• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约

曾忠诚, 洪增林, 刘芳晓, 边小卫, 李琦, 高峰, 何元方, 菅坤坤

曾忠诚, 洪增林, 刘芳晓, 边小卫, 李琦, 高峰, 何元方, 菅坤坤. 阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约[J]. 中国地质, 2020, 47(3): 569-589. DOI: 10.12029/gc20200302
引用本文: 曾忠诚, 洪增林, 刘芳晓, 边小卫, 李琦, 高峰, 何元方, 菅坤坤. 阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约[J]. 中国地质, 2020, 47(3): 569-589. DOI: 10.12029/gc20200302
ZENG Zhongcheng, HONG Zenglin, LIU Fangxiao, BIAN Xiaowei, LI Qi, GAO Feng, HE Yuanfang, JIAN Kunkun. Confirmation of gneissic granite of Qingbaikou period and its constraint on the timing of the Rodinia supercontinent on the Altun orogenic belt[J]. GEOLOGY IN CHINA, 2020, 47(3): 569-589. DOI: 10.12029/gc20200302
Citation: ZENG Zhongcheng, HONG Zenglin, LIU Fangxiao, BIAN Xiaowei, LI Qi, GAO Feng, HE Yuanfang, JIAN Kunkun. Confirmation of gneissic granite of Qingbaikou period and its constraint on the timing of the Rodinia supercontinent on the Altun orogenic belt[J]. GEOLOGY IN CHINA, 2020, 47(3): 569-589. DOI: 10.12029/gc20200302

阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约

基金项目: 

中国地质调查局项目 12120114081901

中国地质调查局项目 1212011120533

国家科技重大专项项目 2019QZKK0806

详细信息
    作者简介:

    曾忠诚, 男, 1983年生, 高级工程师, 主要从事区域地质调查及构造地质学方面的研究; E-mail:113191186@qq.com

    通讯作者:

    洪增林, 男, 1963年生, 博士, 教授, 长期从事资源环境系统工程、地学工程、能源经济等方面的研究; E-mail:77196410@qq.com

  • 中图分类号: P588.12+1;P597;P595

Confirmation of gneissic granite of Qingbaikou period and its constraint on the timing of the Rodinia supercontinent on the Altun orogenic belt

Funds: 

China Geological Survey Program 12120114081901

China Geological Survey Program 1212011120533

National Science and Technology Major Project 2019QZKK0806

  • 摘要:

    阿尔金造山带新元古代花岗岩的研究对探讨该地区Rodinia超大陆汇聚阶段构造演化过程具有重要意义。本文对在亚干布阳一带新厘定的青白口纪片麻状花岗岩开展了详细的岩石学、年代学和岩石地球化学研究。锆石LA-ICP-MS U-Pb年代学证据显示片麻状花岗岩结晶年龄分别为(883.0±3.3)Ma和(883.1±3.3)Ma,说明其侵位于青白口纪。地球化学结果显示,常量元素具有富硅、铝、钾和低钠、镁、钙和钛的特点,具钙碱性-高钾钙碱性、过铝质花岗岩特征。岩石轻稀土分馏较强而重稀土分馏较弱,具有明显的负Eu异常,总体呈右倾的“V”型稀土分配模式。岩石富集Rb、Th、LREE等大离子亲石元素,中等亏损Ba,强烈亏损Nb、Sr、P、Hf、Ti等高场强元素,总体特征显示了典型的壳源花岗岩的特征,其源于地壳变质砂岩部分熔融,形成于同碰撞晚期构造环境,属Rodinia超大陆汇聚阶段的产物。综合研究表明,阿尔金地区新元古代早期同碰撞型岩体的形成时代集中在871~945 Ma,限定了Rodinia超大陆汇聚时限,且在空间上构成了一条重要的岩浆岩带,是对Rodinia超大陆碰撞汇聚作用的响应。

    Abstract:

