Lithofacies geochemistry characteristics of alkali volcanic rocks and prospecting prediction in Tupiza copper deposit, Bolivia
-
摘要:
在沉积型铜矿床中,蚀变火山岩具有特殊的成岩成矿意义。采用构造岩相学填图、火山岩岩相类型划分和电子探针分析等综合方法,对玻利维亚Tupiza铜矿进行研究,结果表明在玻利维亚Tupiza铜矿区内,发育中深成相、次火山侵入相(次火山颈相)、火山溢流相、火山碎屑流相、沉火山岩相等。岩石组合类型为辉绿岩-辉绿玢岩、辉长岩-辉长玢岩、碱性玄武岩、钾质粗面玄武岩、橄榄玄武粗面安山岩和安粗岩。在区域上,碱性玄武质岩浆侵位具多期多阶段性,在Tupiza铜矿区内,采用矿物温度-压力计估算,镁普通角闪石形成温度630.97~748.43℃,压力55~251 MPa,推测成岩深度为2.04~9.27 km,揭示经历多阶段减压增温(减压熔融)、减压降温的成岩演化过程,在岩浆减压侵位过程中具有高温高氧化成岩环境。绿泥石形成温度为112~305℃,lgf(O2)为-45.03~-56.68,lgf(S2)为-4.46~-18.07,属中—低温还原成岩成矿环境,代表铜(银)主成矿期。次火山热液蚀变成岩成矿作用形成了Tupiza铜(银)矿床,蚀变火山岩是铜矿床的成矿物质供给系统,铜(银)矿体富集于蚀变火山岩相体与构造叠加部位,在NNE与NW向构造交汇部位尤为富集。在上白垩统阿诺依菲雅组第三岩性段蚀变火山岩层之下的第二岩性段顶部黄铁矿化砂砾岩中,验证钻孔揭露了铜(钴)矿化体,是深部寻找隐伏沉积岩型铜(钴)矿体找矿标志。在蚀变火山岩和外围砂砾岩中具有明显的铜铅锌矿化和异常。本文认为,在Tupiza铜矿床内,次火山热液成矿系统中心分布在蚀变次火山颈相中,富集铜(银)矿体;周边脉状-网脉状断裂-裂隙-蚀变带为铜铅锌成矿系统的过渡相带;而以赋存在上白垩统Aroifilla组第二岩性段中砂砾岩型铜(钴)矿体和Cu-Pb-Zn异常,为铜(钴)铅锌成矿系统的外缘相带。在深部围绕蚀变次火山岩相体具有寻找铜(银)、铜(钴)和铜铅锌矿体的潜力。
Abstract:In sediment-hosted copper deposits, altered volcanic rocks have special significance for diagenesis and mineralization. Based on the methods of tectonic lithofacies mapping, volcanic lithofacies classification, and electron microprobe analysis (EPMA), the authors studied lithofacies types of volcanic rocks, their geochemical characteristics, physical-chemical conditions of magmatic evolution and their relationship with copper (silver) enrichment. The following results show that mesogenetic intrusive facies, subvolcanic intrusive facies (sub-volcanic neck facies), volcanic overflow facies, pyroclastic facies and sink volcanic rocks are developed in the Tupiza copper deposit. The assemblage of rock types is diabase, gabbro, alkaline basalt, potash-trachybasalt, olivine basalt trachyandesite, and latite. In this area, alkaline basaltic magmatic emplacement has multiple stages and phases. In the Tupiza copper mining area, mineral geothermometer-geobarometer was used to do estimation. When the formation temperature and pressure of hornblende respectively are 630.97-748.43℃ and 55-251 MPa, the depth of diagenetic formation is estimated to be 2.04-9.27 km, revealing that the diagenesis evolution process under decreasing pressure-increasing temperature (decompression melting) and decreasing pressure-decreasing temperature had a high-temperature and high-oxidation diagenetic environment during magmatic decompression and emplacement, suggesting a multi-stage emplacement. Chlorite formation temperature is 112-305℃, lgf(O2)=-45.03—-56.68, lgf(S2)=-4.46—-18.07, suggesting a low temperature reduced diagenesis mineralization environment representing the main copper (silver) ore formation period. The Tupiza copper (silver) deposit was formed by the subvolcanic hydrothermal alteration diagenetic mineralization. Altered volcanic rock is a metallogenic material supply system for copper deposits. Copper (silver) orebody is concentrated in altered volcanic lithosphere and structural superposition, particularly concentrated in the intersection of NNE and NW-trending structures. In the pyrite glutenite at the top of the second lithologic section below the third lithologic alteration volcanic rock in the Upper Cretaceous Aroifilla Formation, the verifying drilling revealed a copper (cobalt) mineralized body, which was the sign of deep prospecting for hidden sedimentary rock type copper (cobalt) orebodies. In this paper, it is believed that, in the Tupiza copper deposit, the central phase of the sub-volcanic hydrothermal metallogenic system is distributed in the altered secondary volcanic neck phases, enriching the copper (silver) orebody. Peripheral veinlet vein-fractured-alteration zone is the transitional facies zone of the copper-lead-zinc metallogenic system, while the glutenite-type copper (cobalt) ore and Cu-Pb-Zn anomaly in the second lithologic zone of the Aroifilla Formation is the outer fringe facies zone of the copper (cobalt) lead-zinc metallogenic system. It has the prospecting potential for copper (silver), copper (cobalt) and copper-lead-zinc orebodies in the deep surrounding altered subvolcanic facies.
-
1. 引言
巴音戈壁盆地为叠置在克拉通基底与晚古生代褶皱基底接合部位上的伸展断坳复合型盆地(罗毅等,2009; 张成勇等,2015),盆地中南部是古生代滨浅海相基础上发育的盆地建造带,其坳陷的基底为多期富铀花岗岩活化的古克拉通基底,是成熟度高的富铀基底,是铀成矿的有利区。近年来,核工业二〇八大队在盆地中南部开展了一系列的铀矿调查评价与勘查工作,取得突出的找矿成果(申科峰等,2014; 李鹏等,2017; 彭云彪等,2018b)。
根据水成铀矿理论,砂岩型铀矿是一种产在近地表砂体中的外生铀矿床,是活化的六价铀元素沿含矿含水层运移,遇有机碳、黄铁矿或油气等还原剂,在过渡带被还原成四价铀元素富集沉淀成矿(陈路路等,2014)。盆地(坳陷)内能否铀成矿,取决于其所在地区的大地构造背景及构造-沉积演化特征,并通过影响区域构造、沉积演化、铀(物)源、水动力、氧化还原蚀变等成矿地质条件来控制砂岩型铀矿床的形成。因此,通过研究巴音戈壁盆地中南部构造-沉积演化及其对铀成矿的关系,对盆地内继续寻找铀矿床具有一定的积极作用。
2. 地质背景
2.1 大地构造背景
巴音戈壁盆地位于塔里木板块、哈萨克斯坦板块、西伯利亚板块和华北板块的结合部位,是巴尔喀什—天山—兴安岭晚古生代增生碰撞带。以恩格尔乌苏—巴音查干NEE向晚古生代陆-陆碰撞板块缝合线为界,巴音戈壁盆地中南部处于华北板块北缘阴山隆起带与宝音图—锡林浩特火山型被动陆缘的结合带。其北界为宗乃山—沙拉扎山隆起带,南界为巴丹吉林断裂(图 1),属弧间盆地。
