All-Element Dataset of Combined Exploration of Urban Underground Spaces with Strong Interference
-
摘要:
地下空间利用已成为解决城市发展空间问题的主要途径,地下空间精准探测是地下空间资源开发利用的基础,但城市强干扰环境下地下空间探测的原理、方法组合、采集的要素及数据应用等目前尚为难题。本数据集依托中国地质调查局陕西省重要城镇地质灾害风险评估(2013—2016)、关中-天水经济区综合地质调查(2016—2018)、西安多要素城市地质调查(2018—2021)、延安革命老区综合地质调查(2018—2021) 4个项目,面向岩土体质量评价和城市地下空间资源评价与开发利用的需要,在常规物探、钻探和实验测试基础上,引入了随钻监测技术,开展了13个参数的测井,形成了地下空间组合探测方法,获取了岩土体质量和城市地下空间评价所需的全要素数据。本数据集分别来自陕西省秦巴山地山阳县城区、关中盆地西安市城区和黄土高原延安市城区,数据包含工程地质钻探、实验测试、多参数测井、随钻监测和地面物探5种数据类型,其中工程地质钻孔144个,实验测试样品672个,物探测井13类参数111个孔,随钻监测36个孔,地面物探4类方法5条剖面,共计968组数据,3 664个文件,格式包含jpg,xls,doc,mpj,dwg。该数据集可用于岩土体质量评价、城市三维地质全要素建模、地下空间资源评价、岩土体质量与物性参数耦合关系研究,以及城市地质科学研究。
Abstract:The utilization of underground space has become a major means of solving the problems plaguing cities, and the precise exploration of underground space is fundamental to its development and utilization. However, the theories, method combination, elements to be acquired and data application regarding the exploration of urban underground space with strong interference are yet to be determined in a united manner. The all-element dataset of combined exploration of urban underground space with strong interference (also referred to as the Dataset) relies on these four projects initiated by the China Geological Survey: Risk Assessment of Geologic Disasters in Important Towns in Shaanxi Province (2013—2016), Comprehensive Geological Survey in Guanzhong – Tianshui Economic Region (2016—2018), Multi-element Urban Geological Survey in Xi’an (2018—2021) and Comprehensive Geological Survey in Yan’an, a Former Base of the Communist Party of China (2018—2021). The aim of these projects were to meet the demand for quality assessment of rock and soil masses and also the assessment, development and utilization of urban underground space. During the development of the Dataset, monitoring-while-drilling (MWD) technology was introduced based on regular geophysical prospecting, drilling and testing. Furthermore, a total of 13 parameters was logged, a combined method of underground space exploration was established and the all-element data required for quality assessment of rock and soil masses and urban underground space were obtained. The data in the Dataset were obtained from the urban area of Shanyang County, in the Qinba Mountains of Shaanxi Province, the urban area of Xi’an City in the Guangzhong Basin and the urban area of Yan’an City in the Loess Plateau. It consists of five types of data, i.e., engineering geological drilling, testing, multi-parameter logging, MWD and ground geophysical prospecting. In detail, the data were acquired from 144 engineering geological boreholes, 672 testing samples, 111 boreholes for the logging of 13 parameters by geophysical prospecting, 36 MWD boreholes and 5 profiles of ground geophysical prospecting obtained via 4 methods. In total, the Dataset consists of 968 sets of data and 3 664 files in the formats of .jpg, .xls, .doc, .mpj and .dwg. It can be applied to the quality assessment of rock and soil masses, the establishment of 3D urban geological all-element models, the assessment of underground space resources, the research on the coupling relationship between the quality and physical properties of rock and soil masses and the scientific research of urban geology.
-
1. 引言
随着中国城市化进程的不断加快,越来越多的城市面临着空间资源紧缺、环境恶化等问题(钱七虎,1998),对城市地质工作提出了更高的要求(张茂省等,2014)。地下空间为城市的基础设施、生活服务的重要空间,是保证现代城市可持续发展的必要条件(Bobylev N,2009;Broere W,2016;张茂省等,2018;王化齐等,2019)。地下空间开发利用已成为解决城市发展空间问题的主要途径。
不同城市的地下空间开发利用需要考虑多种地质环境条件。山地丘陵区城市的地形地貌条件导致地表空间严重短缺,然而其地质环境条件有利于地下空间的开发利用(张茂省等,2019;杨文采等,2019);历史文化名城的地下空间开发要考虑地下历史遗迹的保护(乔永康等,2017);存在地面沉降、地裂缝、活动构造、黄土湿陷、砂土液化、地质灾害等地质环境问题的城市,需要查明这些限制地下空间开发利用的环境地质条件(张茂省等,2013;田中英等,2019;张珊珊等,2019;周圆心等,2019;戚帮申等,2019)。
地下空间及地质环境条件的精准探测是地下空间资源评价和开发利用的基础(王亚辉等,2019),为城市三维地质建模提供数据支撑(何静等,2019)。由于城市强干扰的物理场环境、复杂的地质环境条件和既有建筑物影响,城市地下空间探测的理论方法还不成熟(陈伟,2006;赵镨等,2017),在城市强干扰环境下,地下空间探测的地质调查技术方法组合及其获取的数据资料不能完全满足城市地下空间资源评价和开发利用规划的需求。
2013—2016年在实施中国地质调查局“陕西省重要城镇地质灾害风险评估(山阳县)”过程中,为了科学评价岩土体质量,探测软弱结构面,给地质灾害风险评估提供判识依据,项目组与香港大学岳中琦教授合作,引入了其研发的随钻监测技术(Yue ZQ et al.,2004;岳中琦,2014),获取了第一批随钻监测数据。
2017年在实施中国地质调查局“关中-天水经济区综合地质调查”项目期间(2016—2018),以服务于面向盾构施工法的岩土体质量评价、地下空间资源评价、三维地质建模为目的,在大西安的西咸新区和灞桥区分别实施了地下空间组合探测方法试验,尝试了第四纪松散堆积层区的随钻监测,与西北大学谷天峰副教授合作改进了随钻监测仪器,并选择13个参数进行了物探测井,成功获取了2个试验孔的钻探、随钻监测和13个参数的测井数据,形成了地下空间组合探测方法。
2018年启动了“西安多要素城市地质调查(2018—2021)”和“延安革命老区综合地质调查(2018—2021)”二级项目,面向岩土体质量评价和城市地下空间资源评价与开发利用的需要,在常规物探、钻探和实验测试基础上,全面开展了综合物探、随钻监测和13个参数的测井工作,获取了岩土体质量和城市地下空间评价所需的全要素数据。
本数据集资料采自陕西省秦巴山地山阳县城区、关中盆地西安市城区和黄土高原延安市城区,数据包含工程地质钻探、实验测试、多参数测井、随钻监测和地面物探数据5类,其中工程地质钻孔144个,实验测试样品672个,物探测井13类参数111个孔,随钻监测36个孔,地面物探4类方法5条剖面,共计968组数据,3 664个文件,格式包含jpg,xls,doc,mpj,dwg。数据集的元数据简表如表1所示。
表 1 数据库(集)元数据简表条目 描述 数据库(集)名称 干扰环境下城市地下空间组合探测与全要素数据集 数据库(集)作者 张茂省,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
王益民,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
张 戈,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
董 英,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
孙萍萍,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
贾 俊,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
数据时间范围 2013—2018年 地理区域 西安市,东经107°24′~109°30′,北纬33°24′~34°24′
延安市,东经109°22′~109°37′,北纬36°27′~36°40′
山阳县,东经109°50′10″~109°56′57″,北纬33°30′27″~33°33′05″数据格式 .jpg,.xls,.doc,.mpj,.dwg 数据量 1.19 GB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目 “陕西省重要城镇地质灾害风险评估、关中-天水经济区综合地质调查、西安多要素城市地质调查、延安革命老区综合地质调查”(DD20160261、DD20189220、DD20189270) 语种 中文 数据库(集)组成 钻探数据包括:钻孔编号、钻孔地理位置、钻孔坐标、孔口高程、钻机类别、施工方法、施工日期、钻孔深度、地层岩性描述、分层序号、分层厚度、取样深度
测井数据包括:测量日期、测量深度、自然伽玛、自然电位、密度、声波时差、双侧向电阻率、极化率、磁化率、伽玛能谱、井温、井径、井斜
随钻监测数据包括:测量日期、钻进回次、加杆长度、钻孔深度、油缸位移、钻杆转速、油压、扭压
实验测试数据包括:土样测试数据为样品编号、取样深度、含水率、天然密度、粘聚力、内摩擦角、自重湿陷系数、比表面积,岩芯测试数据为样品编号、取样深度、声波速度、单轴抗压强度
地面物探数据包括:测量日期、探测方法、排列装置、测量点数、测线长度、采样间隔2. 数据采集和处理方法
本数据集工作区域分别是陕西省秦巴山地山阳县城区、关中盆地西安市城区和黄土高原延安市城区,工区地理位置及地势如图1所示。
2.1 工程地质钻探
工程地质钻探的目标是揭示地层结构及其工程地质性质,建立三维地质结构模型。本数据集共采集工程地质勘探钻孔144个。其中,西安工区实施了104个工程地质勘探钻孔(图2),延安工区实施了32个钻孔(图3),山阳工区实施了8个钻孔(图4)。表2~表4为钻孔基本情况信息。
表 2 西安市工程地质钻孔基本情况钻孔
编号钻孔深度/m 编录岩性 测井 随钻监测 实验测试 白鹿原 200.00 黄土、粉质黏土、砂砾石层 有 机场 200.00 黄土、粉质黏土、细砂、砂砾石层 有 F1 150.00 细砂、中砂、粉质黏土、砂砾石层 有 F2 100.00 黄土状土、粉质黏土、中砂、粗砂 F3 100.00 黄土状土、粉质黏土、细砂、中砂 F4 100.00 黄土状土、粉质黏土、细砂、中砂、砂砾石层 有 F5 100.00 黄土状土、中砂、砂砾石层 有 F6 100.00 黄土状土、粉质黏土、细砂、粗砂 有 F7 100.20 黄土状土、粉质黏土、粗砂、砾砂 F8 100.00 黄土状土、粉质黏土、细砂、中砂 F9 100.00 粉质黏土、细砂、中砂、砂砾石层 有 F10 100.00 黄土状土、粉质黏土、细砂、中砂、砾砂 有 土样 F11 100.00 黄土状土、粉质黏土、细砂、中砂、砾砂、砂砾石层 有 F12 150.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砂砾石层 有 土样 F13 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层、 有 F14 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 有 土样 F15 100.00 粉质黏土、细砂、中砂、粗砂、 有 F16 100.00 粉质黏土、细砂、中砂、粗砂、 有 有 土样 F17 100.00 粉质黏土、细砂、中砂、粗砂、 有 土样 F18 100.10 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 F19 100.00 中砂、砾砂、砂砾石层 有 有 土样 F20 150.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 有 有 土样 F21 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F22 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F23 150.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F24 100.00 黄土状土、粉质黏土、细砂、中砂 有 F25 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F26 100.00 粉质黏土、细砂、中砂、砂砾石层 有 土样 F27 100.00 粉质黏土、中砂、粗砂 有 有 土样 F28 150.00 粉质黏土、细砂、粗砂 有 土样 F29 100.00 粉质黏土、细砂、粗砂 有 土样 F30 100.00 粉质黏土、细砂、粗砂 有 F31 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F32 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F33 100.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 土样 F34 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F35 150.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F36 100.00 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 土样 F37 100.00 粉质黏土、细砂、中砂、粗砂 有 土样 F38 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂 有 F39 100.00 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 土样 F40 100.20 粉质黏土、细砂、中砂、砾砂 有 F41 150.00 粉质黏土、细砂、中砂、粗砂、 有 有 土样 F42 100.00 细砂、中砂、粗砂、 有 土样 F43 100.00 粉质黏土、细砂、中砂、粗砂、 有 有 F44 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F45 150.00 粉质黏土、细砂、中砂、粗砂、 有 有 土样 F46 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F47 150.00 黄土状土、粉质黏土、细砂、中砂、砾砂、砂砾石层 有 有 土样 F48 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 F49 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F50 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F51 100.00 粉质黏土、细砂、中砂、砂砾石层 有 土样 F52 100.00 细砂、中砂、砾砂 有 土样 F53 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F54 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F55 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F56 100.00 粉质黏土、细砂、中砂、砾砂 有 F57 100.00 粉质黏土、细砂、中砂、粗砂 有 有 土样 F58 150.00 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 有 土样 F59 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F60 100.50 黄土状土、粉质黏土、细砂、中砂 有 F61 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F62 100.40 黄土状土、粉质黏土、中砂 有 F63 100.00 粉质黏土、中砂、砾砂 有 F64 100.00 粉质黏土、细砂、中砂、砂砾石层 有 有 土样 F66 150.00 黄土状土、粉质黏土、细砂、中砂、砂砾石层 有 有 F67 100.10 粉质黏土、细砂、中砂、粗砂、砾砂 有 F68 100.00 粉质黏土、细砂、中砂、砂砾石层 有 土样 F69 100.00 粉质黏土、细砂、中砂 有 土样 F70 100.00 粉质黏土、细砂、中砂、粗砂 有 有 土样 F71 150.00 粉质黏土、细砂、粗砂、砾砂 有 有 土样 F72 100.00 粉质黏土、细砂、中砂 有 有 土样 F73 100.00 粉质黏土、细砂、中砂 有 土样 F74 100.00 粉质黏土、细砂、中砂、粗砂 有 土样 F75 100.00 粉质黏土、细砂、中砂 有 土样 F76 150.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F77 100.20 粉质黏土、细砂、中砂、粗砂 有 F78 100.10 黄土状土、粉质黏土、中砂、粗砂、砾砂 F79 100.10 粉质黏土、细砂、中砂、粗砂 有 F80 150.10 粉质黏土、细砂、中砂、砾砂 有 F81 100.50 粉质黏土、细砂、中砂、粗砂、砾砂 有 F82 100.30 粉质黏土、细砂、中砂 有 F83 100.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 有 土样 F84 100.50 黄土状土、粉质黏土、细砂、中砂 有 F85 100.10 黄土状土、粉质黏土、中砂、砾砂 F86 100.20 粉质黏土、细砂、中砂 有 F87 150.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 有 土样 F88 100.20 黄土状土、粉质黏土、中砂、粗砂、砾砂 有 F89 100.20 粉质黏土、细砂、中砂、粗砂 有 F90 150.00 粉质黏土、细砂、中砂、粗砂 有 有 土样 F91 100.00 粉质黏土、细砂、中砂 有 土样 F92 100.00 粉质黏土、中砂 有 有 土样 F93 150.40 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 F95 100.20 粉质黏土、细砂、中砂 有 F96 150.30 粉质黏土、细砂、中砂、粗砂 有 F97 100.50 黄土状土、粉质黏土、中砂、粗砂 有 F98 100.50 粉质黏土、细砂、中砂、粗砂 有 F99 100.10 粉质黏土、细砂、中砂、粗砂 有 F100 100.10 粉质黏土、中砂、粗砂 有 F101 100.00 粉质黏土、细砂、中砂 有 土样 F102 100.00 粉质黏土、细砂、中砂 有 F103 100.20 粉质黏土、细砂、中砂 有 F104 150.00 粉质黏土、细砂、中砂 有 有 土样 F105 100.40 粉质黏土、细砂、中砂、粗砂 有 有 F106 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂 有 土样 表 3 延安市工程地质钻孔基本情况钻孔