    The study of the Neoproterozoic granites in the Altun orogenic belt is significant for revealing the area of the Rodinia supercontinent convergent stage tectonic evolution. In this paper, a detailed study of petrology, chronology and geochemistry was carried out for a new division of Qingbaikou gneissic granite in Yaganbuyang area. The U-Pb dating of zircons from the gneissic granite using LA-ICP-MS yielded (883.0±3.3)Ma and (883.1±3.3)Ma, indicating that the gneissic granite was generated in Qingbaikou period. The geochemical analysis shows that major elements are characterized by high SiO2, Al2O3 and K2O values and low Na2O, MgO, CaO and TiO2 values, thus belonging to the calc-alkaline-high-K calc-alkaline series, and peraluminous.REE distribution patterns show negative anomaly of Eu, obvious fractionation of LREE and weak fractionation of HREE, with a clear V trough, which shows the features of crustal derived granite. The gneissic granite is rich in large ion lithophile elements of Rb, Th, LREE, slightly depleted in Ba and mightily depleted in high field strength elements of Nb, Sr, P, Hf, Ti. These characteristics are similar to features of the continental collision type granite. The source rock of the gneissic granite was formed by the partial melting metasandstone from the crust in the subduction-collisional environment about Rodinia supercontinent. Comprehensive study shows that these syn-collisional granites were generated between 871 Ma and 940 Ma, which constrained the timing of the Rodinia supercontinent in Early Neoproterozoic along the Altun orogenic belt. These rock bodies have the characteristics of zonal distribution in space and confirm the existence of syn-collisional granites belt about Rodinia supercontinent on the Altun orogenic belt.

  • 赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989陈郑辉等,2006毛景文等,2007郭春丽等,2007许建祥等,2008刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989张文兰等,2006王登红,2019杨斌等,2021秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981李建康,2012李建康等,2014王登红等,2017王成辉等,2019Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。

    赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007裴荣富和熊群尧,1999刘善宝等,2010)。

    图  1  赣南石雷钨锡矿地质简图
    Figure  1.  Simplified geological map of Shilei tungsten and tin deposits in the Southern Jiangxi Province

    石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。

    矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。

    表  1  ZKn11-11云英岩W、Sn、Li测试分析结果
    Table  1.  The W, Sn, Li analysis results of greisen samples of ZKn11-11
    下载: 导出CSV 
    | 显示表格

    (1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。

    图  2  石雷矿区钨锡锂多金属矿体特征
    a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿
    Figure  2.  Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining area
    a, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite

    (2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。

    本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-Al-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。

    图  3  石雷矿区11号勘探线简图
    Figure  3.  No.11 Sketch map of exploration line in the Shilei mining area
    表  2  石雷矿区云英岩中云母LA-ICP-MS原位分析结果
    Table  2.  LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area
    下载: 导出CSV 
    | 显示表格
    图  4  石雷矿区云英岩中云母的Fetot+Mn+Ti+Al-Mg-Li判别图解(据Guggenhim and Bailey, 1977)
    Figure  4.  Fetot+Mn+Ti+Al vs. Mg-Li discriminant diagram of the mica of greisen in the Shilei mining area (after Guggenhim and Bailey, 1977)

    云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018王正军等,2018张勇等,2020Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。

    随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。

    以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。

    总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019陈其慎等,2021王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。

    南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。

    致谢: 中国地质调查局西安地质调查中心校培喜教授级高级工程师和西北大学刘良、柳小明教授在论文写作过程中提供了建设性意见, 谨此表示感谢。
  • 图  1   阿尔金造山带大地构造位置图(a)及研究区地质简图(b)

    TRB—塔里木盆地;QL—祁连山;QDB—柴达木盆地;WKL—西昆仑;EKL—东昆仑;HMLY—喜马拉雅山;INP—印度板块;Q—第四系;N2y—新近系油砂山组;J1-2dm—侏罗系大煤沟组;ЄOMm—奥陶纪茫崖蛇绿混杂岩;QbS—青白口系索尔库里群;Pt1A—古元古代阿尔金岩群;O—S玉苏普阿勒塔格岩体;O2-3—帕夏拉依档岩体;νQb—斜长角闪岩;γQb—片麻状花岗岩;γδQb—盖里克片麻岩;γδοQb—亚干布阳片麻岩;OΣH—超基性岩块体;β—玄武岩块体;v—辉长岩脉

    Figure  1.   Tectonic position map of Altun (a) and geological sketch map of the study area (b)

