Research and discussion on the metallogenic epochs of the Xiashan Pb-Zn deposit in Zhenghe County, Fujian Province
-
摘要:
福建政和夏山铅锌矿是福建省于20世纪50年代发现的大型铅锌矿,其成因类型长期存在分歧。前人多将其归为沉积-改造型铅锌矿床,即矿层在新元古代由含矿热水沉积形成,燕山期岩浆侵入仅对其进行了改造和富集;但也有部分学者认为夏山铅锌矿是受燕山期铜盆庵正长花岗岩侵入作用影响所形成的矽卡岩型铅锌矿床。本文通过对夏山铅锌矿矿区精细的地质调查表明,夏山铅锌矿体的分布及形态与矿区内花岗斑岩密切相关,铜盆庵岩体对夏山铅锌矿的影响表现在后期的叠加、富集作用。为精确厘定夏山铅锌矿成岩成矿时代,文章对夏山铅锌矿矿区内与成矿相关的花岗斑岩进行了精确的锆石La-ICP-MS U-Pb定年工作。测试结果表明矿区花岗斑岩的侵入时代为(173.0±1.7)Ma,要早于铜盆庵岩体(155~150 Ma),而夏山铅锌矿则形成于(173±1.7)Ma(燕山早期)。这一成矿时代与赣东北地区主要的铜、银、铅锌多金属矿的成矿时代较为一致,表明武夷山地区对华南中生代第一期爆发式成矿作用亦有积极响应,具有早燕山期铜、银、铅锌多金属矿的成矿潜力。而结合前人研究成果,将武夷成矿带北段成矿期次划分为173 Ma和90~125 Ma两个重要的成矿期次,这一研究结果对武夷山成矿带进一步开展隐伏、叠加矿床的找矿工作及成矿规律研究具有重要意义。
Abstract:The Xiashan Pb-Zn deposit is a large-sized Pb-Zn deposit discovered in Fujian Province in the 1950s. Although most researchers have classified this deposit as a sedimentary-reworked Pb-Zn deposit, some geologists still believe that it is a skarn type deposit formed by the intrusion of the Tongpenan pluton (syenite granite) in Yanshanian period. Based on geological survey, the authors hold that the distribution and morphology of orebodies are closely related to granite porphyry. Ore-related granite porphyry samples from the Xiashan Pb-Zn deposit were dated by zircon La-ICP-MS U-Pb chronology, which yielded an age of 173±1.7 Ma. This result confirms that the Xiashan Pb-Zn deposit involved a skarn mineralization process of Early Yanshanian period which was earlier than the intrusion of the Tongpenan pluton (155-150 Ma). In addition, the age of 173±1.7 Ma is consistent with the metallogenic epoch of Cu, Ag, Pb and Zn polymetallic deposits in northeastern Jiangxi Province, suggesting that the Wuyi Mountain metallogenic belt in Fujian Province had a positive response to the first large metallogeny of the Early Yanshanian period in southern China, and has the potential in the search for Cu, Ag, Pb and Zn polymetallic deposits. According to the results obtained by the authors and previous studies, two important metallogenic periods (173 Ma and 90-125 Ma) of Yanshanian period can be recognized in the Wuyi Mountain metallogenic belt, especially in the north region. These results are of great significance for discovering and studying the concealed and superimposed deposits in the Wuyi Mountain metallogenic belt.
-
1. 引言
花岗岩是组成地球大陆地壳的重要岩石类型,是地球大陆地壳与地球大洋地壳乃至太阳系中其他类地行星的地壳相区别的最重要的标志(Pitcher, 1997)。花岗岩在大陆地壳增生和再循环的过程中起到了不可或缺的重要作用,在岩石圈构造演化、地球动力学和成矿作用研究中具有重要的意义(Barbarin,1999;李金东,2005;柏道远,2008;华仁民等, 2012, 2013;陈骏等,2014)。
华南加里东期花岗岩主要分布在湖南、江西、广西、广东和福建等省份,总面积超过2.2万km2(程顺波等,2013)。黄汲清早在1937年就提出华南可能存在加里东期花岗岩(黄汲清,1994)。徐克勤在1957年首先发现并证实华南存在加里东期花岗岩体(徐克勤等,1960)。此后,华南加里东期花岗岩逐渐引起地质界重视,吸引众多地质工作者加入到研究行列中(徐克勤等,1963;王德滋等,1978)。从20世纪80年代开始,随着地球化学、同位素地球化学分析方法和岩石定年方法的不断更新进步,对华南加里东期花岗岩的研究告别了单纯的经验判断;特别是到了90年代,随着高精度SHRIMP和LAICP-MS单颗粒锆石定年和锆石Lu-Hf同位素示踪技术的诞生,对华南加里东期花岗岩的研究有了强有力的科学技术支撑,研究水平不断提高。但是与华南燕山期花岗岩研究程度相比,华南加里东期花岗岩的研究明显不足,对其与成矿的关系认识不清,对其形成的构造背景的认识也存在很大的争议,目前主要有洋壳俯冲造山和板内挤压造山两种观点(孙明志等,1990;周新民等,2003;许德如等,2006;孙涛等,2006)。
苗儿山岩体位于湘西南和桂北交界处,为一个以加里东期花岗岩为主体,包括晋宁期、印支期和燕山期花岗岩的复式岩体,由于其构造岩浆活动强烈、形成时间跨度长,因此对于研究华南地区的花岗岩成因、成矿作用和大地构造演化具有重要的意义。另外,近几年针对苗儿山岩体的找矿工作连续取得较大突破,发现了多个大、中、小型钨(锡、钼、铜)矿床(刘伟等,2011;伍静等,2012;杜云等,2017),引起了越来越多学者的关注和研究。本文利用LA-ICP-MS单颗粒锆石U-Pb定年、X射线荧光光谱分析、高分辨等离子体质谱分析、Sr-Nd同位素分析和O同位素分析等高精度的分析测试手段,结合前人研究成果,对苗儿山岩体加里东期花岗岩的地球化学、锆石U-Pb年代学、Sr-Nd同位素和O同位素特征进行了系统研究,在此基础上,讨论加里东期花岗岩的形成构造背景和成因,可为华南地区花岗岩成岩理论研究的完善提供依据。
2. 岩体地质概况
苗儿山复式岩体位于湘西南与桂北交界处,总出露面积约1600 km2,其北段处于湖南省境内,呈南北向展布,出露面积约450 km2,南段主要位于广西区境内,呈北东向展布。苗儿山复式岩体由加里东期花岗岩构成主体,晋宁期、印支期和燕山期花岗岩呈小岩株状广泛分布其中,构成补体(图 1)。
图 1 大地构造位置(a)和区域地质略图(b)1—白垩系;2—泥盆系至三叠系;3—寒武系至奥陶系;4—新元古界青白口系至震旦系;5—燕山期花岗岩;6—印支期花岗岩;7—加里东期花岗岩;8—新元古代晋宁期花岗闪长岩;9—地质界线;10—断层;11—U-Pb年龄样采样位置及编号;12—研究区范围Figure 1. Tectonic location(a) and regional geological map(b)1-Cretaceous system; 2-Devonian system to Triassic system; 3-Cambrian system to Ordovician system; 4-Neoproterozoic Qingbaikou system to Sinian system; 5-Yanshanian granite; 6-Indosinian granite; 7-Caledonian granite; 8-Neoproterozoic Jinningian granodiorite; 9-Geological boundary; 10-Fault; 11-U-Pb age sampling location and numbering; 12-The study area苗儿山复式岩体出露于苗儿山复式背斜核部,其中加里东期花岗岩构成的主体与前泥盆纪地层呈侵入接触关系,而与泥盆系、白垩系则呈沉积接触关系。前泥盆纪地层主要包括青白口系、南华系、震旦系和奥陶系(缺失志留系),为一套浅海—半深海相类复理石砂泥质碎屑沉积夹硅质、炭泥质沉积,部分层位夹碳酸盐岩;泥盆系为滨浅海碎屑岩—浅海台地、台盆相碳酸盐岩沉积;白垩系为陆相红盆碎屑沉积。苗儿山岩体及其四周围岩中断裂十分发育,其中NNE—NE向断裂规模最大,数量最多,构造形迹非常醒目,所谓的“城步—江口大断裂”,即为该组出露总宽度达数十千米的断裂的统称,它控制了苗儿山岩体的空间展布,并在多次继承性活动中对苗儿山岩体造成了明显的切割破坏作用。
