The discrimination of Jinningian MORB-like basalt and intra-oceanic subduction in the Dahongshan area, Northern Hubei
-
摘要:
鄂北随州大洪山地区出露大量镁铁质岩(如:辉长岩、辉绿岩、(枕状)玄武岩),它们主要以岩块的形式构造混杂在一套碎屑岩中,表现为典型造山带基质-岩块混杂的特征。大洪山镁铁质岩为拉斑玄武岩系列岩石组合,地球化学方面,不相容元素Rb、Ba、K、Th、U富集,高场强元素Nb、Ta亏损,表现为岛弧玄武岩的特点,而平坦的稀土配分模式(ΣLREE/ΣHREE=1.41~4.48,LaN/YbN=0.76~4.79),Zr/Y=2.65~5.38,Ti/V=29.19~54.97,又可与洋中脊玄武岩对比。因此,我们推测大洪山镁铁质岩属于MORB-like玄武岩(或前弧玄武岩)类岩石组合,其形成于洋内初始俯冲环境,成岩岩浆由俯冲洋板片脱水交代亏损洋中脊地幔减压熔融产生。通过LA-ICP-MS锆石U-Pb测年,分别获得南风垭、绿林寨玄武岩(816.6±7.6)Ma(MSWD=0.47)、(813.1±4.8)Ma(MSWD=0.37)的成岩年龄,结合已经取得的杨家棚辉长岩947 Ma、厂河枕状玄武岩824 Ma、绿林辉绿岩820 Ma的年龄结果,说明大洪山地区的这套前弧镁铁质岩组合大致形成于817~947 Ma,它们可能是多阶段洋内俯冲的产物。大洪山地区这套前弧镁铁质岩的厘定说明扬子地块与桐柏-大别地块之间晋宁期发生过一定规模的洋内-洋陆俯冲和造山运动,二者可能曾在青白口纪晚期拼合到一起。
Abstract:There are numerous mafic rocks e.g., gabbro, diabase, basalt, pillow basalt, fumarolic-amygdaloidal basalt, in the Dahongshan area, Suizhou City, northern Hubei Province. They are mainly in the form of block structurally mixed in a set of clastic rock, characterized by mélange of exotic blocks and matrix strata, suggesting a typical orogenic belt. The mafic rocks from Dahongshan area show the features of tholeiite series, and are geochemically enriched in incompatible elements such as Rb, Ba, K, Th and U and depleted in high field strength elements such as Nb and Ta, similar to features of island arc basalts. Nevertheless, the features of flat REE patterns (ΣLREE/ΣHREE=1.41-4.48, LaN/YbN=0.76-4.79, Zr/Y=2.65-5.38 and Ti/V=29.19-54.97) are the same as features of mid-ocean ridge basalt. Therefore, the geochemical signatures and regional geological characteristics show that these mafic rocks should be part of MORB-like/fore-arc basalts, formed along intra-ocean arc where the subduction-initiation happened. Their parent magma was produced by the nascent depleted MORB mantle and interacted with the contribution of fluids from the slab sinking plate with decompression melting. The basalts from Nanfengya and Lulinzhai yielded LA-ICP-MS U-Pb zircon ages of (816.6±7.6) Ma (MSWD=0.47) and (813.1±4.8) Ma (MSWD=0.37) respectively, interpreted as their crystallization age. Combined with the previous research results of gabbro in Yangjiapeng (947 Ma), pillow basalt in Changhe (824 Ma), and diabase in Luling (820 Ma), it is held that mass mafic rocks were formed in Jinningian period (817-947 Ma) in the Dahongshan area. They may be the products of multi-stage intra-ocean subduction. The discrimination of Jinningian ore-arc/MORB-like basalt in the Dahongshan suggests that it experienced a certain scale of ocean-ocean to ocean-continent subduction and orogeny between Yangtze block and Tongbai-Dabie block in Jinningian period, and the two blocks might have been aggregated together in late Qingbaikou period.
-
走滑断裂是沉积盆地中特殊而且力学机制复杂的断裂系统,走滑断裂及其破碎带本身是重要的储油气空间,同时,高角度的走滑断裂常常沟通地层深部流体,是油气运聚的输导体系,对储层的形成与油气的分布具有重要的控制作用。近期针对大型走滑断裂及其破碎带的直接钻探在塔里木盆地奥陶系层间岩溶区的塔中I号气田、哈拉哈塘油田和轮古东气田均取得了预期效果[1-4],极大地拓展了油气勘探开发领域,也使得对塔里木盆地走滑断裂的研究与认识更进一步深化。一方面加强走滑断裂的识别、构造样式的刻画及力学机制的研究[1-7];另一方面对走滑断裂破碎带结构的研究引起关注,张庆莲等[8],潘文庆等[9]对塔里木盆地西北缘的柯坪—巴楚露头区野外裂缝地质建模明确走滑断裂控制的裂缝发育带具有明显的分带性,距断层由近及远可细分为“破碎带、劈理带、菱形裂缝带、稀疏裂缝带”;邬光辉等[10]通过野外与井下地质建模,指出塔里木盆地奥陶系沿走滑断裂带走向上断裂相具有分段性和差异性,可定性分为高渗透相和致密相区;孙东等[11]通过地震储层正演明确断层面及断裂破碎带能产生串珠状反射。这些研究成果对认识走滑断裂破碎带在三维空间复杂结构及解译其与油气富集规律提供了新的思路和方法。
前期针对轮古东气田断裂系统的研究,由于受地震资料品质和勘探开发程度的限制,对走滑断裂的解释有待深入,对断裂破碎带及伴生裂缝发育特征研究较少[4],本文以最新处理完成的轮古东300 km2叠前深度偏移地震资料为基础,结合区域已有钻井资料综合分析轮古东气田走滑断裂的识别、发育特征、断裂破碎带的组合方式以及控储控藏特征,以期为该区进一步勘探开发提供指导。
1. 地质背景
轮古东气田地处新疆轮台县境内,构造上隶属于塔里木盆地塔北隆起轮南低凸起中部。奥陶纪地层发育齐全,可细分为上奥陶统桑塔木组、良里塔格组和吐木休克组(又称恰尔巴克组)、中奥陶统一间房组及中下奥陶统鹰山组和蓬莱坝组。
主要勘探目的层为一间房组和鹰山组,其次为良里塔格组,一间房组埋藏深度5050~6700 m,厚度10.5~42 m,发育台缘和台内丘滩复合体沉积,岩性以浅褐灰-灰褐色亮晶砂屑灰岩、亮晶鲕粒灰岩和亮晶藻屑砂屑灰岩为主,在AG35、AG621等井都发现托盘类生物礁。鹰山组自上而下可细分为4段:鹰一段(O1-2y1)、鹰二段(O1-2y2)、鹰三段(O1-2y3)和鹰四段(O1-2y4),本区绝大多数钻井仅钻揭鹰一段,主要发育亮晶砂屑灰岩、泥晶灰岩,为开阔台地相的台内滩和滩间海沉积。
研究区东邻草湖生油凹陷,南接满加尔生油坳陷,位于油气运移主要方向的前沿部位,构造位置十分有利。以近南北向轮东I号走滑断裂带为界,构造西缓东陡,总体为一东南倾大型斜坡(图 1),一间房组顶面构造高差1650 m,奥陶系油气主力产层一间房组在西北部受剥蚀而尖灭。储层以裂缝孔洞型储层为主,发育少量洞穴型储层,整体表现为受断裂和沉积相带分割,局部断块含少量边、底水的大型准层状凝析气藏[12-13]。
2. 断裂与裂缝特征
2.1 地震资料断裂识别
平剖结合,多方法开展工区断裂解释,小断层产状较陡,主要根据上下地层即寒武系和良里塔格顶面存在断距和挠曲,以及地震同相轴存在变化进行识别[3]。在此基础上,通过沿层切片、相干属性等技术实现断裂与裂缝的平面识别,以垂直剖面为主精细解释断层。
2.1.1 断裂平面识别
相干体技术是一种不连续的检测手段,当地下有断层、裂缝或地质异常体(如洞穴、河道、串珠等)时,地层产生横向不均匀现象,相邻地震道之间的反射波在振幅、频率及相位等方面都将发生不同程度的变化,进而达到检测断层、反映岩性异常体的目的,相干体切片比常规切片能更好地表现断层和沉积特征。从沿层相干切片结果分析,中深层断裂平面上主要分4组:走滑断层主要呈近南北、北东和北西向3组断裂,且北东向断层错断北西向断层;逆冲断裂为近东西走向,主要位于工区西部(图 2~图 3)。石炭系以上以雁列式走滑断层和逆冲断裂为主,走滑断层主要发育近南北向以及两条近北东向断裂(图 4)。
2.1.2 断裂剖面识别