根据前人的划分方案,盆地中南部属于中构造域,为西部挤压与东部拉张环境的结合部,构造应力比较复杂(Darby et al., 2005; 陈戴生等,2011; Shi et al., 2015; 苗培森等,2017; 刘波等,2020; Jin et al., 2020; Yu et al., 2021)。区域上自中生代以来先后经历了印支期、燕山期、喜山期共7次构造运动,导致其上覆盖层中形成隆起和坳陷(凹陷)相间出现的局面(表 1)。
表 1 巴音戈壁盆地中南部主要凹陷特征一览Table 1. Characteristic list of main depressions in the central and southern Bayin Gobi Basin2.2 地质概况
巴音戈壁盆地中南部基底地层主要为太古界乌拉山群深变质岩,古元古界阿拉善群中深变质岩、寒武系—泥盆系碎屑岩、碳酸盐岩及浅变质岩,石炭系中酸性火山岩、碎屑岩,二叠系碎屑岩、火山岩、碳酸盐岩等组成(张成勇等,2015; 刘波等,2020)。盖层主要为中新生界,主要为侏罗系、下白垩统巴音戈壁组、上白垩统乌兰苏海组,局部见下白垩统苏红图组,其中巴音戈壁组上段为盆地内主要的找矿目的层(何中波等,2010; 丁叶等,2012; 肖国贤等,2017; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020; Liu et al., 2021a)。盆地内岩浆岩主要发育于元古宙、古生代和显生宙,主要分布于宗乃山—沙拉扎山、狼山—巴彦诺尔公地区,主要为花岗岩、花岗闪长岩、花岗闪长玢岩、黑云闪长岩、石英闪长玢岩等(史兴俊等,2015),以花岗岩类最为发育。断裂主要有宗乃山—沙拉扎山南缘断裂和巴丹吉林断裂,基本控制了盆地中南部坳陷带的发育。
3. 构造活动对目的层的制约
3.1 构造样式
巴音戈壁盆地中南部凹陷的构造样式主要为双断型、单断型与复合型(刘波等,2020)。从凹陷形态及其演化继承性分析,具有两种类型,表现为叠合型和迁移型(陈启林等,2005; 彭云彪等, 2018a, 2018b)。不同的凹陷形态具有不同的构造样式(卫三元等,2006),不同构造样式控制了不同的沉积充填类型(图 2),同时控制了凹陷后期构造反转、流体运移和铀矿化的分布等(刘波等, 2016, 2017a, 2017b, 2018, 2020)。
图 2 因格井—尚丹坳陷各凹陷构造样式a—单断断槽式; b—单断迁移型; c—单断叠置型; d—双断地堑式; 1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—中下侏罗统; 5—地层界线; 6—正断层; 7—性质不明断层; 8—反转断层Figure 2. Structuralstyles of sags in Inger-Shangdan Depressiona-Single and slot; b-Single fault migration; c-Single fault superimposed; d-Double break graben; 1-Ulansuhai Formation of Upper Cretaceous; 2-Upper Member of Bayin Gobi Formation of Lower Cretaceous; 3- Lower Part of Bayin Gobi Formation of Lower Cretaceous; 4-Middle-Lower Jurassic; 5-Stratigraphic boundary; 6-Normal fault; 7-Unidentified fault; 8-Inversion fault单断箕状凹陷在盆地中南部发育规模最广,如因格井凹陷、乌力吉凹陷等。这种凹陷易于在断陷端发育冲积扇—扇三角洲沉积,远离断陷端多为湖泊沉积,扇三角洲平原分流河道和扇三角洲前缘多发育有利砂体,利于成矿流体运移及铀成矿,如塔木素铀矿床砂岩型铀矿体即赋存于因格井凹陷北部扇三角洲砂体中(李鹏等,2017; 彭云彪等,2018b; 刘波等,2020)。复合型凹陷在盆地中南部局部发育,如本巴图矿产地,赋存于单断箕状凹陷的复合部位。该部位因差异性抬升易于遭受剥蚀,继而形成大型剥蚀窗口,而剥蚀窗口有利于后生氧化发育,进而形成铀矿化。
3.2 构造演化
3.1.1 侏罗纪构造演化
早中侏罗世,受燕山运动影响,盆地中南部开始局部裂陷,裂陷主要受北东向断裂控制,主要呈箕状和不对称地堑。在晚侏罗世,盆地整体抬升剥蚀,地层剥蚀殆尽,大部分残存于盆地中南部的沉降中心,少量在坳陷边缘局部呈残留体形式存在(罗毅等,2009)。
3.1.2 白垩纪构造演化
早白垩世巴音戈壁期为强烈断陷期,主要发育了下白垩统巴音戈壁组,在坳陷带内具有广泛连通的特征,古构造地貌表现为北高南低,东高西低。在断陷发育扩张的早期,首先沉积了巴音戈壁组下段冲积扇砂砾岩层。巴音戈壁组上段早期湖泊相细粒沉积物不断向盆地外侧超覆沉积,反映出断陷不断扩张。随着断陷继续发育,巴音戈壁组上段沉积物供给<凹陷的可容纳空间,发育扇三角洲—湖沼沉积。这一时期在三角洲平原分流河道和三角洲前缘,既发育了有利的铀储层砂体,又在河道分流间湾沉积了暗色泥岩、粉砂质泥岩,构成了有利于地浸砂岩型铀矿形成的“泥-砂-泥”储层结构,成为本区砂岩型铀矿的主要找矿目的层。此后,盆地中南部差异性隆升,大部分地区沉积滨浅湖与半深湖亚相细碎屑物,表现为退积型沉积特点。
在苏红图期,延续早白垩世巴音戈壁期北高南低和东高西低的基础上,银根地区发育为沉降沉积中心,发育了一定厚度的苏红图组,而其他大部分地区诸如塔木素、乌力吉地区依旧缓慢隆升,遭受剥蚀。
在早白垩世苏红图沉积后,银根地区抬升遭受剥蚀,在原有古构造地貌基础上,表现为中央局部隆升,局部遭受剥蚀(He et al., 2015)。
早白垩世晚期银根期,盆地中南部受滨西太平洋俯冲远程影响(Shi et al., 2014; Zhang et al., 2014; Liu et al., 2019),整体抬升强烈,普遍缺失银根组(图 3)。古构造地貌特征为北东高南西低的特点。
图 3 巴音戈壁盆地中南部白垩纪地层沉积与剥蚀天窗示意图1—乌兰苏海组; 2—巴音戈壁组上段三岩段; 3—巴音戈壁组上段二岩段; 4—地质界线; 5—角度不整合界线; 6—钻孔孔号及标高(m); 7—工业矿孔; 8—矿化孔; 9—无矿孔Figure 3. Schematic diagram of Cretaceous sedimentation and denudation windows in the central and southern Bayin Gobi Basin1-Ulansuhai Formation; 2-Third rock section inthe Upper Member of Bayin Gobi Formation; 3-Second rock section in the Upper Member of Bayin Gobi Formation; 4-Geological boundary; 5-Angular unconformity boundary; 6-Borehole number and elevation (m); 7-Industrial ore hole; 8-Mineralization hole; 9-Non ore Hole晚白垩世乌兰苏海期,受古亚洲板块俯冲影响,盆地中南部受北西-南东应力作用,整体从北西向南东阶梯式抬升(刘春燕等,2006; Feng et al., 2017; 张建新等,2018),在局部表现为伸展作用,在因格井坳陷、尚丹坳陷的南部,乌兰苏海组坳陷内沉积厚度较大; 在宗乃山—沙拉扎山隆起带边缘表现为缺失乌兰苏海组或厚度较小(图 3),此时古构造地貌表现为北西高-南东低。
3.1.3 古近纪以来构造演化
古近纪以来,受印度板块俯冲影响,盆地中南部受南西-北东应力作用影响,使得老构造重新活动和北东向断裂的新生(Tapponnier et al., 2001; 施炜等,2013; Cui et al., 2018; 赵衡等, 2019a, 2019b); 由南向北发育阶梯式抬升,导致在相邻的雅不赖盆地缺失白垩系,盆地内整体缺失古近系,近于直接出露厚层的乌兰苏海组(图 3)。而盆地中南部乌兰苏海组同样遭受抬升剥蚀,表现为厚度较薄或缺失。该时期地貌表现为南高北低,西高东低的特点,垂直高差300~500 m。
3.3 构造对沉积充填的影响
巴音戈壁组在上、下段沉积过程中,其沉积相、沉积体系出现了明显的变化,下段沉积期间,显示相对单一的以重力流沉积为主体的冲积扇沉积和扇三角洲沉积,上段沉积时则演变为相对复杂的以重力流和牵引流沉积并重的多种沉积体系所构成的沉积格局,特别是扇三角洲沉积体系的广泛发育,为巴音戈壁盆地中南部砂岩铀矿的形成提供了最基本的砂体条件。这种沉积体系的演变虽然直接与沉积环境的变化有关,但空间上有规律的分布则明显与构造活动有关(丁叶等,2012; 陈路路等,2014; 彭云彪等, 2018a, b)。
在巴音戈壁组沉积时,各凹陷虽构造样式不同(因格井凹陷为双断型、新尼乌苏凹陷为单断箕状),但在北东向控盆及控坳断裂控制下,在陡坡快速接受碎屑物沉积。结合气候干旱,流水作用不发育,决定了巴音戈壁组下段在盆地(坳陷)的南北两侧发育冲积扇沉积体系,以及局部地段的扇三角洲沉积体系。至巴音戈壁组上段沉积时,构造沉降作用进一步加剧,同时,气候环境明显改变,流水作用显著增强,湖盆发生快速扩张,除某些地段沉积仍显示陡坡特点形成冲积扇沉积体系与扇三角洲沉积体系外,在其他地段特别是北东向构造的闭合端,由于河流的发育,成为碎屑补给的主要地段,并使沉积坡降进一步降低,在构造交汇处形成由平原亚相逐步入湖的扇三角洲沉积体系(刘波等,2020; Liu et al., 2021b)。
后期的构造反转,差异的块断升降导致原来形成的沉积格局发生改变。反转断裂以逆冲压性为主要构造性质,构造方向呈北东向,由若干条相互平行的断裂带组成。由于断裂构造的反转,使原有沉积相带在空间上的有序规律发生了变化,即由冲积扇-扇三角洲-湖相组合递变的沉积相带或由冲积扇-辫状河-辫状三角洲-湖相组合递变的沉积相带在空间上出现了错位或缺失,同时也使巴音戈壁组上、下段沉积地层在空间叠置关系上出现了错断和突变(何中波等,2010; 张成勇等,2015; 刘波等,2020)(图 4)。