    TRB-Traim Basin; QL-Qilian Mountains; QDB-Qaidam Basin; WKL-Western Kunlun Mountains; EKL-Eastern Kunlun Mountains; HMLYHimalaya Mountains; INP- Indian Plate; Q- Quaternary; N2y- Neogene Youshashan Formation; J1-2dm- Jurassic Dameigou Formation; ЄOMm - Ordovician Mengya ophiolite melange; QbS- Qingbaikou System Suorkuli Group; Pt1A- Palaeoproterozoic Altun rock group; O- S- Yusupualeke Tagh plutons; O2-3-Paxialayidang plutons; νQb-Amphibolite; γQb-gneissic granite; γδQb-Gailike plutons; γδοQb -Yaganbuyang syenogranite; OΣH-Ultrabasic rock block; β-Bsaltic Block; v-Gabbro dyke

    图  2   片麻状花岗岩野外宏观特征及显微镜下照片

    a、b—片麻状黑云花岗岩宏观露头照片;c、d—片麻状黑云母花岗岩显微照片(c—PM004/6-1Bb,正交偏光;d—PM003/4-1Bb,正交偏光);Pl—斜长石;Mi—微斜长石;Q—石英;Bit—黑云母;Mu—白云母;Hb—角闪石

    Figure  2.   The outcrop and microstructure photos of gneissic granite

    A, b-The outcrop photos of gneissoid-biotitic granite; c-Micro-photos of gneissoid-biotitic granite (PM004/6-1Bb, crossed nicols-PM003/4-1Bb, crossed nicols); Pl-Plagioclase; Mi-Microline; Q-Quartz; Bit-Biotite; Mu-Muscovite; Hb-Hornblende

    图  3   片麻状花岗岩(PM003-4)中锆石的CL图像和U-Pb年龄值

    Figure  3.   Zircon CL image and U-Pb ages of gneissic granite (PM003/4)

    图  4   片麻状花岗岩(PM003-4)锆石U-Pb谐和图

    Figure  4.   LA-ICP-MS zircon U-Pb concordia diagram for gneissic granite (PM003/4)

    图  5   片麻状花岗岩(PM004-6)中锆石的CL图像和U-Pb年龄值

    Figure  5.   Zircon CL image and U-Pb ages of gneissic granite (PM004-6)

    图  6   片麻状花岗岩(PM004−6)锆石U−Pb谐和图

    Figure  6.   LA−ICP−MS zircon U−Pb concordia diagram for gneissic granite(PM004−6)

    图  7   片麻状花岗岩TAS图解

    Figure  7.   TAS diagram of gneissic granite

    图  8   片麻状花岗岩A /CNK−A/NK图解

    Figure  8.   A /CNK−A/NK diagram of gneissic granite

    图  9   片麻状花岗岩K2O−SiO2图解

    Figure  9.   K2O−SiO2 diagram of gneissic granite

    图  10   片麻状花岗岩SiO2−Zr图解

    Figure  10.   SiO2−Zr diagram of gneissic granite

    图  11   片麻状花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

    标准化值据Sun and McDonough, 1989

    Figure  11.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) of gneissic granite

    after Sun and McDonough, 1989

    图  12   片麻状花岗岩Rb/Ba−Rb/Sr图解(底图据Sylvester, 1998

    Figure  12.   Rb/Ba−Rb/Sr diagrams of gneissic granite (after Sylvester, 1998)

    图  13   片麻状花岗岩A/MF−C/MF成因图解(底图据Alther et al., 2000

    Figure  13.   AFM−CFM diagrams of gneissic granite (after Alther et al., 2000)

    图  14   片麻状花岗岩微量元素构造环境判别图解

    Figure  14.   Diagrams of the tectonic setting of major elements for gneissic granite

    图  15   片麻状花岗岩Hf−Rb/30−Ta×3三角判别图解(底图据Harris et al., 1986

    Figure  15.   Hf-Rb/30-Ta×3 diagrams of gneissic granite (after Harris et al., 1986)

    图  16   阿尔金青白口纪早期构造演化模式图

    Figure  16.   Model for the tectonic evolution during the early Qingbaikou period of the Altun

    表  1   片麻状花岗岩(样品PM003/4)锆石LA−ICP−MS U−Pb同位素分析结果表

    Table  1   LA−ICP−MS zircon U−Pb isotopic analysis results of gneissic granite(sample PM003-4)