根据区域构造运动背景以及断层平剖面特征,研究区断裂可划分为3期4组。中晚加里东期走滑断裂、晚海西期逆冲断裂以及喜山期走滑断裂(图 1、图 5)。
早加里东期寒武系—中下奥陶统,塔北隆起稳定沉积,无大的构造活动,断裂不发育,沉积大套灰岩地层。中晚加里东期断裂开始活动,沉积地层由碳酸盐岩向碎屑岩过渡,发育近北西和北东向走滑断层,延伸距离约10~25 km,剖面上,断裂近乎陡直,向下断入震旦系,向上消失于奥陶系桑塔木组,断距一般小于100 m(图 5-c)。该期断层是晚加里东期寒武系—下奥陶统烃源岩的原油充注的主要通道,沿断层分布形成古油藏。
晚海西期受区域性南北向挤压应力作用,工区西部发育两条近东西走向的逆冲断裂(桑塔木南断裂和桑塔木北断裂),剖面上呈“y”字形特征,其中桑塔木北断裂是一条主断裂,东西延伸约18 km,断距大,垂向断距最大达200 m,断开层位多,上至三叠系底,下至寒武系、震旦系;桑塔木南断裂是桑塔木北断裂的一条大的伴生断裂,断开层位少,上部仅断开石炭系,下部消失在奥陶纪地层中,垂向断距最大达150 m(图 5-a)。桑塔木断裂控制了局部构造形态,构造脊部裂缝发育,井间连通性好。根据挤压应力的剪切分量分析,推测该时期南北向轮东1号走滑断裂已开始发育,整体表现为压扭性特征。
喜山期受张剪应力作用,贯穿工区的南北向轮东1号走滑断裂进一步活动,表现为右旋走滑特征,并伴生一些列北东-南西向次级走滑断裂,控制工区构造格局,轮东1号断裂区内延伸21.8 km,断开层位从基底至侏罗系,断距20~100 m。石炭系以下表现为压扭性质,在工区AG35和AG35-1井附近表现最为明显,奥陶系断面倾向多变,工区南部东倾,中部西倾,北部东倾,具有典型丝带状效应;同时平面上断层两盘高低关系一直在变化,具有明显海豚效应(图 5-b)。石炭系及以上地层剖面上表现为负花状构造,断层性质由压扭转化为张扭性质,呈明显负反转构造,平面上表现为雁列式右旋走滑特征。轮东I号断裂是喜山期寒武系原油裂解气的主要充注通道,沿断裂走向裂缝发育,天然气富集。
2.2 岩心薄片裂缝特征
由于碳酸盐岩储层强非均质性,储层发育井段往往发生漏失,取心困难,岩心分析仅代表基质物性[1]。研究区岩心常规物性分析孔隙度样品1259块,渗透率样品963块,平均孔隙度1.615%,平均渗透率2.82×10-3μm2。基质孔隙度差,次生的溶蚀孔、洞和裂缝是主要的储集空间,裂缝既是储集空间,又是渗滤通道。研究区9口井428.89 m岩心统计,共发育裂缝965条,其中未充填和半充填缝649条,占裂缝总数的67.3%,以倾角 > 75°的高角度缝为主,缝密度1.22条/m(图 6~图 7)。
图 6 轮古东气田奥陶系碳酸盐岩岩心照片a—AF127井,5569.8 m,O1-2y,泥晶灰岩,高角度构造缝,缝宽2~4 mm,沿缝部分充填方解石;b—AN631井,5791.5 m,O3t,亮晶生屑灰岩,二组构造缝斜交,沿裂缝溶蚀和充填,缝面见氧化边;c—AN62井,5782.3 m,O1-2y,颗粒灰岩,晚期水平裂缝切割早期缝合线,沿晚期裂缝部分溶蚀;d—AG392井,6264.5 m,O2y,藻粘结砂砾屑灰岩,高角度构造缝,半充填方解石,岩心上见构造缝不连续延伸;e—AN621井,5766.2 m,O3t,颗粒灰岩,早期缝合线被晚期高角度构造缝切割,半充填泥质;f—AG35井,6158.4 m,O3t,砂屑生屑灰岩,早期溶洞充填角砾与巨晶方解石,晚期裂缝切割早期裂缝,沿晚期裂缝扩溶;g—AN631井,5973.1 m,O1-2y,早期网状裂缝呈龟背状充填方解石,晚期沿部分宽缝充填泥质,岩心部分大理岩化;h—AG391井,5817.2 m,O3l,生物砾屑灰岩,生物为珊瑚和藻类,为洞穴充填角砾,砾间充填泥质;i-AG392井,6345.7 m,O1-2y,亮晶颗粒灰岩,缝合线发育Figure 6. Core photos of Ordovician carbonate rock in Lungudong gas fielda-Well AF127, 5569.8 m, O1-2y, cryptite, high angle structural fracture, width of fracture 2-4 m, partly filled with calcite along fractures; b-Well AN631, 5791.5 m, O3t, calcsparite bioclastic limestone, two groups of structural fractures obliquely crossing, corroded and filled along fractures, oxidation edge distributed in fracture panel; c-Well AN62, 5782.3 m, O1-2y, grained limestone, late period horizontal fractures cutting early stage furrow lines, partly corroded along late period fractures; d-Well AG392, 6264.5 m, O2y, algal bound gritty limestone, high angle structural fracture, half filled with calcite, structural fractures discontinuously extending in core; e-Well AN621, 5766.2 m, O3t, grained limestone, late period high angle structural fractures cuting early stage furrow lines, half filled with shale; f-Well AG35, 6158.4 m, O3t, gritty bioclastic limestone, early period limestone cave filled with rubble giant crystal calcite, late period fractures cutting early period fractures. corroded along late period fractures; g-Well AN631, 5973.1 m, O1-2y, early period calcite filling fractures like turtleback, late period part of broad fractures filled with shale, core partly marbleized; h-Well AG391, 5817.2 m, O3l, bioclastic calcirudite, bioclasts consisting of coral and algae, cave filled with rubble stone, shale filling inter gravel; i-Well AG392, 6345.7 m, O1-2y, calcsparite grained limestone, developing furrow lines图 7 轮古东气田奥陶系碳酸盐岩储层铸体薄片a—AN48井,5548.5 m,O2y,泥粉晶灰岩,构造缝交织分布,沿缝见扩溶现象,红色铸体;b—AN621井,5778.3 m,O1—2y,亮晶颗粒灰岩,压溶和溶蚀缝,红色铸体;c—AN14井,5335.6 m,O3l,泥粉晶灰岩,构造缝交织分布,红色铸体;d—AG18井,5540.2 m,O2y,粉晶灰岩,构造缝交织分布,红色铸体;e—AG39井,5832.5 m,O2y,泥—亮晶颗粒灰岩,沿构造缝扩溶后,部分方解石充填,红色铸体;f—AG391井,5810.1 m,O3l,泥—亮晶颗粒灰岩,压溶缝,红色铸体Figure 7. Cast slice of Ordovician carbonate reservoir in Lungudong gas fielda-Well AN48, 5548.5 m, O2y, powder micrite limestone, structural fractures interleave, expanded corrosion along fractures, red cast; b-Well AN621, 5778.3 m, O1–2y, calcsparite grained limestone, pre-solution and corroded fractures, red cast; c-Well AN14, 5335.6 m, O3l, powder micrite limestone, structural fractures interleave, red cast; d-Well AG18, 5540.2 m, O2y, crystal powder limestone, structural fractures interleave, red cast; e-Well AG39, 5832.5 m, O2y, micrite-calcsparite grained limestone, after expanding corrosion along fractures, partly filled with calcite, red cast; f-Well AG391, 5810.1 m, O3l, micrite-calcsparite grained limestone, pre-solved fractures, red cast根据形成机理,裂缝分为构造缝、压溶缝和溶蚀缝。构造缝约占区内裂缝总数的60%,缝宽一般小于5 mm,主要为剪切缝,其次为张性缝。构造缝以垂直缝最为发育,早期构造缝平行排列,局部呈枝叉状和雁行状,多数已被方解石、泥质和沥青质全充填或半充填,局部区域多期不同产状的裂缝相互交切形成网状裂缝。压溶缝是由沉积负荷引起的压实作用和压溶作用形成,主要表现为缝合线,产状多与层面平行,呈锯齿状和肠状弯曲延伸,常被泥、铁质半充填或全充填,约占裂缝总数的20%。溶蚀缝主要由地表水和地下水沿早期的裂缝系统溶蚀扩大产生,呈弯曲分布,延伸短,缝宽一般 > 1 mm,沿断裂面上生长晶形完好的方解石晶体或晶簇,约占裂缝总数的15%(图 6~图 7)。