图 4 巴音戈壁盆地中南部白垩纪构造-沉积演化模式图a—早白垩世巴音戈壁组下段; b—早白垩世巴音戈壁组上段早期; c—早白垩世巴音戈壁组上段晚期; d—早白垩世末期; 1—扇三角洲; 2—冲积扇; 3—扇三角洲平原; 4—扇三角洲前缘; 5—湖泊相; 6—基底; 7—亚相界线; 8—正断层; 9—逆断层Figure 4. Cretaceous tectonic-sedimentary evolution model diagram in the central and southern Bayin Gobi Basina-The lower part of Bayin Gobi Formation in Early Cretaceous; b-Early upper member of Bayin Gobi Formation in Early Cretaceous; c-Late upper member of Bayin Gobi Formation in Early Cretaceous; d-Late Early Cretaceous; 1-Fan delta; 2-Alluvial fan; 3-Fan delta plain; 4-Fan delta front; 5-Lake facies; 6-Basement; 7-Subfacies boundary; 8-Normal fault; 9-Reverse fault4. 构造-沉积演化对铀成矿的制约
4.1 构造-沉积演化对成矿流体的影响
巴音戈壁盆地中南部地下水的水动力方向和状态的改变,主要受构造隆升或掀斜构造的影响,而地下水的水动力条件改变,会使铀成矿作用产生变化。巴音戈壁盆地中南部在早白垩世巴音戈壁组上段沉积期,地势比较开阔,巴音戈壁组上段地层呈水平沉积; 巴音戈壁组沉积后,巴音戈壁盆地中南部受古亚洲造山带和滨西太平洋的双向挤压,北部宗乃山—沙拉扎山隆起抬升明显,使得下白垩统巴音戈壁组上段抬升剥蚀,形成早白垩世巴音戈壁期—晚白垩世长期的沉积间断,形成大型的剥蚀窗口。巴音戈壁盆地中南部内的含铀含氧水顺剥蚀窗口向盆地内运移,在巴音戈壁组上段的“泥-砂-泥”储层结构的约束下,与砂体内本身的有机质、还原(流)性介质发生作用,形成铀矿体(图 5)。在晚白垩世乌兰苏海期,巴音戈壁盆地中南部进入坳陷期,在坳陷(凹陷)内沉积了乌兰苏海组,形成了区域盖层。在古近纪,受喜山运动的影响,巴音戈壁盆地中南部由南西向北东发生掀斜式抬升,巴音戈壁盆地中南部地层整个抬升翘起,巴音戈壁组形成微向斜,含铀含氧水继续呈“C”型或者“U”型沿着剥蚀窗口向盆地内运移。在新近纪,受喜山运动影响,巴音戈壁盆地中南部受到由南西向北东掀斜的整体剧烈抬升,使得古近系、上白垩统在南部遭受剥蚀,宗乃山隆起被大量剥蚀改造,造山带和盆地的高差减小。由于剥蚀抬升,使得含铀含氧水向盆地内继续运移。由于受巴彦诺尔公隆起的影响,巴音戈壁盆地中南部内地下水由径流—弱径流,转为滞水。该时期由于气候持续干旱炎热,水岩作用强烈,NaCl型高矿化度地下水中的Na+替换了斜长石中的Ca2+,后者与地下水中的CO32-、HCO3-和Mg2+形成白云石等碳酸盐矿物,促使地下水中以[UO2(CO3)3]4-、[UO2(CO3)3]2-等碳酸铀酰络合离子及MgCO3·NaUO2(CO3)2复盐发生分离而形成了铀的沉淀(王凤岗等,2018; 刘波等,2020)。
图 5 巴音戈壁盆地中南部下白垩统巴音戈壁组上段岩性-岩相示意图1—上白垩统乌兰苏海组; 2—下白垩统巴音戈壁组上段; 3—下白垩统巴音戈壁组下段; 4—侏罗系; 5—上石炭统; 6—盆地边界; 7—岩相界线; 8—扇三角洲平原; 9—扇三角洲前缘; 10—滨浅湖; 11—花岗岩; 12—矿床/矿产地; 13—乌兰苏海组剥蚀界线; 14—铀矿体; 15—断裂; 16—示意剖面Figure 5. Lithology-lithofacies sketch map of upper member of lower Cretaceous Bayin Gobi Formation in south-central Bayin Gobi Basin1-Ulansuhai formation of upper Cretaceous; 2-Upper member of Bayin Gobi Formation of Lower Cretaceous; 3-Lower part of Bayin Gobi Formation of Lower Cretaceous; 4-Jurassic; 5- Upper Carboniferous; 6-Basin boundary; 7-Lithofacies boundary; 8-Fan delta plain; 9-Fan delta front; 10-Shore-shallow lake; 11-Granite/Orefield; 12-Deposit; 13-Denudation boundary of Wulansuhai Formation; 14-Uranium ore body; 15-Fault; 16-Schematic section总体来看,巴音戈壁盆地中南部在白垩纪—古近纪以来,北部地下水一直保持由北向南的径流趋势,南部地下水总体流向一直保持由南向北的径流趋势,在不同的次级凹陷中略呈分散状。地下水流向与当时的沉积物迁移和地层相带展布方向长期保持一致,这对铀的稳定迁移、层间氧化带的稳定发育及铀在氧化带前锋线一带沉积成矿是非常有利的。
4.2 构造-沉积演化对氧化还原蚀变的影响
巴音戈壁盆地中南部主要经历了3次大规模的铀成矿作用,主要为第一期早白垩世中晚期(109.7±1.5)Ma ~(115.5±1.5)Ma,第二期为晚白垩世晚期—古近纪(45.4±0.6)Ma ~(70.9±1.0)Ma和第三期为新近纪(12.3±0.2)Ma ~(2.5±0.0)Ma(刘波等,2020)。在早白垩世中晚期,伴随着恩格尔乌苏断裂的活动,宗乃山隆起发生抬升,使得含铀含氧水向盆地内运移,发育层间氧化作用。从塔木素铀矿床的赤铁矿化发育情况看,该期氧化作用强烈,可能为主要成矿期。在晚白垩世晚期65~80 Ma(韩进等,2015; 刘溪等,2017),盆地经历了由北向南的强烈的推覆作用,这与巴音戈壁盆地中南部内典型矿床的第二期成矿年龄相对应。伴随着盆地晚白垩世晚期—古近纪盆地由北向南的推覆抬升,盆地内在原有基础上发育有叠加的黄色褐铁矿化层间氧化作用,该期盆地抬升较第一期弱,故层间氧化带的规模较上期小,表现为盆地内褐铁矿化分布较赤铁矿化分布范围小。但是该时期盆地古气候炎热干旱,盆地蒸发量增强,使得表生盐度高卤水向内入渗,在巴音戈壁组上段二岩段层间破碎、裂陷、微孔隙充填发育了大量石膏和碳酸盐(李鹏等,2017)。同时,斜长石因水岩作用(溶解、溶蚀等),在解理面及表面形成了次生的缝隙及孔洞等,为铀沉淀提供了空间。此外,含CO32-、SO42-等的酸性地表水沿层间下渗,溶解了砂岩中碳酸盐胶结物而形成了溶洞,为后期再次迁移的铀提供了沉淀空间,并形成了铀的进一步叠加、富集(王凤岗等,2018)。受盆地挤压抬升影响,后期近地表成矿流体促进了大规模潜水氧化与层间氧化的发育,深部有机流体(还原气体)上侵与SO42-发生反应生成黄铁矿。正是黄铁矿和植物炭屑的还原作用导致了渗入型含氧含铀地下水中矿质的沉淀,形成铀矿体。
4.3 构造-沉积演化与铀成矿的关系
早白垩世巴音戈壁期,巴音戈壁盆地断陷发育; 早白垩世苏红图—银根期,在太平洋俯冲远程效应下,巴音戈壁盆地发生断坳转换,发育走向北东的断裂与线性褶皱,致使地层发生差异性掀斜式抬升; 晚白垩世乌兰苏海期为坳陷期,沉积物以“填平补齐”的形式覆盖在早期的地质单元上,同时受喜山运动的影响,发育走向北西的断裂; 古近纪至今,受印度板块向北俯冲的影响,北东向构造活化与新生,区内差异性抬升更为明显,地层多被剥蚀(卫三元等,2006; 肖国贤等,2017; 彭云彪等,2018a; 赵衡等, 2019a, b; 刘波等,2020)。多期次构造叠加使得因格井—尚丹坳陷的地质体形成不同的块体。受早白垩世晚期至古近纪时期断续构造运动影响,白垩纪地层受北东向与北西向构造活动影响,形成大小不一的块体,在本巴图、乌力吉和塔木素地区比较明显,在不断抬升与剥蚀过程中局部形成剥蚀天窗(图 6),为后期铀成矿提供了有利条件,控制着层间氧化带由凹陷边缘向凹陷中心发育,加之(滨-浅)湖相地层中富含有机质,在氧化还原障附近形成铀矿化(表 2)。简言之,巴音戈壁盆地中南部内铀成矿在有利的构造背景下,主要受沉积相控制与层间氧化带制约。
图 6 尚丹坳陷银根地区构造形迹示意图a—乌力吉—本巴图地区; b—沙拉扎山北侧; c—银根地区; 1—盆地边界; 2—正断层; 3—逆断层; 4—性质不明断层; 5—向斜; 6—复式褶皱; 7—地质界线; 8—剥蚀天窗Figure 6. Structural trace map of Yingen area in Shangdan depressiona-Wuliji-Benbatu area; b-The north side of the Salazha Mountain; c-Yingen area; 1-Basin boundary; 2-Normal fault; 3-Reverse fault; 4-Unknown fault; 5-Syncline; 6-Compound fold; 7-Geological boundary; 8-Denudation windows表 2 巴音戈壁盆地构造-沉积演化与铀成矿作用的关系Table 2. Relationship between tectonic-sedimentary evolution and uranium mineralizationin in the Bayin Gobi Basin5. 讨论
5.1 扇三角洲类型
因格井坳陷内扇三角洲物源主要为自北向南,自早白垩世以来继承性发育。岩心及测井资料显示砂砾岩层累计厚度大,多表现出叠加正韵律岩性序列,反映出物源补给比较充足、强烈; A/S值虽然发生变化,但总体较小(林畅松,2015)。尚丹坳陷内扇三角洲继承性发育不良,岩石颗粒较细,细砂岩含量相对要高,累计厚度较薄,三角洲前积特征不明显,反映了物源供给的阶段性和微弱性,A/S值主体较大。
现代分析认为,层序地层学和“源-汇”体系研究具有内在紧密关联性。断陷湖盆扇三角洲的分布特征与A/S值密切相关(刘磊等,2015; 吴冬等,2015; 刘波等,2020)。“A”实际上对应着巴音戈壁盆地中南部的“汇”,“S”对应着巴音戈壁盆地中南部的“源”,“源-汇”体系直接控制着沉积扇体的类型和特征。“源-汇”体系主导下的断陷湖盆扇三角洲通常具备两种形态,即“锥状”扇三角洲与“片状”扇三角洲(吴冬等,2015)。所谓“锥状”扇三角洲外形呈锥形,纵向厚度较大,平面分布相对较窄,在地震剖面上,扇根多呈现杂乱、弱振幅、差连续反射特征,扇端多呈现弱振幅、中连续前积特征,横截面为丘状或透镜状; “片状”扇三角洲厚度较薄,平面分布范围较大,呈层堆积,地震反射上难以看出三角洲前积特征(李佳鸿等,2012; 刘磊等,2015)。从能量守恒与转化的角度来看,在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,在某一或者诸多节点处可以形成多种形态的复合扇三角洲,据此可进行扇三角洲垛体的定性预测(图 7)。