编号钻孔深度/m 编录岩性 测井 随钻监测 实验测试 ZK01 52.30 粉质黏土、砂砾石层、细砂岩、泥岩 ZK02 192.86 粉质黏土、砂砾石层、细砂岩、泥岩、粗砂岩 有 有 岩芯 ZK03 272.68 粉质黏土、砂砾石层、细砂岩、泥岩、粗砂岩 有 有 岩芯 ZK04 293.00 细砂岩、泥岩、粗砂岩 有 有 ZK05 214.00 细砂岩、泥岩、粗砂岩 有 岩芯 ZK06 139.00 砂砾石层、细砂岩、泥岩 有 有 岩芯 ZK07 202.00 细砂岩、泥岩、粗砂岩 有 有 ZK08 56.80 粉质黏土、砂砾石层、细砂岩、泥岩 ZK09 151.00 黄土、细砂岩、泥岩、粗砂岩 有 ZK10 119.50 细砂岩、泥岩、粗砂岩 ZK12 102.00 粉质黏土、砂砾石层、细砂岩、泥岩、粗砂岩 有 ZK13 92.00 粉质黏土、细砂、砂砾石层、细砂岩、泥岩、粗砂岩 岩芯 ZK14 90.00 黄土、红黏土、细砂岩、泥岩 有 土样 ZK15 99.00 细砂岩、泥岩、粗砂岩 有 岩芯 ZK16 130.00 细砂岩、泥岩、粗砂岩 岩芯 ZK17 174.00 细砂岩、泥岩、粗砂岩 有 岩芯 ZK18 92.00 细砂岩、泥岩、粗砂岩 ZK19 120.00 黄土、红黏土、粗砂岩 有 ZK21 118.00 细砂岩、泥岩、粗砂岩 有 ZK22 98.00 黄土、细砂岩、泥岩、粗砂岩 有 ZK23 173.00 红黏土、细砂岩、泥岩、粗砂岩 有 ZK24 104.00 黄土 土样 ZK25 89.00 黄土、红黏土 ZK26 64.00 黄土、红黏土、细砂岩、泥岩、 土样 ZK27 123.00 黄土 土样 ZK28 108.00 黄土、红黏土、细砂岩、泥岩、 土样 ZKP2-1 126.80 黄土、红黏土、细砂岩、泥岩、 ZKP2-2 75.40 红黏土、细砂岩、泥岩 ZKP2-3 50.00 黄土、细砂岩、泥岩、粗砂岩 ZKP3-1 117.00 黄土、红黏土 土样 ZKP3-2 110.00 黄土、红黏土、细砂岩、泥岩、 土样 ZKP3-3 131.50 黄土、红黏土 土样 表 4 山阳县工程地质钻孔基本情况钻孔编号 钻孔深度/m 编录岩性 测井 随钻监测 实验测试 山阳中学ZK1 20.00 黏土、粗砂、砂砾石层 有 山阳中学ZK3 20.00 黏土、粗砂、砂砾石层 有 山阳中学ZK4 20.00 粉质黏土、黏土、钙质结核 有 山阳中学ZK5 20.00 黏土、中砂、粗砂、砂砾石层 有 桥儿沟ZK2 20.00 坡积层、千枚岩 有 桥儿沟ZK3 34.00 滑坡堆积物、千枚岩 有 桥儿沟ZK4 20.00 坡积层、千枚岩 有 桥儿沟ZK5 20.00 坡积层、千枚岩 有 2.2 多参数测井
测井数据包含西安和延安2个文件夹,每个文件夹包含单孔数据、对比图、等值线图和总结报告。西安工区完成了98个钻孔的全要素测井,延安工区完成了13个钻孔的全要素测井。测井参数包括自然伽玛、自然电位、密度、声波时差、双侧向电阻率、极化率、磁化率、伽玛能谱、井温、井径、井斜。测井采用KH-2数字测井仪,测量速度6~10 m/min,每种方法的数据采集符合相应的技术要求。根据统计可以得到地层的测井参数特征。根据声波速度和密度,可以计算地层的力学参数。根据所有单孔的数据,可以绘制工区测井参数的等值线图。
2.3 随钻监测
随钻监测数据包含西安、延安、山阳3个文件夹,以及随钻监测系统使用说明、随钻监测数据分析流程文件。每个文件夹包含初始数据、随钻监测记录表、数据分析过程和结果图。随钻监测数据在excel处理,分析过程保存为word文件,处理后的数据在surfer软件成图。西安随钻监测数据包含22个钻孔,延安随钻监测数据包含6个钻孔,山阳随钻监测数据包含8个钻孔。随钻监测采用香港大学和自主研制的随钻监测系统,包括位移传感器、转速传感器、油压传感器、扭压传感器、数据采集器,采样间隔1~2 s。随钻监测的数据处理是从初始数据提取表示钻进过程的有效数据,并计算进尺、钻进时间和钻进速度。表5为从随钻监测初始数据提取有效数据的条件。
表 5 随钻监测提取钻进过程有效数据的判断条件钻机状态 位移传感器C 转速传感器R 油压传感器P 钻进过程 加压钻进 C2-C1<a R>0 P1>P2 不加压钻进 C2-C1=0 R>0 P1=P2=0 其他过程 空钻 C2-C1>a R>0 P1>P2 下钻杆、上钻杆 C2-C1=0 R=0 P1<P2 注:P1是上油压,P2是下油压,a是根据随钻监测数据和钻孔记录确定的数值,在岩石和土中钻进的a值不同。 根据提取的有效数据,可以得到钻进时间-进尺曲线、钻进速度-进尺曲线、转速-进尺曲线、油压-进尺曲线、扭压-进尺曲线。
2.4 实验测试
实验测试数据保存为excel格式,共3个文件。实验测试数据包括:土样测试数据为样品编号、取样深度、含水率、天然密度、粘聚力、内摩擦角、自重湿陷系数、比表面积,岩芯测试数据为样品编号、取样深度、声波速度、单轴抗压强度。
2.5 地面物探
在西安开展了地下空间精细化探测试验(表6)。城市环境干扰因素多,电磁干扰、震动干扰强烈。高密度电法和微动台阵的探测深度较大,而探地雷达的分辨率较高,因此将这些方法联合,在同一区域实施探测,分析每种方法的探测效果。图5是西安城市地下空间探测示意图。微动台阵采用WD-1智能微动勘探仪,嵌套三角形的台阵方式,最小三角形台站距离6~10 m,采样间隔10 ms。高密度电法采用EDJD-1多功能直流电法仪,温纳装置,电极间距5 m。地质雷达采用SIR-4000地质雷达,100 MHz和200 MHz天线,采样间距1 m。浅层地震采用SE2404NT多道分布式工程地震仪和60 Hz检波器,多次覆盖单边激发反射波勘探,锤击震源,道间距4 m,覆盖次数8次,采样间隔0.5 ms,记录长度512 ms。
表 6 西安城市地下空间探测基本情况序号 工作方法 测量日期 工作量 采样间隔/m 1 多参数综合测井 9月11~21日 200 m 0.05 2 微动台阵 10月11~14日 16点 100 3 高密度电法 10月19~22日 2.01 km 7 4 浅层地震 10月14~28日 1.8 km 4 5 地质雷达 10月23~26日 2.8 km 1 6 高密度电法 11月8~11日 2.04 km 5 3. 数据样本描述
3.1 工程地质钻探
工程地质钻探获取的数据信息包括钻孔深度、地层岩芯等,经过人工编录得到钻孔综合地层柱状图,然后数字化。表7为钻孔数据名称及文件格式。
表 7 工程地质钻孔文件格式数据名称 文件格式 西安钻孔地层柱状图 dwg格式(CAD文件) 延安钻孔地层柱状图 mpj格式(MapGIS文件) 图6是延安ZK10综合地层柱状图。该柱状图包含了延安组、富县组和瓦窑堡组砂岩、泥岩,体现了延安工区沉积地层的结构。
3.2 多参数测井
测井获取的数据信息包括钻孔深度、视电阻率、声波时差、自然伽玛等地球物理参数以及密度、孔隙度、渗透率等力学参数,根据声波时差和密度计算岩土强度。表8为测井数据文件格式说明。以延安工程地质钻孔测井结果统计为例,表9为测井结果统计。
表 8 测井数据文件格式数据名称 文件格式 初始数据 txt格式 测井曲线、对比图 mpj格式(MapGIS文件) 等值线图 jpg格式 单孔测井总结 doc格式 技术说明、报告 doc格式、pdf格式 表 9 延安工程地质钻孔测井结果统计表层位 岩性 视电阻率/(Ω·m) 密度/(g/cm3) 自然伽玛/API 孔隙度/% 渗透率/md−1 平均 平均 平均 平均 平均 第四系(Q) 粉质黏土 60.08 2.13 111.48 10.11 13.36 粉土 108.12 1.95 109.62 18.58 12.40 粉砂 21.60 2.10 92.40 10.01 12.02 细砂 108.04 2.03 81.30 10.96 11.24 砾石 136.23 2.48 54.30 15.22 12.25 黄土 140.16 1.98 113.04 16.99 15.16 J2y2 砂质泥岩 33.62 2.26 121.58 8.41 10.59 细粒砂岩 40.74 2.28 106.31 6.13 12.62 泥岩 21.50 2.37 167.82 7.50 13.52 中粒砂岩 33.62 2.26 121.58 8.41 10.59 粉砂岩 31.84 2.40 130.50 7.00 11.24 细砾岩 37.56 2.21 82.81 9.20 10.25 粗粒砂岩 42.39 2.07 56.56 10.26 9.56 J2y1 砂质泥岩 31.53 2.26 155.29 8.38 10.93 泥岩 21.22 2.33 160.82 9.60 10.15 粗粒砂岩 78.45 2.33 58.15 9.82 9.57 细粒砂岩 60.81 2.30 93.72 9.24 10.18 中粒砂岩 49.47 2.31 79.19 9.27 10.60 粉砂岩 46.29 2.46 103.01 13.25 11.34 细砾岩 226.96 2.41 43.20 13.10 11.24 中砾岩 53.86 2.44 85.37 7.42 11.17 J2f 泥岩 15.32 2.43 173.38 8.31 11.42 砂质泥岩 26.88 2.41 130.50 6.22 10.81 粗粒砂岩 28.08 2.49 60.62 14.62 9.61 细粒砂岩 25.36 2.49 118.32 12.62 10.53 中粒砂岩 35.36 2.37 106.68 11.15 9.84 粉砂岩 31.12 2.51 143.58 9.05 9.55 T3w 泥岩 26.29 2.46 184.23 10.82 10.08 砂质泥岩 41.05 2.45 163.14 9.73 9.78 中粒砂岩 60.75 2.50 82.99 13.04 9.50 细粒砂岩 67.70 2.49 110.10 12.83 10.65 炭质泥岩 25.53 1.93 178.53 9.26 9.53 泥质粉砂岩 42.91 2.45 164.40 8.53 9.83 图7为延安组的钻孔测井曲线特征。图8为声波测井资料计算得到的延安组平均强度指数参数值。有等值线图可知,平均强度指数最高值在ZK04钻孔处,数值为26.69 MPa,最低值在ZK02钻孔处,数值为19.89 MPa,整体在30~15 MPa,在工程地质岩体级别分类属于较软岩石。
3.3 随钻监测
随钻监测获取的数据信息包括钻孔深度、钻杆位移、钻杆转速、油压等钻进参数。表10为随钻监测数据名称及文件格式说明。
表 10 随钻监测数据文件格式数据名称 文件格式 初始数据 txt格式 分析结果 xls格式 随钻参数曲线 srf格式(surfer文件) 技术说明、报告 doc格式 图9是延安工区ZK07钻孔的随钻监测结果。可以看出,不同地层的钻进速度有差异,富县组泥岩的钻进速度大于富县组细砂岩的钻进速度。不同年代砂泥岩的钻进速度也有差异,富县组砂泥岩的钻进速度大于瓦窑堡组砂泥岩的钻进速度。
从延安工区ZK19钻孔的随钻监测结果(图10)可以看出,不同地层的钻进速度有差异,黄土的钻进速度较大,强风化砂泥岩的钻进速度较小。不同年代黄土的钻进速度也有差异,年代越早则黄土的钻进速度越小。
3.4 实验测试
实验测试获取的岩芯数据信息包括取样层位、抗压强度、弹性模量、内聚力等,获取的土样数据信息包括取样层位、含水率、孔隙比、湿陷系数、内聚力等。实验测试数据为xls格式。表11—表13是延安钻孔获取的土样和岩芯的物理力学指标试验结果统计。
表 11 延安黄土及红黏土物理力学指标试验结果统计表层号 值别 含水率
/%重度
/kN·m−3干重度
/kN·m−3孔隙比 饱和度
/%液限
/%塑限
/%塑性指数
/%液性指数
/%压缩系数
/MPa−1湿陷系数 内聚力
/kPa内摩擦角
/°晚更新世黄土 统计频数 30 29 29 29 29 30 30 30 30 29 15 8 8 最大值 20.2 19 16.8 1.31 76.0 28.2 17.5 11.0 0.72 0.2 0.099 62.1 32.2 最小值 3.0 13.3 12.4 0.61 15.0 24.6 16.7 9.4 <0 0.1 0.030 22.1 15.3 平均值 12.72 15.9 14.1 0.94 38.86 27.13 17.15 9.89 0.19 0.075 33.54 24.1 标准差 4.77 1.6 1.1 0.16 17.0 0.47 0.12 0.3 0.08 13.33 5.31 变异系数 0.38 0.10 0.08 0.17 0.44 0.02 0.01 0.04 0.44 0.40 0.22 中更新世黄土 统计频数 127 127 127 127 127 126 128 128 129 126 12 60 60 最大值 22.6 21.0 18.1 0.987 98.0 29.9 17.9 12.0 0.92 0.46 0.078 75.8 45.0 最小值 4.9 16.8 13.8 0.482 38.0 24.3 16.6 7.7 0.0 0.07 0.004 10.8 13.6 平均值 18.39 19.0 16.0 0.7 71.94 29.16 17.46 11.7 0.17 0.13 0.013 45.41 29.81 标准差 3.73 0.9 0.8 0.09 12.9 1.91 0.74 0.24 0.20 0.06 19.33 7.06 变异系数 0.20 0.05 0.05 0.12 0.18 0.07 0.04 0.11 1.19 0.43 0.43 0.24 红黏土 统计频数 4 4 3 4 3 4 4 4 4 4 4 4 4 最大值 17.60 20.9 18.8 0.618 91.6 30.7 21.2 11.7 0.71 0.12 0.005 450.8 54.5 最小值 7.07 17.5 17.8 0.443 66.9 25.9 16.8 9.1 0.57 0.02 0.002 41.65 24.0 平均值 11.99 19.2 18.2 0.517 75.56 29.03 18.9 10.2 0.67 0.08 0.003 201.8 32.4 表 12 延安砂岩物理力学指标试验结果统计表统计指标 统计数 最大值 最小值 平均值 标准差 变异系数 饱和容重/g·cm−3 36 2.72 2.66 2.68 0.02 0.01 比重 36 2.54 2.23 2.31 0.09 0.03 普通吸水率 36 6.92 6.26 6.53 0.22 0.03 软化系数 36 0.72 0.57 0.67 0.05 0.11 抗拉强度/MPa 36 2.4 1.5 1.97 0.28 0.14 单轴抗压强度/MPa 干燥 36 75.1 43.0 61.2 10.9 0.20 饱水 36 51.3 28.2 41.2 9.07 0.22 弹性模量/MPa 36 4583 3865 4203 233.4 0.10 泊松比 36 0.26 0.17 0.22 0.03 0.12 内聚力/MPa 36 4.6 3.9 4.23 0.24 0.10 内摩擦角/° 36 43.5 40.0 41.6 1.00 0.02 表 13 延安泥岩物理力学指标试验结果统计表统计指标 统计数 最大值 最小值 平均值 标准差 变异系数 单轴抗压强度/MPa 干燥 33 1.336 0.747 0.944 0.15 0.16 饱水 33 0.774 0.311 0.502 0.16 0.31 弹性模量/MPa 33 9.8 6.86 7.26 2.08 0.25 泊松比 33 0.30 0.25 0.26 0.04 0.13 内聚力/kPa 33 71.1 16.7 53.85 3.8 0.21 内摩擦角/° 33 35 21 26 1.0 0.16 3.5 地面物探
微动数据处理得到地震波速度剖面,高密度电法数据处理得到电阻率剖面,地质雷达数据处理得到雷达剖面,浅层地震数据处理得到反射地震剖面。物探数据文件夹包含了测线分布图、技术说明、工作报告、综合剖面图。
地面物探获取的数据信息包括深度、视电阻率、地质雷达反射记录、浅层地震反射记录、微动记录,每种方法的初始数据格式不同,都经过专业的软件分析,得到对应的电阻率剖面、地质雷达剖面、地震反射剖面、横波速度剖面。然后,将这些剖面集中并与钻孔资料对比,保存为jpg格式。图11为西安城市地下空间精细化探测结果,图中包括了高密度电法、浅层地震、微动台阵的探测剖面。
根据多参数地球物理测井资料结合地球物理探测数据,本次试验剖面的地层综合解释结果为:
0.00~17.40 m段为细砂、中砂、粉砂、粗砂互层,此段电阻率高,自然电位负异常,声波波速值较低,判断该段推断地层中密,其中9.35~17.40 m 为弱含水层段。
17.40~19.35 m段为粉质黏土,此段电阻率值呈低值,声波波速值稍高,自然电位无明显异常,推断该段地层密实。
19.35~73.10 m段为中砂、细砂互层夹圆砾,此段电阻率值较高,声波波速值稍高,推断该段地层密实。
73.10~76.50 m段为粉质黏土夹中砂,此段电阻率值部分呈低值,声波波速较高,自然电位无明显异常,推断该段地层密实。
76.50~84.85 m段为中砂,此段电阻率值中低,声波波速值较高,自然电位负异常,为强含水层段,推断该段粒级统一,地层较为坚硬但孔隙度大。
84.85~87.55 m段为粉质黏土夹细砂,此段电阻率值低,声波波速值较高,推断该段地层密实。
87.55~95.00 m段为细砂、中砂互层,此段电阻率值中值,声波波速值较高,自然电位无明显异常,推断地层较密实。
95.00~124.00 m段为中砂,此段电阻率值中低,声波波速值高,自然电位无明显异常,推断地层密实。
4. 数据质量控制和评估
工程地质钻探取样和试验测试过程符合相关规范《工程地质钻探规程》(DZ/T 0017−1991),《土工试验方法标准》(GB/T 50123−1999),《岩土工程勘察规范》(GB 50021−2009),《工程地质调查技术要求(1∶50 000)》(DD 2019−06),每天记录和检查相关表格资料。多参数测井符合相关规范(《水文测井工作规范》DZ/T 0181−1997)。城市地下空间探测的地球物理方法选取合理,各方法实施过程符合相关规范《城市工程地球物理探测规范》(CJJ 7−2007),数据处理由专业人员实施。随钻监测技术目前还不完善,没有相关规范,其数据采集和处理过程根据已有研究基础实施。
5. 数据价值
由于城市强干扰的物理场环境、复杂的地质环境条件和既有建筑物影响,城市地下空间探测的理论和技术方法尚不成熟,传统的方法和目前开展的地质调查工作不能完全满足城市地下空间资源评价和开发利用规划的需求。为此,本次工作将岩体勘探随钻监测技术引入了第四纪松散堆积层,并选择自然伽玛、自然电位、密度、声波时差、双侧向电阻率、极化率、磁化率、伽玛能谱、井温、井径、井斜等13个参数进行了井中物探,形成了钻探与随钻监测结合、地面物探与井中物探结合、原位试验与室内测试结合,克服强干扰环境的地下空间探测组合技术方法,获取了宝贵的数据。本数据集工作区域涵盖了陕西省秦巴山地、关中盆地和黄土高原,数据具有较强的代表性。所获数据对于岩土体质量评价、城市三维地质全要素建模、地下空间资源评价、岩土体质量与物性参数耦合关系研究、城市地质与岩土工程实践和科学研究均具有十分重要的价值。
6. 结论
干扰环境下城市地下空间组合探测与全要素数据集采自秦岭山地、关中盆地和黄土高原,包括工程地质钻探、实验测试、多参数测井、随钻监测和地面物探数据5个文件夹,其中工程地质钻孔144个,实验测试样品672个,物探测井13类参数111个孔,随钻监测36个孔,地面物探4类方法5条剖面,共计968组数据,3 664个文件,格式包含jpg,xls,doc,mpj,dwg。
钻孔数据包括施工日期、钻孔深度、地层岩性描述、分层序号、分层厚度、取样深度;测井数据包括自然伽玛、自然电位、密度、声波时差、双侧向电阻率、极化率、磁化率、伽玛能谱、井温、井径、井斜;随钻监测数据包括测量时间、钻进回次、加杆长度、钻孔深度、油缸位移、钻杆转速、油压、扭压;实验测试数据包括:土样测试数据为含水率、天然密度、粘聚力、内摩擦角、自重湿陷系数、比表面积,岩芯测试数据为声波速度、单轴抗压强度;地面物探数据包括:探测方法、排列装置、测量点数、测线长度、采样间隔。该数据集可用于岩土体质量评价、城市三维地质全要素建模、地下空间资源评价、岩土体质量与物性参数耦合关系研究、城市地质与岩土工程实践和科学研究。
在地质调查过程中,逐步形成一套强干扰环境下城市地质与地下空间多参数探测技术组合,积累了一批宝贵的数据,鉴于我们精力和能力所限,以及公益性地质工作性质要求,本次毫不保留地向社会提供数据和数据说明,实现数据共享,希冀吸纳海内外专家、学者、研究生共同研究。