2.3 成像测井裂缝特征
成像测井是识别井周裂缝发育条数、产状和有效性等的直接手段。构造缝形成后,在后期应力和溶蚀改造下,会不断改变赋存状态,其中多期应力的改造作用目前测井技术不能有效识别,后期溶蚀作用造成的裂缝形态变化则能较好地从井壁图像上识别并确定[14-15]。
利用工区完钻32口井的成像测井资料,成像测井可识别的裂缝主要为构造缝、溶蚀缝和钻井诱导缝。构造缝主要为构造应力成因,裂缝形态完整,轨迹闭合;溶蚀缝由后期扩溶作用形成,缝面基本闭合,多不完整,呈不规则扩溶特征;钻井诱导缝为人工裂缝,由钻具机械诱导和地层应力释放造成,多为无效裂缝(图 8)。
图 8 轮古东气田奥陶系碳酸盐岩测井裂缝发育特征a、b、c、d—高角度构造窄裂缝,缝面形态基本完整,轨迹闭合;e、f、g、h—高角度构造窄裂缝,沿缝不规则扩溶;i、j、k、l—斜交羽状诱导微裂缝Figure 8. Ordovician carbonate logging fracture development characteristics in Lungudong gas fielda, b, c, d-High angle structural narrow fracture, fracture plane form is mostly intact, track closed; e, f, g, h-High angle structural narrow fracture, irregular broaden corrosion; i, j, k, l-Obliquely crossing pinnate lead tiny fracture平面上,工区裂缝以高角度(45°~75°)裂缝为主,走向以NE-SW为主。有效裂缝具有更强的岩石切割破坏能力,裂缝宽度和密度越大,取心收获率越低,裂缝有效性越好。纵向上,良里塔格组裂缝发育受岩性控制,裂缝发育密度与自然伽马值(泥质-泥灰质含量)成反比,自然伽马值增大,泥质-泥灰质含量增高,裂缝发育密度降低,良里塔格组内部自然伽马值从约11 API变化到60 API以上,泥质-泥灰质含量从5%上升至40%以上,当自然伽马值达到45 API,泥质-泥灰质含量超过30%时,裂缝不发育。良里塔格组裂缝平均4条/100 m,以不规则网状交切微细裂缝为主要特征,裂缝开度较小,少见大开度(窄缝以上)的构造缝,平均缝宽26.9μm,中缝及宽缝(石油行业标准SY/T 6286-1997)发育率6.9%。一间房和鹰山组岩性较纯,自然伽马值普遍低于25 API,平均约16.8 API,层组内泥质-泥灰质含量没有明显变化,泥质含量平均约2.3%。裂缝发育主要受断裂(应力强度)及构造控制,岩性控制不明显,裂缝发育程度高,开度相对较大,缝面溶蚀特征明显,一间房组14条/100 m,平均缝宽44.5μm,中缝及宽缝发育率9.1%;鹰山组6条/ 100 m,平均宽度37.5μm,中缝及宽缝发育率9.8%。
2.4 地震预测裂缝特征
裂缝的存在会造成地震波频率随方位角变化,在裂缝的法线方向,频率随方位角的衰减不同于裂缝的走向方向,地震波的衰减强度与裂缝的密度成正比,裂缝越发育,频率随方位角变化就越明显,频率椭圆扁率的大小代表了频率的各向异性强度,并且用这种强度来指示裂缝发育的强度。为得到准确的裂缝密度信息,多井结合约束裂缝密度发育门槛,利用研究区取心和成像测井对裂缝发育井和不发育井共同约束,得到最终的裂缝预测数据体并进行裂缝平面预测(图 9)。
研究区一间房组裂缝最发育,利用成像测井资料约束,FRS叠前裂缝预测表明,现今最大水平主应力方向、裂缝走向、裂缝分布范围及发育密度主要受断裂控制。
现今最大水平主应力方向指示地层岩石所承受的最大应力方向,在同样的地层岩性、相似岩石机械强度条件下,走向平行于最大水平主应力方向的裂缝系统在力学上最容易保存,与之相交或垂直的裂缝则趋于闭合。轮古东气田成像测井解释仅AN171、AG38C井周边由于应力的复杂,裂缝走向与主应力走向存在较大夹角,其余区域裂缝走向与主应力走向基本一致,裂缝走向以NE-SW向为主,指示轮古东斜坡断裂系统更容易保持开启,也更容易获得高产。不同期次、走向的断裂控制的裂缝走向略有差异,南北向轮古东I号走滑断裂周边井裂缝走向主要为NE 30°~50°;北东向走滑断裂周边井裂缝走向主要为NE 30°~80°。
平面上,裂缝主要分布在断裂周围1 km范围内,成像测井及FRS叠前裂缝预测表明,随着井点距断裂距离增大,裂缝发育强度(裂缝线密度)呈指数降低,当井点距断裂距离 < 0.25 km,裂缝发育密度快速增加,当井点距断裂距离 > 1 km,裂缝发育差或不发育(图 9,图 10),与塔里木盆地西北缘柯坪—巴楚露头区多条走滑断裂的调查结论类似,即随着距断裂距离的增大,断裂控制的裂缝密度与距断裂距离呈指数递减关系[8-9]。
3. 断裂破碎带结构及与油气关系
3.1 断裂破碎带结构
走滑断裂构造样式,一般由一系列产状陡倾的大型-巨型平移断层及其间的断夹块体组成,平面上表现为雁列式、斜列式或帚状构造样式,在剖面上表现为陡立的断层带或断夹块的相间排列[16-19]。由于力学机制复杂,走滑断裂构造样式的差异造成走滑断裂破碎带在三维空间具有复杂的结构,对断裂破碎带组合方式的刻画对储层与油气运聚关系密切[8-11, 16-19]。针对研究区气藏特征,以主干走滑断裂为主线,以次级和微断裂为骨架,以裂缝为脉络,将研究区断裂破碎带平面上划分为“羽状破碎带、转换破碎带、斜列破碎带、复合破碎带”4种组合模式(图 11)。
“羽状破碎带”指次级和微断裂发育,储层沿破碎带呈散开状发育,剖面上为正花状断裂,平面上次级裂缝沿主干断裂呈羽状分布。羽状破碎带为有利的储层发育区,轮古东目前AG341、AG353、AG391C等高产井钻探区域为羽状破碎带。AG391井钻探断裂下盘的羽状破碎带,取心和成像测井证实,鹰山组发育II类裂缝孔洞型储层51.5 m/8层,平均孔隙度2.83%;III类孔洞型储层13 m/1层,孔隙度1.8%。鹰山组裂缝发育,为高角度的窄缝,以构造剪切缝为主,底部存在少量的构造张性缝,且沿裂缝有扩溶作用,该井累产油0.16×104 t,累产气0.25×108 m3;AG391C井钻探临近的断裂上盘的羽状破碎带,效果要好于AG391井,目前已累产油0.55×104 t,累产气0.61×108 m3,一方面表明羽状破碎带局部构造高点油气更为富集;另一方也证实,羽状破碎带内部结构复杂,断裂上盘和下盘之间存在油气的侧向封堵。目前塔里木盆地塔中I号气田Z15井区已通过水平井穿主干断裂钻探羽状破碎带的多个串珠集合体,完钻13井取得预期效果,已建成黑油年产能25×104 t[2]。
“转换破碎带”指走滑断裂转换部位,应力从一条断层逐渐转至另一条断层,特定部位同时发育两条走滑断裂,裂缝主要发育于两断层叠置的转换破碎带内。研究区仅AG39井发育,剖面上为正花状断裂,平面上轮东1号断裂AG39构造分段转换形成局部构造,主要的构造变形层系位于中上奥陶统,石炭系地层无明显的构造变形,上奥陶统良里塔格组地层厚度没有明显变化。AG39井钻探构造高点,实钻证实储层发育,上奥陶统良里塔格组与下奥陶鹰山组均发育储层且测试均获得高产,成相测井解释储层以裂缝孔洞型储层为主,II类储层2.5 m/1层,孔隙度3%,III类储层66.5 m/7层,平均孔隙度1.63%,裂缝主要集中发育于良里塔格组表层,以构造张性缝为主,扩溶现象明显,裂缝走向为东西向,应力走向为北东向,与裂缝走向存在40°夹角。该井良里塔格试采,已累产油0.94×104 t,累产气1.32×108 m3。
“斜列破碎带”指裂缝在主干和次级断裂集中发育,储层沿走滑断裂呈线性分布,剖面上次级断裂与主干断裂近平行排列,呈近直立状,平面上次级断裂和裂缝分布于主干断裂的二侧,呈大角度斜交。目前轮古东区块仅轮古35-1钻遇该破碎带,测井解释II类储层4.5 m/1层,孔隙度2.7%;III类储层36 m/5层,平均孔隙度1.72%。由于该井井下落鱼未能投产,产能情况有待后续评价。
“复合破碎带”指走滑断裂和逆冲断裂相互作用,裂缝在断裂交汇部位集中发育。研究区仅发育在桑塔木断垒带东部,由于东西向的逆断裂形成于海西期,控制了桑南断垒带的构造形态,构造高部位裂缝发育且断裂的多期活动,油气多期充注与调整,该区为复式油气聚集区,已经在奥陶系、石炭系和三叠系多个层段获得工业产能,建成黑油年产能规模30万t[13]。奥陶系碳酸盐岩以裂缝孔洞型储层为主,除个别井分析困难外,近20多年的开发已基本证实,构造高部位整体连通。
3.2 断裂破碎带与油气关系
轮古东奥陶系碳酸盐岩凝析气藏优质储层的发育主要受控于岩溶作用与断裂活动,羽状破碎带以高角度断裂及伴生微裂缝发育为主,多期多组断裂裂缝叠加,是岩溶储层发育最有利部位,分布面积最广,是油气最富集的区域。
在加里东晚期,轮古东东倾斜坡形成,顺层岩溶开始发育;晚加里东末期—早海西期的地层抬升过程中,构造运动产生了大量裂缝,部分裂缝沟通地表水,顺层溶蚀形成大量次生溶蚀孔、洞和缝;在海西末期—印支初期的第二次抬升中,断裂活动形成的众多断裂及伴生裂缝,可能会使早期充填的裂缝重新开启,对储集体的改造起重要作用;燕山—喜山期,轮古东内幕储层被迅速埋藏,从中生代晚期开始的有机质热演化所产生的酸性水沿裂隙渗入,内幕原有的孔、洞、缝发生扩溶。可见,加里东期地层短期暴露,加里东期走滑断裂及其破碎带是岩溶作用的先期通道,增加了地表水及地下水与碳酸盐岩的接触面积和溶蚀范围,甚至在碳酸盐岩内部形成一个连续的淡水溶蚀系统,再加之海西期构造运动使部分裂缝开启,极大的改善了碳酸盐岩的渗滤能力[20-21]。
轮古东气田天然气主要来源于寒武系,原油主要来源于中-上奥陶统[13]。“十五”以来,中石油塔里木油田分公司针对奥陶系碳酸盐岩的科技攻关及勘探开发实践已经证实,油气的远距离和超远距离及水平运聚难度较大,主要以“原地垂向立体网状运移”为主要特征。轮古东走滑断裂及其破碎带以高角度断裂为主,沟通下部烃源岩,是油气运移的主要输导体系。由于断裂的多期活动和断层性质的相互转化,轮古东走滑断裂附近集中了未饱和凝析气藏并控制了垂向上含气饱和度的变化,天然气晚期充注时,沿断裂向上运移的大量天然气的气侵作用造成油气相态分异,从而造成轮古东现今油气分布状况,即以轻质油和天然气为主,局部缝洞体中含有早期充注的中质和重质原油。中质和重质原油主要分布于北西向次级走滑断裂及伴生裂缝不发育且晚期气侵作用较弱区域。此外,盖层控制了轮古东气田相态的保存,轮古东地区上奥陶统桑塔木组泥岩横向分布稳定,纵向上分布较集中,厚度490~660 m,且岩性致密,垂向断层对气藏的破坏作用较弱,封隔条件较好,是中下奥陶统储层的良好盖层。