    下载: 导出CSV

    表  2   片麻状花岗岩(样品PM004−6)锆石LA−ICP−MS U−Pb同位素分析结果

    Table  2   LA−ICP−MS Zircon U−Pb isotopic analyses of gneissic granite(sample PM004−6)

    下载: 导出CSV

    表  3   阿尔金造山带片麻状花岗岩主量元素(%)、微量元素(10-6)分析结果

    Table  3   Major elements(%) and trace elements(10-6) from gneissic granite in the Altun orogenic belt

    下载: 导出CSV
  • Alther R, Holl A, Hegner E. 2000. High-potassium, calc-alkaline Itype plutonism in the European Variscides:Northern Vosges(France) and northern Schwarzwald (Germany)[J]. Lithos, 50:51-73. doi: 10.1016/S0024-4937(99)00052-3

    BarBarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 46:605-626. doi: 10.1016/S0024-4937(98)00085-1

    Barth M G, McDonough W F, Rndnick R I. 2000. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 165(3/4):197-213. doi: 10.1016-S0009-2541(99)00173-4/

    Bi Zhengjia, Zeng Zhongcheng, Zhang Kunkun, Liu Demin, Chen Ning, Zhao Jianglin, Li Qi, Li Dewei. 2016. Geochronology, geochemical characteristics and tectonic implications of the amphibolite from Paxialayidang area on the southern margin of Altun terrain[J]. Geology in China, 43(4):1149-1164 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201604003

    Cao Yuting, Liu Liang, Wang Chao, Chen DanLing and Zhang Anda. 2009. P-T path of Early Paleozoic pelitic high-pressure granulite from Danshuiquan area in Altyn Tagh[J]. Acta Petrologica Sinica, 25(9):2260-2270 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909018

    Cao Yuting, Liu Liang, Wang Chao, Yang Wenqiang, Zhu Xiaohui. 2010. Geochemical, zircon U-Pb dating and Hf isotope compositions studies for Tatelekebulake granite in South Altyn Tagh[J]. Acta Petrologica Sinica, 26(11):3259-3271 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201011008

    Che Zicheng, Liu Liang, Liu Hongfu, Luo Jinhai. 1995. Found and its tectonic setting of the high-pressure metamorphic argillaceous rocks of Altyn mountain area[J]. Chinese Science Bulletin, 40(14):1298-1300 (in Chinese with English abstract). doi: 10.1360/csb1995-40-14-1298

    Chen Hongjie, Wu Cailai, Lei Min, Guo Wenfeng, Zhang Xin, Zheng Kun, Gao dong, Wu Di. 2018. Petrogenesis and Implications for Neoproterozoic Granites in Kekesayi Area, South Altyn Continent[J]. Earth Science, 43(4):1278-1292 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804022

    Cui Junwen, Tang Zhemin, Deng Jinfu, Yue Yongjun, Meng Lingshun, Yu Qinfan. 1999. The Altyn Tagh Fracture System[M]. Beijing: Geological Publishing House, 137-213 (in Chinese with English abstract).

    Dong Guoan, Yang Huairen, Yang Hongyi, Liu Dunyi, Zhang Jianxin, Wan Yusheng. 2007. The zircon SHIMP U-Pb dating and its significance of the Precambrian basement, Qilian Tererance[J]. Chinese Science Bulletin, 52(13):1572-1585 (in Chinese with English abstract). doi: 10.1360/csb2007-52-13-1572

    Dong Hongkai, Guo Jincheng, Chen Haiyan, Ti Zhenhai, Liu Guang, Liu Silin, Xue Pengyuan, Xing Weiwei. 2014. Evolution characteristics of Ordocician intrusive rock in Changshagou of Altun Region[J]. Northwestern Geology, 47(4):73-87 (in Chinese with English abstract).