图 7 断陷盆地斜坡带扇三角洲发育模式图(吴东,2015)1—断裂; 2—断距; 3—剥蚀区; 4—沉积区Figure 7. Development model of fan delta in slope zone of faulted basin(Wu Dong, 2015)1-Fault; 2-Fault distance; 3-Denudation area; 4-Sedimentary area此外,按相邻的相分类,巴音戈壁盆地中南部扇三角洲又可以分为靠山型与靠扇型扇三角洲。靠山型扇三角洲往往发育于盆缘断层下降盘坡度较陡的斜坡区,并且紧邻高地物源区; 而靠扇型扇三角洲多形成于坡度相对平缓的盆缘斜坡区,它与相邻高地物源区之间通常存在明显可识别的冲积扇相(陈景山等,2007; 刘磊等,2015)。其次,由于构造控制下的斜坡坡度不同,导致这两种扇三角洲的沉积水动力条件有所差别(表 3)。换句话说,巴音戈壁盆地中南部内盆地边缘斜坡较陡和湖泛面较高, 有利于靠山型扇三角洲相的发育; 当盆地边缘斜坡较平缓和湖泛面相对较低时,则有利于靠扇型扇三角洲相的发育。事实上,两种扇三角洲可以交替、叠加演化,在进行扇三角洲垛体定性预测的同时,要对已知扇三角洲铀成矿属性进行判别。
表 3 靠山型与靠扇型扇三角洲特征对比表(据陈景山,2007)Table 3. Characteristic comparison table between hillside fan delta and fan delta(after Chen Jingshan, 2007)5.2 成矿模式
巴音戈壁盆地中南部在早白垩世中晚期((109.7±1.5)Ma~(115.5±1.5)Ma)、晚白垩世晚期—古近纪((45.4±0.6)Ma~(70.9±1.0)Ma)和新近纪((12.3±0.2)Ma~(2.5±0.0)Ma),经受了南东、北西与南西方向的应力改造作用(刘波等,2020; Liu et al., 2021a)。目的层巴音戈壁组上段发育的扇三角洲平原亚相及前缘亚相砂体,长时间暴露地表,使得含铀含氧水沿砂体向盆地(坳陷)内运移,形成较大规模的层间氧化带型铀矿化(李鹏等,2017; 刘波等,2020): 在氧化砂岩与灰色砂岩界面、氧化还原过渡带中多形成砂岩型铀矿体(图 8); 在扇三角洲分流河道砂岩与分流间湾泥岩结合的部位(同时作为氧化还原障),形成砂泥混合型矿体,在泥岩一侧发育微弱氧化作用; 垂向河道之间的分流间湾、河道间、晚期洪泛平原泥质粉砂岩中形成后生泥岩型铀矿体,尤其是溶蚀孔洞和裂隙充填黄铁矿、褐铁矿比较发育的地段。
图 8 断陷湖盆背景下的扇三角洲成矿模式图a—铀矿体产于氧化砂岩中; b—铀矿体产于氧化砂岩与灰色砂岩界面上; c—铀矿体产于灰色砂岩中; d、e—铀矿体产于氧化砂岩与灰色泥岩界面上; f—铀矿体产于氧化砂岩中的泥岩; 1—剥蚀区; 2—扇三角洲; 3—基底; 4—扇三角洲平原; 5—扇三角洲前缘; 6—滨浅湖; 7—砂岩; 8—泥岩; 9—褐铁矿化; 10—赤铁矿化; 11—炭化植物碎屑; 12—黄铁矿; 13—槽状交错层理; 14—正粒序; 15—平行层理; 16—水平层理; 17—流体方向; 18—铀矿体; 19—断裂; 20—裂隙; 21—高岭土化; 22—碳酸盐化; 23—电阻率测井曲线; 24—γ测井曲线Figure 8. Metallogenic model of fan delta underthe background of faulted lacustrine basina-Uranium ore body occurs in oxidized sandstone; b-Uranium ore body occurs at the interface between oxidized sandstone and grey sandstone; c-Uranium ore body occurs in grey sandstone; d/e-Uranium ore bodies occur at the interface between oxidized sandstone and grey mudstone; f-Uranium ore body occurs at mudstone in oxidized sandstone; 1-Denudation area; 2-Fan delta; 3-Basement; 4-Fan delta plain; 5-Fan delta front; 6-Shore shallow lake; 7-Sandstone; 8-Mudstone; 9-Limonition; 10-Hematite mineralization; 11-Carbonized plant debris; 12 -Pyrite; 13-Trough cross bedding; 14-Normal grain sequence; 15-Parallel bedding; 16-Horizontal bedding; 17 -Fluid direction; 18-Uranium ore body; 19 -Fracture; 20-Cranny; 21- Kaolinite; 22-Carbonation; 23-Resistivity logging curve; 24 -Gamma logging curve6. 找矿预测
综合巴音戈壁盆地中南部内铀成矿要素与典型铀矿床成矿特征(李晓翠等,2014; 李鹏等,2017; 彭云彪等,2018b; 刘波等,2020),确定主要成矿要素为: ①找矿层位为下白垩统巴音戈壁组上段; ②扇三角洲平原亚相的辫状分流河道与前缘亚相的水下分流河道、河口坝是砂岩型铀矿的有利成矿部位,而分流间湾是泥岩型铀矿的有利成矿部位; ③目的层具有稳定的“泥-砂-泥”结构; ④层间氧化还原转换带控矿—单个黄色氧化舌外侧或两个黄色氧化舌之间还原砂体内,以及氧化砂体内部灰色残留体; ⑤盆缘构造斜坡带控制成矿地质体的发育,同时控制含氧含铀水在目的层砂体中的运移; ⑥多期次构造活动形成“剥蚀天窗”,影响层间氧化带发育规模。因此,定位扇三角洲垛体是找矿预测的基础。
巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块。目前已知的塔木素铀矿床、本巴图矿产地均是位于此类有利构造部位(图 5,图 6)。进一步对比分析巴音戈壁盆地中南部内铀矿床与铀矿化(异常点)的分布可以发现,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。这些地段受不同程度的构造抬升影响,目的层巴音戈壁组上段遭受不同程度的剥蚀,如本巴图地区巴音戈壁组上段较塔木素地区剥蚀深度大于100 m,造成事实上的“剥蚀天窗”,有利于成矿流体的运移以及铀成矿。因此,在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部内铀矿重点找矿预测方向,诸如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。
由于巴音戈壁盆地中南部内构造-沉积演化的不均一性,小型凹陷以及凸起比较发育,现有工作程度比较低,制约着我们的认识。从现有钻孔的揭遇情况来看,沉积间断面附近通常发育较强的氧化还原作用,具有明显的γ异常与增高。因此定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。
7. 结论
(1) 巴音戈壁盆地中南部凹陷的构造样式主要为双断型和单断型; 从凹陷形态及其演化继承性分析,又可以分为叠合型和迁移型。
(2) 不同的凹陷构造样式控制着巴音戈壁组上段不同的沉积相组合,多期次构造叠加使得目的层逐步形成剥蚀天窗,控制着层间氧化带由凹陷边缘向凹陷中心发育,在氧化还原障附近形成铀矿化。
(3) 在构造-沉积演化过程中,高势能的“锥状”扇三角洲向低势能的“片状”扇三角洲演化,据此可进行扇三角洲垛体的定性预测,同时要对已知扇三角洲铀成矿属性进行判别,进而对矿化类型进行预判与识别。
(4) 巴音戈壁盆地中南部凹陷内发育走向北东的构造带与走向北西的断折带,形成一系列正断层与逆冲断层,地貌表现为断鼻、断块,铀矿化集中在盆缘与凹陷边缘的次级凹陷、凸起即背斜或者穹隆构造的两翼及扬起端。在大型斜坡带上寻找构造剥蚀天窗和次级凹陷是巴音戈壁盆地中南部铀矿重点找矿预测方向,如苏亥图坳陷的那仁哈拉地段、尚丹坳陷的新尼乌苏、准查以及巴润地段。
(5) 由于巴音戈壁盆地中南部构造-沉积演化的不均一性,定位构造稳定期的构造活化地段,或者低强度活动地区的稳定地段(沉积间断面)也是今后研究探索的找矿预测方向。
致谢: 本文研究工作得到了中战会(北京)矿业科技有限公司的大力支持与帮助,匿名审稿专家为本文提出了宝贵的意见与建议,在此一并表示衷心的感谢! -
图 1 玻利维亚构造单元(a)、重点成矿带与典型矿床(b)
1—西科迪勒拉—Altiplano高原多金属和钾盐—锂带;2—Sn多金属带;3—东科迪勒拉Au-Sb多金属带;4.东科迪勒拉Pb-Zn(AgAuCu)多金属带;5—亚马逊盆地Au带;6—穆通―图卡巴卡Fe—Mn带;7—Sunsas多金属带;8—巴拉瓜克拉通Au-Mn带;9—矿床(点)名称及编号;10—热液脉状Ag-Au-Pb-Zn矿床;11—热液脉状Cu—Ag(AuPbZn)矿;12—热液脉状Ag(PbZn)矿;13—红层型Cu矿床;14—Au矿床;15—热液脉状Au-Cu-Ag(AsSb)矿床;16—与斑岩有关的“玻利维亚型”Sn(WSnBiCuAg)矿床;17—与沉积岩有关的“玻利维亚型”Sn-Ag-Zn-Pb多金属脉状矿;18—与火山穹隆和次火山岩有关的“玻利维亚型”Sn-Ag-Pb-Zn多金属脉状矿;19—造山型Au±Sb(CuPbZn)矿床;20—古生界页岩中Zn-Pb(Ag)矿床;21—BIF型Fe—Mn矿床;22—Au—Cu(Ag)(IOCG型)矿床;23—Ni矿床;24—U—TR/REE-(NbAu)矿床;25—湖泊;26—盐湖(富集钾盐—锂);27—省会城市;28—二级城市;29—西科迪勒拉;30—Altiplano高原;31—东科迪勒拉;32—次安第斯;33—平原:①—马德雷得蒂奥斯平原;②—贝尼平原;③—查克平原;34—晚二叠世—中侏罗世东科迪勒拉陆内裂谷系统,也是中生代或更早时代的玄武岩墙、岩床、岩脉侵位主要区域;35—陆内裂谷系统的轴;36—与裂谷有关的深成岩(主要为花岗岩岩墙、岩床);37—裂谷系统内与沉积岩有关的矿床;38—陆内拉斑玄武岩岩床;39—引用的年龄样品位置;40—岩浆岩年龄;41—Manto型铜矿床
Figure 1. Tectonic unit (a), main ore belt and representative deposits (b) of Bolivia