4. 结论
(1)轮古东气田主干断裂分3期4组。第一期为中晚加里东期近北东、北西向走滑断裂;第二期为晚海西期近东西向逆冲断裂;第三期为喜山期近南北、北东向走滑断裂。
(2)裂缝主要为高角度(45°~75°)构造窄裂缝,沿缝存在溶蚀,走向主要为NE-SW。纵向上,裂缝发育密度与自然伽马值(泥质-泥灰质含量)成反比,一间房组裂缝发育密度最大(14条/100 m),其次为鹰山组(6条/100 m)和良里塔格组(4条/100 m);平面上,裂缝主要分布在主干断裂周边1 km范围内,随着距断裂距离增大,裂缝发育强度(裂缝线密度)呈指数降低。
(3)断裂破碎带平面上划分为“羽状破碎带、转换破碎带、斜列破碎带、复合破碎带”4种结构。走滑断裂及其破碎带是油气的主要输导体系,控制了油气的富集与油气相态的分异,羽状破碎带分布面积广,是油气最富集的区域。
致谢: 感谢肖庆辉研究员、陆松年研究员、潘桂棠研究员等的技术指导,感谢彭练红教授、邓兴博士等的有益讨论,感谢审稿专家提出的建设性意见。 -
图 1 大洪山地区地质简图
(图中相关测年位置及数据参考Shi et al., 2007; 胡正祥等, 2015a, 2017; 廖明芳等, 2016; Xu et al., 2016; 陈超等, 2017a, b, 2018)
Figure 1. The geological sketch map of Dahongshan area
(Locations and results of zircons U-Pb dating in the map after Shi et al., 2007; Hu Zhengxiang et al., 2015a, 2017; Liao Mingfang et al., 2016; Xu et al., 2016; Chen Chao et al., 2017a, b, 2018)
图 2 大洪山俯冲增生杂岩及镁铁质岩野外特征
a—厂河砂岩中发育同斜倒转褶皱;b—南风垭玄武岩、紫红色硅泥质岩、白云岩混杂;c—关口垭粉砂质板岩逆冲到辉长岩之上,二者接触面上发育构造透镜体;d—关口垭绢云母板岩中夹基性火山岩岩块;e—罗家咀硅质条带白云岩中的辉绿岩脉,辉绿岩发生强片理化;f—罗家咀北气孔-杏仁状玄武岩;g—厂河枕状玄武岩;h—姚家冲西枕状玄武岩
Figure 2. Field photos of the subduction accretionary complex and mafic rocks in Dahongshan
a-Synclinal overturned fold developed in the sandstone in Changhe; b-Mélange in Nanfengya composed of basalt, fuchsia siliceous argillaceous rock and dolomite; c-Silty argillaceous thrust up to the gabbro, and tectonic lenses developed between them in the Guankouya; d-Basic volcanic rock mass mixed in the sericite slate in Guankouya; e-Strong foliated doleritic vein developed in the siliceous band dolomite in Luojiaju; f-Amygdaloidal basalts outcropped in the north of Luojiaju; g-Pillow basalts outcrop in Changhe; h-Pillow basalts outcrop in the west of Yaojiachong
图 3 大洪山镁铁质岩镜下特征
a—关口垭辉长岩中辉石局部蚀变成透闪石、绿泥石,斜长石基本被粘土矿物交代(+);b—罗家咀辉绿岩中的辉绿结构,辉石基本被绿泥石取代(-);c—厂河东气孔-杏仁状玄武岩中的杏仁构造,充填物主要为方解石(+);d—厂河枕状玄武岩间粒结构(+);Am—角闪石,Aug—普通辉石,Cc—方解石,Chl—绿泥石,Pl—斜长石
Figure 3. Photomicrographs of the mafic rocks in Dahongshan
a-Pyroxenes altered into amphibole and chlorite locally, and plagioclases basically replaced by clay minerals in the gabbro in Guankouya (+); b-The diabasic structure in the diabase in Luojiaju, where pyroxene is basically replaced by chlorite (-); c-Almond texture of Changhe basalt, with the filling materials being mainly calcite (+); d-Pillow basalt of Changhe with intergranular texture (+); Am-Amphibole, Aug-Augite, Cc-Calcite, Chl-Chlorite, Pl-Plagioclase
图 4 大洪山镁铁质岩Nb/Y-Zr/Ti图(a)(底图据Pearce, 2014)和FeOT/MgO-SiO2图(b)(底图据Miyashiro, 1974; 邓晋福等, 2010)
LLC—六里冲辉长岩,数据来源于胡正祥等, 2015a;NFY—南风垭玄武岩;YJP—杨家棚玄武岩和辉长岩,数据来源于石玉若等, 2003, 2005b;YJC-姚家冲玄武岩和辉绿岩,ZJW—周家湾玄武岩,数据来源于董云鹏等, 2003;CH—厂河枕状玄武岩,数据来源于Deng et al., 2013;HS—花山玄武岩,数据来源于董云鹏等, 1999, 后文图片中代号与此图一致
Figure 4. Nb/Y -Zr/Ti (a) (after Pearce, 2014) and FeOT/MgO-SiO2diagram (b)(after Miyashiro, 1974; Deng Jinfu et al., 2010)of the mafic rocks in Dahongshan
LLC-Gabbros of Liulichong, data from Hu Zhengxiang et al., 2015a; NFY-Basalts of Nanfengya, YJP-Basalts and gabbros of Yangjiapeng, data from Shi Yuruo et al., 2003, 2005b; YJC-Basalts and diabases of Yangjiapeng, ZJW-Basalts of Zhoujiawan, data from Dong Yunpeng et al., 2003; CH-Pillow basalts of Changhe, data after Deng et al., 2013; HS-Basalts of Huashan, data from Dong et al., 1999. The Abbreviations in the figures below are coincident.
图 5 大洪山地区镁铁质岩球粒陨石标准化REE配分图(a,Sun et al., 1989)和N-MORB标准化蛛网图(b,Ishizuka et al., 2009)
(图中均为平均值. Mirdita MORB-like和Mirdita Boninite分别代表阿尔卑斯-喜马拉雅造山带西段Mirdita地区的前弧玄武岩和高镁安山岩,数据来源于Dilek and Furnes, 2009a;Mariana MORB-like和Mariana Boninite分别代表西太平岩俯冲带马里亚纳前弧玄武岩和高镁安山岩,数据来源于Reagan et al., 2010)
Figure 5. Chondrite-normalized REE patterns (a, after Sun et al., 1989) and N-MORB-normalized spidergrams (b, after Ishizuka et al., 2009) of the mafic rocks in Dahongshan
(Data in the picture stand for average data. Data of Mirdita MORB-like basalt and Mirdita Boninite after Dilek and Furnes, 2009a; Mariana MORBlike basalt and Mariana Boninite after Reagan et al., 2010)
图 7 大洪山地区镁铁质岩环境判别图解
a—Th/Yb-Nb/Yb图(Pearce, 2014);b—V-Ti/1000图(Shervais, 1982; Ishizuka et al., 2014a);c—Zr/Nb-Nb/Th图(Condie, 2003; Velásquez et al., 2011);d-Nb/Y-Zr/Y图(Fitton et al., 1997; Condie, 2003);Troodos UPL-塞浦路斯上部枕状熔岩;Troodos LPL-塞浦路斯下部枕状熔岩;Bonin FAB、Mariana FAB—小笠原、马里亚纳前弧玄武岩,Philippine Sea MORB-菲律宾海盆洋中脊玄武岩;Pacific crust-太平洋洋壳;ARC—与岛弧相关的玄武岩;N—MORB—正常洋中脊玄武岩;OIB—洋岛玄武岩;OPB—洋底高原玄武岩,DM—亏损地幔;EN—富集组分;PM—原始地幔;REC—循环组分;UC—大陆上地壳;DEP—亏损地幔组分;HIMU—高U/Pb比值的地幔;EM1、EM2—富集地幔