致谢:感谢香港大学岳中琦教授、陈帝酒高级技师,西北大学谷天峰副教授,中国地质大学(北京)张中俭副教授在随钻监测技术方法与监测仪器方面的鼎力支持,感谢陕西工程勘察研究院有限公司刘贤斌院长、周晓燕副总工程师和中国煤炭地质总局航测遥感局王辉院长、郭瑞华项目负责人组织实施了主要的工程地质钻探,感谢陕西地矿物化探队有限公司刘建利、余常忠副总经理组织实施了物探工作。感谢审稿人和编辑部在稿件修改过程中提出了的宝贵意见。
1. Introduction
With increasingly quick urbanism in China, more and more cities are confronted with problems such as a serious shortage of space and a worsening environment (Qian QH, 1998). This imposes a greater importance on urban geological work (Zhang MS et al., 2014). The development and utilization of underground space are necessary to guarantee the sustainable development of modern cities since additional space can be gained for urban infrastructure, living and services (Bobylev N, 2009; Broere, 2016; Zhang MS et al., 2018; Wang HQ et al., 2019). Therefore, the development and utilization of underground space have become a major means of solving the problems currently plaguing cities.
Different geological environmental conditions must be taken into consideration for the development and utilization of underground space in different cities. For example, in the cities located in mountainous or hilly areas, although the topography and landform result in severe shortage of ground space, the geological environmental conditions facilitate the development and utilization of underground space (Zhang MS et al., 2019; Yang WC et al., 2019). In famous historic and cultural cities, the protection of underground historic relics must be considered in the development of the underground space (Qiao YK et al., 2017); in cities suffering from geological environmental problems such as ground subsidence, land cracks, active structures, loess collapse, sand liquefaction and geological disasters, the environmental geological conditions that limit the development and utilization of underground space must be ascertained (Zhang MS et al., 2013; Tian ZY et al., 2019; Zhang SS et al., 2019; Zhou YX et al., 2019; Qi BS et al., 2019).
Precise exploration of underground space and geological environmental conditions is fundamental to the assessment, development and utilization of the underground space (Wang YH et al., 2019) and it will provide data for the establishment of 3D urban geological models (He J et al., 2019). Unfortunately, there is still no concrete theory on underground exploration as it is complicated by intricate geological environmental conditions and existing city buildings (Chen W, 2006; Zhao P et al., 2017). Meanwhile, the technology, method combination, elements to be acquired and data application regarding the exploration of urban underground space with strong interference are not normative yet and fall behind practical demand. Therefore, all these constitute the critical elements of the precise exploration of urban underground space. Moreover, current geological surveys and data obtained fail to fully satisfy the demand for the assessment and planning of the development and utilization of urban underground space.
The project titled Risk Assessment of Geological Disasters in Important Towns in Shaanxi (Shanyang County) initiated by the China Geological Survey was carried out in 2013—2016. In order to scientifically assess the quality of rock and soil masses, explore the weak structural planes, and thus provide a judgment basis for a risk assessment of geological disasters, the MWD technology researched and developed by Professor Yue Zhongqi from the University of Hong Kong (Yue ZQ et al., 2004; Yue ZQ, 2014) was introduced into the project by collaborating with the professor himself. As a result, the first batch of MWD data was obtained.
For the purpose of serving the quality assessment of rocks and soil masses, the assessment of underground space resource, and 3D geological modeling that were oriented towards shield tunneling method during the implementation of the project titled Comprehensive Geological Survey in Guanzhong – Tianshui Economic Region (2016—2018) initiated by China Geological Survey in 2017, a combined exploration method of underground space was conducted in Xixian New Area, Xi’an, and MWD was tried in the Quaternary loose deposits in Baqiao District, Xi’an. Furthermore, the equipment for MWD was improved by cooperating with Associate Professor Gu Tianfeng from Northwest University, and 13 parameters were selected for logging of geophysical prospecting. As a result, the data of drilling and MWD of two test boreholes and the data from logging the 13 parameters were obtained successfully; and a combined exploration method of underground space was established.
Two second-level projects named Multi-Element Urban Geological Survey in Xi’an (2018—2021) and Comprehensive Geological Survey in Yan’an, a Former Base of the Communist Party of China (2018—2021) were launched in 2018. Comprehensive geophysical prospecting, MWD and the logging of 13 parameters were conducted based on regular geophysical prospecting, drilling and testing in order to meet the demand of the project in terms of the quality assessment of rock and soil masses and the assessment, development and utilization of urban underground space. As a result, the all-element data required for the quality assessment of both rock and soil masses as well as urban underground space were obtained in comparison with the multi-element urban geological survey currently implemented by the China Geological Survey.
The data in the Dataset were collected from the urban area of Shanyang County, the Qinba Mountains in Shaanxi Province, the urban area of Xi’an City in the Guanzhong Basin and the urban area of Yan’an City in the Loess Plateau. It consists of five types of data, i.e., engineering geological drilling, testing, multi-parameter logging, MWD and ground geophysical prospecting. In detail, the data were acquired from 144 engineering geological boreholes, 672 testing samples, 111 boreholes for logging of 13 parameters by geophysical prospecting, 36 MWD boreholes and 5 profiles of ground geophysical prospecting obtained via 4 methods. In total, the Dataset consists of 968 sets of data and 3 664 files in the formats of .jpg, .xls, .doc, .mpj and .dwg. The metadata table of the Database (Dataset) is shown in Table 1.
1. Metadata Table of Database (Dataset)Items Description Database (dataset) name All-Element Dataset of Combined Exploration of Urban Underground Spaces with Strong Interference Database (dataset) authors Zhang Maosheng, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Wang Yimin, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Zhang Ge, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Dong Ying, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Sun Pingping, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Jia Jun, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and EnvironmentData acquisition time 2013—2018 Geographical area Xi’an City, located at E 107°24′–109°30′ and N 33°24′–34°24′
Yan’an, located at E 109°22′–109°37′ and N 36°27′–36°40′
Shanyang County, located at E 109°50′10″–109°56′57″ and N 33°30′27″–33°33′05″Data format .jpg, .xls, .doc, .mpj, .dwg Data size 1.19 GB Data service system URL http://dcc.cgs.gov.cn Fund project China Geological Survey projects titled “Risk Assessment of Geological Disasters in Important Towns in Shaanxi” (DD20160261) and “Comprehensive Geological Survey in Guanzhong – Tianshui Economic Region” (DD20189220) and “Multi-element Urban Geological Survey in Xi’an and Comprehensive Geological Survey in Yan’an, a Former Base of the Communist Party of China” (DD20189270) Language Chinese Database (dataset) composition Data of drilling: the No., geographical location and coordinates of borehole, elevation of borehole head, drilling rig type, drilling method, drilling date, borehole depth, stratigraphic lithologic description, sub-layer No., sub-layer depth and sampling depth
Data of logging: measuring date, measuring depth, natural gamma ray, spontaneous potential, density, interval transit time, dual laterolog resistivity, polarizability, magnetic susceptibility, gamma-ray spectrometry and the temperature, diameter and deviation of well
Data of MWD: measuring date, drilling roundtrip, length of added drill rod, borehole depth, cylinder displacement, drill rod rpm, oil pressure and torsion pressure
Data of testing: testing data of soil samples consisting of sample No., sampling depth, moisture content, natural density, cohesive force, inner friction angle, coefficient of self-weight collapsibility and specific surface area; testing data of core samples including sample No., sampling depth, acoustic velocity and uniaxial compressive strength
Data of ground geophysical prospecting: measuring date, prospecting method, electrode arrangement device, number of measuring points, length of measuring line and sampling interval2. Methods for Data Acquisition and Processing
The Dataset covers the urban areas of Shanyang County in the Qinba Mountains, Xi’an in the Guanzhong Basin and Yan’an City in the Loess Plateau, Shaanxi Province. The geographical locations and relief of these working areas are shown in Fig. 1.
2.1 Engineering Geological Drilling
Geotechnical drilling is aimed at revealing the structure and engineering geological properties of strata and building 3D geological structural models. There were 144 engineering geological boreholes in total to be drilled for the Dataset, including 104 in the Xi’an working area (Fig. 2), 32 in the Yan’an working area (Fig. 3) and 8 in the Shanyang working area (Fig. 4). The basic information of the boreholes is shown in Tables 2–4.