    Dostal J, Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 163(1):207-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a86ecd7b7229cb687620d8d59cd9c61

    England P, Fort P L, Molnar P, Pêcher, A. 1992. Heat sources for Tertiary metamorphism and anatexis in the Annapurna-Manaslu Region central Nepal[J]. Journal of Geophysical Research Solid Earth, 97(B2):2107-2128. doi: 10.1029/91JB02272

    Gehrels G E, Yin A, Wang X F. 2003. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 108 (B9):2423. doi: 10.1029-2002JB001876/

    Guo Jincheng, Xu Xuming, Chen Haiyan, Li Xian, Dong Hongkai, Ti Zhenhai. 2014. Zircon U-Pb Age and Geological Implications of Ultramafic Rocks in Changshagou, Altun Area, Xinjiang Province[J]. North Western Geology, 47(4):170-177(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201404018

    Guo Jinjing, Zhao Fengqing, Li Huaikun. 1999. Jinningian collisional granite belt in the eastern sector of the Central Qilian massif and its implication[J]. Acta Geoscientica Sinica, 20(1):10-15 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb199901002

    Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism[J]. Collision Tectonics, 19(5):67-81. doi: 10.1144-GSL.SP.1986.019.01.04/

    Harris N B W, Inger S. 1992. Trace element modelling of pelitederived granites[J]. Contributions to Mineralogy & Petrology, 110(1):46-56. doi: 10.1007/BF00310881

    Hoffman P F. 1991. Did the breakout of laurentia turn gondwanaland inside-out?[J]. Science, 252(5011):1409. doi: 10.1126/science.252.5011.1409

    Jung S, Pfander J A. 2007. Source composition and melting temperatures of orogenic granitoids:constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Mineralogy, 19(6):859-870. doi: 10.1127/0935-1221/2007/0019-1774

    Kang Lei, Liu Liang, Cao Yuting, Wang Chao, Yang Wenqiang, Liang Sha. 2013. Geochemistry, zircon U-Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the south Altyn Tagh[J]. Acta Petrologica Sinica, 29(9):3039-3048 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201309007

    Kang Lei, Xiao Peixi, Gao Xiaofeng, Xi Rengang, Yang Zaichao. 2016. Early Paleozoic Magamatism and Collision Orogenic Process of the South Altyn[J]. Acta Geologica Sinica, 90(10):2527-2550 (in Chinese with English abstract).

    Li Z X, Zhang L, Powell C M. 1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia[J]. Journal of the Geological Society of Australia, 43(6):593-604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/08120099608728281

    Li Qi, Zeng Zhongcheng, Chen Ning, Zhao Jianglin, Zhang Ruoyu, YI Pengfei, Gao Haifeng, Bi Zhengjia. 2015. Zircon U-Pb ages, geochemical characteristics and tectonic implications of Neoproterozoic gailike gneiss in the south Altyn Tagh[J]. Geoscience, 29(6):1271-1283 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201506002

    Li Qi, Zeng Zhongcheng, Chen Ning, Zhang Ruoyu, Zhao Jianglin, Wang Tianyi, Yi Pengfei. 2018. Zircon U-Pb ages, geochemical characteristics and geological significance of Yaganbuyang gneiss in Qingbaikou period along the Altun orogenic belt[J]. Geological Bulletin of China, 37(4):642-654 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz201804012

    Li Xiangmin, Ma Zhongping, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe and Duan Xingxing. 2009. Characteristics and age study about the Yuemakeqi maficultramagic rock in the southern Altyn Fault[J]. Acta Petrologica Sinica, 25(4):862-872(in Chinese with English abstract).

    Lin Ciluan, Sun Yong, Chen Danling, Diwu Chunlong. 2006.Geochemistry and zircon LA-ICP MS dating of Iqe River granitic gneiss, northern margin of Qaidam Basin[J]. Geochimica, 35(5):489-505(in Chinese with English abstract).

    Liu Xiaoming, Yuan H I, Bodo Hatten, Dorf Uünther, Chen Liang, Hu Shenghong. 2002. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICP-MS[J]. Acta Petrologica Sinica, 18 (3):408-418(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200203017

    Liu Liang, Che Zicheng, Luo Jinhai, Wang Yan and Gao Zhangjian. 1996. Recognition and implication of eclogite in the western Altyn Mountains, Xinjiang[J]. Chinese Science Bulletin, 42(16):931-934(in Chinese with English abstract).