3. 岩石学特征
按地球化学、同位素年代学及野外地质特征,加里东期花岗岩从早到晚可分为六个侵入次,分别为第一侵入次中细粒斑状黑云母二长花岗岩(ηγSa)、第二侵入次中粗粒斑状黑云母二长花岗岩(ηγSb)、第三侵入次中粒斑状黑云母二长花岗岩(ηγSc)、第四侵入次中细粒黑云母二长花岗岩(ηγSd)、第五侵入次细粒斑状黑云母二长花岗岩(ηγSe)、第六侵入次细粒黑云母二长花岗岩(ηγSf)。各个侵入次之间均为侵入接触关系,具有较为明显的分界线(图 2a、b)。
图 2 加里东期不同侵入次花岗岩之间的典型接触特征a—第五侵入次花岗岩侵入于第四侵入次花岗岩中;b—第六侵入次花岗岩侵入于第五侵入次花岗岩中Figure 2. Representative contacts between the different episodes of Caledonian granitesa-A representative photo of the fifth episodic granites intruding into the fourth episodic granites; b-A representative photo of the sixth episodic granites intruding into the fifth episodic granites第一侵入次中细粒斑状黑云母二长花岗岩(ηγSa),主要由粒径10~30 mm的自形—半自形板状钾长石为斑晶(含量10%~30%)和粒径0.7~4.4 mm的他形石英、钾长石、半自形板状斜长石、片状黑云母、菱柱状角闪石等为基质(含量70%~90%)组成,构成似斑状结构,基质为中—细粒花岗结构(图 3a、b)。钾长石含量31%~45%,他形为主,具条纹结构、格子双晶,表面见石英、斜长石、黑云母等嵌晶。斜长石含量18%~29%,半自形板柱状,强绢云母化,发育聚片双晶,部分显环带构造。石英含量28%~33%,他形粒状、粒状集合体状,与长石互嵌或填隙长石粒间,微区可见石英呈文象状嵌布在钾长石中。黑云母含量4%~11%,片状、片状集合体状,褐色,含磷灰石、锆石、绿帘石等包体。角闪石含量微至1%,菱柱状,绿色,分散分布或包嵌于钾长石中。副矿物主要有金红石、磷灰石、锆石、绿帘石和黄铁矿,含少量方铅矿和磁铁矿。第一侵入次中可见少量暗色微粒包体,包体多呈不规则状或椭圆状,与围岩界线截然,直径一般在2~10 cm(图 3c)。包体具似斑状结构,块状构造。斑晶含量约4%,主要为斜长石斑晶,直径1.5~3 mm。基质含量约96%,具半自形粒状结构,颗粒间紧密镶嵌,主要由主要由斜长石(44%)、黑云母(30%)和石英(19%) 组成,含少量磷灰石(2%),及微量锆石(图 3d)。黑云母,棕褐色,自形—半自形板片状,部分可见针状金红石沿解理缝析出;石英,他形粒状,粒径约0.2~0.96 mm;磷灰石,无色,细小针柱状;锆石,无色粒状,粒径约0.2 mm。暗色微粒包体的岩性与寄主岩的岩性特征有显著差异,主要表现在颜色明显较深,矿物粒度明显较细,不含钾长石,斜长石和黑云母含量显著增加,石英含量明显减少。由于暗色微粒包体由两期先后结晶的矿物构成,具有明显的火成结构,且其组成矿物主要为斜长石、黑云母和石英,与火成岩、沉积岩部分熔融残余物(Tindle and Pearce, 1982)和壳幔混合成因的镁铁质微粒包体(MME)几乎不含石英的特征明显不同(Barbarin,2005),因此应该既不是地壳部分熔融过程中形成的耐熔残余物,也不是壳幔混合的产物,而是地壳中偏基性的岩石的熔融物,反映了地壳源区成分的不均一性。
图 3 加里东期第一、三侵入次花岗岩及包体的照片和显微照片a—第一侵入次花岗岩露头;b—第一侵入次花岗岩显微照片;c—细粒暗色包体手标本;d—细粒暗色包体显微照片;e—第三侵入次花岗岩露头;f—第三侵入次花岗岩显微照片Figure 3. Representative photographs and photomicrographs of the first and third episodic granites and enclaves from the Miao'ershan plutona-A representative outcrop of the first episodic granites; b-A representative photomicrograph of the first episodic granites; c-A representative hand specimen of the fine-grained dark enclaves; d-A representative photomicrograph of the fine dark enclaves; e-A representative outcrop of the third episodic granites; f-A representative photomicrograph of the third episodic granites第二侵入次中粗粒斑状黑云母二长花岗岩(ηγSb),主要由粒径8~40 mm的自形—他形钾长石、斜长石、石英为斑晶(含量10%~20%)和粒径2~7mm的他形钾长石、石英、半自形板状斜长石、片状黑云母等为基质(含量80%~90%)组成,构成似斑状结构,基质为中—粗粒花岗结构。钾长石含量34%~48%,他形为主,具条纹结构、格子双晶,表面见石英、斜长石、黑云母等嵌晶。斜长石含量18%~38%,半自形板柱状,绢云母化、黏土化,发育聚片双晶,部分显环带构造。石英含量22%~35%,他形粒状、粒状集合体状,与长石互嵌或填隙长石粒间。黑云母含量约3%~6%,片状、细片集合体状,绿泥石化,解理缝析出钛铁质,生成绿帘石,含磷灰石包体。副矿物主要有金红石、磷灰石、锆石、绿帘石、黄铁矿和方铅矿,含少量黄铜矿和磁铁矿。
第三侵入次中粒斑状黑云母二长花岗岩(ηγSc),主要由粒径8~35 mm的自形—半自形板状钾长石为斑晶(含量10%~20%)和粒径2~5 mm的他形钾长石、石英、半自形板状斜长石、片状黑云母、细柱状帘石等为基质组成,构成似斑状结构,基质为中粒花岗结构(图 3e、f)。钾长石含量28%~50%,他形为主,具条纹结构、格子双晶,表面碎裂,裂隙中充填帘石、微晶石英等。斜长石含量18%~29%,半自形板柱状,强绢云母化,发育聚片双晶,部分显环带构造。石英含量28%~33%,他形粒状、粒状集合体状,与长石互嵌,部分细粒化重结晶的石英分布于石英或长石微裂隙中。黑云母含量4%~11%,片状、片状集合体状,绿泥石化,解理缝析出钛铁质,生成绿帘石,含磷灰石包体。绿帘石含量微至2%,柱状、柱粒状,主要与黑云母共生或分布在岩石微裂隙中。副矿物主要有金红石、磷灰石、锆石、绿帘石和黄铁矿,含少量方铅矿和磁铁矿。
第四侵入次中细粒黑云母二长花岗岩(ηγSd),主要由粒径0.5~3.6 mm的他形—半自形钾长石、半自形板状斜长石、它形粒状石英、片状黑云母等互相镶嵌组成,构成中细粒花岗结构。钾长石含量25%~43%,他形为主,隐显条纹结构、格子双晶,碎裂,具微裂隙,裂隙中充填氧化铁质物,表面嵌圆粒化石英、斜长石、黑云母等。斜长石含量20%~45%,半自形-自形板条状,绢云母化,发育聚片双晶。石英含量29%~33%,他形粒状、粒状集合体状,具微裂隙,裂隙中充填氧化铁质物,嵌微晶长石。黑云母含量6%~8%,片状、片状集合体状,弱绿泥石化,解理缝析出铁质,生成绿帘石,含磷灰石包体。副矿物主要有金红石、磷灰石、锆石、绿帘石和黄铁矿,含少量方铅矿和磁铁矿。
第五侵入次细粒斑状黑云母二长花岗岩(ηγSe),主要由粒径4~8 mm的自形—半自形板状钾长石、斜长石为斑晶(含量5%~20%)和粒径0.18~2.18 mm的他形石英、钾长石、自形—半自形板状斜长石、片状黑云母及少量片状白云母、碎粒状电气石等为基质(含量80%~95%)组成,构成似斑状结构,基质为细粒花岗结构(图 4a、b)。钾长石含量20%~35%,他形为主,具条纹结构、格子双晶,见较多石英、长石包裹体。斜长石含量25%~33%,半自形板柱状,弱—中等程度绢云母化,发育聚片双晶,部分显环带构造。石英含量20%~30%,他形粒状、粒状集合体状,晶粒切面上具明显的波状消光和显微裂缝。黑云母含约6%~8%,片状、片状集合体状,绿泥石化,解理缝析出铁质,生成绿帘石、榍石,含磷灰石、锆石等包体。白云母含量微至1%,片状,星散分布或与黑云母共生。电气石含量微至1%,碎粒状,具电气石式吸收,零散分布。副矿物主要有金红石、磷灰石、锆石、绿帘石、黄铁矿和方铅矿,含少量磁铁矿和榍石。