1-Polymetallic and lithium belt in Western Cordillera-Altiplano plateau; 2-Sn polymetallic belt; 3-Au-Sb polymetallic belt in eastern Cordillera; 4-Pb-Zn (Ag-Au-Cu) polymetallic belt in eastern Cordillera; 5-Au belt in Amazon basin; 6-Mutún-Tucavaca Fe-Mn belt; 7-Sunsas polymetallic belt; 8-Au-Mn belt in Paraguá craton; 9-Deposit name and serial number; 10-Hydrothermal vein Ag-Au-Pb-Zn deposit; 11-Hydrothermal vein Cu-Ag (Au-Pb-Zn) deposit; 12-Hydrothermal vein Ag (Pb-Zn) deposit; 13-Red bed type copper deposit; 14-Au deposit; 15-Hydrothermal vein Au-Cu-Ag (As-Sb) deposit; 16-Porphyry-associated Bolivian-type Sn (W-Sn-Bi-Cu-Ag) deposit; 17-Sedimentary rock-hosted Bolivian-type Sn-Ag-Zn-Pb polymetal vein deposit; 18-Bolivian-type polymetallic veins deposit associated with volcanic domes and/or subvolcanic stocks; 19-Slate hosted orogenic Au±Sb (Cu-Pb-Zn) deposit; 20-Shale hosted Zn-Pb (Ag) deposit in Palaeozoic; 21-BIF-hosted Fe-Mn deposit; 22-Iron oxide-copper-gold deposit; 23-Ni deposit; 24-U-TR/REE-(Nb-Au) deposit; 25-Lake; 26-Salt lake; 27-Provincial capital; 28-Secondary city; 29-Western Cordillera; 30-Altiplano plateau; 31-Eastern Cordillera; 32-Subandean; 33-Plain, ①-Madre de díos plain, ②-Beni plain, ③-Chaco plain; 34-Main areas with basic dykes and sills emplaced in Mesozoic or older rocks; 35-Axis of intracontinental rift system; 36-Plutonic rock associated with rift (granite dykes and sills); 37-Deposit associated with sedimentary rock in rift system; 38-Continental tholeiite giant sill; 39-Position of modified age samples; 40-Age of magmatic rock; 41-Manto typecopperdeposit
图 2 玻利维亚Tupiza铜矿北段地质平面(a)及0号勘探线剖面简图(b)
1—未固结的鹅卵石、砾石、砂、泥、黏土;2—半固结的砾石、砂、黏土及凝灰质夹层;3—辉绿岩-辉长岩,次火山侵入相,中心相为辉长岩-辉长玢岩、过度相为辉绿玢岩、边缘相为辉绿岩;4—阿诺依菲雅组第三岩性段第二岩性层,火山溢流相;5—阿诺依菲雅组第三岩性段第一岩性层,火山碎屑岩相;6—阿诺依菲雅组第二岩性段;7—阿诺依菲雅组第一岩性段;8—塔拉帕雅组;9—昂勾斯度拉组;10—阿瓜依都柔组;11—欧比斯堡组;12—铜(银)矿(化)体;13—逆冲断层和断裂带及斜冲走滑方向;14—剖面钻孔位置及编号;15—铜矿体品位0.41%/矿体厚度1.56 m;16—铜矿体伴生银品位5 g/t;17—勘探线位置及编号;18—推测、实测地层界线;19—平面钻孔位置及编号;20—本次地表采样点位;21—预测深部铜(钴)矿体
Figure 2. Schematic geological map (a) and geological section along No. 0 exploration line (b) of part of north Tupiza Copper deposit, Bolivia
1-Unconsolidated pebbles, gravel, sand, silt and clay; 2-Deposit of semi-consolidated gravel, sand and clay with tuffaceous horizons; 3-Dikes of diabase and gabbro, subvolcanic intrusion facies; 4-The second bed of the third member of Aroifilla Formation, effusive facies; 5-The first bed of the third lithologic member of Aroifilla Formation, pyroclastic facies; 6-The second lithologic member of Aroifilla Formation; 7-The first lithologic member of Aroifilla Formation; 8-Tarapaya Formation; 9-Angostura Formation; 10-Agua y Toro Formation; 11-Obispo Formation; 12-Silver and copper metallization body; 13-Thrust, fault zone and its strike-slip direction; 14-The serial number and position of drill hole at lateral section; 15-Copper grade and thickness; 16-Silver grade associated with copper; 17-The serial number and position of prospecting line; 18-Boundary stratotype; 19-Serial number and position of drill hole at plane; 20-Sampling position of this paper; 21-Predicting copper and cobalt orebody at depth
图 3 玻利维亚Tupiza铜矿蚀变火山岩岩相学特征
a—浅井揭露的断裂带交汇部位富集Cu(Ag)矿体,褪色化―黏土化蚀变粗面玄武岩为含矿岩相体;b—浅井揭露的Cu(Ag)矿体,含矿岩相为蚀变橄榄玄武粗面安山岩;c—气孔杏仁状粗面玄武岩,夹紫红色砂岩;d—蚀变含铜辉绿玢岩;e—灰绿色—灰黑色碱性玄武岩;f—紫灰色橄榄玄武粗安岩;g—绢云母化蚀变辉长玢岩,正交光;h—辉绿岩的辉绿结构,正交光;i—蚀变粗面玄武岩中斜长石和角闪石斑晶,正交光;j—蚀变粗面玄武岩中方解石充填的杏仁体,正交光;k—蚀变粗面玄武岩中角闪石、斜长石斑晶;l—含铜杏仁状蚀变粗面玄武岩,反射光。Pl—斜长石;Hbl—角闪石;Ccp—黄铜矿;Bn—斑铜矿;Dg—蓝辉铜矿;Td—黝铜矿
Figure 3. Petrographic characteristics of alteration volcanic rocks in the Tupiza Copper deposit, Bolivia
a-Copper (silver) orebody enriched at the intersection of fault zones exposed by shallow bored well, faded-argillic alteration trachybasalt is orebearing facies; b-Copper (silver) orebody exposed by shallow bored well, alteration olivine basaltic trachyandesite is ore-bearing facies; c-Amygdaloidal basalt horse fuchsia sandstone; d-Alteration algovite beard copper; e-Gray-green—black alkaline basalt; f-Purple gray olivine basaltic trachyandesite; g-Sericitize gabbro porphyrite, crossed nicols; h-Diabaseic texture, crossed nicols; i-Plagioclase and hornblende phanerocrysl of alteration trachybasalt, crossed nicols; j-Amygdaloid backfilled calcareous matter in alteration trachybasalt, crossed nicols; k-Didjumplite and amphibole phenocryst of alteration trachybasalt, crossed nicols; l-Copper mineralization alteration trachybasalt, reflection. Pl-plagioclase; Hbl-Hornblende; Ccp-Chalcopyrite; Bn-Bornite; Dg-Digenite; Td-Tetrahedrite
图 4 玻利维亚Tupiza铜矿火山岩TAS分类图(据Le Maitre et al., 2005)
1—YZK003-19样品(详见表 3);2—Y3ZK8-9;3—YZK10-13;4— BQY01;5—Y1ZK8-20;6—YZK003-7;7—YZK003-14;8— YZK003-16;9—YZK003-17;10—Y1ZK8-3;11—Y1ZK8-6;12— YZK003-5;13—YZK003-3;14—BQY07。实心符号为侵入相,空心符号为火山溢流相。F—似长岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面英安岩;Pc—苦橄玄武岩;B—玄武岩;O1—玄武质安山岩;O2—安山岩;O3—英安岩;R—流纹岩。Ir-Irvine分界线(Irvineand Baragar, 1971),上为碱性,下为亚碱性