    Liu Liang, Che Zicheng and Wang Yan, Luo Jinhai, Wang Jianqi, Gao Zhangjian. 1998. The evidence of Sm-Nd isochron age for the Early Paleozoic ophiolite in Mangya area, Altun Mountains[J]. Chinese Science Bulletin, 43(8):880-883(in Chinese with English abstract). doi: 10.1360/csb1998-43-8-880

    Liu Liang, Zhang Anda, Chen Danling, Yang Jiaxi, Luo Jinhai, Wang Chao. 2007. Implications based on LA-ICP-MS zircon U-Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh[J]. Earth Science Frontiers, 14(1):98-107(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60004-9

    Liu Yixin, Sha Xin, Ma Zhen, Wang Jinrong. 2018. Geochemical characteristics and tectonic implication of the Shuanglong maficultramafic rocks in western section of the North Qilian[J]. Acta Petrologica Sinica, 34(2):383-397(in Chinese with English abstract).

    Liu Yongshun, Yu Haifeng, Xin Houtian, Lu Songnian, Xiu Qunye, Li Quan. 2009. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China[J]. Geological Bulletin of China, 28(10):1430-1438(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200910009

    Lu Fengxiang, Sang Longkang. 2002. Petrology[M]. Beijing: Geological Publishing House, 82-94(in Chinese).

    Lu S, Li H, Zhang C, Niu G H. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 160(1/2):94-107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92cbf7cde9189410a5bd41a8161f2517

    Lu Songnian. 2001. From rodinia to gondwanaland supercontinents——Thinking about problems of researching Neoproterozoic supercontinents[J]. Earth Science Frontiers, 8(4):441-448(in Chinese with English abstract).

    Lu Songnian. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau[M]. Beijing: Geological Publishing House, 1-125(in Chinese).

    Lu Songnian, Chen Zhihong, Li Huaikun, Hao Guojie, Zhou Hongying, Xiang Zhenqun. 2004. Late Mesoproterozoic-Early Neoproterozoic evolution of the Qinling orogen[J]. Geological Bulletin of China, 23(2):107-112(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200402002

    Mcmenaminm M A S, Mcmenaminm D L S. 1990. The Emergence of Animals: The Canbrian Breakthrough[M]. New York: Columbia University Press, 1-12.

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 25(4):956-983. doi: 10.1093/petrology/25.4.956

    Pei Xianzhi, Jing Saping, Zhang Guowei, Liu Huibin, Li Zuochen, Li Wangye. 2007. Zircons LA-ICP-MS U-Pb dating of Neoproterozoic granitoid gneisses in the North Margin of West Qinling and geological implication[J]. Acta Geologica Sinica, 81(6):772-786(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200706005

    Rapp R P, Watson E B. 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews Geophysics, 33(3):267-309. doi: 10.1029/95RG01302

    Rutatto D. 2002. Zircon trace element geochemistry:Paritioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemcal Geology, 184:123-138. doi: 10.1016/S0009-2541(01)00355-2

    Sylvester P J. 1998. Post-collisional strongly peraluminous granites[J]. Lithos, 45(1/4):29-44. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223027258/

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Wan Yusheng, Xu Zhiqin, Yang Jingsui, Zhang Jianxin. 2003. The Precambrian High-grade Basement of the Qilian terrane and Neighboring Areas:Its ages and compositions[J]. Acta Geoscientica Sinica, 24(4):319-324(in Chinese with English abstract).

    Wang C, Liu L, Chen D L, Cao Y T. 2011. Petrology, geochemistry, geochronology, and metamorphic evolution of garnet peridotites from South Altyn Tagh UHP Terrane, Northwestern China: Records related to crustal slab subduction and exhumation history[C]//Dobrzhinetskaya L, Faryad W, Wallis S, Cuthbert S(eds.).Ultrahigh Pressure Metamorphism: 25 years after the discovery of metamorphic coesite and diamond, Elsvier, 541-576.

    Wang Chao, Liu Liang, Xiao Peixi, Cao Yuting, Yu Huiyang, Meert J G, Liang W T. 2014. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos, 202-203(4):1-20. http://cn.bing.com/academic/profile?id=e6fee55e2137a0718b530069fcbb06ab&encoded=0&v=paper_preview&mkt=zh-cn

    Wang Chao, Liu Liang, Che Zicehng, Chen Danling, Zhang Anda, Luo Jinhai. 2006. U-Ph geochronology and tectonic setting of the granitic gneiss in Jianggaleisayi Eclogite Belt, the Southern Edge of Altyn Tagh[J]. Geological Journal of China Universities, 12(1):74-82(in Chinese with English abstract).