图 4 加里东期第五、六侵入次花岗岩的照片和显微照片a—第五侵入次花岗岩露头; b—第五侵入次花岗岩显微照片; c—第六侵入次花岗岩手标本; d—第六侵入次花岗岩显微照片Figure 4. Representative photographs and photomicrographs of the fifth and sixth episodic granites and enclaves from the Miao'ershan plutona-A representative outcrop of the fifth episodic granites; b-A representative photomicrograph of the fifth episodic granites; c-A representative outcrop of the sixth episodic granites; d-A representative photomicrograph of the sixth episodic granites第六侵入次细粒黑云母二长花岗岩(ηγSf),主要由粒径0.2~2 mm的细粒他形钾长石、石英、半自形板状斜长石、片状黑云母及少量碎粒状电气石、片状白云母等组成,构成细粒花岗结构(图 4c、d)。钾长石含量28%~44%,他形为主,具条纹结构,与石英互嵌。石英含量32%~34%,他形粒状、粒状集合体状,与长石互嵌或填隙长石粒间。斜长石含量20%~40%,半自形板柱状,绢云母化、黏土化,发育聚片双晶。黑云母含量2%~5%,片状、细片集合体状,绿泥石化,解理缝析出铁质,生成绿帘石,含磷灰石包体。电气石含量微至3%,碎粒状,具电气石式吸收,零散分布,局部富集形成电气石团块或细脉。白云母含量微至1%,片状,星散分布或与黑云母共生。副矿物主要有金红石、磷灰石、锆石和方铅矿,含少量绿帘石、黄铁矿、磁铁矿及富铝矿物石榴子石。
加里东期六个侵入次的岩性特征表明,加里东期花岗岩从早期到晚期,矿物颗粒的粒度逐渐减小,暗色矿物黑云母总体逐渐降低,角闪石从有到无,电气石、白云母和石榴子石从无到有,反映随着岩浆的演化,镁铁质成分逐渐减少,酸性程度逐渐增大,挥发份含量也逐渐提高。
4. 样品处理与分析方法
岩石地球化学分析:包括主量、微量和稀土元素分析,分析方法为先将新鲜样品粉碎、研磨至200目,再采用高精度的专业仪器进行测试,所有分析测试工作均在中国科学院地球化学研究所完成。其中主量元素测试方法为X射线荧光光谱法(XRF),测试仪器为Axios(PW4400)X射线荧光光谱仪;微量和稀土元素测试方法电感耦合等离子体质谱法(ICP-MS),测试仪器为Finnigan MAT公司ELEMENT型高分辨等离子体质谱仪。
锆石U-Pb在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。先将样品破碎、筛选、重选及磁选,在双目镜下挑选出透明度较好、晶形完整、无明显裂隙的锆石颗粒,再将锆石制成锆石样品靶,利用阴极荧光谱仪对锆石样品靶进行锆石显微照相,然后在此基础上进行锆石的U-Pb同位素测定工作。分析仪器为Perkinelmer生产的ELAN DRC-e型等离子质谱仪。原始测试数据用ICPMSDataCal软件进行处理(Liu et al., 2008)。普通Pb校正方法参照Andersen(2002),206Pb/238U加权平均年龄及谐和图解采用ISOPLOT软件制作(Ludwig,2003)。
Sr-Nd同位素分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成,测试仪器为德国Thremo Fisher Scientific公司生产的Triton型热电离同位素质谱仪。Sr-Nd同位素分析采用Teflon溶样器,加NHO3和HF混合溶样,用专用的阳离子交换柱进行分离,分别采用86Sr/88Sr =0.1194和146Nd/144Nd=0.7219对Sr和Nd同位素进行分馏校正。在本次测试中,仪器测定的Sr同位素国际标准样品NBS987的87Sr/86Sr比值为0.710254±16(2σ),岩石标样BCR-1中的143Nd/144Nd比值为0.512638±3 (2σ)。Rb-Sr和Sr-Nd的全流程本底分别为小于100 pg和50 pg。
氧同位素分析:在中国地质科学院地质研究所完成,测试仪器为MAT-253气体同位素质谱计,δ18O全流程分析误差分别优于±3‰和±0.2‰。首先采用无污染玛瑙球磨技术将样品粉碎至 < 200目,再采用BrF5法提取样品中的氧,然后将氧与碳棒反映转化成CO2,再对样品中的氧同位素进行质谱测定。分析结果均以相对于SMOW(全球标准平均大洋水) 同位素比值的千分变化值表示。
5. 地球化学特征
5.1 主量元素特征
加里东期花岗岩主量元素化学分析结果、CIPW标准矿物计算及有关岩石化学分析参数见表 1。
表 1 加里东期花岗岩主量元素组成(%)及部分特征参数Table 1. Major element composition (%) and some characteristic parameters of the Caledonian granites加里东期花岗岩侵入次较多,为了便于阐述,本文将其按照矿物和化学成分特征分为早、中、晚三期,其中早期包括第一侵入次,中期包括第二、三、四、五侵入次,晚期包括第六侵入次。加里东期花岗岩SiO2含量高,且变化范围大,为67.96%~75.99%,平均72.65%,其中早期花岗岩SiO2含量为67.96%~73.37%,平均70.92%;中期花岗岩SiO2含量为70.54%~75.99%,平均72.90%;晚期花岗岩SiO2含量为72.94%~74.55%,平均73.74%;表明从早期到晚期SiO2含量具有逐渐升高的趋势。Al2O3含量高,为12.4%~14.86%,平均13.29%;其中早期花岗岩Al2O3含量为12.93%~14.47%,平均13.44%;中期花岗岩Al2O3含量为12.26%~14.86%,平均13.38%;晚期花岗岩Al2O3含量为12.40%~14.04%,平均13.06%;表明从早期到晚期Al2O3含量变化不大,仅显示出略微降低的趋势。全碱(ALK)含量高,(Na2O+K2O)绝大多数都在6.71%~9.62%(D0026和D0032两个样品的ALK含量分别为9.62%和12.23%,显著高于其他样品,明显是后期碱交代作用的结果),平均8.53%;K2O含量较高,为3.43%~5.56%,平均4.58%;K2O/Na2O比值较大,为0.83~2.0,平均1.23,与华南壳源花岗岩K2O/ Na2O比值大于1的特征明显相符,显示出壳源S型花岗岩的特征(凌洪飞等,2005)。早期花岗岩的全碱(ALK)、K2O及Na2O含量分别为7.82%、4.19%和3.63%;中期花岗岩的全碱(ALK)、K2O及Na2O含量分别为8.81%、4.49%和3.69%;晚期花岗岩的全碱(ALK)、K2O及Na2O含量分别为9.52%、4.99%和4.53%;表明从早期到晚期全碱(ALK)、K2O及Na2O的含量都有逐渐升高的趋势。TFeO含量较低,为0.46%~3.60%,平均1.59%;MgO含量较低,为0.17%~1.39%,平均0.52%。其中早期花岗岩的TFeO和MgO的平均含量分别为2.30%和0.89%;中期花岗岩的TFeO和MgO的平均含量分别为1.54%和0.50%;晚期花岗岩的TFeO和MgO的平均含量分别为1.08%和0.24%;表明从早期到晚期TFeO和MgO有逐渐降低的趋势,反映岩浆向着铁镁质成分降低、酸性程度增大的方向演化。TiO2、MnO、CaO、P2O5含量较低,多在1%以下,且从早期到晚期具有含量逐渐降低的趋势。综上,主量元素的规律性变化,表明从早期到晚期,加里东期花岗岩一直向着富硅、富碱、贫铁镁质的方向演化,且其结晶分异程度不断增高。
加里东期花岗岩的分异指数(DI)介于78.35~96.37,平均90.78,远大于未经分异的原生基性岩浆的DI值(DI=25~45,朴成哲,2016);早期、中期、晚期花岗岩的平均DI值分别为85.83、91.58、93.80。固结指数(SI)介于1.68~11.78,平均4.75,小于未经分异的原生基性岩浆的SI值(SI=25~45,朴成哲,2016);早期、中期、晚期花岗岩的平均SI值分别为7.93、4.78、2.18。分异指数和固结指数表明加里东期花岗岩是经过充分结晶分异的产物,并且具有从早期到晚期结晶分异程度不断增高的特征。
CIPW标准矿物计算表明,加里东期花岗岩样品中大多数都出现刚玉,C值为0.12~3.03,平均1.05,总体显示出铝过饱和的特征。另外,D0026和D0032两个样品的CIPW标准矿物中还出现了锥辉石和硅酸钠两种碱性矿物,反映这2个样品均为碱过饱和花岗岩,结合这两个样品ALK值偏大,A/CNK值和C值偏小等特征,推断这2个样品受到了显著的后期碱交代作用。
在SiO2-(K2O+Na2O)图解中,加里东期花岗岩样品基本都落入花岗岩区,仅有1个早期花岗岩的样品落入花岗闪长岩区,表明加里东期花岗岩总体属酸性岩浆岩(图 5)。铝饱和度(A/CNK)介于0.98~1.31,平均1.09(D0026和D0032两个样品A/CNK值分别为0.85和0.70,远小于1,受到后期碱交代的影响,不计入平均值),总体属过铝质花岗岩(Sylvester et al., 1998;Chappell and White, 2001;肖庆辉等,2002)。
图 5 加里东期花岗岩SiO2-(K2O+Na2O)图解Figure 5. SiO2-(K2O+Na2O) diagram of the Caledonian granites(after Middlemost, 1994)根据Frost et al. (2001)提出的地球化学分类法,花岗岩可以通过Fe数(TFeO/(TFeO+MgO))、改良碱钙指数(Na2O+K2O-CaO)和铝饱和指数(ASI) (Al/(Ca-1.67P+Na+K))这三个地球化学变量加以有效区分。投图结果显示,加里东期花岗岩总体属铁质-镁质(早期偏向镁质,晚期偏向铁质)、碱钙性-钙碱性、弱过铝-强过铝质花岗岩(图 6a~c)。另外,在SiO2-K2O图解中,加里东期花岗岩样品绝大多数都落入高钾钙碱性系列范围,总体属高钾钙碱性系列(图 6d)。