Figure 4. The classification of volcanic rocks in the Tupiza copper deposit using the total alkali versus silica (TAS) diagram (after Le Maitre et al., 2005)
1-YZK003-19 sample (details in Table 2); 2-Y3ZK8-9; 3-YZK10-13; 4-BQY01; 5-Y1ZK8-20; 6-YZK003-7; 7-YZK003-14; 8-YZK003-16; 9-YZK003-17; 10-Y1ZK8-3; 11-Y1ZK8-6; 12-YZK003-5; 13-YZK003-3; 14-BQY07. Solid symbols are subvolcanic intrusion facies, other symbols represent effusive facies. F-Foidite; T-Basanite and Tephrite; U2-Phonotephrite; U3-Tephriphonolite; Ph-Pphonolite; S1-Trachy-basalt; S2-Basatic trachyandesite; S3-Trachyandesite; T-Trachydacite and trachyte; Pc-Picro-basalt; B-Basalt; O1-Basaltic andesite; O2-Andesite; O3-Dacite; R-Rhyolite. Ir-Irvine line (Irvineand Baragar, 1971), upper part is alkaline, lower part is subalkaline
图 5 玻利维亚Tupiza铜矿火山岩SiO2-K2O图解(实线据Peccerillo et al., 1976;虚线据Middlemost,1985)
1―YZK003-19样品(详见表 1); 2—Y3ZK8-9; 3—YZK10-13; 4—BQY01; 5—Y1ZK8-20; 6—YZK003-7; 7—YZK003-14; 8—YZK003-16; 9—YZK003-17; 10—Y1ZK8-3; 11—Y1ZK8-6; 12—YZK003-5; 13—YZK003-3; 14—BQY07
Figure 5. Diagram of SiO2-K2O for volcanic rocks in Tupiza copper deposit, Bolivia (solid line after Peccerillo et al., 1976; dotted line after Middlemost, 1985)
1-YZK003-19 sample (details in Table 1); 2-Y3ZK8-9; 3-YZK10-13; 4-BQY01;5-Y1ZK8-20; 6-YZK003-7; 7-YZK003-14; 8-YZK003-16; 9-YZK003-17; 10-Y1ZK8-3; 11-Y1ZK8-6; 12-YZK003-5; 13-YZK003-3; 14-BQY07
图 6 稀土元素球粒陨石标准化分布型式图(据Sun et al., 1989)
1—辉长玢岩;2—辉绿玢岩;3—辉绿岩;4—碱性玄武岩;5—钾质粗面玄武岩;6—橄榄玄武粗面安山岩;7—安粗岩
Figure 6. Chondrite-normalized rare earth element patterns in the Tupiza copper deposit, Bolivia (after Sun et al., 1989)
1-Gabbroporphyrite; 2-Porphyrite; 3-Diabase; 4-Alkaline basalt; 5-Potassic trachybasalt; 6-Olivine basaltic trachyandesite; 7-Latite
图 7 微量元素球粒陨石标准化蛛网图(据Sun et al., 1989)
1—辉长玢岩;2—辉绿玢岩;3—辉绿岩;4—碱性玄武岩;5—钾质粗面玄武岩;6—橄榄玄武粗面安山岩;7—安粗岩
Figure 7. Primitive mantle-normalized multi-element spider diagram in the Tupiza Copper deposit(after Sun et al., 1989)
1-Gabbroporphyrite; 2-Porphyrite; 3-Diabase; 4-Alkaline basalt; 5-Potassic trachybasalt; 6-Olivine basaltic trachyandesite; 7-Latite
图 9 绿泥石分类图解(Deer et al., 1962)
Figure 9. Classification chart of chlorite (after Deer et al., 1962)
表 1 玻利维亚Tupiza铜矿火山岩主量元素组成及其特征参数(%)
Table 1 Main elements (%) and their parameters of volcanic rocks in Tupiza copper deposit, Bolivia
表 2 玻利维亚Tupiza铜矿火山岩稀土元素(10-6)及其特征参数
Table 2 Rare earth elements (10-6) and their parameters of volcanic rocks in Tupiza copper deposit, Bolivia
表 3 玻利维亚Tupiza铜矿火山岩微量元素组成(10-6)
Table 3 Trace elements(10-6) of volcanic rocks in Tupiza copper deposit, Bolivia
表 4 玻利维亚Tupiza铜矿火山岩中角闪石电子探针分析数据(%)
Table 4 The EPMA data (%) of amphibole of volcanic rocks in the Tupiza Copper deposit, Bolivia
表 5 玻利维亚Tupiza铜矿火山岩中绿泥石电子探针分析数据(%)
Table 5 The EPMA data (%) of chlorites of volcanic rocks in Tupiza Copper deposit, Bolivia
-
Anders E, Greresse N. 1989. Abundances of the elements:Meteoritic and solar[J]. Geochimical et Cosmochimica Acta, 53:197-214. doi: 10.1016/0016-7037(89)90286-X
Anderson J L, Barth A P, Wooden J L, Mazdab F. 2008. Thermometers and thermobarometers in granitic systems[J]. Reviews in Mineralogy and Geochemistry, 69:121-142. doi: 10.2138/rmg.2008.69.4
Anderson J L, Smith D R. 1995.The effect of temperature and oxygen fugacity on Al-in-hornblende barometry[J]. American Mineralogist, 80:549-559. doi: 10.2138/am-1995-5-614
Anderson J L. 1996. Status of Thermobarometry in Granitic Batholiths[J]. Geological Society of America Special Papers, 315:125-138. doi: 10.1017-S0263593300006544/
Benavides J, Kyser T K, Clark A H, Oates C J, Zamora R, Tarnovschi R, Castillo B. 2007. The Mantoverde iron oxide-copper-gold district, Ⅲ region, Chile:The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J]. Economic Geology, 102(3):415-440. doi: 10.2113/gsecongeo.102.3.415
Blundy J D, Holland T J B. 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer[J]. Contributions to Mineralogy and Petrology, 104:208-224. doi: 10.1007/BF00306444
Deer W A, Howie R A, Iussman J. 1962. Rock-forming Minerals:Sheet Silicates[M]. London:Longman, 1-270.
Du Yulong, Fang Weixuan. 2017. Discussion on metallogenic belt and strategic selection direction in the Bolivian section of Andes[C]//Proceedings of the 8th National Conference on Mineralization Theory and Prospecting Methods. Acta Mineralogica Sinica, 37(S): 876-877.
Fang Weixuan. 2017a. Mesozoic-Cenozoic basin-mountain-original mosaic structure area and the continental dynamic metallogenic system in Taxi[C]//Proceedings of the China Earth Science Joint Academic Annual Conference, 104.