2. Basic Information of Engineering Geological Boreholes in Xi’anBorehole No. Borehole depth/m Lithology recorded Logging MWD Testing Bailuyuan 200.00 Loess, silty clay, sandy gravel layer Yes Airport 200.00 Loess, silty clay, fine sand, sandy gravel layer Yes F1 150.00 Fine sand, medium sand, silty clay, sandy gravel layer Yes F2 100.00 Loess-like soil, silty clay, medium sand, coarse sand F3 100.00 Loess-like soil, silty clay, fine sand, medium sand F4 100.00 Loess-like soil, silty clay, fine sand, medium sand, sandy gravel layer Yes F5 100.00 Loess-like soil, medium sand, sandy gravel layer Yes F6 100.00 Loess-like soil, silty clay, fine sand, coarse sand Yes F7 100.20 Loess-like soil, silty clay, coarse sand, gravelly sand F8 100.00 Loess-like soil, silty clay, fine sand, medium sand F9 100.00 Silty clay, fine sand, medium sand, and sandy gravel layer Yes F10 100.00 Loess-like soil, silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F11 100.00 Loess-like soil, silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes F12 150.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Soil sample F13 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes F14 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Yes Soil sample F15 100.00 Silty clay, fine sand, medium sand, coarse sand Yes F16 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F17 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Soil sample F18 100.10 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes F19 100.00 Medium sand, gravelly sand, sandy gravel layer Yes Yes Soil sample F20 150.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Yes Soil sample F21 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F22 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F23 150.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F24 100.00 Loess-like soil, silty clay, fine sand, medium sand Yes F25 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F26 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Soil sample F27 100.00 Silty clay, medium sand, coarse sand Yes Yes Soil sample F28 150.00 Silty clay, fine sand, coarse sand Yes Soil sample F29 100.00 Silty clay, fine sand, coarse sand Yes Soil sample F30 100.00 Silty clay, fine sand, coarse sand Yes F31 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F32 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F33 100.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Soil sample F34 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F35 150.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F36 100.00 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Soil sample F37 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Soil sample F38 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand Yes F39 100.00 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Soil sample F40 100.20 Silty clay, fine sand, medium sand, gravelly sand Yes F41 150.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F42 100.00 Fine sand, medium sand, coarse sand Yes Soil sample F43 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes F44 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F45 150.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F46 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F47 150.00 Loess-like soil, silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Yes Soil sample F48 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes F49 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F50 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F51 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Soil sample F52 100.00 Fine sand, medium sand, gravelly sand Yes Soil sample F53 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F54 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F55 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F56 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes F57 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F58 150.00 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Yes Soil sample F59 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F60 100.50 Loess-like soil, silty clay, fine sand, medium sand Yes F61 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F62 100.40 Loess-like soil, silty clay, medium sand Yes F63 100.00 Silty clay, medium sand, gravelly sand Yes F64 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Yes Soil sample F66 150.00 Loess-like soil, silty clay, fine sand, medium sand, sandy gravel layer Yes Yes F67 100.10 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes F68 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Soil sample F69 100.00 Silty clay, fine sand, medium sand Yes Soil sample F70 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F71 150.00 Silty clay, fine sand, coarse sand, gravelly sand Yes Yes Soil sample F72 100.00 Silty clay, fine sand, medium sand Yes Yes Soil sample F73 100.00 Silty clay, fine sand, medium sand Yes Soil sample F74 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Soil sample F75 100.00 Silty clay, fine sand, medium sand Yes Soil sample F76 150.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F77 100.20 Silty clay, fine sand, medium sand, coarse sand Yes F78 100.10 Loess-like soil, silty clay, medium sand, coarse sand, gravelly sand F79 100.10 Silty clay, fine sand, medium sand, coarse sand Yes F80 150.10 Silty clay, fine sand, medium sand, gravelly sand Yes F81 100.50 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes F82 100.30 Silty clay, fine sand, medium sand Yes F83 100.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Soil sample F84 100.50 Loess-like soil, silty clay, fine sand, medium sand Yes F85 100.10 Loess-like soil, silty clay, medium sand, gravelly sand F86 100.20 Silty clay, fine sand, medium sand Yes F87 150.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Soil sample F88 100.20 Loess-like soil, silty clay, medium sand, coarse sand, gravelly sand Yes F89 100.20 Silty clay, fine sand, medium sand, coarse sand Yes F90 150.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F91 100.00 Silty clay, fine sand, medium sand Yes Soil sample F92 100.00 Silty clay, medium sand Yes Yes Soil sample F93 150.40 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes F95 100.20 Silty clay, fine sand, medium sand Yes F96 150.30 Silty clay, fine sand, medium sand, coarse sand Yes F97 100.50 Loess-like soil, silty clay, medium sand, coarse sand Yes F98 100.50 Silty clay, fine sand, medium sand, coarse sand Yes F99 100.10 Silty clay, fine sand, medium sand, coarse sand Yes F100 100.10 Silty clay, medium sand, coarse sand Yes F101 100.00 Silty clay, fine sand, medium sand Yes Soil sample F102 100.00 Silty clay, fine sand, medium sand Yes F103 100.20 Silty clay, fine sand, medium sand Yes F104 150.00 Silty clay, fine sand, medium sand Yes Yes Soil sample F105 100.40 Silty clay, fine sand, medium sand, coarse sand Yes Yes F106 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand Yes Soil sample 4. Basic information of Engineering Geological Boreholes in ShanyangBorehole No. Borehole depth/m Lithology recorded Logging MWD Testing Shanyang Middle School ZK1 20.00 Clay, coarse sand, sandy gravel layer Yes Shanyang Middle School ZK3 20.00 Clay, coarse sand, sandy gravel layer Yes Shanyang Middle School ZK4 20.00 Silty clay, clay, calcareous nodule Yes Shanyang Middle School ZK5 20.00 Clay, medium sand, coarse sand, sandy gravel layer Yes Qiaoergou ZK2 20.00 Diluvium layer, phyllite Yes Qiaoergou ZK3 34.00 Diluvium caused by landslide, phyllite Yes Qiaoergou ZK4 20.00 Diluvium layer, phyllite Yes Qiaoergou ZK5 20.00 Diluvium layer, phyllite Yes 3. Basic Information of Engineering Geological Boreholes in Yan’anBorehole No. Borehole depth/m Lithology recorded Logging MWD Testing ZK01 52.30 Silty clay, sandy gravel layer, fine sandstone, mudstone ZK02 192.86 Silty clay, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Yes Yes Core sample ZK03 272.68 Silty clay, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Yes Yes Core sample ZK04 293.00 Fine sandstone, mudstone, coarse sandstone Yes Yes ZK05 214.00 Fine sandstone, mudstone, coarse sandstone Yes Core sample ZK06 139.00 Sandy gravel layer, fine sandstone, mudstone Yes Yes Core sample ZK07 202.00 Fine sandstone, mudstone, coarse sandstone Yes Yes ZK08 56.80 Silty clay, sandy gravel layer, fine sandstone, mudstone ZK09 151.00 Loess, fine sandstone, mudstone, coarse sandstone Yes ZK10 119.50 Fine sandstone, mudstone, coarse sandstone ZK12 102.00 Silty clay, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Yes ZK13 92.00 Silty clay, fine sand, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Core sample ZK14 90.00 Loess, red clay, fine sandstone, mudstone Yes Soil sample ZK15 99.00 Fine sandstone, mudstone, coarse sandstone Yes Core sample ZK16 130.00 Fine sandstone, mudstone, coarse sandstone Core sample ZK17 174.00 Fine sandstone, mudstone, coarse sandstone Yes Core sample ZK18 92.00 Fine sandstone, mudstone, coarse sandstone ZK19 120.00 Loess, red clay, coarse sandstone Yes ZK21 118.00 Fine sandstone, mudstone, coarse sandstone Yes ZK22 98.00 Loess, fine sandstone, mudstone, coarse sandstone Yes ZK23 173.00 Red clay, fine sandstone, mudstone, coarse sandstone Yes ZK24 104.00 Loess Soil sample ZK25 89.00 Loess, red clay ZK26 64.00 Loess, red clay, fine sandstone, mudstone Soil sample ZK27 123.00 Loess Soil sample ZK28 108.00 Loess, red clay, fine sandstone, mudstone Soil sample ZKP2-1 126.80 Loess, red clay, fine sandstone, mudstone ZKP2-2 75.40 Red clay, fine sandstone, mudstone ZKP2-3 50.00 Loess, fine sandstone, mudstone, coarse sandstone ZKP3-1 117.00 Loess, red clay Soil sample ZKP3-2 110.00 Loess, red clay, fine sandstone, mudstone Soil sample ZKP3-3 131.50 Loess, red clay Soil sample 2.2 Multi-parameter Logging
The logging data are kept in two folders, labelled “Xi’an” and “Yan’an”. The data in each folder include the information of single boreholes, comparison diagrams, isoline maps and summary reports. All-element logging was conducted for 98 boreholes drilled in the Xi’an working area and 13 boreholes drilled in the Yan’an working area. Multiple logging methods (parameters) were adopted such as natural gamma ray, spontaneous potential, density, acoustic interval transit time, dual laterolog resistivity, polarizability, magnetic susceptibility, gamma-ray spectrometry and well temperature, diameter (with caliper log) and deviation. A digital logging instrument, KH-2, was used with the measuring speed of 6–10 m/min. During the data acquisition, the appropriate technical specifications were followed for each logging method. The characteristics of the logging parameters of strata can be obtained by using statistics Mechanical parameters can be calculated using the acoustic speed and density. Furthermore, the isoline maps of the logging parameters of the working areas can be prepared based on the data of all single boreholes.
2.3 Monitoring-While-Drilling (MWD)
MWD data are kept in three folders, labelled “Xi’an”, “Yan’an” and “Shanyang”. Additionally, there are instructions for the use of the MWD system and files on the analytical process used for the MWD data. The data in each folder contain initial data, data table of MWD records, files of data analysis process and maps as results. MWD data were processed in Excel, the analytical process of the MWD data was saved into Word files and then after the data was processed, they were used to prepare maps with the software, Surfer. The MWD data respectively cover 22, 6 and 8 boreholes drilled in Xi’an, Yan’an and Shanyang. The MWD system, developed independently by the University of Hong Kong including displacement sensors, rotational speed sensors, oil pressure sensors, torsional pressure sensors and data acquisition devices, was adopted; with a sampling interval of 1–2 sec. As for the processing of the MWD data, the effective data was extracted from the initial data to represent the drilling processes, and then the footage, drilling period and drilling speed were calculated. The conditions used to determine effective MWD data during the extraction from the initial data are shown in Table 5.
5. Conditions Used to Determine Effective MWD Data During Extraction from Initial Drilling DataDrilling rig state Displacement
sensor CRotational speed
sensor ROil pressure
sensor PDrilling progresses Pressurized drilling C2−C1<a R>0 P1>P2 Non-pressurized drilling C2−C1=0 R>0 P1=P2=0 Other processes Hollow drilling C2−C1>a R>0 P1>P2 Remove drilling rod, install drilling rod C2−C1=0 R=0 P1<P2 Notes: P1 and P2 refers to upper oil pressure and lower oil pressure, respectively. a refers to the value determined based on the MWD data and drilling records and it differs between drilling in rocks and drilling in soils. Drilling time—footage curve, drilling speed—footage curve, rotational speed—footage curve, oil pressure—footage curve, torsional pressure—footage curve can be prepared based on the effective data extracted.
2.4 Testing
Testing data were saved into a total of three Excel files. The testing data of the soil samples include sample No., sampling depth, moisture content, natural density, cohesive force, inner friction angle, the coefficient of self-weight collapsibility and specific surface area. The testing data of the core samples include sample No., sampling depth, acoustic velocity and uniaxial compressive strength.
2.5 Ground Geophysical Prospecting
Refined geophysical prospecting tests of underground space were conducted in Xi’an (Table 6). There are many interfering factors in cities, including strong electromagnetic and vibrational interference. Since both the high-density resistivity method and the microtremor array feature deep exploration, whereas ground penetrating radar features high resolution, these methods were jointly adopted in the same working area and the results of each method were analyzed. The schematic diagram of urban underground space exploration in Xi’an is shown in Fig. 5. For the microtremor array method, the smart microtremor explorer, WD-1, was used and triangular arrays were embedded with a minimum interval of 6–10 m, and the sampling interval was 10 ms. As for the high-density resistivity method, the multi-function DC electrical prospecting apparatus, EDJD-1, was utilized. It was equipped with the Wenner array and the interval between the electrodes was 5 m. And for the ground-penetrating radar method, the geological radar SIR-4000, attached with antennae of 100 and 200 MHz, was used and the sampling interval was set at 1 m. As for the shallow seismic prospecting, the multi-channel distributed engineering seismograph, SE2404NT, and geophones of 60 Hz were used. Furthermore, multiple coverage and seismic reflection were implemented and seismic energy was unilaterally excited with a sledgehammer. The parameters and their values used in the shallow seismic prospecting are as follows: trace space–4 m, coverage times–8 times, sampling interval–0.5 ms and record length–512 ms.
6. Basic Information of the Urban Underground Space Exploration in Xi’anNo. Method Measuring date Workload Sampling interval/m 1 Multi-parameter comprehensive logging September 11–21 200 m 0.05 2 Microtremor array method October 11–14 16 points 100 3 High-density resistivity method October 19–22 2.01 km 7 4 Shallow seismic prospecting October 14–28 1.8 km 4 5 Geological radar method October 23–26 2.8 km 1 6 High-density resistivity method November 8–11 2.04 km 5 3. Description of Data Samples
3.1 Engineering Geological Drilling
The data obtained from geotechnical drilling include information from the borehole depth and stratum core samples. Synthetic histograms of strata revealed by boreholes were prepared based on manually recording the data from geotechnical drilling and then digitalized. The borehole data and their file formats are shown in Table 7.
7. Engineering Geological Borehole Data and Their File FormatsData name File format Stratigraphic Column of the Boreholes in Xi’an .dwg (CAD file) Stratigraphic Column of the Boreholes in Yan’an .mpj (MapGIS file) The Comprehensive Stratigraphic Column of the ZK10 in Yan’an is described in Fig. 6. The Column contains sandstone and mudstone developed in the Yan’an Formation, Fuxian Formation and Wayaobao Formation, reflecting the structure of sedimentary strata in Yan’an work area.
3.2 Multi-parameter Logging
The data obtained from logging include geophysical parameters such as borehole depth, apparent resistivity, acoustic interval transit time and natural gamma-ray, and also mechanical parameters such as density, porosity and permeability. The strength of rocks or soil can be calculated with acoustic interval transit time and density. The borehole data and their file formats are shown in Table 8. As an example, the statistics of the logging results from the engineering geological boreholes drilled in Yan’an is shown in Table 9.
8. Logging Data of Boreholes and Their File FormatsData name File format Initial data .txt Logging curve, comparison diagram .mpj (Mapgis file) Isoline map .jpg Summary of logging of single boreholes .doc Technical description, report .doc, .pdf 9. Statistics of Logging Results from Engineering Geological Boreholes in Yan’anHorizon Lithology Apparent resistivity/Ω.m Density/
(g/cm3)Natural gamma
ray/APIPorosity/
%Permeability/
md−1Average Average Average Average Average Quaternary (Q) Silty clay 60.08 2.13 111.48 10.11 13.36 Silty soil 108.12 1.95 109.62 18.58 12.40 Silty sand 21.60 2.10 92.40 10.01 12.02 Fine sand 108.04 2.03 81.30 10.96 11.24 Gravel 136.23 2.48 54.30 15.22 12.25 Loess 140.16 1.98 113.04 16.99 15.16 J2y2 Sandy mudstone 33.62 2.26 121.58 8.41 10.59 Fine-grained sandstone 40.74 2.28 106.31 6.13 12.62 Mudstone 21.50 2.37 167.82 7.50 13.52 Medium-grained sandstone 33.62 2.26 121.58 8.41 10.59 Siltstone 31.84 2.40 130.50 7.00 11.24 Fine conglomerate 37.56 2.21 82.81 9.20 10.25 Coarse-grained sandstone 42.39 2.07 56.56 10.26 9.56 J2y1 Sandy mudstone 31.53 2.26 155.29 8.38 10.93 Mudstone 21.22 2.33 160.82 9.60 10.15 Coarse-grained sandstone 78.45 2.33 58.15 9.82 9.57 Fine-grained sandstone 60.81 2.30 93.72 9.24 10.18 Medium-grained sandstone 49.47 2.31 79.19 9.27 10.60 Siltstone 46.29 2.46 103.01 13.25 11.34 Fine conglomerate 226.96 2.41 43.20 13.10 11.24 Medium conglomerate 53.86 2.44 85.37 7.42 11.17 J2f Mudstone 15.32 2.43 173.38 8.31 11.42 Sandy mudstone 26.88 2.41 130.50 6.22 10.81 Coarse-grained sandstone 28.08 2.49 60.62 14.62 9.61 Fine-grained sandstone 25.36 2.49 118.32 12.62 10.53 Medium-grained sandstone 35.36 2.37 106.68 11.15 9.84 Siltstone 31.12 2.51 143.58 9.05 9.55 T3w Mudstone 26.29 2.46 184.23 10.82 10.08 Sandy mudstone 41.05 2.45 163.14 9.73 9.78 Medium-grained sandstone 60.75 2.50 82.99 13.04 9.50 Fine-grained sandstone 67.70 2.49 110.10 12.83 10.65 Carbonaceous mudstone 25.53 1.93 178.53 9.26 9.53 Argillaceous siltstone 42.91 2.45 164.40 8.53 9.83 The characteristics of the borehole logging curve of the Yan’an Formation can be seen in Fig. 7. The values of the average strength index of the boreholes drilled in Yan’an were obtained by calculating and analyzing the acoustic logging data of these boreholes (Fig. 8). It can be identified from the isoline map that the maximum of the average strength index is 26.69 MPa, corresponding to the borehole ZK04, and the minimum is 19.89 MPa, corresponding to the borehole ZK02, with a general average strength index ranging from 30–15 MPa. Therefore, the engineering geological rock masses of Yan’an belong to soft socks.
3.3 Monitoring-While-Drilling (MWD)
The data obtained from MWD include drilling parameters such as borehole depth, drill rod displacement, rotational speed of drill rod and oil pressure. The MWD data and their file formats are shown in Table 10.
10. MWD Data and Their File FormatsData name File format Initial data .txt Analytical result .xls MWD parameter curve .srf (surfer file) Technical manual, report .doc It can be observed from the MWD results (Fig. 9) of the borehole ZK07 drilled in the Yan’an working area that the drilling speed varies with different strata. For instance, in the Fuxian Formation, the mudstone was drilled at a higher speed than the fine-grained sandstone. Furthermore, the drilling speed also differs in sandstone and mudstone of different ages. For example, the sandstone and mudstone of the Fuxian Formation were drilled at a higher speed than that of the Wayaobu Formation.