图 6 加里东期花岗岩地球化学分类图解(图例同图 4)Figure 6. Geochemical classification diagram of the Caledonian granites(a—c, after Frost et al., 2001; d, after Peccerillo et al., 1976)5.2 微量元素特征
在不相容元素对原始地幔标准化蛛网图上(图 7a),加里东期花岗岩样品的元素分布特征总体一致,各样品的Ba、Nb、Sr、P、Ti元素均表现为明显的亏损,其中Ba、Sr、Ti亏损最为显著,呈深“V”型,而(Rb+K)、(Th+U)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+ Yb+Lu)等则相对富集,显示出壳源花岗岩的特征。Sr、Ba亏损一般与斜长石熔融残留或结晶分离作用有关(Patino Douce et al., 1991, 1995)。P、Ti亏损可能与磷灰石、钛铁矿的分离结晶作用有关。Nb的亏损表明源区岩石中以陆壳组分为主(Green,1995;Barth et al., 2000)。
图 7 加里东期花岗岩微量元素原始地幔标准化蛛网图(a)与稀土元素球粒陨石标准化分布型式图(b)(原始地幔值据Sun and McDonough, 1989;球粒陨石值据Taylor and Mclennan, 1985)Figure 7. Primitive mantle-normalized trace elements spider diagram (a) and chondrite-normalized REE distribution panttern diagram (b) of the Caledonian granites(Primitive mantle value is after Sun and McDonough, 1989; Chondrite value is after Taylor and Mclennan, 1985)高场强元素中Nb与Ta、Zr与Hf的原子价和原子半径相同,化学性质极为相似,一般情况下彼此难分离。但壳、幔分离时,Nb、Ta分别优先进入地幔和地壳,使得Nb、Ta分别在地幔和地壳中富集,因此Nb/Ta比可用来示踪火成岩岩浆形成时地壳组分的参与程度(Green,1995)。岩石微量元素丰度及部分特征参数计算结果表明(表 2),加里东期花岗岩Nb/Ta比值介于3.36~9.89之间,平均5.41,低于地壳的平均值12.22(Rudniek and Fountain, 1995)及原始地幔平均值17.4(Sun and McDonough, 1989),说明其属壳源成因类型(陈小明等,2002)。Zr/Hf比值(18.40~35.61,平均24.55),不仅低于中国东部(36.72,高山等,1999) 上地壳平均值和全球地壳平均值(86.67,黎彤,1976),也低于原始地幔平均值(29.64,Taylor and McLennan, 1985),意味着可能在岩浆演化过程中Zr/Hf发生了较明显的分馏。
表 2 加里东期花岗岩微量元素丰度(Ag为10-9;其余为10-6)Table 2. Trace element abundance of the Caledonian granites (Ag: 10-9, the other elements: 10-6)部分大离子亲石元素和高场强元素的比值可以示踪岩浆岩物质来源。Rb/Sr比值(变化范围大,为1.55~30.34,平均12.08)远高于中国东部(0.31,高山等,1999)和全球(0.32,Taylor and MeLennan, 1985)上地壳的平均值,Rb/Nb比值(8.10~26.92平均15.20)高于中国东部(6.8,高山等,1999)以及全球(4.5,Taylor and McLennan, 1985)上地壳的平均值,反映加里东期花岗岩具有高成熟度的壳源成因的特征(Harris and Inger, 1992;李献华等,2002)。Rb/Sr比值高,且变化范围大,除岩浆本身因为高度分异而具有富Rb贫Sr的特征外,可能也如前述主量元素特征所反映的一样,部分样品后期发生了不同程度的碱交代作用导致了Rb的富集。
5.3 稀土元素特征
岩石稀土元素丰度及部分特征参数计算结果表明(表 3),加里东期花岗岩稀土总量基本都介于46.60×10-6~198.42×10-6(仅1个为344.12×10-6),变化较大,平均128.22×10-6,小于地壳165.35×10-6的平均含量,但远高于上地幔17.48×10-6的平均含量(黎彤等,1976)。轻重稀土总和比值(ΣLREE/ΣHREE)较大,介于2.50~13.74,平均5.66,反映轻、重稀土分馏明显,轻稀土较为富集。(La/Sm)N值介于1.90~18.74,变化大,平均5.84,由于(La/Sm)N值越大,反映轻稀土(LREE)越富集,(La/Sm)N值大于1,即为轻稀土富集型(韩吟文等,2003),因此加里东期花岗岩属于典型的轻稀土富集型花岗岩。δEu值介于0.09~0.42,平均0.21,显示铕具有明显的亏损,表明斜长石大量存在于部分熔融残余体中或斜长石在岩浆作用过程中发生了显著的分离结晶作用(Visonà and Lombardo,2002)。
表 3 加里东期花岗岩稀土元素丰度(10-6)及有关参数Table 3. REE abundance (10-6) and its related parameters of the Caledonian granites加里东期不同侵入次的花岗岩在(La/Sm)N和δEu值方面表现出一定的差异性。早期花岗岩(La/Sm)N值介于2.83~11.72,平均7.33;δEu值介于0.1~0.42,平均0.28。中期花岗岩(La/Sm)N值介于2.87~18.74,平均7.04;δEu值介于0.14~0.39,平均0.25。晚期花岗岩(La/Sm)N值介于1.9~6.12,平均3.20;δEu值介于0.09~0.13,平均0.12。上述事实表明从早期到晚期,加里东期花岗岩(La/Sm)N和δEu值逐渐减小,分异演化特征较为明显。
在稀土元素配分型式图(图 7b)中,加里东期花岗岩变化特征基本一致,总体为向右倾斜曲线,均出现铕的低谷。其中,轻稀土一侧的曲线较陡,重稀土一侧的曲线十分平缓,表明轻稀土发生了显著的分馏作用,而重稀土没有发生明显的分馏作用。
6. 锆石U-Pb年代学特征
本次共对加里东期花岗岩采集了4个锆石U-Pb测年样品,其中D0026采自加里东期第一侵入次中细粒斑状黑云母二长花岗岩,D0029和D0035采自加里东期第二侵入次中粗粒斑状黑云母二长花岗岩,D0070采自加里东期第六侵入次细粒黑云母二长花岗岩。
从4个样品中所获锆石颗粒较大,粒径50~300 μm,自形程度高,多为自形柱状,颜色以褐色、浅褐色为主,透明到半透明,阴极发光图像(图 8)均显示清晰的韵律环带结构,且Th/U值高,为0.17~1.44,皆大于0.1,应为典型的岩浆结晶锆石(周剑雄等,2007)。
样品D0026共分析了12颗锆石,分析结果见表 4。12个测点的年龄集中在427.1~428.6 Ma,加权平均年龄为(428.1±3.6)Ma,MSWD=0.0039(图 9a),误差小,精度高,可靠性大,代表了加里东期第一侵入次岩体的形成年龄。
表 4 加里东期花岗岩样品D0026锆石U-Pb定年结果Table 4. Zircon U-Pb dating results for the sample D0026 of Caledonian granite样品D0029共分析了12颗锆石,分析结果见表 5。12个测点的年龄集中在419.4~420.8 Ma,加权平均年龄为(420.3±3.4)Ma,MSWD=0.0035(图 9b),误差小,精度高,可靠性大,代表了加里东期第二侵入次岩体的形成年龄。
表 5 加里东期花岗岩样品D0029锆石U-Pb定年结果Table 5. Zircon U-Pb dating results for the sample D0029 of Caledonian granite样品D0035共分析了16颗锆石,分析结果见表 6。16个测点的年龄集中在420.1~421.9 Ma,加权平均年龄为(421.3±3.2)Ma,MSWD=0.0038(图 9c),误差小,精度高,可靠性大,代表了加里东期第二侵入次岩体的形成年龄。
表 6 加里东期花岗岩样品D0035锆石U-Pb定年结果Table 6. Zircon U-Pb dating results for the sample D0035 of Caledonian granite样品D0070共分析了14颗锆石,分析结果见表 7。其中14个测点的年龄集中在407.7~408.9 Ma之间,加权平均年龄为(408.3±3.5)Ma,MSWD=0.0024 (图 9d),误差小,精度高,可靠性大,代表了加里东期第六侵入次岩体的形成年龄。
表 7 加里东期花岗岩样品D0070锆石U-Pb定年结果Table 7. Zircon U-Pb dating results for the sample D0070 of Caledonian granite综合上述U-Pb年龄((428.1±3.6)Ma、(420.3±3.4)Ma、(421.3±3.2)Ma和(408.3±3.5) Ma),笔者认为表明苗儿山岩体加里东期花岗岩侵位开始于(428.1±3.6)Ma,相当于志留纪兰多维列世末—温洛克世初,结束于(408.3±3.5) Ma,相当于志留纪末—泥盆纪初,持续了大约20 Ma。
7. Sr-Nd同位素特征
Sr-Nd同位素样品分析数据及相关参数计算结果见表 8。志留纪花岗岩(87Sr/86Sr)i介于0.71138~0.72453,平均0.71765,εNd(t)介于-8.8~-10.6,平均-9.7,两阶段Nd模式年龄(TDM2)为1.87~2.02 Ga。加里东期花岗岩皆具高(87Sr/86Sr)i值、低εNd(t)值的特点和基本一致的两阶段Nd模式年龄。