Figure 7. Tectonic discrimination diagram of the mafic rocks in the Dahongshan area
a-Th/Yb-Nb/Yb diagram (after Pearce, 2014), b-V-Ti/1000 diagram (after Shervais, 1982; Ishizuka et al., 2014a, ) c-Zr/Nb-Nb/Th diagram (after Condie, 2003; Velásquez et al., 2011), d-Nb/Y - Zr/Y diagram (after Fitton et al., 1997; Condie, 2003). Troodos UPL-Upper pillow basalt of Troodos; Troodos LPL-Lower pillow basalt of Troodos; Bonin FAB-Fore-arc basalt of Bonin, Mariana FAB-Fore-arc basalt of Mariana; Philippine Sea MORB- Mid- oceanic ridge basalt of Philippine Sea; ARC- Basalt associated with the island arc, N- MORB- Normal mid- ocean ridge basalt; OIB- Ocean island basalt, OPB- Ocean floor plateau basalt; DM- Depleted mantle; EN- Enriched components; PM- Primitive mantle; REC- Recirculated components; UC- Upper crust; DEP- Depleted mantle components; HIMU- High U/Pb ratio mantle; EM1, EM2-Enriched mantle 1, enriched mantle 2
表 1 大洪山地区镁铁质岩主量元素(%)、微量元素和稀土元素(10-6)地球化学分析数据
Table 1 Mayor elements (%) and trace elements (10-6) compositions of the mafic rocks in Dahongshan area
表 2 南风垭、绿林寨玄武岩LA-ICP-MS锆石U-Pb测年数据
Table 2 LA-ICP-MS zircon U-Pb isotopic data of the basalt from Nanfengya and Lulinzhai
-
Chen Chao, Mao Xinwu, Hu Zhengxiang, Yang Jinxiang, Yang Cheng, Kong Lingyao, Zheng Meng. 2017a. Discovery of ~817 Ma oceanic island basalts in the Dahongshan region, northern Hubei province and its significance[J]. Geological Science and Technology Information, 36(6):22-31(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX198606013.htm
Chen Chao, Xiong Baocheng, Hu Zhengxiang, Zhou Feng, Yang Cheng, Kong Lingyao. 2017b. A rustic opinion of Neoproterozoic Ocean-continent coversion events on the northern margin of Yangtze Block[J]. Resources Environment & Engineering, 31(6):1-14(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk201706001
Chen Chao, Yuan Jinling, Kong Lingyao, Ye Zhujun, Yang Qingxiong, Yang Cheng, Zhou Feng. 2018. Documentation of early Paleozoic Mafic Dykes in the Dahongshan region, northern Yangze block and its geological significance[J]. Earth Science, 43(7):2370-2388(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201807012
Condie Kent C. 2003. Incompatible element ratios in oceanic basalts and komatiites:Tracking deep mantle sources and continental growth rates with time[J]. Geochemistry, Geophysics, Geosystems, 4(1):1-28. doi: 10.1029-2002GC000333/
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015.Magmatic arc and ocean-continent transition:Discussion[J]. Geological Review, 61(3):473-484(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001
Deng Jinfu, Liu Cui, Feng Yanfang. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks(MA):Two igneous rock types related to oceanic subduction[J]. Geology in China, 37(4):1112-1118(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004027.htm
Deng Qi, Wang Jian, Wang Zhengjiang, Wang Xuance, Qiu Yansheng, Yang Qingxiong, Du Qiuding, Cui Xiaozhuang, Zhou Xiaolin. 2013. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block——Implications for the breakup of Rodinia[J]. International Geology Review, 55(15):1865-1884. doi: 10.1080/00206814.2013.799257
Dilek Yildirim, Furnes Harald. 2009a. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 113:1-20. doi: 10.1016/j.lithos.2009.04.022
Dilek Yildirim, Thy Peter. 2009b. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite:Model for multi-stage early arc-forearc magmatism in Tethyan subduction factories[J]. Lithos, 113:68-87. doi: 10.1016/j.lithos.2009.05.044
Dong Yunpeng, Zhang Guowei, Liu Xiaoming, Lai Shaocong. 1998. Disintegration of the Huashan Group in the Dahongshan Mountain Area, northern Hubei[J]. Regional Geology of China, 17(4):371-376(in Chinese with English abstract).
Dong Yunpeng, Zhang Guowei, Lai Shaocong, Zhou Dingwu, Zhu Bingquan. 1999. An ophiolitic tectonic melange first discovered in Huashan area, south margin of Qinling Orogenic Belt, and its tectonic implications[J]. Science in China Series D:Earth Sciences, 43(3):292-302. http://cn.bing.com/academic/profile?id=34a8b6231e2e5df6c6b6afb8a0d6d76a&encoded=0&v=paper_preview&mkt=zh-cn
Dong Yunpeng, Zhang Guowei, Lai Shaocong, Zhou Dingwu, Zhu Bingquan. 1999. An ophiolitic teconic melange first discovered in Huashan area, south margin of Qinling Orogenic Belt, and its tectonic implication[J]. Science in China (Series D), 29(3):222-231(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199903007.htm