It can be observed from the MWD results (Fig. 10) of the borehole ZK19 drilled in Yan’an working area that the drilling speed varies with different strata. For example, the drilling speed in loess is higher than that in strongly weathered sandstone and mudstone. Moreover, the drilling speed varies with different ages in the loess. In detail, the earlier the loess age, the lower the drilling speed.
3.4 Testing
The testing data were obtained from the core samples and soil samples. The former includes sampling horizon, compressive strength, elastic modulus and cohesion, and the later includes sampling horizon, moisture content, pore ratio, coefficient of collapsibility and cohesion. All the data are in the format of .xls. The statistics of the test results of the physical and mechanical indices of the soil samples and cores taken from the boreholes in Yan’an are shown in Tables 11–13.
11. Statistics of Test Results of the Physical and Mechanical Indices of the Loess and Red Clay in Yan’anLayer No. Value type Moisture content/% Unit weight/kN.m−3 Dry unit weight/kN.m−3 Pore ratio Degree of saturation/% Liquid limit/% Plastic limit/% Plastic index/% Liquidity index/% Compression coefficient/
MPa−1Coefficient of collapsibility Cohesion/kPa Inner friction angle/° Late Pleistocene loess Statistic frequency 30 29 29 29 29 30 30 30 30 29 15 8 8 Max. 20.2 19 16.8 1.31 76.0 28.2 17.5 11.0 0.72 0.2 0.099 62.1 32.2 Min. 3.0 13.3 12.4 0.61 15.0 24.6 16.7 9.4 <0 0.1 0.030 22.1 15.3 Mean 12.72 15.9 14.1 0.94 38.86 27.13 17.15 9.89 0.19 0.075 33.54 24.1 Standard deviation 4.77 1.6 1.1 0.16 17.0 0.47 0.12 0.3 0.08 13.33 5.31 Coefficient of variation 0.38 0.10 0.08 0.17 0.44 0.02 0.01 0.04 0.44 0.40 0.22 Middle Pleistocene loess Statistic frequency 127 127 127 127 127 126 128 128 129 126 12 60 60 Max. 22.6 21.0 18.1 0.987 98.0 29.9 17.9 12.0 0.92 0.46 0.078 75.8 45.0 Min. 4.9 16.8 13.8 0.482 38.0 24.3 16.6 7.7 0.0 0.07 0.004 10.8 13.6 Mean 18.39 19.0 16.0 0.7 71.94 29.16 17.46 11.7 0.17 0.13 0.013 45.41 29.81 Standard deviation 3.73 0.9 0.8 0.09 12.9 1.91 0.74 0.24 0.20 0.06 19.33 7.06 Coefficient of variation 0.20 0.05 0.05 0.12 0.18 0.07 0.04 0.11 1.19 0.43 0.43 0.24 Red clay Statistic frequency 4 4 3 4 3 4 4 4 4 4 4 4 4 Max. 17.60 20.9 18.8 0.618 91.6 30.7 21.2 11.7 0.71 0.12 0.005 450.8 54.5 Min. 7.07 17.5 17.8 0.443 66.9 25.9 16.8 9.1 0.57 0.02 0.002 41.65 24.0 Mean 11.99 19.2 18.2 0.517 75.56 29.03 18.9 10.2 0.67 0.08 0.003 201.8 32.4 13. Statistics of Test Results of Physical and Mechanical Indices of Mudstone in Yan’anStatistic index Statistic number Max. Min. Mean Standard deviation Coefficient of variation Uniaxial compressive strength/MPa Dry 33 1.336 0.747 0.944 0.15 0.16 Water saturated 33 0.774 0.311 0.502 0.16 0.31 Elastic modulus/MPa 33 9.8 6.86 7.26 2.08 0.25 Poisson’s ratio 33 0.30 0.25 0.26 0.04 0.13 Cohesion/kPa 33 71.1 16.7 53.85 3.8 0.21 Inner friction angle/° 33 35 21 26 1.0 0.16 12. Statistics of Test Results of Physical and Mechanical Indices of Sandstone in Yan’anStatistic index Statistic number Max. Min. Mean Standard deviation Coefficient of variation Saturated unit weight/g.cm−3 36 2.72 2.66 2.68 0.02 0.01 Specific gravity 36 2.54 2.23 2.31 0.09 0.03 Normal water absorption 36 6.92 6.26 6.53 0.22 0.03 Softening coefficient 36 0.72 0.57 0.67 0.05 0.11 Tensile strength/MPa 36 2.4 1.5 1.97 0.28 0.14 Uniaxial compressive strength/MPa Dry 36 75.1 43.0 61.2 10.9 0.20 Water saturated 36 51.3 28.2 41.2 9.07 0.22 Elastic modulus/MPa 36 4583 3865 4203 233.4 0.10 Poisson’s ratio 36 0.26 0.17 0.22 0.03 0.12 Cohesion/MPa 36 4.6 3.9 4.23 0.24 0.10 Inner friction angle/° 36 43.5 40.0 41.6 1.00 0.02 3.5 Ground Geophysical Exploration
The seismic velocity, resistivity, radar and seismic reflection profiles were developed by processing the data obtained by the microtremor array method, high-density resistivity method, geological radar method and shallow seismic prospecting respectively. The folders of the geophysical prospecting data contain the measuring line distribution maps, technical explanations, working reports and comprehensive profiles.
The data obtained from ground geophysical prospecting include depth, apparent resistivity, reflection records of the geological radar method, reflection records of the shallow seismic prospecting and records of the microtremor array method. The initial data obtained from each method were in different formats and were all analyzed with professional software. As a result, corresponding resistivity, geological radar, seismic reflection and transverse wave velocity profiles were achieved. Furthermore, these profiles were concentrated and compared with borehole data and were then saved as .jpg files. The results of the refined exploration of urban underground space in Xi’an are shown in Fig. 11, which contains the profiles obtained from the high-density resistivity method, shallow seismic prospecting and the microtremor array method.
Based on multi-parameter geophysical logging data as well as the data of geophysical prospecting, the strata of urban underground space in Xi’an are as follows, according to the comprehensive interpretation of the profiles.
Member at the depth of 0.00–17.40 m: interbeds consisting of fine, medium, silty and coarse sand. This member features high resistivity, negatively abnormal spontaneous potential, and low acoustic wave speed. Therefore, it can be inferred that this member is medium dense. Additionally, the part at the depth of 9.35–17.40 m is a weak aquifer.
Member at the depth of 17.40–19.35 m: silty clay. This member features low resistivity, slightly high acoustic-wave speed and spontaneous potential without any significant anomalies. Therefore, it can be inferred that this member is dense.
Member at the depth of 19.35–73.10 m: interbeds consisting of medium sand and fine sand, sandwiched with rounded gravels. This member features high resistivity and slightly high acoustic-wave speed. Therefore, it can be inferred that this member is dense.
Member at the depth of 73.10–76.50 m: silty clay interbedded with medium sand. This member features low resistivity locally, slightly high acoustic-wave speed and spontaneous potential without any significant anomalies. Therefore, it can be inferred that this member is dense.
Member at the depth of 76.50–84.85 m: medium sand. This member is a strong aquifer and features medium – low resistivity, high acoustic-wave speed and negative abnormal spontaneous potential. Therefore, it can be inferred that this member is hard with uniform particle size but large porosity.
Member at the depth of 84.85–87.55 m: silty clay interbedded with fine sand. This member features low resistivity and slightly high acoustic-wave speed. Therefore, it can be inferred that this member is dense.
Member at the depth of 87.55–95.00 m: fine and medium sands are interbedded with each other, medium resistivity, higher acoustic-wave speed and spontaneous potential without any discernable anomalies. Therefore, it can be inferred that this member is dense.
Member at the depth of 95.00–124.00 m: medium sand. This member features low – medium resistivity, high acoustic-wave speed and spontaneous potential without any distinct anomalies. Therefore, it can be inferred that this member is dense.
4. Data Quality Control and Assessment
The engineering geological drilling, sampling and testing were carried out in accordance with DZ/T 0017−1991 Specifications for Engineering Geological Drilling, GB/T 50123−1999 Standard for Geotechnical Test Methods, GB 50021−2009 Code for Investigation of Geotechnical Engineering and DD 2019−06 Technical Specifications for Engineering Geological Survey (1∶50 000). All relevant information was recorded into data tables and checked daily. Multi-parameter logging was conducted according to applicable specifications (DZ/T 0181−1997 Specifications for Hydrological Logging). The urban underground space was explored with proper geophysical methods. All the methods were implemented in accordance with applicable specifications (CJJ 7−2007 Code for Engineering Geophysical Prospecting and Testing in City) and relevant data were processed by professional staff. Since MWD technology is currently not well developed, and so there are no related specifications available. However, the data acquisition and processing of MWD was conducted according to existing research results.
5. Value of the Data
Influenced by the physical field with strong interference, complex geological environmental conditions and existing city buildings, there is still neither any mature theory on or any developed technology for urban underground space exploration. Meanwhile, traditional methods and the current geological survey fail to fully satisfy the demand for the assessment and development and utilization planning of urban underground space resources. Therefore, during the development of the Dataset, MWD technology was introduced in loose Quaternary sediment strata and 13 parameters including natural gamma-ray, spontaneous potential, density, acoustic interval transit time, dual laterolog resistivity, polarizability, magnetic susceptibility, gamma-ray spectrometry and well temperature, diameter and deviation were selected for in-hole geophysical prospecting. In this way, a combined method of underground space exploration that overcomes strong interference was established; since it integrates drilling with MWD, ground geophysical prospecting with in-hole geophysical prospecting and in-situ tests with indoor tests; with the added benefit of obtaining valuable data. Furthermore, the working areas of the Dataset cover the Qinba Mountains, the Guanzhong Basin, and the Loess Plateau in Shaanxi Province and, therefore, the data in the Dataset is typical. The data obtained is vital for the quality assessment of rock and soil masses, the establishment of 3D all-element urban geological models, the assessment of underground space resources, the research on the coupling relationship between the quality and physical properties of rock and soil masses and the practice and scientific research of urban geology and geotechnical engineering.
6. Conclusion
The Dataset covers the Qinling Mountains, the Guanzhong Basin, and the Loess Plateau in Shaanxi Province. It consists of five folders that are used to store the geotechnical drilling, testing, multi-parameter logging, MWD and ground geophysical prospecting data. In detail, the data involves 144 engineering geological boreholes, 672 testing samples, 111 boreholes for the geophysical prospecting of 13 parameters, 36 MWD boreholes, 5 profiles of ground geophysical prospecting via 4 methods. In total, the Dataset consists of 968 sets of data and 3 664 files in the format of .jpg, .xls, .doc, .mpj and .dwg.
The data of boreholes include drilling date, borehole depth, stratigraphic lithologic description, sub-layer No., sub-layer depth and sampling depth; the data of logging include natural gamma-ray, spontaneous potential, density, acoustic interval transit time, dual laterolog resistivity, polarizability, magnetic susceptibility, gamma-ray spectrometry, the well temperature, diameter and deviation; the data of MWD include measuring date, drilling roundtrip, length of added drill rod, borehole depth, cylinder displacement, rotational speed of drill rod, oil pressure and torsion pressure. The data obtained from testing consist of core and soil sample data. The former includes moisture content, natural density, cohesion, inner friction angle, coefficient of self-weight collapsibility and specific surface area and the later includes acoustic velocity and uniaxial compressive strength. The data of ground geophysical prospecting include prospecting method, collating unit, number of measuring points, length of measuring line and sampling interval. This Dataset can be applied to the quality assessment of rock and soil masses, the establishment of 3D urban geological all-element models, the assessment of underground space resources, the research on the coupling relationship between the quality and physical-property-related parameters of rock and soil masses and the practice and scientific research of urban geology and geotechnical engineering.
During the geological survey of the Dataset, a combination of multi-parameter exploration technologies for urban geology and underground space with strong interference has been gradually established and a wealth of valuable data has been accumulated. In view of our limited energy and capabilities and also the public-welfare-oriented requirements of geological work, we provide all the data and information to the public, without any reservation, for the purpose of data sharing, in hope that the experts and scholars at home and abroad will study them cooperatively.
Acknowledgments:We would like to extend our sincere appreciation to Professor Yue Zhongqi and Senior Technician Chen Dijiu from the University of Hong Kong, Associate Professor Gu Tianfeng from the Northwest University and Associate Professor Zhang Zhongjian from the China University of Geosciences (Beijing) for their strong support on technologies, methods and monitoring instruments of MWD. We would also like to thank President Liu Xianbin and Deputy Chief Engineer Zhou Xiaoyan from the Shaanxi Institute of Engineering Prospecting Co., Ltd., President Wang Hui from the Aerial Photogrammetry and Remote Sensing Bureau, China National Administration of Coal Geology and the leader of the Dataset development Guo Ruihua for their organization of the implementation of the main engineering geological drilling. Our sincere appreciation also goes to Deputy General Managers, Liu Jianli and Yu Changzhong, from the Shaanxi Geology and Mining Geophysical and Geochemical Prospecting Team Co., Ltd. for their organization of the implementation of geophysical prospecting. Lastly, our thanks go to the peer reviewers and the editors for their valuable opinions on the revision of this paper.