表 8 加里东期花岗岩的Sr-Nd同位素组成Table 8. Sr-Nd isotopic composition of the Caledonian granites8. O同位素特征
O同位素样品分析结果见表 9。加里东期花岗岩δ18O值为8.2‰~10.6‰,平均为9.8‰,其δ18O值显著高于地幔δ18O值((5.7 ± 0.3)‰;Taylor et al., 1980),反映其原岩经历过沉积循环。
表 9 加里东期花岗岩的O同位素分析结果Table 9. Analysis results of O isotope for the Caledonian granites9. 讨论
9.1 成岩物质来源
加里东期花岗岩的SiO2含量(72.65%)较高,铁镁质成分TFeO和MgO含量(1.59%和0.52%)低,K/Na值(1.23)大于1,铝饱和度(A/CNK)大于1或1.1,显著富集Rb、K、Th、U和稀土元素,强烈亏损Ba、Nb、Sr、P、Ti元素,Nb/ Ta值(5.41)较小,显示出地壳物质熔融形成的S型花岗岩的特征。加里东期花岗岩分异指数(90.78)大,固结指数(4.75)小,Ba、Nb、Sr、P、Ti元素强烈亏损,Zr/Hf比值较小(24.55),以及δEu值较小(0.21)的特征反映岩浆离开源区向上侵位的过程中经过了充分的结晶分异作用。
加里东期花岗岩的CaO/Na2O比值介于0.07~1.15,变化范围较大,其中第一侵入次(早期)的CaO/Na2O值有一半<0.3,另一半>0.3,表明其源岩部分为泥岩,部分为砂屑岩(或者变质火成岩),或者源岩为泥岩夹变质火成岩,而第二、三、四、五、六侵入次(晚期)的CaO/Na2O值基本都<0.3,表明其源岩为泥岩(Sylvester,1998)。比在Rb/Sr-Rb/Ba图解中,加里东期花岗岩样品大部分落在富黏土源区,表明其源岩主要是易熔的高成熟度的泥岩,但第一侵入次的个别样品落在富黏土源区与贫黏土源区的交界位置(图 10),表明其源岩可能有一部分为难熔的低成熟度的砂屑岩。加里东早期和晚期花岗岩的CaO/Na2O值和Rb/Sr-Rb/Ba值的差别反映了地壳源区成分不均一,早期源区除了泥岩外,可能还存在少量砂屑岩和/或变质火成岩,而到了晚期源区的砂屑岩和/或变质火成岩已基本消耗光,只剩下了泥岩。
图 10 加里东期花岗岩Rb/Sr-Rb/Ba图解(图例同图5;据Sylvester,1998)Figure 10. Rb/Sr-Rb/Ba diagram of the Caledonian granites (Symbols as Fig.5;after Sylvester,1998)加里东期花岗岩Al2O3/TiO2比值介于25.25~478.07,变化范围较大,其中第一、二、三侵入次的Al2O3/TiO2值基本都<100,表明其形成温度高于875℃,而第四、五、六侵入次的Al2O3/TiO2值都>100,表明其形成温度低于875℃ (Sylvester,1998),反映加里东期花岗岩的源区在早阶段为高温环境,而在晚阶段则为低温环境。
加里东期花岗岩(87Sr/86Sr)i介于0.71138~0.72453,平均0.71765,与大陆地壳(87Sr/86Sr)i平均值0.719(Faur,1986)相近,εNd(t)较小,介于-8.8~-10.6,平均-9.7,符合壳源S型花岗岩的特征。两阶段Nd模式年龄(TDM2)为1.87~2.02 Ga,与湘桂内陆带花岗岩的Nd模式年龄(tDM)背景值1.8~2.4 Ga (Pei et al., 1995;Hong et al., 1998)基本一致,与华南古—中元古代变质基底年龄1.7~2.7 Ga(洪大卫等,2002)相当,反映加里东期花岗岩源于古—中元古代变质基底的重熔。在(87Sr/86Sr)i-εNd(t)图解(图 11a)中,样品都落入S型花岗岩区,也说明加里东期花岗岩源于地壳重熔。在t—εNd(t) 图解(图 11b)中,样品都落入南岭地区前寒武纪地壳Sm-Nd同位素演化区域,进一步表明加里东期花岗岩源自前寒武纪基底地壳重熔。
锆石Lu-Hf同位素数据显示,加里东期花岗岩的εHf(t)值在-4.0~-10.0,两阶段Hf模式年龄(TDM2)介于1760~2010 Ma(Zhang et al., 2012;Zhao et al., 2013),也表明加里东期花岗岩来源于古—中元古代地壳部分熔融,但是不同侵入次同位素组成有一定差别,暗示源区变质沉积岩成分不均匀,或者变质沉积岩中混有不同比例的火成岩一起发生了部分熔融。
加里东期花岗岩δ18O值为8.2‰~10.6‰,平均为9.8‰,符合壳源花岗岩的特征,与Taylor(1974)计算的原生岩浆水区域所确定δ18O值(5.5‰~9.0‰)大致相符,与英国西南部由地壳部分熔融形成的二叠纪Cornwall花岗岩的δ18O值(9.5‰~13.0‰)(Sheppard,1977)也基本一致。
综上,加里东期花岗岩源于古—中元古代地壳部分熔融,但是早期和晚期花岗岩的源区岩石类型和热量来源有所区别:早期花岗岩的上地壳源区成分较为复杂,不仅存在泥岩,还有砂屑岩和/或变质火成岩,其形成温度较高(>875℃),暗示当时可能受到地幔的高温热对流作用。晚期花岗岩的源岩为上地壳泥岩,属典型的S型花岗岩,导致其形成的热量主要来自加厚地壳中的放射性元素生热,另外还有少部分热量由软流圈地幔传导而来。
9.2 岩体形成构造背景与成岩过程
在Pearce et al. (1984)多组微量元素构造环境判别图解(图 12)中,苗儿山加里东期花岗岩样品绝大多数落在同碰撞花岗岩与板内花岗岩的交接部位,表明其应形成于造山碰撞挤压向非造山的板内环境过渡阶段,即为后碰撞花岗岩。U-Pb测年结果表明,苗儿山加里东期花岗岩分多期次形成于(428.1 ± 3.6)~(408.3±3.5) Ma,在时间上相当于北流(崇余)运动晚期—广西运动早期,即形成于北流(崇余)运动挤压峰期之后挤压减弱、应力松弛的后碰撞构造环境(柏道远等,2014),与Pearce et al. (1984)多组微量元素构造环境判别图解反映的结果一致。
VAG—火山弧花岗岩; WPC—板内花岗岩; S-COLG—同碰撞花岗岩; ORG—洋中脊花岗岩Figure 12. Trace element tectonic environment discrimination diagram of the Caledonian granites (Symbols as Fig. 5, after Pearce et al., 1984)VAG-Volcanic arc granite; WPC-Intraplate granite; S-COLG-Syn-collisional granite; ORG-Mid-ocean ridge granite虽然苗儿山岩体加里东期花岗岩都形成于后碰撞构造环境中,但是由于其形成时间跨度大(约20 Ma),导致早期和晚期花岗岩的地壳源区的环境、岩石类型和热量来源发生了变化,因此其形成过程应分为两个明显不同的阶段,推断如下:
晋宁运动使华南洋东段完全闭合形成江绍缝合带,而此段以西仍然存在一个延续到加里东期的残留洋盆(胡受奚等,2006;于津海等,2006;马瑞士,2006;王鹤年等,2006;杨明桂等,2009;杜云等,2017b),在南华纪持续接受沉积。加里东运动使扬子地块向华夏地块俯冲—碰撞,残留洋盆不断消减,至志留纪末关闭(钦防海槽除外)形成加里东褶皱带。强烈的陆陆碰撞挤压使得地壳急剧增厚,放射性元素大量生热,压力和温度梯度升高。挤压峰期过后,进入应力松弛、伸展拉张阶段,地壳中压力急剧减小,岩石熔点降低,在大约428.1 Ma时,累积的大量放射性元素产生的热量引起上地壳中的泥岩、砂屑岩和/或变质火成岩发生部分熔融,形成加里东期第一侵入次高温(>875℃)弱过铝-强过铝质花岗岩,暗示当时可能受到软流圈高温热对流作用(Sylvester,1998)。之后(421.3~408.3 Ma),随着软流圈高温热对流作用的减弱和停止,在放射性元素生热和减压熔融的作用下,上地壳中高成熟度的泥岩继续发生部分熔融,形成大量低温(<875℃) 弱过铝—强过铝质的花岗质岩浆。岩浆通过伸展拉张形成的断裂——城步—桃江深大断裂向上运移,不断同化吸收上升通道中的围岩碎块(特别是加里东期第一侵入次花岗岩还同化吸收了少量晋宁期花岗岩),最终在地壳浅部的苗儿山复式背斜中侵位,形成加里东期S型花岗岩。
10. 结论
(1) 苗儿山岩体中加里东期花岗岩可划分为六个侵入次,其中第一侵入次的年龄为(428.1±3.6)Ma,第二侵入次的年龄为(420.3±3.4)~(421.3±3.2)Ma,第六侵入次的年龄为(408.3±3.5) Ma。加里东期岩浆活动时间较长,从(408.3±3.5) Ma到(428.1±3.6)Ma,持续了约20 Ma。
(2) 加里东期花岗岩总体属铁质-镁质(早期偏向镁质,晚期偏向铁质)、高钾碱钙性-钙碱性、弱过铝-强过铝质花岗岩,且经过了充分的结晶分异作用。
(3) 加里东期花岗岩源于古—中元古代地壳部分熔融,形成于北流(崇余)运动挤压峰期之后挤压减弱、应力松弛的后碰撞构造环境,其早期和晚期的源区岩石类型和热量来源有所区别:早期花岗岩的上地壳源区成分较为复杂,不仅存在泥岩,还有砂屑岩和/或变质火成岩,其形成温度较高(>875℃),暗示当时可能受到地幔的高温热对流作用。晚期花岗岩的源岩为上地壳泥岩,属典型的S型花岗岩,导致其形成的热量主要来自加厚地壳的放射性元素生热,另外还有少部分热量由软流圈地幔传导而来。