Fang Weixuan, Jia Runxing, Wang Lei. 2017b. Types of basin fluids, mechanism of discolored alterations and metal mneralizations of Glutenite-type Cu-Pb-Zu-U deposits in intercontinental redbed basin of the western Tarim basin[J]. Journal of Earth Sciences and Environment, 39(5):585-619 (in Chinese with English abstract).
Fang Weixuan, Liu Yulong, Zhang Shoulin, Guo Maohua. 2017. Three types of continental geodyhnamics and metallogenic models for IOCG (Iron-Oxigen Copper Gold Deposit) from the global view[J]. Journal of northwest University (Natural Science Edition), 39(3):404-413 (in Chinese with English abstract).
Fang Weixuan, Wang Lei, Jia Runxing. 2018. Mosaic Tectonics of Mesozoic to Cenozoic Basin-mountain-plateau in the Western Tarim Basin, China:Glutenite-type Cu-Pb-Zn-celesite-U-coal Metallogenic System[J]. Journal of Earth Sciences and Environment, 40(6):663-705. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201806001
Fontboté L. 1990. Stratabound Ore Deposits in the Andes: A review and a Classification According to their Geotectonic Setting[M]//Fonbote L, Amstutz G C, Cardozo M(ed.). Stratabound ore Deposits in the Andes. Berlin: Special Publication No.8 of the Society for Geology Applied to Mineral Deposits: 79-110.
Foster M D. 1960. Interpretation of the Composition of Trioctahedral Micas[R]. New York: US Government Printing Office, 354B: 1-49.
Frey F A, Roden M F. 1987. The mantle source for the Hawaiian islands: Constrains from the lavas and ultramafic inclusions[C]//Menzies M A, Hawkes Worth C J (ed.). Mantle Metasomatism.Academic Press, 423-464.
Friedrich Lucassen, Gerhard Franz, Rolf L, Romer, Frank Schultz, Peter Dulski, Klaus Wemmeret. 2007. Pre-Cenozoic intra-plate magmatism along the Central Andes (17-34°S):Composition of the mantle at an active margin[J]. Science Direct, 99:312-338. http://adsabs.harvard.edu/abs/2007Litho..99..312L
Green D H. 1971. Composition of basaltic magmas as indicators of conditions of origin:Application to oceanic volcanism[J]. Philosophical Transactions of the Royal Society of London, 268:707-725. doi: 10.1098/rsta.1971.0022
Holland T J B, Blundy J D. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 116:433-447. doi: 10.1007/BF00310910
Johnson M C, Rutherford M J. 1989. Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks[J].Geology, 17:837-841. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2
Klohn E, Holmgren C, Ruge H. 1990. El Soldado, a Stratabound Copper Deposit Associated with Alkaline Volcanism in the Central Chilean Coastal Range[C]//Fonbote L, Amstutz G C, Cardozo M (eds.). Stratabound ore Deposits in the Andes. Berlin: Special Publication No.8 of the Society for Geology Applied to Mineral Deposits: 435-448.
Le Maitre R W. 2005. A Classification of Igneous Rocks and Glossary of Terms (2nd Edition)[C]. England: Cambridge University Press, 1-256.
Leake B E, Woolley A R, Aros C E S. 1997. Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J]. Canadian Mineralogist, 35(1):219-246. http://cn.bing.com/academic/profile?id=d41b75b3e103541444f7cc7ed8316df9&encoded=0&v=paper_preview&mkt=zh-cn
Li Janxu, Zheng Houyi, Gao Haiou. 2011. Geological characteristics and ore marks for prospecting of Los Quilos copper deposit in Chile[J]. Contributions to Geology and Mineral Resources Research, 26(1):85-89, 118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201101015
Li Zeqin, Wang Jiangzhen, Liu Jiajun, Li Chaoyang, Du Andao, Liu Ping, Ye Lin. 2003. Re-Os dating of molybdenite from Lala FeOxide-Cu-Au-Mo-REE deposit, southwest China:Implaications for ore genesis[J]. Contributions to Geology and Mineral Resources Research, 8(1):39-42 (in Chinese with English abstract).
Lin Wenwei, Pang Lijun. 1994. The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA data[J]. Journal of Changchun University of Earth Sciences, 24(2):155-162(in Chinese with English abstract). https://www.researchgate.net/publication/255200343_Fe3_and_Fe2_partitioning_among_silicates_in_metapelites_A_synchrotron_micro-XANES_study
Ma Jing, Zeng Pusheng, Gou Ruitao Wang Jujie, Dai Yanjuan. 2015.Genesis and metallogenesis of alkaline complexes in China mainland[J]. Geology and Exploration, 51(3):466-477(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201503007
McBride S L, Robertson R C R, Clark A M, Farrar E. 1983. Magmatic and metallogenetic episodes in the northern tin belt, Cordillera oriental, Bolivia[J]. Geologische Rundschau, 72:685-713. doi: 10.1007/BF01822089
Meng Ziyue, Zhu Feilin, Zhang Kailiang. 2016. The key to research the magmatic rocks:Hornblende-plagioclase geothermobarometer[J]. Guangdong Trace Elements Science, 23(1):38-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GWYS201601007.htm
Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London:Longman Press, 1-266.