-
表 1 数据库(集)元数据简表
条目 描述 数据库(集)名称 干扰环境下城市地下空间组合探测与全要素数据集 数据库(集)作者 张茂省,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
王益民,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
张 戈,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
董 英,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
孙萍萍,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
贾 俊,中国地质调查局西安地质调查中心,陕西省水资源与环境工程技术研究中心
数据时间范围 2013—2018年 地理区域 西安市,东经107°24′~109°30′,北纬33°24′~34°24′
延安市,东经109°22′~109°37′,北纬36°27′~36°40′
山阳县,东经109°50′10″~109°56′57″,北纬33°30′27″~33°33′05″数据格式 .jpg,.xls,.doc,.mpj,.dwg 数据量 1.19 GB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目 “陕西省重要城镇地质灾害风险评估、关中-天水经济区综合地质调查、西安多要素城市地质调查、延安革命老区综合地质调查”(DD20160261、DD20189220、DD20189270) 语种 中文 数据库(集)组成 钻探数据包括:钻孔编号、钻孔地理位置、钻孔坐标、孔口高程、钻机类别、施工方法、施工日期、钻孔深度、地层岩性描述、分层序号、分层厚度、取样深度
测井数据包括:测量日期、测量深度、自然伽玛、自然电位、密度、声波时差、双侧向电阻率、极化率、磁化率、伽玛能谱、井温、井径、井斜
随钻监测数据包括:测量日期、钻进回次、加杆长度、钻孔深度、油缸位移、钻杆转速、油压、扭压
实验测试数据包括:土样测试数据为样品编号、取样深度、含水率、天然密度、粘聚力、内摩擦角、自重湿陷系数、比表面积,岩芯测试数据为样品编号、取样深度、声波速度、单轴抗压强度
地面物探数据包括:测量日期、探测方法、排列装置、测量点数、测线长度、采样间隔表 2 西安市工程地质钻孔基本情况
钻孔
编号钻孔深度/m 编录岩性 测井 随钻监测 实验测试 白鹿原 200.00 黄土、粉质黏土、砂砾石层 有 机场 200.00 黄土、粉质黏土、细砂、砂砾石层 有 F1 150.00 细砂、中砂、粉质黏土、砂砾石层 有 F2 100.00 黄土状土、粉质黏土、中砂、粗砂 F3 100.00 黄土状土、粉质黏土、细砂、中砂 F4 100.00 黄土状土、粉质黏土、细砂、中砂、砂砾石层 有 F5 100.00 黄土状土、中砂、砂砾石层 有 F6 100.00 黄土状土、粉质黏土、细砂、粗砂 有 F7 100.20 黄土状土、粉质黏土、粗砂、砾砂 F8 100.00 黄土状土、粉质黏土、细砂、中砂 F9 100.00 粉质黏土、细砂、中砂、砂砾石层 有 F10 100.00 黄土状土、粉质黏土、细砂、中砂、砾砂 有 土样 F11 100.00 黄土状土、粉质黏土、细砂、中砂、砾砂、砂砾石层 有 F12 150.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砂砾石层 有 土样 F13 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层、 有 F14 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 有 土样 F15 100.00 粉质黏土、细砂、中砂、粗砂、 有 F16 100.00 粉质黏土、细砂、中砂、粗砂、 有 有 土样 F17 100.00 粉质黏土、细砂、中砂、粗砂、 有 土样 F18 100.10 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 F19 100.00 中砂、砾砂、砂砾石层 有 有 土样 F20 150.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 有 有 土样 F21 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F22 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F23 150.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F24 100.00 黄土状土、粉质黏土、细砂、中砂 有 F25 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F26 100.00 粉质黏土、细砂、中砂、砂砾石层 有 土样 F27 100.00 粉质黏土、中砂、粗砂 有 有 土样 F28 150.00 粉质黏土、细砂、粗砂 有 土样 F29 100.00 粉质黏土、细砂、粗砂 有 土样 F30 100.00 粉质黏土、细砂、粗砂 有 F31 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F32 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F33 100.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 土样 F34 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F35 150.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F36 100.00 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 土样 F37 100.00 粉质黏土、细砂、中砂、粗砂 有 土样 F38 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂 有 F39 100.00 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 土样 F40 100.20 粉质黏土、细砂、中砂、砾砂 有 F41 150.00 粉质黏土、细砂、中砂、粗砂、 有 有 土样 F42 100.00 细砂、中砂、粗砂、 有 土样 F43 100.00 粉质黏土、细砂、中砂、粗砂、 有 有 F44 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F45 150.00 粉质黏土、细砂、中砂、粗砂、 有 有 土样 F46 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F47 150.00 黄土状土、粉质黏土、细砂、中砂、砾砂、砂砾石层 有 有 土样 F48 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 F49 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F50 100.00 粉质黏土、细砂、中砂、粗砂、砾砂、砂砾石层 有 土样 F51 100.00 粉质黏土、细砂、中砂、砂砾石层 有 土样 F52 100.00 细砂、中砂、砾砂 有 土样 F53 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F54 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F55 100.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F56 100.00 粉质黏土、细砂、中砂、砾砂 有 F57 100.00 粉质黏土、细砂、中砂、粗砂 有 有 土样 F58 150.00 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 有 土样 F59 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F60 100.50 黄土状土、粉质黏土、细砂、中砂 有 F61 100.00 粉质黏土、细砂、中砂、砾砂 有 土样 F62 100.40 黄土状土、粉质黏土、中砂 有 F63 100.00 粉质黏土、中砂、砾砂 有 F64 100.00 粉质黏土、细砂、中砂、砂砾石层 有 有 土样 F66 150.00 黄土状土、粉质黏土、细砂、中砂、砂砾石层 有 有 F67 100.10 粉质黏土、细砂、中砂、粗砂、砾砂 有 F68 100.00 粉质黏土、细砂、中砂、砂砾石层 有 土样 F69 100.00 粉质黏土、细砂、中砂 有 土样 F70 100.00 粉质黏土、细砂、中砂、粗砂 有 有 土样 F71 150.00 粉质黏土、细砂、粗砂、砾砂 有 有 土样 F72 100.00 粉质黏土、细砂、中砂 有 有 土样 F73 100.00 粉质黏土、细砂、中砂 有 土样 F74 100.00 粉质黏土、细砂、中砂、粗砂 有 土样 F75 100.00 粉质黏土、细砂、中砂 有 土样 F76 150.00 粉质黏土、细砂、中砂、粗砂、砾砂 有 土样 F77 100.20 粉质黏土、细砂、中砂、粗砂 有 F78 100.10 黄土状土、粉质黏土、中砂、粗砂、砾砂 F79 100.10 粉质黏土、细砂、中砂、粗砂 有 F80 150.10 粉质黏土、细砂、中砂、砾砂 有 F81 100.50 粉质黏土、细砂、中砂、粗砂、砾砂 有 F82 100.30 粉质黏土、细砂、中砂 有 F83 100.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 有 土样 F84 100.50 黄土状土、粉质黏土、细砂、中砂 有 F85 100.10 黄土状土、粉质黏土、中砂、砾砂 F86 100.20 粉质黏土、细砂、中砂 有 F87 150.00 粉质黏土、细砂、中砂、砾砂、砂砾石层 有 土样 F88 100.20 黄土状土、粉质黏土、中砂、粗砂、砾砂 有 F89 100.20 粉质黏土、细砂、中砂、粗砂 有 F90 150.00 粉质黏土、细砂、中砂、粗砂 有 有 土样 F91 100.00 粉质黏土、细砂、中砂 有 土样 F92 100.00 粉质黏土、中砂 有 有 土样 F93 150.40 粉质黏土、细砂、中砂、粗砂、砂砾石层 有 F95 100.20 粉质黏土、细砂、中砂 有 F96 150.30 粉质黏土、细砂、中砂、粗砂 有 F97 100.50 黄土状土、粉质黏土、中砂、粗砂 有 F98 100.50 粉质黏土、细砂、中砂、粗砂 有 F99 100.10 粉质黏土、细砂、中砂、粗砂 有 F100 100.10 粉质黏土、中砂、粗砂 有 F101 100.00 粉质黏土、细砂、中砂 有 土样 F102 100.00 粉质黏土、细砂、中砂 有 F103 100.20 粉质黏土、细砂、中砂 有 F104 150.00 粉质黏土、细砂、中砂 有 有 土样 F105 100.40 粉质黏土、细砂、中砂、粗砂 有 有 F106 100.00 黄土状土、粉质黏土、细砂、中砂、粗砂 有 土样 表 3 延安市工程地质钻孔基本情况
钻孔
编号钻孔深度/m 编录岩性 测井 随钻监测 实验测试 ZK01 52.30 粉质黏土、砂砾石层、细砂岩、泥岩 ZK02 192.86 粉质黏土、砂砾石层、细砂岩、泥岩、粗砂岩 有 有 岩芯 ZK03 272.68 粉质黏土、砂砾石层、细砂岩、泥岩、粗砂岩 有 有 岩芯 ZK04 293.00 细砂岩、泥岩、粗砂岩 有 有 ZK05 214.00 细砂岩、泥岩、粗砂岩 有 岩芯 ZK06 139.00 砂砾石层、细砂岩、泥岩 有 有 岩芯 ZK07 202.00 细砂岩、泥岩、粗砂岩 有 有 ZK08 56.80 粉质黏土、砂砾石层、细砂岩、泥岩 ZK09 151.00 黄土、细砂岩、泥岩、粗砂岩 有 ZK10 119.50 细砂岩、泥岩、粗砂岩 ZK12 102.00 粉质黏土、砂砾石层、细砂岩、泥岩、粗砂岩 有 ZK13 92.00 粉质黏土、细砂、砂砾石层、细砂岩、泥岩、粗砂岩 岩芯 ZK14 90.00 黄土、红黏土、细砂岩、泥岩 有 土样 ZK15 99.00 细砂岩、泥岩、粗砂岩 有 岩芯 ZK16 130.00 细砂岩、泥岩、粗砂岩 岩芯 ZK17 174.00 细砂岩、泥岩、粗砂岩 有 岩芯 ZK18 92.00 细砂岩、泥岩、粗砂岩 ZK19 120.00 黄土、红黏土、粗砂岩 有 ZK21 118.00 细砂岩、泥岩、粗砂岩 有 ZK22 98.00 黄土、细砂岩、泥岩、粗砂岩 有 ZK23 173.00 红黏土、细砂岩、泥岩、粗砂岩 有 ZK24 104.00 黄土 土样 ZK25 89.00 黄土、红黏土 ZK26 64.00 黄土、红黏土、细砂岩、泥岩、 土样 ZK27 123.00 黄土 土样 ZK28 108.00 黄土、红黏土、细砂岩、泥岩、 土样 ZKP2-1 126.80 黄土、红黏土、细砂岩、泥岩、 ZKP2-2 75.40 红黏土、细砂岩、泥岩 ZKP2-3 50.00 黄土、细砂岩、泥岩、粗砂岩 ZKP3-1 117.00 黄土、红黏土 土样 ZKP3-2 110.00 黄土、红黏土、细砂岩、泥岩、 土样 ZKP3-3 131.50 黄土、红黏土 土样 表 4 山阳县工程地质钻孔基本情况
钻孔编号 钻孔深度/m 编录岩性 测井 随钻监测 实验测试 山阳中学ZK1 20.00 黏土、粗砂、砂砾石层 有 山阳中学ZK3 20.00 黏土、粗砂、砂砾石层 有 山阳中学ZK4 20.00 粉质黏土、黏土、钙质结核 有 山阳中学ZK5 20.00 黏土、中砂、粗砂、砂砾石层 有 桥儿沟ZK2 20.00 坡积层、千枚岩 有 桥儿沟ZK3 34.00 滑坡堆积物、千枚岩 有 桥儿沟ZK4 20.00 坡积层、千枚岩 有 桥儿沟ZK5 20.00 坡积层、千枚岩 有 表 5 随钻监测提取钻进过程有效数据的判断条件
钻机状态 位移传感器C 转速传感器R 油压传感器P 钻进过程 加压钻进 C2-C1<a R>0 P1>P2 不加压钻进 C2-C1=0 R>0 P1=P2=0 其他过程 空钻 C2-C1>a R>0 P1>P2 下钻杆、上钻杆 C2-C1=0 R=0 P1<P2 注:P1是上油压,P2是下油压,a是根据随钻监测数据和钻孔记录确定的数值,在岩石和土中钻进的a值不同。 表 6 西安城市地下空间探测基本情况
序号 工作方法 测量日期 工作量 采样间隔/m 1 多参数综合测井 9月11~21日 200 m 0.05 2 微动台阵 10月11~14日 16点 100 3 高密度电法 10月19~22日 2.01 km 7 4 浅层地震 10月14~28日 1.8 km 4 5 地质雷达 10月23~26日 2.8 km 1 6 高密度电法 11月8~11日 2.04 km 5 表 7 工程地质钻孔文件格式
数据名称 文件格式 西安钻孔地层柱状图 dwg格式(CAD文件) 延安钻孔地层柱状图 mpj格式(MapGIS文件) 表 8 测井数据文件格式
数据名称 文件格式 初始数据 txt格式 测井曲线、对比图 mpj格式(MapGIS文件) 等值线图 jpg格式 单孔测井总结 doc格式 技术说明、报告 doc格式、pdf格式 表 9 延安工程地质钻孔测井结果统计表
层位 岩性 视电阻率/(Ω·m) 密度/(g/cm3) 自然伽玛/API 孔隙度/% 渗透率/md−1 平均 平均 平均 平均 平均 第四系(Q) 粉质黏土 60.08 2.13 111.48 10.11 13.36 粉土 108.12 1.95 109.62 18.58 12.40 粉砂 21.60 2.10 92.40 10.01 12.02 细砂 108.04 2.03 81.30 10.96 11.24 砾石 136.23 2.48 54.30 15.22 12.25 黄土 140.16 1.98 113.04 16.99 15.16 J2y2 砂质泥岩 33.62 2.26 121.58 8.41 10.59 细粒砂岩 40.74 2.28 106.31 6.13 12.62 泥岩 21.50 2.37 167.82 7.50 13.52 中粒砂岩 33.62 2.26 121.58 8.41 10.59 粉砂岩 31.84 2.40 130.50 7.00 11.24 细砾岩 37.56 2.21 82.81 9.20 10.25 粗粒砂岩 42.39 2.07 56.56 10.26 9.56 J2y1 砂质泥岩 31.53 2.26 155.29 8.38 10.93 泥岩 21.22 2.33 160.82 9.60 10.15 粗粒砂岩 78.45 2.33 58.15 9.82 9.57 细粒砂岩 60.81 2.30 93.72 9.24 10.18 中粒砂岩 49.47 2.31 79.19 9.27 10.60 粉砂岩 46.29 2.46 103.01 13.25 11.34 细砾岩 226.96 2.41 43.20 13.10 11.24 中砾岩 53.86 2.44 85.37 7.42 11.17 J2f 泥岩 15.32 2.43 173.38 8.31 11.42 砂质泥岩 26.88 2.41 130.50 6.22 10.81 粗粒砂岩 28.08 2.49 60.62 14.62 9.61 细粒砂岩 25.36 2.49 118.32 12.62 10.53 中粒砂岩 35.36 2.37 106.68 11.15 9.84 粉砂岩 31.12 2.51 143.58 9.05 9.55 T3w 泥岩 26.29 2.46 184.23 10.82 10.08 砂质泥岩 41.05 2.45 163.14 9.73 9.78 中粒砂岩 60.75 2.50 82.99 13.04 9.50 细粒砂岩 67.70 2.49 110.10 12.83 10.65 炭质泥岩 25.53 1.93 178.53 9.26 9.53 泥质粉砂岩 42.91 2.45 164.40 8.53 9.83 表 10 随钻监测数据文件格式
数据名称 文件格式 初始数据 txt格式 分析结果 xls格式 随钻参数曲线 srf格式(surfer文件) 技术说明、报告 doc格式 表 11 延安黄土及红黏土物理力学指标试验结果统计表
层号 值别 含水率
/%重度
/kN·m−3干重度
/kN·m−3孔隙比 饱和度
/%液限
/%塑限
/%塑性指数
/%液性指数
/%压缩系数
/MPa−1湿陷系数 内聚力
/kPa内摩擦角
/°晚更新世黄土 统计频数 30 29 29 29 29 30 30 30 30 29 15 8 8 最大值 20.2 19 16.8 1.31 76.0 28.2 17.5 11.0 0.72 0.2 0.099 62.1 32.2 最小值 3.0 13.3 12.4 0.61 15.0 24.6 16.7 9.4 <0 0.1 0.030 22.1 15.3 平均值 12.72 15.9 14.1 0.94 38.86 27.13 17.15 9.89 0.19 0.075 33.54 24.1 标准差 4.77 1.6 1.1 0.16 17.0 0.47 0.12 0.3 0.08 13.33 5.31 变异系数 0.38 0.10 0.08 0.17 0.44 0.02 0.01 0.04 0.44 0.40 0.22 中更新世黄土 统计频数 127 127 127 127 127 126 128 128 129 126 12 60 60 最大值 22.6 21.0 18.1 0.987 98.0 29.9 17.9 12.0 0.92 0.46 0.078 75.8 45.0 最小值 4.9 16.8 13.8 0.482 38.0 24.3 16.6 7.7 0.0 0.07 0.004 10.8 13.6 平均值 18.39 19.0 16.0 0.7 71.94 29.16 17.46 11.7 0.17 0.13 0.013 45.41 29.81 标准差 3.73 0.9 0.8 0.09 12.9 1.91 0.74 0.24 0.20 0.06 19.33 7.06 变异系数 0.20 0.05 0.05 0.12 0.18 0.07 0.04 0.11 1.19 0.43 0.43 0.24 红黏土 统计频数 4 4 3 4 3 4 4 4 4 4 4 4 4 最大值 17.60 20.9 18.8 0.618 91.6 30.7 21.2 11.7 0.71 0.12 0.005 450.8 54.5 最小值 7.07 17.5 17.8 0.443 66.9 25.9 16.8 9.1 0.57 0.02 0.002 41.65 24.0 平均值 11.99 19.2 18.2 0.517 75.56 29.03 18.9 10.2 0.67 0.08 0.003 201.8 32.4 表 12 延安砂岩物理力学指标试验结果统计表
统计指标 统计数 最大值 最小值 平均值 标准差 变异系数 饱和容重/g·cm−3 36 2.72 2.66 2.68 0.02 0.01 比重 36 2.54 2.23 2.31 0.09 0.03 普通吸水率 36 6.92 6.26 6.53 0.22 0.03 软化系数 36 0.72 0.57 0.67 0.05 0.11 抗拉强度/MPa 36 2.4 1.5 1.97 0.28 0.14 单轴抗压强度/MPa 干燥 36 75.1 43.0 61.2 10.9 0.20 饱水 36 51.3 28.2 41.2 9.07 0.22 弹性模量/MPa 36 4583 3865 4203 233.4 0.10 泊松比 36 0.26 0.17 0.22 0.03 0.12 内聚力/MPa 36 4.6 3.9 4.23 0.24 0.10 内摩擦角/° 36 43.5 40.0 41.6 1.00 0.02 表 13 延安泥岩物理力学指标试验结果统计表
统计指标 统计数 最大值 最小值 平均值 标准差 变异系数 单轴抗压强度/MPa 干燥 33 1.336 0.747 0.944 0.15 0.16 饱水 33 0.774 0.311 0.502 0.16 0.31 弹性模量/MPa 33 9.8 6.86 7.26 2.08 0.25 泊松比 33 0.30 0.25 0.26 0.04 0.13 内聚力/kPa 33 71.1 16.7 53.85 3.8 0.21 内摩擦角/° 33 35 21 26 1.0 0.16 1 Metadata Table of Database (Dataset)
Items Description Database (dataset) name All-Element Dataset of Combined Exploration of Urban Underground Spaces with Strong Interference Database (dataset) authors Zhang Maosheng, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Wang Yimin, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Zhang Ge, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Dong Ying, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Sun Pingping, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and Environment
Jia Jun, Xi’an Center, China Geological Survey; Shaanxi Engineering Technical Research Center of Water Resources and EnvironmentData acquisition time 2013—2018 Geographical area Xi’an City, located at E 107°24′–109°30′ and N 33°24′–34°24′
Yan’an, located at E 109°22′–109°37′ and N 36°27′–36°40′
Shanyang County, located at E 109°50′10″–109°56′57″ and N 33°30′27″–33°33′05″Data format .jpg, .xls, .doc, .mpj, .dwg Data size 1.19 GB Data service system URL http://dcc.cgs.gov.cn Fund project China Geological Survey projects titled “Risk Assessment of Geological Disasters in Important Towns in Shaanxi” (DD20160261) and “Comprehensive Geological Survey in Guanzhong – Tianshui Economic Region” (DD20189220) and “Multi-element Urban Geological Survey in Xi’an and Comprehensive Geological Survey in Yan’an, a Former Base of the Communist Party of China” (DD20189270) Language Chinese Database (dataset) composition Data of drilling: the No., geographical location and coordinates of borehole, elevation of borehole head, drilling rig type, drilling method, drilling date, borehole depth, stratigraphic lithologic description, sub-layer No., sub-layer depth and sampling depth
Data of logging: measuring date, measuring depth, natural gamma ray, spontaneous potential, density, interval transit time, dual laterolog resistivity, polarizability, magnetic susceptibility, gamma-ray spectrometry and the temperature, diameter and deviation of well
Data of MWD: measuring date, drilling roundtrip, length of added drill rod, borehole depth, cylinder displacement, drill rod rpm, oil pressure and torsion pressure
Data of testing: testing data of soil samples consisting of sample No., sampling depth, moisture content, natural density, cohesive force, inner friction angle, coefficient of self-weight collapsibility and specific surface area; testing data of core samples including sample No., sampling depth, acoustic velocity and uniaxial compressive strength