Dong Yunpeng, Zhang Guowei, Zhao Xia, Yao Anping, Liu Xiaoming. 2006. Geochemistry of the subduction-related magmatic rocks in the Dahong Mountains, northern Hubei Province[J]. Science in China Ser. D Earth Sciences, 47(4):366-377. http://cn.bing.com/academic/profile?id=e1223c7319df7d5bd03e6b7775ad45a9&encoded=0&v=paper_preview&mkt=zh-cn
Dong Yunpeng, Zhang Guowei, Zhao Xia, Yao Anping, Liu Xiaoming. 2003. Geochemistry and tectonic implication of igneous rocks in the northern Hubei Province:New evidence of subduction and eastward extension of the Mianlue ocean in the south Qinling[J]. Science of China (Series D), 33(12):1143-1153(in Chinese with English abstract).
Dong Yunpeng, Zhang Xiaoning, Liu Xiaoming, Li Wei, Chen Qing, Zhang Guowei, Zhang Hongfu, Yang Zhao, Sun Shengsi, Zhang Feifei. 2015. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 104:84-98. doi: 10.1016/j.jseaes.2014.10.007
Fitton J G, Saunders A D, Norry M J, Hardarson B S, Taylor R N. 1997. Thermal and chemical structure of the Iceland plume[J]. Earth and Planetary Science Letters, 153:197-208. doi: 10.1016/S0012-821X(97)00170-2
Goodenough Kathryn M, Thomas Robert J, Styles Michael T, Schofield David I, MacLeod Christopher J. 2014. Records of ocean growth and destruction in the Oman-UAE Ophiolite[J]. Elements, 10:105-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=713feada2d9804d2b0914b7c6557054c
Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co Discrimination Diagram[J]. Journal of Petrology, 48(12):2341-2357. doi: 10.1093/petrology/egm062
Hu Zhengxiang, Chen Chao, Mao Xinwu, Deng Qianzhong, Yang Jinxiang, Li Linjing, Kong Lingyao. 2015a. Documentation of Jingningian Island-arc Volcanic Rocks and Accretionary complexes in the Dahongshan Region, Northern Hubei and Its tectonic Significance[J]. Resources Environment & Engineering, 29(6):757-766(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK201506003.htm
Hu Zhengxiang, Mao Xinwu, Tian Wangxue, Li Xiongwei. 2015b.Discovery of the Jinningian Orogenic Belt on the Northern Margin of Yangtze Craton in Mountain Dahong[J]. Geological Survey of China, 2(2):33-39(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzdc201502004
Hu Zhengxiang, Chen Chao, Mao Xinwu, Yang Qingxiong, Deng Qianzhong, Kong Lingyao, Yang Cheng. 2017. The Qingbaikouan tumen formation-complex island arc volcanic-clastic rocks on the northern margin of yangtze block and its significance. Journal of Stratigraphy[J]. Journal of Stratigraphy, 41(3):304-317(in Chinese with English abstract).
Ishizuka Osamu, Tani Kenichiro, Reagan Mark K. 2014a. Izu-BoninMariana Forearc Crust as a Modern Ophiolite Analogue[J]. Elements, 10:115-120. doi: 10.2113/gselements.10.2.115
Ishizuka Osamu, Geshi Nobuo, Kawanabe Yoshihisa, Ogitsu Itaru, Taylor Rex N, Tuzino Taqumi, Sakamoto Izumi, Arai Kohsaku, Nakano Shun. 2014b. Long-distance magma transport from arc volcanoes inferred from the submarine eruptive fissures offshore Izu-Oshima volcano, Izu-Bonin arc[J]. Journal of Volcanology and Geothermal Research, 285:1-17. doi: 10.1016/j.jvolgeores.2014.08.006
Ishizuka Osamu, Umino Susumu, Taylor Rex N, Kanayama Kyoko. 2014c. Evidence for hydrothermal activity in the earliest stages of intraoceanic arc formation:Implications for ophiolite-hosted hydrothermal activity[J]. Society of Economic Geologists, Inc.Economic Geology, 109(8):2159-2177. doi: 10.2113/econgeo.109.8.2159
Ishizuka Osamu, Yuasa Makoto, Taylor Rex N, Sakamoto Izumi. 2009.Two contrasting magmatic types coexist after the cessation of back-arc spreading[J]. Chemical Geology, 266:274-296. doi: 10.1016/j.chemgeo.2009.06.014
Lai Shaocong, Zhong Jianhua. 1999. Geochemical features and its tectonic significance of the meta-basalt in Zhoujiawan area, Mianlue suture zone, Qinling-Dabie mountains, Hubei province[J]. Scientia Geologica Sinica, 2(8):127-136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800851500
Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkalisilica diagram[J]. Journal of Petrology, 27:745-750. doi: 10.1093/petrology/27.3.745
Li Huaikun, Tian Hui, Zhou Hongying, Zhang Jian, Liu Huan, Geng Jianzhen, Ye Lijuan, Xiang Zhenqun, Ju Lesheng. 2016.Correlation between the Dagushi Group in the Dahongshan Area and the Shennongjia Group in the Shennongjia Area on the northern margin of the Yangtze Craton:Constraints from zircon UPb ages and Lu-Hf isotopic systematics[J]. Earth Science Frontiers, 23(6):186-201(in Chinese with English abstract).
