Deposit in East Tianshan Mountanins and their geological significance[J]. Geology in China, 41(6):1771-1790 (in Chinese with English abstract).
Xu Xisheng, Qiu Jiansheng. 2010. Igneous Petrology[M]. Beijing:Science Press, 93 (in Chinese).
Yang Jianguo, Ma Zhongping, Ren Youxiang, Li Zhipei, Song Zhongbao. 2002. The geological feathures and genetic pattern of Te-Au deposit related to porphyry in North Qilian Mts[J]. Northwestern Geology, 35(2):24-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200202006.htm
Yang Jianguo, Huang Zhenquan, Ren Youxiang, Li Zhipei, Song Zhongbao. 2003. The ore-controlling condition and metallogenic model of Hanshan gold deposit in North Qilian Mts[J]. Northwestern Geology, 36(1):41-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI200301007.htm
Yang Jianguo, Yang Linhai, Ren Youxiang, Li Zhipei, Song Zhongbao. 2005. Isotopic geochronology of the ore-forming process in the Hanshan gold deposit of the North Qilian Mountains[J]. Acta Geoscientica Sinica, 26(4):315-320 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200504004
Yang Xingji. 2007. Ore-forming conditions and prospecting direction of Hanshan gold deposit in the Anxi County, Gansu[J]. Northwestern Geology, 43(1):49-53 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200701008
Yang Yongchun, Liu Jiajun, Wang Xueyin, Wang Xiaoqiang, Xue Xiaowen, Zhang Cong, Ren Xi. 2018. Geochemical characteristics and structural ore-control mechanism about different structurallithofacies zones of the Dishuishan gold deposit in Gansu province[J]. Northwestern Geology, 51(1):88-103 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xbdz201801010
Ye Dejin, Zhang Zuoheng, Zhao Yanqing. 2003. Ore-control factors and genesis of the Yingzuishan altered cataclastic rock type gold deposit, the west sector of the Northern Qilian Mountains[J]. Acta Geoscientia Sinica, 24(4):311-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200304004
Yun Jie, Gao Xiaofeng, Xiao Peixi, Kang Lei, Li Ping. 2015.Geochemical characteristics of the Lower Carboniferous volcanic rocks of the Wuluate Formation in the Western Kunlun Mountains and their geological significance[J]. Geology in China, 42(3):587-600 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503014
Zhai Yusheng, Lv Guxian. 2002. Transition of tectonic and dynamic regime and mineralization[J]. Acta Geoscientia Sinica, 23(2):97-102 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200202001
Zhang Dequan, Sun Guiying, Xu Honglin. 1995. Petrology and isotope chronogy of the Jinfosi pluton, Qilian Mts., Gansu[J]. Acta Geoscientica Sinica, 37(4):375-385 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB504.003.htm
Zhao Wenjin, Mechie J, Feng Mei, Shi Danian, Xue Guangqi, Su Heping, Song Yang, Yang Hongwei, Liu Zhiwei. 2014. Cenozoic orogenesis of the Qilian Mountain and the lithosphere mantle tectonic framework beneath it[J]. Geology in China, 41(5):1411-1423. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201405001
Zhu Dicheng, Pai Guitang, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Liao Zhongli, Geng Quanru, Dong Guochen. 2006. Identification for the Mosozoic OIB-type basalts in Central Qinghai-Tibetan plateau:geochronology, geochemistry and their tectonic setting[J]. Acta Geological Sinica, 80(9):1312-1328 (in Chinese with English abstract).
Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L, Mo X X. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Recore of an early Paleozonic Andean-type magmatic arc in the Australian protoTethyan margin[J].Chemical Geology, 328:290-308. doi: 10.1016/j.chemgeo.2011.12.024
Zhu Xiaohui, Wang Hongliang, Yang Meng. 2016. Ziron U-Pb age of the monzogranite from the middle segment of the Qaidam Mountain composite granite on the south margin of the Qillian Mountain[J]. Geology in China, 43(3):751-767 (in Chinese with English abstract).