Data of ground geophysical prospecting: measuring date, prospecting method, electrode arrangement device, number of measuring points, length of measuring line and sampling interval2 Basic Information of Engineering Geological Boreholes in Xi’an
Borehole No. Borehole depth/m Lithology recorded Logging MWD Testing Bailuyuan 200.00 Loess, silty clay, sandy gravel layer Yes Airport 200.00 Loess, silty clay, fine sand, sandy gravel layer Yes F1 150.00 Fine sand, medium sand, silty clay, sandy gravel layer Yes F2 100.00 Loess-like soil, silty clay, medium sand, coarse sand F3 100.00 Loess-like soil, silty clay, fine sand, medium sand F4 100.00 Loess-like soil, silty clay, fine sand, medium sand, sandy gravel layer Yes F5 100.00 Loess-like soil, medium sand, sandy gravel layer Yes F6 100.00 Loess-like soil, silty clay, fine sand, coarse sand Yes F7 100.20 Loess-like soil, silty clay, coarse sand, gravelly sand F8 100.00 Loess-like soil, silty clay, fine sand, medium sand F9 100.00 Silty clay, fine sand, medium sand, and sandy gravel layer Yes F10 100.00 Loess-like soil, silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F11 100.00 Loess-like soil, silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes F12 150.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Soil sample F13 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes F14 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Yes Soil sample F15 100.00 Silty clay, fine sand, medium sand, coarse sand Yes F16 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F17 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Soil sample F18 100.10 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes F19 100.00 Medium sand, gravelly sand, sandy gravel layer Yes Yes Soil sample F20 150.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Yes Soil sample F21 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F22 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F23 150.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F24 100.00 Loess-like soil, silty clay, fine sand, medium sand Yes F25 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F26 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Soil sample F27 100.00 Silty clay, medium sand, coarse sand Yes Yes Soil sample F28 150.00 Silty clay, fine sand, coarse sand Yes Soil sample F29 100.00 Silty clay, fine sand, coarse sand Yes Soil sample F30 100.00 Silty clay, fine sand, coarse sand Yes F31 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F32 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F33 100.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Soil sample F34 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F35 150.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F36 100.00 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Soil sample F37 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Soil sample F38 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand Yes F39 100.00 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Soil sample F40 100.20 Silty clay, fine sand, medium sand, gravelly sand Yes F41 150.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F42 100.00 Fine sand, medium sand, coarse sand Yes Soil sample F43 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes F44 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F45 150.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F46 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F47 150.00 Loess-like soil, silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Yes Soil sample F48 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes F49 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F50 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand, sandy gravel layer Yes Soil sample F51 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Soil sample F52 100.00 Fine sand, medium sand, gravelly sand Yes Soil sample F53 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F54 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F55 100.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F56 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes F57 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F58 150.00 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes Yes Soil sample F59 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F60 100.50 Loess-like soil, silty clay, fine sand, medium sand Yes F61 100.00 Silty clay, fine sand, medium sand, gravelly sand Yes Soil sample F62 100.40 Loess-like soil, silty clay, medium sand Yes F63 100.00 Silty clay, medium sand, gravelly sand Yes F64 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Yes Soil sample F66 150.00 Loess-like soil, silty clay, fine sand, medium sand, sandy gravel layer Yes Yes F67 100.10 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes F68 100.00 Silty clay, fine sand, medium sand, sandy gravel layer Yes Soil sample F69 100.00 Silty clay, fine sand, medium sand Yes Soil sample F70 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F71 150.00 Silty clay, fine sand, coarse sand, gravelly sand Yes Yes Soil sample F72 100.00 Silty clay, fine sand, medium sand Yes Yes Soil sample F73 100.00 Silty clay, fine sand, medium sand Yes Soil sample F74 100.00 Silty clay, fine sand, medium sand, coarse sand Yes Soil sample F75 100.00 Silty clay, fine sand, medium sand Yes Soil sample F76 150.00 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes Soil sample F77 100.20 Silty clay, fine sand, medium sand, coarse sand Yes F78 100.10 Loess-like soil, silty clay, medium sand, coarse sand, gravelly sand F79 100.10 Silty clay, fine sand, medium sand, coarse sand Yes F80 150.10 Silty clay, fine sand, medium sand, gravelly sand Yes F81 100.50 Silty clay, fine sand, medium sand, coarse sand, gravelly sand Yes F82 100.30 Silty clay, fine sand, medium sand Yes F83 100.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Soil sample F84 100.50 Loess-like soil, silty clay, fine sand, medium sand Yes F85 100.10 Loess-like soil, silty clay, medium sand, gravelly sand F86 100.20 Silty clay, fine sand, medium sand Yes F87 150.00 Silty clay, fine sand, medium sand, gravelly sand, sandy gravel layer Yes Soil sample F88 100.20 Loess-like soil, silty clay, medium sand, coarse sand, gravelly sand Yes F89 100.20 Silty clay, fine sand, medium sand, coarse sand Yes F90 150.00 Silty clay, fine sand, medium sand, coarse sand Yes Yes Soil sample F91 100.00 Silty clay, fine sand, medium sand Yes Soil sample F92 100.00 Silty clay, medium sand Yes Yes Soil sample F93 150.40 Silty clay, fine sand, medium sand, coarse sand, sandy gravel layer Yes F95 100.20 Silty clay, fine sand, medium sand Yes F96 150.30 Silty clay, fine sand, medium sand, coarse sand Yes F97 100.50 Loess-like soil, silty clay, medium sand, coarse sand Yes F98 100.50 Silty clay, fine sand, medium sand, coarse sand Yes F99 100.10 Silty clay, fine sand, medium sand, coarse sand Yes F100 100.10 Silty clay, medium sand, coarse sand Yes F101 100.00 Silty clay, fine sand, medium sand Yes Soil sample F102 100.00 Silty clay, fine sand, medium sand Yes F103 100.20 Silty clay, fine sand, medium sand Yes F104 150.00 Silty clay, fine sand, medium sand Yes Yes Soil sample F105 100.40 Silty clay, fine sand, medium sand, coarse sand Yes Yes F106 100.00 Loess-like soil, silty clay, fine sand, medium sand, coarse sand Yes Soil sample 4 Basic information of Engineering Geological Boreholes in Shanyang
Borehole No. Borehole depth/m Lithology recorded Logging MWD Testing Shanyang Middle School ZK1 20.00 Clay, coarse sand, sandy gravel layer Yes Shanyang Middle School ZK3 20.00 Clay, coarse sand, sandy gravel layer Yes Shanyang Middle School ZK4 20.00 Silty clay, clay, calcareous nodule Yes Shanyang Middle School ZK5 20.00 Clay, medium sand, coarse sand, sandy gravel layer Yes Qiaoergou ZK2 20.00 Diluvium layer, phyllite Yes Qiaoergou ZK3 34.00 Diluvium caused by landslide, phyllite Yes Qiaoergou ZK4 20.00 Diluvium layer, phyllite Yes Qiaoergou ZK5 20.00 Diluvium layer, phyllite Yes 3 Basic Information of Engineering Geological Boreholes in Yan’an
Borehole No. Borehole depth/m Lithology recorded Logging MWD Testing ZK01 52.30 Silty clay, sandy gravel layer, fine sandstone, mudstone ZK02 192.86 Silty clay, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Yes Yes Core sample ZK03 272.68 Silty clay, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Yes Yes Core sample ZK04 293.00 Fine sandstone, mudstone, coarse sandstone Yes Yes ZK05 214.00 Fine sandstone, mudstone, coarse sandstone Yes Core sample ZK06 139.00 Sandy gravel layer, fine sandstone, mudstone Yes Yes Core sample ZK07 202.00 Fine sandstone, mudstone, coarse sandstone Yes Yes ZK08 56.80 Silty clay, sandy gravel layer, fine sandstone, mudstone ZK09 151.00 Loess, fine sandstone, mudstone, coarse sandstone Yes ZK10 119.50 Fine sandstone, mudstone, coarse sandstone ZK12 102.00 Silty clay, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Yes ZK13 92.00 Silty clay, fine sand, sandy gravel layer, fine sandstone, mudstone, coarse sandstone Core sample ZK14 90.00 Loess, red clay, fine sandstone, mudstone Yes Soil sample ZK15 99.00 Fine sandstone, mudstone, coarse sandstone Yes Core sample ZK16 130.00 Fine sandstone, mudstone, coarse sandstone Core sample ZK17 174.00 Fine sandstone, mudstone, coarse sandstone Yes Core sample ZK18 92.00 Fine sandstone, mudstone, coarse sandstone ZK19 120.00 Loess, red clay, coarse sandstone Yes ZK21 118.00 Fine sandstone, mudstone, coarse sandstone Yes ZK22 98.00 Loess, fine sandstone, mudstone, coarse sandstone Yes ZK23 173.00 Red clay, fine sandstone, mudstone, coarse sandstone Yes ZK24 104.00 Loess Soil sample ZK25 89.00 Loess, red clay ZK26 64.00 Loess, red clay, fine sandstone, mudstone Soil sample ZK27 123.00 Loess Soil sample ZK28 108.00 Loess, red clay, fine sandstone, mudstone Soil sample ZKP2-1 126.80 Loess, red clay, fine sandstone, mudstone ZKP2-2 75.40 Red clay, fine sandstone, mudstone ZKP2-3 50.00 Loess, fine sandstone, mudstone, coarse sandstone ZKP3-1 117.00 Loess, red clay Soil sample ZKP3-2 110.00 Loess, red clay, fine sandstone, mudstone Soil sample ZKP3-3 131.50 Loess, red clay Soil sample 5 Conditions Used to Determine Effective MWD Data During Extraction from Initial Drilling Data
Drilling rig state Displacement
sensor CRotational speed
sensor ROil pressure
sensor PDrilling progresses Pressurized drilling C2−C1<a R>0 P1>P2 Non-pressurized drilling C2−C1=0 R>0 P1=P2=0 Other processes Hollow drilling C2−C1>a R>0 P1>P2 Remove drilling rod, install drilling rod C2−C1=0 R=0 P1<P2 Notes: P1 and P2 refers to upper oil pressure and lower oil pressure, respectively. a refers to the value determined based on the MWD data and drilling records and it differs between drilling in rocks and drilling in soils. 6 Basic Information of the Urban Underground Space Exploration in Xi’an
No. Method Measuring date Workload Sampling interval/m 1 Multi-parameter comprehensive logging September 11–21 200 m 0.05 2 Microtremor array method October 11–14 16 points 100 3 High-density resistivity method October 19–22 2.01 km 7 4 Shallow seismic prospecting October 14–28 1.8 km 4 5 Geological radar method October 23–26 2.8 km 1 6 High-density resistivity method November 8–11 2.04 km 5 7 Engineering Geological Borehole Data and Their File Formats
Data name File format Stratigraphic Column of the Boreholes in Xi’an .dwg (CAD file) Stratigraphic Column of the Boreholes in Yan’an .mpj (MapGIS file) 8 Logging Data of Boreholes and Their File Formats
Data name File format Initial data .txt Logging curve, comparison diagram .mpj (Mapgis file) Isoline map .jpg Summary of logging of single boreholes .doc Technical description, report .doc, .pdf 9 Statistics of Logging Results from Engineering Geological Boreholes in Yan’an
Horizon Lithology Apparent resistivity/Ω.m Density/
(g/cm3)Natural gamma
ray/APIPorosity/
%Permeability/