Liao Mingfang, Xie Yingbo, Li Linjing, Yang Jinxiang, Mao Xinwu, Deng Qianzhong, Kong Lingyao, Li Qiwen, Chen Chao. 2016.Discussion about genesis and formation age of Sanligang Pluton in the Dahongshan Region, Hubei[J]. Resources Enviroment & Engineering, 30(2):143-150(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk201602004
Liu Xiaochun, Li Sanzhong, Jahn Bor-ming. 2015. Tectonic evolution of the Tongbai-Hong'an orogen in central China:From oceanic subduction/accretion to continent-continent collision[J]. Science China Earth Sciences, 58(9):1477-1496. doi: 10.1007/s11430-015-5145-z
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther Detlef, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
Lu Yuanfa. 2004. GeoKit-A geochemical toolkit for Microsoft Excel[J]. Geochimica, 33(5):459-464(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200405004
Ludwig Kennethr. 2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center.
Ma Tianfang, Li Xiaoli, Chen Yongyun, Deng Zhenp, Li Guohui. 2011.Interchangeable Analysis of Method on the X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 30(4):486-490(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201104020
Mattash M A, Pinarelli L, Vaselli O, Minissale A, Al-Kadasi M, Shawki M N, Tassi F. 2013. Continental Flood Basalts and Rifting:Geochemistry of Cenozoic Yemen Volcanic Province[J]. International Journal of Geosciences, 4:1459-1466. doi: 10.4236/ijg.2013.410143
Miyashiro Akiho. 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274:321-355. doi: 10.2475/ajs.274.4.321
Pearce J A, Robinson P T. 2010. The Troodos ophiolite complex probably formed in a subduction initiation, slab edge setting[J]. Gondwana Research, 18:60-81. doi: 10.1016/j.gr.2009.12.003
Pearce J. A. 2014. Immobile Element fingerprinting of ophiolites[J]. Elements, 10:101-108. doi: 10.2113/gselements.10.2.101
Polat A, Hofmann A. W. 2003. Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt, West Greenland[J]. Precambrian Research, 126:197-218. doi: 10.1016/S0301-9268(03)00095-0
Reagan Mark K, Ishizuka Osamu, Stern Robert J, Kelley Katherine A, Ohara Yasuhiko, Blichert-Toft Janne, Bloomer Sherman H, Cash Jennifer, Fryer Patricia, Hanan Barryb, Hickey-Vargas Rosemary, Ishii Teruaki, Kimura Jun-Ichi, Peate David W, Rowe Michael C, Woods Melinda. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 11(3):10-1029. http://cn.bing.com/academic/profile?id=b5af3257e3988f69b82da5ef31f082ff&encoded=0&v=paper_preview&mkt=zh-cn
Ren Jishun, Zhao Lei, Li Chong, Zhu Junbin, Xiao Liwei. 2017.Thinking on Chinese tectonics——Duty and responsibility of Chinese geologists[J]. Geology in China, 44(1):33-43(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DIZI201701004.htm
Savov Ivanp, Ryan J G, D'Antonio M. 2015. Petrology and geochemistry of West Philippine basin Basalts and Early Palau-Kyushu arc volcanic clasts from ODP Leg 195, Site 1201D:Implications for the Early History of the Izu-Bonin-Mariana Arc[J]. Journal of Petrology, 47:277-299. http://cn.bing.com/academic/profile?id=2e2e24cb3e46a5253e7a012d772d6380&encoded=0&v=paper_preview&mkt=zh-cn
Shervais John W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 59:101-118. doi: 10.1016/0012-821X(82)90120-0
Shi Yuruo, Zhang Zongqing, Liu Dunyi, Tang Suohan, Wang Jinhui. 2003. A study on Sm-Nd and Rb-Sr isotopic chronology of the Huashan ophiolitic Melange in the Suizhou Area, Hubei Province[J]. Geological Review, 49(4):367-373(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP200304004.htm
Shi Yuruo, Zhang Zongqing, Liu Dunyi, Tang Suohan, Wang Jinhui, Chen Wen, Zhang Sihong, Liu Xinyu. 2005a. Rb-Sr and 40Ar/39Ar ages of the adamellite in Sanligang Area[J]. Acta Geoscientica Sinica, 26(1):17-20(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200501003
Shi Yuruo, Zhang Zongqing, Liu Dunyi, Tang Suohan, Wang Jinhui, Liu Tao. 2005b. Rb-Sr isotope dating of gabbro from Yangjiapeng Area in Suizhou, Hubei Province[J]. Acta Geoscientica Sinica, 26(6):521-524(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200506006
Shi Yuruo, Liu Dunyi, Zhang Zongqing, Miao Laicheng, Zhang Fuqin, Xue Hongmei. 2007. SHRIMP zircon U-Pb dating of gabbro and granite from the Huashan ophiolite, oinling orogenic belt, China:Neoproterozoic suture on the northern margin of the Yangtze Craton[J]. Acta Geologica Sinica, 81(2):239-243. doi: 10.1111/j.1755-6724.2007.tb00947.x
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Velásquez Germán, Béziat Didier, Salvi Stefano, Tosiani Tommaso, Debat Pierre. 2011. First occurrence of Paleoproterozoic oceanic plateau in the Guiana Shield:The gold-bearing El Callao Formation, Venezuela[J]. Precambrian Research, 186:181-192. doi: 10.1016/j.precamres.2011.01.016
Wang Qingchen, Lin Wei. 2002. Geodynamics of the Dabieshan collisional orogenic belt[J]. Earth Science Frontiers, 9(4):257-265(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200204005
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(16):1589-1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589
Xiao Qinghui, Li Tingdong, Pan Guitang, Lu Songnian, Ding Xiaozhong, Deng Jinfu, Feng Yimin, Liu Yong, Kou Caihua, Yang Linlin. 2016. Petrologic ideas for identification of ocean-continent transition:Recognition of intra-oceanic arc and initial subduction[J]. Geology in China, 43(3):721-737(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201603003.htm
Xu Yang, Yang Kunguang, Polat Ali, Yang Zhenning. 2016. The-860Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China:A record of oceanic subduction in the early Neoproterozoic[J]. Precambrian Research, 275:310-331. doi: 10.1016/j.precamres.2016.01.021
Yan Zaifei, Huang Zhilong, Chen Mi, Zhou Jiaxi, Zhao Zheng, Ding Wei. 2010. Two distinct mantle sources for high-Ti basalts in the Emeishan overfall basalt province[J]. Journal of Jilin University(Earth Science Edition), 40(6):1311-1322(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201006012
Yang Shao, Li Dewei, Chen Guifan, Li Hualiang, Zhang Shuo, Zhou Tao. 2018. The discovery of the Wuluqiong magnetite deposit in Tibet and its geological characteristics[J]. Geology in China, 45(6):1214-1227(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201806012
Zhang Guowei, Dong Yunpeng, Lai Shaocong, Guo Anlin, Meng Qingren, Liu Shaofeng, Cheng Shunyou, Yao Aanping, Zhang Zongqing, Pei Xianzhi, Li Sanzhong. 2003. Mianlue tectonic zone and Mianlue suture zone on southern margin of Qinling Dabie orogenic belt[J]. Science in China (Series D), 33(12):1121-1135(in Chinese with English abstract).