致谢: 湛龙高级工程师指导了矿区剖面测制, 李亚楠工程师完成了样品锆石U-Pb的测试工作, 邢新龙工程师对测年数据进行了进一步整理;赵希林研究员和姚远博士对论文草稿进行了认真审阅和修改; 审稿专家和编辑提出了宝贵修改意见。在此一并表示真挚的感谢。 -
表 1 夏山铅锌矿矿区花岗斑岩锆石U-Pb测年数据
Table 1 Zircon U-Pb isotope analyses of granite-porphyry in the Xiashan Pb-Zn deposit
-
Chen Shizhong, Chen Gang, Ma Ming, Zhu Xiaoting, Huang Zhengqing. 2014. Metallogenic regularity and ore-prospecting orientation of the Taoxi circular area[J]. Geology in China, 41(5):1522-1538 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201405010
Chen Shizhong, Huang Zhengqing, Zhu Xiaoting, Chen Gang, Ma Ming. 2013. Magmatism and its mineralization of the main deposits in Taoxi circular structure in Wuyishan ore belt[J]. Geology in China, 40(5):1569-1582 (in Chinese with English abstract).
Chen Sizhong, Ma Ming, Chen Gang, Zhou Yan, Zhu Xiaoting, Qiu Jinliang, Mao Jianren. 2010. Taoxi uplift, its tectonics, magmatism and matallogeny, Wuyi metallogenic belt[J]. Earth Science, 35(6):969-984 (in Chinese with EnglishAbstract). http://d.wanfangdata.com.cn/Periodical/dqkx201006008
Di Yongjun, Wu Ganguo, Zhang Da, Yu Xinqi, Lin Dongyan, Shi Jianji, Zang Wenshuan, Zhang Xiangxin, Wang Qunfeng. 2006.Composition characteristics of pyroxenes from Pb-Zn deposits in central Fujian Province and their genetic significance[J]. Mineral Deposits, 25(2):123-134(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200602002
Ding Jianhua, Fan Jianfu, Yin Jiangning, Liu Yaling. 2016.Geological Characteristics and mineral resource potential of the Wuyishan Cu-Pb-Zn polymetallic metallogenic belt[J]. Acta Geologica Sinica, 90(7):1537-1550(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201607019
Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshang, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province[J]. Geology in China, 44(4):781-792(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201704011
He Jian, Li Longming, Lin Shoufa, Xing Guangfu, Jiang Yang, Ren Shenglian, Li Jiahao, Feng Lamei, Ge Yanpeng. 2018. Petrogenesis and tectonic attribute of metabasite rocks in the Zhenghe-Dapu fault zone[J]. Acta Geologica Sinica, 92(5):946-963(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201805004
Hu Ruizhong, Mao Jingwen, Fan Weiming, Hua Renmin, Bi Xianwu, Zhong Hong, Song Xieyan, Tao Yan. 2010. Some scientific questions on the intra-continental metallogeny in the South China continent[J]. Earth Science Frontiers, 17(2):13-26(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002003
Hua Renmin, Chen Penrong, Zhang Wenlan, Lu Jianjun. 2005. Three major metallogenic events in Mesozoic in South China[J]. Mineral Deposits, 24(2):99-107 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200502002
Hua Renmin, Mao Jingwen. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in east China[J]. Mineral Deposits, 18(4) 300-307(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199904002
Huang Changqi. 2014. Research on prospecting model and metallogenic prognosis of Pb-Zn deposit in Pucheng-Youxi area, Fujian Province[J].Contributions to Geology and Mineral Resources Research, 29(4):480-488(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201404002
Huang Qingmin. 2009. On the Geologic Characteristics and Ore controlling Factors of Middle and Late Proterozoic Mamianshan Group Strata in Fujian Province[J].Geology of Fujian, 28(2):81-91(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fujdz200902001
Li Yanan, Xing Guangfu, Zhou Taofa, Chen Shizhong, Chen Zhihong, Duan Zheng, Dou Zhijuan, Mai Tingcheng, Xi Wanwan. 2015. Isochronology study on the Tongpenan Pluton in the Zhenghe region of Fujian Province and its geological significance[J]. Journal of Mineralogy and Petrology, 35(1):73-81(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201501010
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by La-ICP-MS without applying an internal standard[J]. Chemical Geology, 257, 34-43. doi: 10.1016/j.chemgeo.2008.08.004
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51:537-571. doi: 10.1093/petrology/egp082
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by La-ICP-MS[J]. Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
Ludwig K R. 2003.ISOPLOT 3. 00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center, California, 1-74.