邓军, 吕古贤, 杨立强, 郭涛, 方云, 舒斌. 1998.构造应力场转换与界面成矿[J].地球学报, 19(3):244-250. http://www.cnki.com.cn/Article/CJFDTotal-DQXB803.003.htm 葛肖虹, 刘俊来. 1999.北祁连造山带的形成与背景[J].地学前缘, 6(4):223-230. doi: 10.3321/j.issn:1005-2321.1999.04.004 贾群子, 杨钟堂, 肖朝阳, 邹湘华, 段永民, 赵俊伟, 苏亮红. 2002.祁连山金属矿床成矿带划分及分布规律[J].矿床地质, 21(增刊):140-143. http://d.old.wanfangdata.com.cn/Conference/4400360 蒋宗胜, 张作衡, 候可军, 洪为, 王志华, 李凤鸣, 田敬全. 2012.西天山查岗诺尔和智博铁矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].岩石学报, 28(7):2074-2088. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201207010 李奋其, 王成善, 伊海生, 汤中立, 刘佰崇, 马云海. 2003.甘肃西部昌马地区金矿成矿条件及找矿标志[J].新疆地质, 21(4):468-473. doi: 10.3969/j.issn.1000-8845.2003.04.018 李平, 刘红旭, 丁波, 田明明. 2018.伊犁盆地南缘琼博拉二长花岗岩锆石年代学及形成动力学机制[J].中国地质, 45(4):720-739. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180406&flag=1 李文渊. 2004.祁连山主要矿床组合及其成矿动力学分析[J].地球学报, 25(3):313-320. doi: 10.3321/j.issn:1006-3021.2004.03.007 毛景文, 杨建民, 张招崇, 吴茂炳, 王志良, 张作衡, 叶得金, 左国朝. 1998a.甘肃寒山剪切带型金矿床地质、地球化学和成因[J].矿床地质, 17(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/kcdz199801001 毛景文, 张作衡, 杨建民, 张招崇, 王志良, 叶得金. 1998b.甘肃鹰嘴山金矿床地质和成矿地球化学[J].矿床地质, 17(4):297-306. http://d.old.wanfangdata.com.cn/Periodical/kcdz199804002 毛景文, 张作衡, 杨建民, 左国朝, 张作衡, 叶得金, .王志良, 任丰寿, 张玉君, 彭聪, 刘煜洲, 姜枚. 2004.北祁连山西段铜金铁钨多金属矿床成矿系列和找矿评价[M].北京:地质出版社, 1-143. 宋述光, 牛耀龄, 张立飞, 张贵宾. 2009.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报, 25(9):2067-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909003 宋述光, 张贵宾, 张聪, 张立飞, 魏春景. 2013a.大洋俯冲和大陆碰撞的动力学过程:北祁连-柴北缘高压-超高压变质带的岩石学制约[J].科学通报, 58(23):2240-2245. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201323001.htm 宋忠宝, 任有祥, 李智佩, 杨建国, 刘小舟. 2003.北祁连山西段同位素测年概况[J].西北地质, 36(4):1-7. doi: 10.3969/j.issn.1009-6248.2003.04.001 宋忠宝, 李智佩, 任有祥, 杨建国, 栗亚芝, 谢春林. 2005a.北祁连山车路沟英安斑岩的年代学及地质意义[J].地质科技情报, 24(3):15-19. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200503003 宋忠宝, 任有祥, 李智佩, 杨建国, 栗亚芝. 2005b.北祁连山寒山金矿成矿时代讨论[J].地质与勘探, 41(3):12-15. http://d.old.wanfangdata.com.cn/Periodical/dzykt200503003 孙宝璐, 钱青, 张建新. 2017.甘肃大佛寺、金佛寺花岗岩体的锆石U-Pb年龄、Hf-O同位素和全岩地球化学特征及地质意义[J].岩石学报, 33(10):3091-3108. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710008 孙志远, 龙灵利, 王玉往, 罗照华, 赵路通, 解洪晶. 2018.东天山寨北山铜矿区钠质火山岩年代学、地球化学特征及其成因[J].中国地质, 45(5):943-962. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180505&flag=1 童晓华, 叶得金. 2004.甘肃北祁连西段鹰咀山-车路沟山金矿综合信息成矿预测[J].甘肃地质学报, 13(2):79-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb200402012 王国良, 叶占福, 祁生胜, 李杰, 刘建栋. 2013.北祁连龙王山晚志留世花岗岩LA-ICP-MS锆石U-Pb测年及其地球化学特征[J].矿产与地质, 27(6):462-470. doi: 10.3969/j.issn.1001-5663.2013.06.006 王楠, 吴才来, 马昌前. 2017.阿尔金断裂带东段古生带花岗岩浆作用及其大陆动力学意义[J].地球学报, 38(S1):33-37. doi: 10.3975/cagsb.2017.s1.10 王楠, 吴才来, 雷敏, 陈红杰, 李名则. 2018.北祁连青山花岗岩体矿物学特征及其对岩石成因的约束[J].地球科学, 43(4):1253-1265. http://d.old.wanfangdata.com.cn/Periodical/dqkx201804020 王学银, 何平平. 2015.甘肃滴水山金矿地质地球化学特征及找矿标志[J].甘肃地质, 24(3):58-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb201503010 王永生, 王建国, 刘玉祥. 2011.北祁连西段金矿成矿流体特征及成因分析——以鹰咀山、寒山、车路沟金矿为例[J].中国科技信息, 14:25-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkjxx201114009 王永生. 2012.甘肃省鹰咀山金矿成矿流体特征与矿床成因研究[D].北京: 中国地质大学(北京), 1-68. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364687.htm 王中刚, 于学元, 赵振华. 1989.稀土元素地球化学[M].北京:科学出版社, 1-535. 吴才来, 杨经绥, 杨宏仪, Wooden J, 史仁灯, 陈松永, 郑秋光. 2004.北祁连东部两类I型花岗岩定年及其地质意义[J].岩石学报, 20(3):425-432. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200403006.htm 吴福元, 李献华, 杨进辉, 郑永飞. 2007.花岗岩成因研究的若干问题[J].岩石学报, 23(06):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 吴茂炳, 毛景文, 杨建民, 张招崇, 左国朝. 1999.北祁连西段寒山剪切带的变形作用及其与金矿化的关系[J].地质与勘探, 35(4):12-14. doi: 10.3969/j.issn.0495-5331.1999.04.004 夏林圻, 夏祖春, 任有祥, 左国朝, 邱家骧, 彭礼贵, 王大为, 杨巍然, 邬介人, 夏卫华, 覃功炯, 于浦生. 1998a.祁连山及邻区火山作用与成矿[M].北京:地质出版社, 10-80. 夏林圻, 夏祖春, 徐学义. 1998b.北祁连山早古生代洋脊-洋岛和弧后盆地火山作用[J].地质学报, 72(4):301-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800071685 夏林圻, 夏祖春, 徐学义, 赵江天, 杨合群, 赵东宏. 1999.祁连山元古宙大陆溢流玄武岩[J].地质论评, 45(增刊):1028-1037. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200001001 夏林圻, 夏祖春, 任有祥, 徐学义, 杨合群, 李智佩, 杨建国, 李文渊, 赵东宏, 宋忠宝, 李向民, 于浦生. 2001.北祁连山构造-火山岩浆-成矿动力学[M].北京:中国大地出版社, 1-130, 231-255. 夏林圻, 夏祖春, 徐学义. 2003.北祁连山奥陶纪弧后盆地火山岩浆成因[J].中国地质, 30(1):48-60. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20030105&flag=1 夏林圻, 李向民, 余吉远, 王国强. 2016.祁连山新元古代中-晚期至早古生代火山作用与构造演化[J].中国地质, 43(4):1087-1138. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160401&flag=1 夏祖春, 夏林圻, 徐学义. 1996.北祁连山元古宙末-寒武纪主动大陆裂谷火山作用[J].地球学报, 17(3):282-291. 肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢欣祥, 李志昌, 汪雄武, 马昌前, 吴福元, 罗照华, 王涛. 2002.