Zhang Guowei, Cheng Shunyou, Guo Anlin, Dong Yunpeng, Lai Shaocong, Yao Anping. 2004. Mianlue paleo-suture on the southern margin of the Central Orogenic System in QinlingDabie——with a discussion of the assembly of the main part of the continent of China[J]. Geological Bulletin of China, 23(9/10):846-853(in Chinese with English abstract).
Zhang Zongqing, Zhang Guowei, Liu Dunyi, Wang Zongqi, Tang Suohan, Wang Jinhui. 2006. Isotopic Geochrology and Geochemistry of Ophiolites, Granites and Clastic Sedimentary Rocks in the Qinling Orogenic Belt[M]. Beijing:Geological Publishing House, 1-348(in Chinese with English abstract).
Zhou Liangliang, Wei Junqi, Wang Fang, Chou Xiumei. 2017.Optimizationof the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 36(04):350-359(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201704003
陈超, 毛新武, 胡正祥, 杨金香, 杨成, 孔令耀, 峥孟. 2017a.鄂北大洪山地区~817Ma洋岛玄武岩的发现及意义[J].地质科技情报, 36(6):22-31. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201706004.htm 陈超, 熊保成, 胡正祥, 周峰, 杨成, 孔令耀. 2017b.扬子北缘新元古代洋陆转换事件刍议[J].资源环境与工程, 31(6):1-14. http://d.old.wanfangdata.com.cn/Periodical/hbdk201706001 陈超, 苑金玲, 孔令耀, 叶竹君, 杨青雄, 杨成, 周峰. 2018.扬子北缘大洪山地区早古生代基性岩脉的厘定及其地质意义[J].地球科学, 43(7):2370-2388. http://d.old.wanfangdata.com.cn/Periodical/dqkx201807012 邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 61(3):473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 董云鹏, 张国伟, 赖绍聪, 周鼎武, 朱炳泉. 1999.随州花山蛇绿构造混杂岩的厘定及其大地构造意义[J].中国科学(D辑), 29(3):222-231. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199903004 董云鹏, 张国伟, 柳小明, 赖绍聪. 1998.鄂北大洪山地区"花山群"的解体[J].中国区域地质, 17(4):371-376. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD804.005.htm 董云鹏, 张国伟, 赵霞, 姚安平, 柳小明. 2003.鄂北大洪山岩浆带地球化学及其构造意义——南秦岭勉略洋盆东延及其俯冲的新证据[J].中国科学(D辑), 33(12):1143-1153. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200312003 胡正祥, 陈超, 毛新武, 邓乾忠, 杨金香, 李琳静, 孔令耀. 2015a.鄂北大洪山晋宁期岛弧火山岩和增生杂岩的厘定及地质意义[J].资源环境与工程, 29(6):757-766. http://d.old.wanfangdata.com.cn/Periodical/hbdk201506002 胡正祥, 毛新武, 田望学, 李雄伟. 2015b.扬子陆块北缘大洪山地区发现晋宁期造山带[J].中国地质调查, 2(2):33-39. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201502004 胡正祥, 陈超, 毛新武, 杨青雄, 邓乾忠, 孔令耀, 杨成. 2017.扬子北缘青白口系土门岩组岛弧火山-碎屑岩的定义及意义[J].地层学杂志, 41(3):304-317. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ201703009.htm 李怀坤, 田辉, 周红英, 张健, 刘欢, 耿建珍, 叶丽娟, 相振群, 瞿乐生. 2016.扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比:锆石SHRIMP U-Pb年龄及Hf同位素证据[J].地学前缘, 23(6):186-201. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606013 廖明芳, 谢应波, 李琳静, 杨金香, 毛新武, 邓乾忠, 孔令耀, 李启文, 陈超. 2016.湖北省大洪山地区三里岗岩体成因及时代探讨[J].资源环境与工程, 30(2):143-150. http://d.old.wanfangdata.com.cn/Periodical/hbdk201602004 路远发. 2004. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 马天芳, 李小莉, 陈永君, 邓震平, 李国会. 2011. X射线荧光光谱分析方法的共享[J].岩矿测试, 30(4):486-490. doi: 10.3969/j.issn.0254-5357.2011.04.020 任纪舜, 赵磊, 李崇, 朱俊宾, 肖黎微. 2017.中国大地构造研究之思考——中国地质学家的责任与担当[J].中国地质, 44(1):33-43. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170103&flag=1 石玉若, 张宗清, 刘敦一, 唐索寒, 王进辉. 2003.湖北省随州花山蛇绿混杂岩Sm-Nd、Rb-Sr同位素年代研究[J].地质论评, 49(4):367-373. doi: 10.3321/j.issn:0371-5736.2003.04.005 石玉若, 张宗清, 刘敦一, 唐索寒, 王进辉, 陈文, 张思红, 刘新宇. 2005a.湖北省随州三里岗地区二长花岗岩Rb-Sr、40Ar/39Ar同位素年龄[J].地球学报, 26(1):17-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200501003 石玉若, 张宗清, 刘敦一, 唐索寒, 王进辉, 刘涛. 2005b.湖北省随州杨家棚地区辉长岩Rb-Sr同位素年龄[J].地球学报, 26(06):521-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200506006 王清晨, 林伟. 2002.大别山碰撞造山带的地球动力学[J].地学前缘, 9(4):257-265. doi: 10.3321/j.issn:1005-2321.2002.04.005 吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 肖庆辉, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 邓晋福, 冯益民, 刘勇, 寇彩化, 杨琳琳. 2016.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J].中国地质, 43(3):721-737. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160303&flag=1 严再飞, 黄智龙, 陈觅, 周家喜, 赵正, 丁伟. 2010.峨眉山溢流玄武岩省高钛玄武岩的两种不同地幔源特征[J].吉林大学学报(地球科学版), 40(6):1311-1322. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201006012 杨绍, 李德威, 陈桂凡, 李华亮, 张硕, 周涛. 2018.西藏乌鲁穷含铜磁铁矿床的发现及地质特征[J].中国地质, 45(6):1214-1227. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180611&flag=1 张国伟, 程顺有, 郭安林, 董云鹏, 赖绍聪, 姚安平. 2004.秦岭-大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合[J].地质通报, 23(9/10):846-853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200409005 张国伟, 董云鹏, 赖绍聪, 郭安林, 孟庆任, 刘少峰, 程顺有, 姚安平, 张宗清, 裴先治, 李三忠. 2003.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学(D辑), 33(12):1121-1135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200312001 张宗清, 张国伟, 刘敦一, 王宗起, 唐索寒, 王进辉. 2006.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[M].北京:地质出版社, 1-348. 周亮亮, 魏均启, 王芳, 仇秀梅. 2017. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J].岩矿测试, 36(4):350-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201704003 -
期刊类型引用(5)
1. 魏信祥,李江. 煤炭资源开发利用过程中铀迁移产生的环境影响研究进展. 科学技术与工程. 2023(10): 4033-4043 . 百度学术
2. 邸齐梦,董一慧,李佳乐,徐卫东,高柏,陈功新. 何魁核电站拟选厂址水体天然放射性核素分布特征及健康风险评价. 有色金属工程. 2023(07): 134-146 . 百度学术
3. 魏信祥,李江. 石煤中铀在水-岩作用下浸出释放的环境影响及控制因素. 有色金属(冶炼部分). 2023(11): 63-74 . 百度学术
4. 汪媛媛,郑刘根,吴盾,陈永春. 小尺度矸石堆场及其周边土壤中放射性元素特征分析及风险评价. 环境化学. 2022(11): 3640-3649 . 百度学术
5. 王珍珍,李进孝,张珂,马家亮,张绍韡,Maksim G Blokhin,张飘飘,蔺敬妍,孙明晓,申伟刚,赵存良. 山西沁水煤田首阳山矿15~#煤的稀土元素分布规律、赋存状态及其对成煤环境的指示. 中国地质. 2021(03): 777-784 . 本站查看
其他类型引用(5)