    Wang Chao. 2011. Precambrian Tectonic of South Margin of Tarim Basin[D]. Xi' an: Northwest University, 1-137(in Chinese with English abstract).

    Wang Huichu, Yuan Guibang, Xin Houtian, Hao Guojie, Zhang Baohua, Wang Qinghai. 2004. Geological characteristic and age of the Iqe River Group-complex on the northern margin of the Qaidam basin[J]. Geological Bulletin of China, 23(4):314-321(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200404003

    Wang Lishe, Zhang Wei, Duan Xingxing, Long Xiaoping, Ma Zhngping, Song Zhongbao, Sun Jiming. 2015. Isotopic age and genesis of the monzogranitic gneiss at the Huanxingshan in middle Altyn Tagh[J]. Acta Petrologica Sircica, 31(1):119-132(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501009

    Wang Tao, Zhang Zong Qing, Wang Xiaoxia, Wang Yanbin, Zhang Chenli. 2005. Neoproterozoic collisional deformation in the core of the Qinling Orogen and its age constrained by zircon SHRIMP dating of strongly deformed syn-collisional granites and weakly deformed granitic veins[J]. Acta Geologica Sinica, 79(2):220-231(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200502008

    Wang Yong, Wang Bin, Chen Bailin, Wu Yu, Meng Lingtong, He Jiangtao, Chen Andong. 2017. New evidence of 2.0-1.8 Ga granitic genesis Tarim plate belonging to Colombia supercontinent[J]. Geology in China, 44(2):407-408(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201702018

    Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. 1989. Rare Earth Element Geochemistry[M]. Beijing: Science Press. 223-224(in Chinese).

    Wu Cailai, Gao Yuanhong, Lei Min, Qin Haipeng, Liu Cunhua, Li Minze, Frost B R, Wooden J L. 2014. Zircon SHRIMP U-Pb dating, Lu-Hf isotopic characteristics and petrogenesis of the Palaeozoic granites in Mangya area, southern Altun, NW China[J]. Acta Petrologica Sinica, 30(8):2297-2323 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201408014

    Wu Yuanbao, Zheng Yongfei. 2004. Zircon minerageny and its restriction on interpretion of U-Pb age[J]. Chinese Science Bulletin, 49(16):1589-1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589

    Xiao Peixi, Gao Xiaofeng, Hu Yunxu, Xie Congrui, Guo Lei, Xi Rengang, Dong Zengchan, Kang Lei. 2014. Study on Geological Background of Altyn Tagh-Eastern Kunlun Metallogenic Belt[M]. Beijing: Geological Publishing House, 54-55(in Chinese).

    Xin Houtian, Zhao Fengqing, Luo Zhaohua, Liu Yongsun, Wan Yusheng, Wang Shuqing. 2011. Deterimination of the Paleoproterozoic geochronological framework in aqtashtagh area in southeastern Tarim, China, and its geological significance[J]. Acta Geologica Sinica, 85(12):1978-1993(in Chinese with English abstract).

    Xu Zhiqin, Yang Jingsui, Zhang Jianxin, Jiang Mei, Li Haibing, Cui Junwen.1999. A comparsion between the tectonic units on the two sides of the Altyn sinistral strike-slip fault and the mechanism of lithospheric shearing[J]. Acta Geologica Sinica, 73(3):193-205(in Chinese with English abstract).

    Yu Haifeng, Lu Songnia, Mei Hualing, Zhao Fengqing, Li Huakun, Li Huimin. 1999. Characteristics of Neoproterozoic eclogite-granite zones and deep level ductile shear zone in western China and their significance for continental reconstruction[J]. Acta Petrologica Sinica, 15(4):532-538(in Chinese with English abstract).

    Yuan Honglin, Wu Fuyuan, Gao Shan. 2003. Cenozoic intrusive laser probe zircon U-Pb and rare earth element composition analysis Determination in Northeast[J]. Science Bulletin, 48(14):1511-1520.