Mao Jingwen, Hua Renmin, Li Xiaobo. 1999. A preliminary study of large scale metallogenesis and large clusters of mineral deposits[J]. Mineral Deposits, 18(4):291-299(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199904000.htm
Mao Jingwen, Wang Zhiliang. 2000. A preliminary study on time limits and geodynamic setting of large-scale metallogeny in East China[J]. Mineral Deposits, 19(4):289-296(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200004001
Mao Jingwen, Xie Guiqing, Li Xiaofeng, Zhang Changqing, Mei Yanxiong. 2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J]. Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401002.htm
Mao Jingwen, Xie Guiqing, Li Xiaofeng, Zhang Zuoheng, Wang Yitian, Wang Zhiliang, Zhao Caisheng, Yang Fuquan, Li Houmin. 2015. Geodynamic process and metallogeny:History and present research trend, with a special discussion on continental accretion and related metallogeny throughout geological history in South China[J]. Mineral Deposits, 24(3):193-205(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200503000.htm
Pei Rongfu, Qiu Xiaoping, Yin Bingchuan, Xiong Qunyao. 1999. The explosive anomaly of ore-forming processes and superaccumulation of metals[J]. Mineral Deposits, 18(4):333-340(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199904006
Shi Liyan, Gao Tianjun. 1996. Study on the mineralizing sequence of deposits associated with magmatite activity in Fujian Province[J]. Geology of Fujian, 15(1):1-19(in Chinese with English abstract).
Wang Jianchao. 2016. The research on the ore-controlling structure of Shangshangang gold-silver deposit in Zhenghe, Fujian[J]. Contributions to Geology and Mineral Resources Research, 31(3):362-368(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201603007
Wang Qi, Jiang Yongjian, Yu Haitao, Liu Guochun, Liu Yongli. 2011. Primary halo characteristics and concealed ore body prognosis in the Nannong lead-zinc polymetallic deposit, Southwestern Zhejiang Province[J]. Geophysical & Geochemical Exploration, 35(2):170-175(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201102006
Wang Shaoxiong. 2003. Relations between Mineral ization, Tectonic evolution of the lithosphere and composition of the crust-mantle within Fujian Province[J]. Geology of Fujian, 22(2):89-100(in Chinese with English abstract).
Wu Ganguo, Zhang Da, Peng Runmin, Wu Jianshe, Gao Tianjun, Chen Bailin, Wang Qunfeng, Di Yongjun, Zhang Xiangxin. 2004.Study on the evolution regularity of mineralization ages in southeastern China[J]. Earth Science Frontier, 11(1):237-247 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200401021
Wu Kaixing, Hu Ruizhong, Bi Xianwu, Peng Jiantang, Tang Qunli. 2002. Ore lead isotopes as a tracer for ore-forming material sources:A review[J]. Geology-Geochemistry, 30(3):73-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200203012.htm
Wu Yuanbao. Zheng Yongfei. 2004. Genetic mineralogy and trace element geochemistry of zircon[J]. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
Xie Guiqing. 2003. Late Mesozoic Mafic Dikes(Body) from Southeastern China: Geological and Geochemical Characteristics and Its Geodynamics-A case of Jiangxi Province[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-128(in Chinese with English abstract).
Yu Xinqi, Wu Jianshe, Di Yongjun, Wu Ganguo, Zhang Da. 2006.Study on the ore ore-controlling effects of the structure in Xiashan Pb-Zn deposit in Zhenghe County, Fujian Province[C]//Proceedings of the 8th National Deposit Conference, 628-631(in Chinese).
Yu Xinqi, Wu Ganguo, Zhang Da, Di Yongjun, Dai Yanpei, Qiu Junting. 2008. Thrust nappe structure and its ore-controlling effects in the North Wuyi area, China[J].Geological Bulletin of China, 27(10):1667-1677(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200810009
Zhang Guohua.2009. Metallogenic features and its ore-controling conditions on lead-znic in northwest fujian[J].Geology of Chemical Minerals, 31(2):97-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgkcdz200902004
Zhang Keyao. 2009. Study on the Metallogenic System and Prognosis of Cu-Mo Polymetal Deposit in the Pucheng-Ningde Metallogenic Belt of Fujian[D]. Beijing: China University of Geosciences(Beijing), 1-90(in Chinese with English abstract).
Zhang Qian, Pan Jiayong. 1994. Souces of ore-forming materials of the contactmetasomatic Skarn-type Cu-Pb-Zn deposits in special reference to their lead isotopic composition[J].Acta Mineralogica Sinica, 14(4):369-372 (in Chinese with English abstract).
Zhang Zhenjie, Zuo Renguang. 2015. Tectonic Evolution of southwestern Fujian Province and spatial-temporal distribution regularity of mineral deposits[J]. Acta Petrologica Sinica, 31(1):217-229(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501016
Zhao Xilin, Liu Kai, Mao Jianren, Ye Haimin. 2012. Metallogenesis of two types of late Early Yanshanian granitoids in South China:Case studies of south Jiangxi and southwest Fujian[J]. Geology in China, 39(4):871-886 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201204004.htm
Zhao Xilin, Mao Jianren, Chen Rong, Xu Naizheng. 2008. Zircon SHRIMP age and their implications of the Zijinshan pluton from southwestern Fujian Province[J]. Geology in China, 35(4):590-597(inChinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200804004.htm
Zhao Xilin, Yu Shengyao, Yu Minggang, Jiang Yang, Liu Kai, Mao Jianren. 2016. Geological characteristics and metallogenic epochs of the Dapai Fe-Pb-Zn polymetallic deposit in Yongding County, Fujian Province[J]. Geology in China, 43(1):174-187(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601013
Zheng Kaiqi, Zhou Lesheng. 1987. The characterics of trace elements and genesis of Xiashan Pb-Zn Deposit, Zhenghe, Fujian[J].Jourual Of Fuzhou University, 2:93-100(in Chinese with English abstract).
Zhou Lesheng, Zheng Kaiqi. 1990. The geological and geochemical features of stratabound lead-zinc deposits in Fujian Province[J]. Geoscience, 4(1):90-100(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ199001008.htm