md−1Average Average Average Average Average Quaternary (Q) Silty clay 60.08 2.13 111.48 10.11 13.36 Silty soil 108.12 1.95 109.62 18.58 12.40 Silty sand 21.60 2.10 92.40 10.01 12.02 Fine sand 108.04 2.03 81.30 10.96 11.24 Gravel 136.23 2.48 54.30 15.22 12.25 Loess 140.16 1.98 113.04 16.99 15.16 J2y2 Sandy mudstone 33.62 2.26 121.58 8.41 10.59 Fine-grained sandstone 40.74 2.28 106.31 6.13 12.62 Mudstone 21.50 2.37 167.82 7.50 13.52 Medium-grained sandstone 33.62 2.26 121.58 8.41 10.59 Siltstone 31.84 2.40 130.50 7.00 11.24 Fine conglomerate 37.56 2.21 82.81 9.20 10.25 Coarse-grained sandstone 42.39 2.07 56.56 10.26 9.56 J2y1 Sandy mudstone 31.53 2.26 155.29 8.38 10.93 Mudstone 21.22 2.33 160.82 9.60 10.15 Coarse-grained sandstone 78.45 2.33 58.15 9.82 9.57 Fine-grained sandstone 60.81 2.30 93.72 9.24 10.18 Medium-grained sandstone 49.47 2.31 79.19 9.27 10.60 Siltstone 46.29 2.46 103.01 13.25 11.34 Fine conglomerate 226.96 2.41 43.20 13.10 11.24 Medium conglomerate 53.86 2.44 85.37 7.42 11.17 J2f Mudstone 15.32 2.43 173.38 8.31 11.42 Sandy mudstone 26.88 2.41 130.50 6.22 10.81 Coarse-grained sandstone 28.08 2.49 60.62 14.62 9.61 Fine-grained sandstone 25.36 2.49 118.32 12.62 10.53 Medium-grained sandstone 35.36 2.37 106.68 11.15 9.84 Siltstone 31.12 2.51 143.58 9.05 9.55 T3w Mudstone 26.29 2.46 184.23 10.82 10.08 Sandy mudstone 41.05 2.45 163.14 9.73 9.78 Medium-grained sandstone 60.75 2.50 82.99 13.04 9.50 Fine-grained sandstone 67.70 2.49 110.10 12.83 10.65 Carbonaceous mudstone 25.53 1.93 178.53 9.26 9.53 Argillaceous siltstone 42.91 2.45 164.40 8.53 9.83 10 MWD Data and Their File Formats
Data name File format Initial data .txt Analytical result .xls MWD parameter curve .srf (surfer file) Technical manual, report .doc 11 Statistics of Test Results of the Physical and Mechanical Indices of the Loess and Red Clay in Yan’an
Layer No. Value type Moisture content/% Unit weight/kN.m−3 Dry unit weight/kN.m−3 Pore ratio Degree of saturation/% Liquid limit/% Plastic limit/% Plastic index/% Liquidity index/% Compression coefficient/
MPa−1Coefficient of collapsibility Cohesion/kPa Inner friction angle/° Late Pleistocene loess Statistic frequency 30 29 29 29 29 30 30 30 30 29 15 8 8 Max. 20.2 19 16.8 1.31 76.0 28.2 17.5 11.0 0.72 0.2 0.099 62.1 32.2 Min. 3.0 13.3 12.4 0.61 15.0 24.6 16.7 9.4 <0 0.1 0.030 22.1 15.3 Mean 12.72 15.9 14.1 0.94 38.86 27.13 17.15 9.89 0.19 0.075 33.54 24.1 Standard deviation 4.77 1.6 1.1 0.16 17.0 0.47 0.12 0.3 0.08 13.33 5.31 Coefficient of variation 0.38 0.10 0.08 0.17 0.44 0.02 0.01 0.04 0.44 0.40 0.22 Middle Pleistocene loess Statistic frequency 127 127 127 127 127 126 128 128 129 126 12 60 60 Max. 22.6 21.0 18.1 0.987 98.0 29.9 17.9 12.0 0.92 0.46 0.078 75.8 45.0 Min. 4.9 16.8 13.8 0.482 38.0 24.3 16.6 7.7 0.0 0.07 0.004 10.8 13.6 Mean 18.39 19.0 16.0 0.7 71.94 29.16 17.46 11.7 0.17 0.13 0.013 45.41 29.81 Standard deviation 3.73 0.9 0.8 0.09 12.9 1.91 0.74 0.24 0.20 0.06 19.33 7.06 Coefficient of variation 0.20 0.05 0.05 0.12 0.18 0.07 0.04 0.11 1.19 0.43 0.43 0.24 Red clay Statistic frequency 4 4 3 4 3 4 4 4 4 4 4 4 4 Max. 17.60 20.9 18.8 0.618 91.6 30.7 21.2 11.7 0.71 0.12 0.005 450.8 54.5 Min. 7.07 17.5 17.8 0.443 66.9 25.9 16.8 9.1 0.57 0.02 0.002 41.65 24.0 Mean 11.99 19.2 18.2 0.517 75.56 29.03 18.9 10.2 0.67 0.08 0.003 201.8 32.4 13 Statistics of Test Results of Physical and Mechanical Indices of Mudstone in Yan’an
Statistic index Statistic number Max. Min. Mean Standard deviation Coefficient of variation Uniaxial compressive strength/MPa Dry 33 1.336 0.747 0.944 0.15 0.16 Water saturated 33 0.774 0.311 0.502 0.16 0.31 Elastic modulus/MPa 33 9.8 6.86 7.26 2.08 0.25 Poisson’s ratio 33 0.30 0.25 0.26 0.04 0.13 Cohesion/kPa 33 71.1 16.7 53.85 3.8 0.21 Inner friction angle/° 33 35 21 26 1.0 0.16 12 Statistics of Test Results of Physical and Mechanical Indices of Sandstone in Yan’an
Statistic index Statistic number Max. Min. Mean Standard deviation Coefficient of variation Saturated unit weight/g.cm−3 36 2.72 2.66 2.68 0.02 0.01 Specific gravity 36 2.54 2.23 2.31 0.09 0.03 Normal water absorption 36 6.92 6.26 6.53 0.22 0.03 Softening coefficient 36 0.72 0.57 0.67 0.05 0.11 Tensile strength/MPa 36 2.4 1.5 1.97 0.28 0.14 Uniaxial compressive strength/MPa Dry 36 75.1 43.0 61.2 10.9 0.20 Water saturated 36 51.3 28.2 41.2 9.07 0.22 Elastic modulus/MPa 36 4583 3865 4203 233.4 0.10 Poisson’s ratio 36 0.26 0.17 0.22 0.03 0.12 Cohesion/MPa 36 4.6 3.9 4.23 0.24 0.10 Inner friction angle/° 36 43.5 40.0 41.6 1.00 0.02 -
[1] Bobylev N. 2009. Mainstreaming sustainable development into a city’s master plan: a case of urban underground space use[J]. Land Use Policy, 26(4): 1128−1137. doi: 10.1016/j.landusepol.2009.02.003
[2] Broere W. 2016. Urban underground space: Solving the problems of today’s cities[J]. Tunnelling and Underground Space Technology, 55: 245−248. doi: 10.1016/j.tust.2015.11.012
[3] Yue ZQ, Lee CF, Law KT, et al. 2004. Automatic monitoring of rotary-percussive drilling for ground characterization –illustrated by a case example in Hong Kong[J]. International Journal of Rock Mechanics & Mining Science, 41: 573−612.
[4] 陈伟. 2006. 城市地下空间开挖对环境的影响与试验研究[D]. 中南大学. [5] 何静, 何晗晗, 郑桂森, 刘予, 周圆心, 肖景泽, 王纯君. 2019. 北京五环城区浅部沉积层的三维地质结构建模[J]. 中国地质, 46(2): 244−254. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201902004 [6] 戚帮申, 丰成君, 谭成轩, 张鹏, 孟静, 张春山, 杨为民, 杨肖肖, 雷晓东. 2019. 京张地区延矾盆地北缘活动断裂带桑园镇隐伏段综合地球物理及钻孔地层剖面研究[J]. 中国地质, 46(3): 468−481. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903005 [7] 钱七虎. 1998. 城市可持续发展与地下空间开发利用[J]. 地下空间, 18(2): 69−74. http://d.old.wanfangdata.com.cn/Periodical/jzgcjsysj2015081743 [8] 乔永康, 张明洋, 刘洋, 彭芳乐. 2017. 古都型历史文化名城地下空间总体规划策略研究[J]. 地下空间与工程学报, 13(4): 859−867. http://d.old.wanfangdata.com.cn/Periodical/dxkj201704001 [9] 田中英, 张茂省, 冯立, 孙萍萍, 于锋丹. 2019. 基于综合物探的黄土滑坡优势通道探测[J]. 西北地质, 52(2): 172−180. http://d.old.wanfangdata.com.cn/Periodical/xbdz201902020 [10] 王化齐, 董英, 张茂省. 2019. 西安市地下空间开发利用现状与对策建议[J]. 西北地质, 52(2): 46−52. http://d.old.wanfangdata.com.cn/Periodical/xbdz201902006 [11] 王亚辉, 张茂省, 师云超, 董英, 王锋, 于峰丹. 2019. 基于综合物探的城市地下空间探测与建模[J]. 西北地质, 52(2): 83−94. http://d.old.wanfangdata.com.cn/Periodical/xbdz201902011 [12] 杨文采, 田钢, 夏江海, 杨波. 2019. 华南丘陵地区城市地下空间开发利用前景[J]. 中国地质, 46(3): 447−454. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903003 [13] 岳中琦. 2014. 钻孔过程监测(DPM)对工程岩体质量评价方法的完善与提升[J]. 岩石力学与工程学报, 33(10): 1977−1996. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201410005 [14] 张茂省, 董英, 刘洁. 2014. 论新型城镇化中的城市地质工作[J]. 兰州大学学报(自然科学版), 50(5): 581−587. http://d.old.wanfangdata.com.cn/Periodical/lzdxxb201405001 [15] 张茂省, 董英, 张新社, 刘洁, 曾庆铭. 2013. 地面沉降预测及其风险防控对策—以大西安西咸新区为例[J]. 中国地质灾害与防治学报, 24(4): 115−118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201304019 [16] 张茂省, 李同录, 程秀娟, 孙萍萍, 李强, 乔志甜, 赵权利. 2019. 山区城市地下空间资源评价与开发利用模式—以延安市为例[J]. 山地学报, 37(3): 303−315. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdxb201903001 [17] 张茂省, 王化齐, 王尧, 董英, 孙萍萍. 2018. 中国城市地质调查进展与展望[J]. 西北地质, 51(4): 1−8. doi: 10.3969/j.issn.1009-6248.2018.04.001 [18] 张珊珊, 张茂省, 孙萍萍, 董英, 冯立. 2019. 面向黄土地质灾害的优势流研究[J]. 兰州大学学报(自然科学版), 55(2): 274−280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201902021 [19] 赵镨, 姜杰, 王秀荣. 2017. 城市地下空间探测关键技术及发展趋势[J]. 中国煤炭地质, 29(9): 61−66. doi: 10.3969/j.issn.1674-1803.2017.09.12 [20] 周圆心, 郑桂森, 何静, 李超, 刘予, 何晗晗, 肖景泽. 2019. 北京平原区地下空间建设地质安全监测问题探讨[J]. 中国地质, 46(3): 455−467. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903004 [1] Bobylev N. 2009. Mainstreaming sustainable development into a city’s master plan: a case of urban underground space use[J]. Land Use Policy, 26(4): 1128−1137. doi: 10.1016/j.landusepol.2009.02.003
[2] Broere W. 2016. Urban underground space: Solving the problems of today’s cities[J]. Tunnelling and Underground Space Technology, 55: 245−248. doi: 10.1016/j.tust.2015.11.012
[3] Yue ZQ, Lee CF, Law KT, et al. 2004. Automatic monitoring of rotary-percussive drilling for ground characterization–illustrated by a case example in Hong Kong[J]. International Journal of Rock Mechanics & Mining Science, 41: 573−612.
[4] Chen Wei. 2006. Environmental impact and experimental study of urban underground space excavation [D]. Central South University (in Chinese with English abstract). [5] He Jing, He Hanhan, Zheng Guisen, Liu Yu, Zhou Yuanxin, Xiao Jingze, Wang Chunjun. 2019. 3D geological modelling of superficial deposits in Beijing City[J]. Geology in China, 46(2): 244−254. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201902004
[6] Qi Bangshen, Feng Chengjun, Tan Chengxuan, Zhang Peng, Meng Jing, Zhang Chunshan, Yang Weimin, Yang Xiaoxiao, Lei Xiaodong. 2019. Application of comprehensive geophysical-drilling exploration to detect the buried North Boundary active Fault Belt of Yanqing-Fanshan Basin in Sangyuan town, Beijing-Zhangjiakou area[J]. Geology in China, 46(3): 468−481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903005
[7] Qian Qihu. 1998. Urban sustainable development and exploitation of underground space[J]. Chinese Journal of Underground Space and Engineering, 18(2): 69−74 (in Chinese).
[8] Qiao Yongkang, Zhang Mingyang, Liu Yang, Peng Fangle. 2017. Strategy Research on the Master Planning for Underground Space Utilization in Historical and Cultural City of Ancient Capital Type[J]. Chinese Journal of Underground Space and Engineering, 13(4): 859−867 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxkj201704001
[9] Tian Zhongying, Zhang Maosheng, Feng Li, Yu Fengdan. 2019. Preferential passage detectionof loess landslide based on integrated geophysical exploration[J]. Northwestern Geology, 52(2): 172−180 (in Chinese with English abstract).
[10] Wang Huaqi, Dong Ying, Zhang Maosheng. 2019. Present situation and countermeasures for the underground space utilization in Xi’an city[J]. Northwestern Geology, 52(2): 46−52 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xbdz201902006
[11] Wang Yahui, Zhang Maosheng, Shi Yunchao, Dong Ying, Wang Feng, Yu Fengdan. 2019. Precise detection and modeling of urban underground space based on integrated geophysical exploration[J]. Northwestern Geology, 52(2): 83−94 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xbdz201902011
[12] Yang Wencai, Tian Gang, Xia Jianghai, Yang Bo. 2019. The prospect of exploitation and utilization of urban underground space in hilly areas of South China[J]. Geology in China, 46(3): 447−454. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903003
[13] Yue Zhongqi. 2014. Drilling process monitoring for refining and upgrading rock mass quality classification methods[J]. Chinese Journal of Rock Mechanics and Engineering, 33(10): 1977−1996 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201410005
[14] Zhang Maosheng, Dong Ying, Liu Jie. 2014. Discussion of urban geological work in new urbanization[J]. Journal of Lanzhou University(Natural Science), 50(5): 581−587 (in Chinese with English abstract).
[15] Zhang Maosheng, Dong Ying, Zhang Xinshe, Liu Jie. 2013. Zeng Qingming. Prediction of land subsidence and its mitigation methods—a case study in the new urban district of Xi’an-Xianyang[J]. The Chinese Journal of Geological Hazard and Control, 24(4): 115−118 (in Chinese with English abstract).
[16] Zhang Maosheng, Li Tonglu, Cheng Xiujuan, Sun Pingping, Li Qiang, Qiao Zhitian, Zhao Quanli. 2019. Evaluation of underground space resources in mountain cities and their development models-taking Yan’an city as an example[J]. Mountain Research, 37(3): 303−315 (in Chinese with English abstract).
[17] Zhang Maosheng, Wang Huaqi, Wang Yao, Dong Ying, Sun Pingping. 2018. Progress and prospect of urban geological survey in China[J]. Northwestern Geology, 51(4): 1−8 (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/xbdz201804001
[18] Zhang Shanshan, Zhang Maosheng, Sun Pingping, Dong Ying, Feng Li. 2019. Advances in and outlooks of preferential flow study in unsaturated soils[J]. Journal of Lanzhou University (Natural Science), 55(2): 274−280 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201902021
[19] Zhao Pu, Jiang Jie, Wang Xiurong. 2017. Urban Underground Space Exploration Key Technologies and Development Trend[J]. Coal Geology of China, 29(9): 61−66 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgmtdz201709012
[20] Zhou Yuanxin, Zheng Guisen, He Jing, Li Chao, Liu Yu, He Hanhan, Xiao Jingze. 2019. Research on geological safety monitoring of urban underground space resource utilization in Beijing[J]. Geology in China, 46(3): 455−467 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201903004
-
期刊类型引用(7)
1. 刘凯. 地下空间资源协同化评价探索——“复杂地质条件地下空间资源识别与评价”专辑特邀主编寄语. 地球学报. 2024(01): 1-4 . 百度学术
2. 陈实,屈栓柱,李延清,金荣杰,蒋忠祥,艾斯卡尔,徐超,李建新,涂勇刚. 基于微动技术的综合探测体系在乌鲁木齐城市地下空间精细化探测中的应用研究. 地球物理学进展. 2023(02): 779-789 . 百度学术
3. 陈爽爽,李鹏,张智,王超凡. 线性台阵被动源面波法在地下空间探测中的应用. 人民长江. 2022(02): 77-81 . 百度学术
4. 杨洋,王睿,赵牧华,邢怀学,郑红军,张庆,陈春霞,李云峰,程光华. 城市地下空间资源探测评价技术体系研究. 华东地质. 2022(02): 245-254 . 百度学术
5. 刘建生,蒋正中,罗水余,雍凡. 城市地震勘探中声噪压噪的试验研究. 物探化探计算技术. 2022(03): 316-321 . 百度学术
6. 程秀娟,孙萍萍,王晓勇,薛强,王益民,田中英. 延安城市地下空间探测技术方法及应用研究. 华东地质. 2021(02): 167-175 . 百度学术
7. 杨剑,李华,王桥,廖国忠,夏时斌,郝明,张伟. 综合地球物理勘探快速获取城市待建区浅部三维地质特征:以成都市天府新区独角兽岛为例. 地球物理学进展. 2021(04): 1751-1759 . 百度学术
其他类型引用(2)