花岗岩研究思维与方法[M].北京:地质出版社, 230. 徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚. 2014.东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].中国地质, 41(6):1771-1790. doi: 10.3969/j.issn.1000-3657.2014.06.002 徐夕生, 邱检生. 2010.火成岩岩石学[M].北京:科学出版社, 93. 杨建国, 马中平, 任有祥, 李智佩, 宋忠宝. 2002.北祁连山与斑岩有关的碲金型金矿床地质特征和成因模型[J].西北地质, 35(2):24-33. doi: 10.3969/j.issn.1009-6248.2002.02.005 杨建国, 黄振泉, 任有祥, 李智佩, 宋忠宝. 2003.甘肃北祁连山寒山金矿床控矿条件与成矿模式[J].西北地质, 36(1):41-51. doi: 10.3969/j.issn.1009-6248.2003.01.007 杨建国, 杨林海, 任有祥, 李智佩, 宋忠宝. 2005.北祁连山寒山金矿床成矿作用同位素地质年代学[J].地球学报, 26(4):315-320. doi: 10.3321/j.issn:1006-3021.2005.04.004 杨兴吉. 2007.甘肃安西县寒山金矿床控矿因素及找矿方向[J].西北地质, 43(1):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200701008 杨永春, 刘家军, 王学银, 王小强, 薛小文, 张聪, 任锡. 2018.甘肃滴水山金矿不同构造-岩相带岩石地球化学特征及构造控矿机理探讨[J].西北地质, 51(1):88-103. doi: 10.3969/j.issn.1009-6248.2018.01.010 叶得金, 张作衡, 赵彦庆. 2003.北祁连西段鹰咀山蚀变碎裂岩型金矿床控矿因素和成因[J].地球学报, 24(4):311-318. doi: 10.3321/j.issn:1006-3021.2003.04.004 贠杰, 高晓峰, 校培喜, 康磊, 李平. 2015.西昆仑下石炭统乌鲁阿特组火山岩地球化学特征及地质意义[J].中国地质, 42(3):587-600. doi: 10.3969/j.issn.1000-3657.2015.03.014 翟裕生, 吕古贤. 2002.构造动力体制转换与成矿作用[J].地球学报, 23(2):97-102. doi: 10.3321/j.issn:1006-3021.2002.02.001 张德全, 孙桂英, 徐洪林. 1995.祁连山金佛寺岩体的岩石学和同位素年代学研究[J].地球学报, 37(4):375-385. http://www.cnki.com.cn/Article/CJFDTotal-DQXB504.003.htm 赵文津, Mechie J, 冯梅, 史大年, 薛光琪, 宿和平, 宋洋, 杨宏伟, 刘志伟. 2014.祁连山造山作用与岩石圈地幔的特型结构构造[J].中国地质, 41(5):1411-1423. doi: 10.3969/j.issn.1000-3657.2014.05.001 朱弟成, 潘桂棠, 莫宣学, 王立全, 赵志丹, 廖忠礼, 耿全如, 董国臣. 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报, 80(9):1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008 朱小辉, 王洪亮, 杨猛. 2016.祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义[J].中国地质, 43(3):751-767. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160305&flag=1 -
期刊类型引用(5)
1. 魏信祥,李江. 煤炭资源开发利用过程中铀迁移产生的环境影响研究进展. 科学技术与工程. 2023(10): 4033-4043 . 百度学术
2. 邸齐梦,董一慧,李佳乐,徐卫东,高柏,陈功新. 何魁核电站拟选厂址水体天然放射性核素分布特征及健康风险评价. 有色金属工程. 2023(07): 134-146 . 百度学术
3. 魏信祥,李江. 石煤中铀在水-岩作用下浸出释放的环境影响及控制因素. 有色金属(冶炼部分). 2023(11): 63-74 . 百度学术
4. 汪媛媛,郑刘根,吴盾,陈永春. 小尺度矸石堆场及其周边土壤中放射性元素特征分析及风险评价. 环境化学. 2022(11): 3640-3649 . 百度学术
5. 王珍珍,李进孝,张珂,马家亮,张绍韡,Maksim G Blokhin,张飘飘,蔺敬妍,孙明晓,申伟刚,赵存良. 山西沁水煤田首阳山矿15~#煤的稀土元素分布规律、赋存状态及其对成煤环境的指示. 中国地质. 2021(03): 777-784 . 本站查看
其他类型引用(5)