陈世忠, 陈刚, 马明, 朱筱婷, 黄正清. 2014.武夷山成矿带南段桃溪环形区成矿规律和找矿方向[J].中国地质, 41(5):1522-1538. doi: 10.3969/j.issn.1000-3657.2014.05.010 陈世忠, 黄正清, 朱筱婷, 陈刚, 马明. 2013武夷山成矿带桃溪环形构造与紫金山铜金矿等矿床存在内在联系[J].中国地质, 40(5):1569-1582. doi: 10.3969/j.issn.1000-3657.2013.05.021 陈世忠, 马明, 陈刚, 周延, 朱筱婷, 邱金亮, 毛建仁. 2010.武夷山成矿带桃溪隆起、岩浆侵入和区域铜多金属矿成矿作用[J].地球科学, 35(6):969-984. http://d.old.wanfangdata.com.cn/Periodical/dqkx201006008 狄永军, 吴淦国, 张达, 余心起, 林东燕, 石建基, 臧文拴, 张祥信, 汪群峰. 2006.闽中地区铅锌矿床辉石成分特征及其成因意义[J].矿床地质, 25(2):123-134. doi: 10.3969/j.issn.0258-7106.2006.02.002 丁建华, 范建福, 阴江宁, 刘亚玲.2016.武夷山Cu-Pb-Zn多金属成矿带主要成矿地质特征及潜力分析[J].地质学报, 90(7):1537-1550. doi: 10.3969/j.issn.0001-5717.2016.07.019 郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017.南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb年龄及多期岩浆活动[J].中国地质, 44(4):781-792. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170410&flag=1 贺健, 李龙明, 林寿发, 邢光福, 姜杨, 任升莲, 李加好, 冯腊梅, 葛延鹏. 2018.政和-大埔断裂带内变基性岩成因及构造属性研究[J].地质学报, 92(5):946-963. doi: 10.3969/j.issn.0001-5717.2018.05.004 胡瑞忠, 毛景文, 范蔚茗, 华仁民, 毕献武, 钟宏, 宋谢炎, 陶琰.2010.华南陆块陆内成矿作用的一些科学问题[J].地学前缘, 17(2):13-26. http://d.old.wanfangdata.com.cn/Periodical/dxqy201002003 华仁民, 陈培荣, 张文兰, 陆建军.2005.论华南地区中生代3次大规模成矿作用[J].矿床地质, 24(2):99-107. doi: 10.3969/j.issn.0258-7106.2005.02.002 华仁民, 毛景文. 1999.试论中国东部中生代成矿大爆发[J].矿床地质, 18(4):300-307. doi: 10.3969/j.issn.0258-7106.1999.04.002 黄昌旗.2014.福建浦城-尤溪地区铅锌矿床找矿模型与成矿预测[J].地质找矿论丛, 29(4):480-488. http://www.cqvip.com/QK/90755X/201404/663674542.html 黄庆敏.2009.福建中-晚元古代马面山群地质特征及其控矿作用[J].福建地质, 28(2):81-91. doi: 10.3969/j.issn.1001-3970.2009.02.001 李亚楠, 邢光福, 周涛发, 陈世忠, 陈志洪, 段政, 窦志娟, 买廷成, 隰弯弯. 2015.福建政和地区铜盆庵花岗岩年代学研究及其地质意义[J].矿物岩石, 35(1):73-81. http://d.old.wanfangdata.com.cn/Periodical/kwys201501010 毛景文, 华仁民, 李晓波. 1999.浅议大规模成矿作用与大型矿集区[J].矿床地质, 18(4):291-299. doi: 10.3969/j.issn.0258-7106.1999.04.001 毛景文, 王志良. 2000.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质, 19(4):289-296. doi: 10.3969/j.issn.0258-7106.2000.04.001 毛景文, 谢桂青, 李晓峰, 张长青, 梅燕雄. 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 毛景文, 谢桂青, 李晓峰, 张作衡, 王义天, 王志良, 赵财胜, 杨富全, 李厚民. 2005.大陆动力学演化与成矿研究:历史与现状——兼论华南地区在地质历史演化期间大陆增生与成矿作用[J].矿床地质, 24(3):193-205. doi: 10.3969/j.issn.0258-7106.2005.03.001 裴荣富, 邱小平, 尹冰川, 熊群尧. 1999.成矿作用爆发异常及巨量金属堆积[J].矿床地质, 18(4):333-340. doi: 10.3969/j.issn.0258-7106.1999.04.006 石礼炎, 高天钧.1996.福建省与岩浆岩活动有关的矿床成矿系列研究[J].福建地质, 15(1):1-19. http://www.cnki.com.cn/Article/CJFDTotal-FJDZ601.000.htm 王建超. 2016.福建政和上山岗金银矿床控矿构造研究[J].地质找矿论丛, 31(3):362-368. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201603007 王启, 蒋永建, 于海涛, 刘国春, 刘永利. 2011.浙西南南弄铅锌多金属矿床原生晕特征与隐伏矿预测[J].物探与化探, 35(2):170-175. http://d.old.wanfangdata.com.cn/Periodical/wtyht201102006 王绍雄.2003.福建境内壳幔成分和岩石圈构造的演化与成矿作用的关系[J].福建地质, 22(2):89-100. doi: 10.3969/j.issn.1001-3970.2003.02.006 吴淦国, 张达, 彭润民, 吴建设, 高天钧, 陈柏林, 汪群峰, 狄永军, 张祥信. 2004.东南沿海成矿带矿床形成的时间演化规律研究[J].地学前缘, 11(1):237-247. doi: 10.3321/j.issn:1005-2321.2004.01.021 吴开兴, 胡瑞忠, 毕献武, 彭建堂, 唐群力. 2002.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学, 30(3):73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013 吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 谢桂青. 2003.中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例[D].贵阳: 中国科学院地球化学研究所, 1-128. 余心起, 吴建设, 狄永军, 吴淦国, 张达. 2006.福建政和夏山铅锌矿区构造控矿作用研究[C]//第八届全国矿床会议论文集, 628-631. 余心起, 吴淦国, 张达, 狄永军, 代堰锫, 邱骏挺. 2008.北武夷地区逆冲推覆构造的特征及其控矿作用[J].地质通报, 27(10):1667-1677. doi: 10.3969/j.issn.1671-2552.2008.10.009 张国华.2009.闽西北铅锌矿成矿特征及控矿条件浅析[J].化工矿产地质, 31(2):97-104. doi: 10.3969/j.issn.1006-5296.2009.02.004 张克尧.2009.福建浦城-宁德铜钼多金属成矿带成矿系统及预测研究[D].北京: 中国地质大学(北京), 1-90. http://cdmd.cnki.com.cn/article/cdmd-11415-2009075413.htm 张乾, 潘家永.1994.论接触交代矽卡岩型多金属矿床的矿质来源——以铅同位素组成为依据[J].矿物学报, 14(4):369-372. doi: 10.3321/j.issn:1000-4734.1994.04.009 张振杰, 左仁广. 2015.闽西南地区大地构造演化和矿床时空分布规律[J].岩石学报, 31(1):217-229. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501016 赵希林, 刘凯, 毛建仁, 叶海敏. 2012.华南燕山早期晚阶段两类花岗质岩体与成矿作用:以赣南-闽西南地区为例[J].中国地质, 39(4):871-886. doi: 10.3969/j.issn.1000-3657.2012.04.003 赵希林, 毛建仁, 陈荣, 许乃政. 2008.闽西南地区紫金山岩体锆石SHRIMP定年及其地质意义[J].中国地质, 35(4):590-597. doi: 10.3969/j.issn.1000-3657.2008.04.003 赵希林, 于胜尧, 余明刚, 姜杨, 刘凯, 毛建仁.2016.福建省永定大排铁铅锌多金属矿矿床特征及成矿时代[J].中国地质, 43(1):174-187. doi: 10.3969/j.issn.1000-3657.2016.01.013 郑开旗, 周乐生.1987.福建政和夏山铅锌矿微量元素特征及矿床成因[J].福州大学学报, 2:93-100. http://www.cqvip.com/QK/92302X/198702/70906890495756554850484951.html 周乐生, 郑开旗. 1990.福建省层控铅锌矿床地质地球化学特征现代地质[J].现代地质, 4(1):90-100. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ199001008.htm -
期刊类型引用(14)
1. 谭双,刘晓东,雷勇亮,陈琪,万建军,吴昆明,欧阳平宁,黄宏业. 桂北苗儿山铀矿田铀源分析:来自周缘红盆碎屑锆石的制约. 大地构造与成矿学. 2025(01): 70-89 . 百度学术
2. 王珂,吴昆明,朱煜翔,欧阳平宁,黄宏业,范鹏飞,陈琪,谭双,谷勇. 桂东北苗儿山地区上小地加里东期花岗斑岩成因及其与铀成矿关系. 大地构造与成矿学. 2024(03): 580-598 . 百度学术
3. XUE Wenhao,LIANG Yayun,LI Xiaofeng,LI Mingyi,XIE Wenbo,PENG Xue,XIA Rui,HE Hongsheng,XIAO Jincheng. The Geology, Fluid Inclusions, and O-S Isotopes of the Mibei Gold Deposit, Hunan Province, Southern China. Acta Geologica Sinica(English Edition). 2024(04): 992-1006 . 必应学术
4. 赵子翔,陈琪,王凯兴,孙立强,刘晓东,杨建俊,谭双. 桂北沙子江铀矿床赤铁矿地球化学特征及铀成矿启示. 铀矿地质. 2024(06): 1100-1117 . 百度学术
5. 陈剑锋,杜云,熊伊曲,管申进,何红生,周立同,陆文,石金江. 南岭加里东期钨锡矿床成矿机制研究:以湘西南落家冲矿床为例. 岩石学报. 2023(06): 1693-1716 . 百度学术
6. 李科甫,朱传庆. 华夏地块花岗岩生热率特征及其对地温场的影响. 石油科学通报. 2023(03): 259-289 . 百度学术
7. 李根,方贵聪,冯佐海,黄振男,罗桥花,黄祥林,蒋松林. 桂东北胡家田萤石矿床稀土元素地球化学特征及其指示意义. 桂林理工大学学报. 2023(01): 52-60 . 百度学术
8. 贺海洋,王亭亭,唐振平,任烜,侯淡平,香承希,刘毅,黄智. 湖南加里东期花岗岩成因及铀成矿关系. 南华大学学报(自然科学版). 2023(02): 45-53 . 百度学术
9. 杜云,田磊,郑正福,陈剑锋,张小强,王敬元,周立同,樊晖,李超. 湘西南落家冲钨锡矿床加里东期成岩成矿年龄的测定:对华南多旋回构造-岩浆活动与成矿作用的启示. 地质通报. 2022(05): 886-902 . 百度学术
10. 于玉帅,周云,牛志军,安志辉,刘阿睢. 湖南彭公庙岩体地球化学特征、时代及钨锡成矿潜力. 岩石矿物学杂志. 2022(04): 695-713 . 百度学术
11. 田磊,杜云,邹源,刘邦定,张小强,樊晖. 湘西南苗儿山地区水系沉积物地球化学特征及找矿方向. 华南地质. 2021(02): 164-176 . 百度学术
12. 李胜苗,田磊,杜云,邹源,樊晖,章靖. 南岭苗儿山地区沙坪岩体型白钨矿床地质特征及找矿意义. 国土资源导刊. 2021(03): 60-65 . 百度学术
13. 张山,巫建华,刘帅,杨东光,马树松,祝东. 赣南古家营盆地英安岩时代、成因及对早古生代构造演化的制约. 地质通报. 2021(09): 1459-1475 . 百度学术
14. 王珂,陈琪,吴昆明,黄宏业,谢飞,张宇. 桂东北苗儿山地区花岗岩型铀矿田地质特征及成矿模式分析. 东华理工大学学报(自然科学版). 2021(06): 540-552 . 百度学术
其他类型引用(5)