Peccerillo R, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 58:63-81. doi: 10.1007/BF00384745
Ramiro S S. 2000. Compendio de Geologia de Bolivia[J]. Revista Tecnia de Yacimientos Petroliferos Fiscales Bolivia, 18(1/2):1-127.
Rauselicolom J A, Wiewiora A, Matesanz E. 1991. Relationship between composition and d001 for chlorite[J]. Am. Mineral., 76(7):1373-1379.
Richard H, Sillitoe. 2003. Iron oxide-copper-gold deposits:An Andean view[J]. Mineralium Deposita, 38:787-812. doi: 10.1007/s00126-003-0379-7
Sato T. 1984. Manto type copper deposits in Chile:A review[J]. Bull.Geol. Surv. Jpn., 35(11):565-582. doi: 10.1080-00206819709465257/
Schmidt M W.1992. Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology, 110:304-310. doi: 10.1007/BF00310745
Sillitoe R H. 1992. Gold and copper metallogeny of the central Andes:Past, present and future exploration objectives[J]. Economic Geology, 87:2205-2216. http://cn.bing.com/academic/profile?id=6979dbca06f9834afc0762c58c330dc3&encoded=0&v=paper_preview&mkt=zh-cn
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[C]//Saunders A D, Norry M J, (eds.). Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42: 313-345.
Tawackoli S, Jacobshagen V, Wemmer K, Andriessen P M. 1996. The Eastern Cordillera of southern Bolivia: A key region to the Andean back-Arc uplift and deformation history[C]. Saint-Malo, France: Extended Abstracts, Ⅲ International Symposium on Andean Geodynamics, 505-508.
Viramonte J G, Kay S M, Becchio R, Escaloya M, Novitski I. 1999.Cretaceous rift related magmatism in central-western South America[J]. Journal of South American Earth Sciences, 12:109-121. doi: 10.1016/S0895-9811(99)00009-7
Walshe J L. 1986. A six-component chlorite:Solid solution model and the condition of chlorite formation in hydrothermal and geothermal systems[J]. Economic Geology, 81:681-705. doi: 10.2113/gsecongeo.81.3.681
Wang F D, Zhu X Q, Wang Z G. 2011. Madouzi-Type (nodular)sedimentary copper deposit associated with the Emeishan basalt[J]. Sci. China Earth Sci., 54:1880-1891. doi: 10.1007/s11430-011-4331-x
Wang Juli, Guo Jian, Liu Zhonkui, Zhang Yunfeng, Zhang Rong, Wang Weitao, Feng Juanping, Jing Jifeng, Li Ling jun. 2006.Sedimentary copper deposit in Emeishan basalts northeastern Yunnan province[J]. Mineral Deposits, (6):663-671. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200606003
Wang Liben. 2001. Amphibole nomenclature-IMA-CNMMN[J]. Acta Petrologica et Mineralogica, 20(1):84-100 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021353451/
Williams P J. 1999. Fe-oxide-Cu-Au Deposits of the Olympic Dam/Ernest Henry-type[M]. New Developments in the Understanding of Some Major ore Types and Environments, with Implications for Exploration.In:Proc Prospectors and Developers Association of Canada Short Course, Toronto, 2-43.
Wilson M. 1989. Igneous Petrogenesis[M]. London:Unwin Hyman Press, 1-466.
Wilson N, Zentilli M, Reynolds P H, Boric R. 2003a. Age of mineralization by basinal fluids at the El Soldado manto-type copper deposit, Chile:40Ar/39Ar geochronology of K-feldspar[J]. Chem. Geol., 197 (1/4):161-176. doi: 10.1016/S0009-2541(02)00350-9
Wilson, N S F, Zentilli M, Spiro B. 2003b. A sulfur, carbon, oxygen, and strontiumisotope study of the volcanic-hosted El Soldado Manto-Type copper deposit, Chile:The essential role of bacteria and petroleum[J]. Econ. Geol., 98 (1):163-174. doi: 10.2113/gsecongeo.98.1.163
Xu Zhiqin, Zhao Zhonbao, Peng Miao, Ma Xuxuan, Li Huaqi, Zhao Junmeng. 2016. Review of "orogenic plateau"[J]. Acta Petrologica Sinica, 32(12):3557-3571 (in Chinese with English abstract). http://www.researchgate.net/publication/313309924_Review_of_orogenic_plateau
Zhu Bingquan, Chang Xiangyang, Hu Yaoguo, Zhang Zhengwei. 2002.Discovery of Yanhe copper deposit in the Yunnan-Guizhou border area and a new train of thought for copper prospecting in the large igneous province of Emeishan flood basalts[J]. Advances in Earth Science, 17(6):912-917 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200206017
杜玉龙, 方维萱. 2017.安第斯玻利维亚段金属成矿带及战略选区方向探讨[C]//第八届全国成矿理论与找矿方法学术讨论会会议论文集.矿物学报, 37(增刊): 876-877. 方维萱, 贾润幸, 王磊. 2017.塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌-铀矿床的大规模褪色化围岩蚀变与金属成矿[J].地球科学与环境学报, 39(5):585-619. doi: 10.3969/j.issn.1672-6561.2017.05.001 方维萱, 柳玉龙, 张守林, 郭茂华. 2009.全球铁氧化物铜金型(IOCG)矿床的3类大陆动力学背景与成矿模式[J].西北大学学报(自然科学版), 39(3):404-413. http://d.old.wanfangdata.com.cn/Periodical/xbdxxb200903008 方维萱, 王磊, 贾润幸. 2018.塔西地区中-新生代盆-山-原镶嵌构造区:砂砾岩型铜铅锌-天青石-铀-煤成矿系统[J].地球科学与环境学报, 40(6):663-705. doi: 10.3969/j.issn.1672-6561.2018.06.001 李建旭, 郑厚义, 高海鸥. 2011.智利劳斯奎洛斯(Los Quilos)铜矿床地质特征及找矿标志[J].地质找矿论丛, 26(1):85-89, 118. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201101015 李泽琴, 王奖臻, 刘家军, 李朝阳, 杜安道, 刘玉平, 叶琳. 2003.拉拉铁氧化物-铜-金-钼-稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛, 18(1):39-42. doi: 10.3969/j.issn.1001-1412.2003.01.007 林文蔚, 彭丽君. 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+, Fe2+[J].长春地质学院学报, 24(2):155-162. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ402.004.htm 麻菁, 曾普胜, 苟瑞涛, 王聚杰, 代艳娟. 2015.中国碱性杂岩的成因及其成矿作用[J].地质与勘探, 51(3):466-477. http://d.old.wanfangdata.com.cn/Periodical/dzykt201503007 孟子岳, 朱飞霖, 张凯亮. 2016.研究岩浆岩的金钥匙:角闪石-斜长石矿物温压计[J].广东微量元素科学, 23(1):38-41. http://d.old.wanfangdata.com.cn/Periodical/gdwlyskx201601007 王富东, 朱笑青, 王中刚. 2011.与峨眉山玄武岩有关的沉积型铜矿——"马豆子式"铜矿的成因研究[J].中国科学:地球科学, 41(12):1851-1861. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201112013 王居里, 郭健, 刘忠奎, 张云峰, 张蓉, 王伟涛, 冯士信, 冯娟萍, 井继峰, 李领军. 2006.滇东北峨眉山玄武岩区的沉积型铜矿床[J].矿床地质, (6):663-671. doi: 10.3969/j.issn.0258-7106.2006.06.003 王立本. 2001.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[R].岩石矿物学杂志, 20(1): 84-100. 许志琴, 赵中宝, 彭淼, 马绪宣, 李化启, 赵俊猛. 2016.论"造山的高原"[J].岩石学报, 32(12):3557-3571. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612001.htm 朱炳泉, 常向阳, 胡耀国, 张正伟. 2002.滇-黔边界鲁甸沿河铜矿床的发现与峨眉山大火成岩省找矿新思路[J].地球科学进展, 17(6):912-917. doi: 10.3321/j.issn:1001-8166.2002.06.017 -
期刊类型引用(2)
1. 孙砚泽,李世臻,刘卫彬,刘岩,柯昌炜,徐耀辉. 大兴安岭西缘贺斯格乌拉凹陷白垩系烃源岩生烃潜力与天然气成因. 地质通报. 2021(09): 1484-1492 . 百度学术
2. Shi-zhen Li,Wei-bin Liu,Dan-dan Wang,Wen-hao Zhang,Yan-hua Lin,Shu Tao,Yao-hui Xu. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology. China Geology. 2019(04): 439-457 . 必应学术
其他类型引用(0)