    Zeng Zhongcheng, Biao Xiaowei, Zhao Jianglin, Liu Xiangdong, Zhang Ruoyu, Li Qi, He Yuanfang, Jian Kunkun. 2019. U-Pb geochronology of zircons from the volcanic rocks in Bingounan Formation, Southern Altyn Tagh:Implication for the Precambrian tectonic evolution[J]. Geological Review, 65(1):103-118 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201901012

    Zhao Y, Sun Y, Yan J H, Diwu C R. 2015. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China:Constraints from zircon U-Pb geochronology and in situ Hf isotopes[J]. Precambrian Research, 271:83-97. doi: 10.1016/j.precamres.2015.10.002

    Zhao Y, Sun Y, Diwu C R, Guo A L, Ao W H, Zhu T. 2016. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China[J]. Gondwana Research, 30:207-223. doi: 10.1016/j.gr.2015.08.012

    Zhang J X, Zhang Z M, Xu Z Q, Yang J S. 1999. The ages of U-Pb and Sm-Nd for eclogite from the western segment of Altyn Tagh tectonic belt——Evidence for existence of Caledonian orogenic root[J]. Chinese Science Bulletin, 44(24):2256-2259. doi: 10.1007/BF02885933

    Zhang J, Zhang Z, Xu Z, Yang J, Cui J. 2001. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China[J]. Lithos, 56(2):187-206. http://cn.bing.com/academic/profile?id=998591262dd4af9f431c786af56e7b40&encoded=0&v=paper_preview&mkt=zh-cn

    Zhang Jianxin, Wan Yusheng, Meng Fancong, Yang Jingsui and Xu Zhiqin. 2003. Geochemistry, Sm-Nd andU-Pb isotope study of gneisses (schists) enclosing in the North Qaidam Mountains:Deeeply subducted Precambrian metamorphic basement?[J]Acta Petrologica Sinica, 19:443-451 (in Chinesewith English abstract).

    Zhang Jianxin, Meng Fancong, Mattinson C G. 2007. Progress, Controversies and Challenge of Studies on South Altyn TaghNorth Qaidam HP/UHP Metamorphic Belt[J]. Geological Journal of China Universities, 75(2):186-197 (in Chinesewith English abstract).

    Zhang Jianxin, Li Huaikun, Meng Fancong, Xiang Zhenqun, Yu Shengyao, Li Jinping. 2011. Polyphase tectonothermal events recorded in "metamorphic basement" from the Altyn Tagh, the southeastern margin of the Tarim basin, western China:Constraint from U-Pb zircon geochronology[J]. Acta Petrologica Sinica, 27(1):23-46 (in Chinesewith English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101002

    Zhang Ruoyu, Zeng Zhongcheng, Zhe Weipeng, Chen Ning, Zhao Jianglin, Li Qi, Wang Qinwei, Rao Jingwen. 2016. LA-ICP-MS zircon U-Pb dating, geochemical features and their geological implications of paxialayidang plutons on the southern margin of Altyn Tagh[J]. Geological Review, 62(5):1283-1299(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201605014

    Zhang Ruoyu, Zeng Zhongcheng, Chen Ning, Li Qi, Wang Tianyi, Zhao Jianglin. 2018. The discovery of Middle-Late Ordovician syenogranite on the southern margin of Altun orogenic belt and its geological significance[J]. Geological Bulletin of China, 37(4):545-558(in Chinesewith English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz201804004

    Zhao Zhenhua, Wang Zhonggang, Chu Tianren, Masuda A. 1991. The REE, isotopic composition of O, Pb, Sr, Nd and diagenetic model of granitoids in Altai region[J]. Bulletin of Mineralogy, Petrolog and Geochemistry, 24(3):176-178 (in Chinese).

    毕政家, 曾忠诚, 张昆昆, 曹同礼, 刘德民, 陈宁, 赵江林, 李琦, 李德威. 2016.阿尔金南缘帕夏拉依档沟斜长角闪岩年代学、地球化学及其构造意义[J].中国地质, 43(4):1149-1164. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160403&flag=1
    曹玉亭, 刘良, 王超, 陈丹玲, 张安达. 2009.阿尔金淡水泉早古生代泥质高压麻粒岩及其P-T演化轨迹[J].岩石学报, 25(9):2260-2270. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909018
    曹玉亭, 刘良, 王超, 杨文强, 朱小辉. 2010.阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J].岩石学报, 26(11):3259-3271. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201011008
    车自成, 刘良, 刘洪福, 罗金海. 1995.阿尔金山地区高压变质泥质岩石的发现及其产出环境[J].科学通报, 40(14):1298-1300. doi: 10.3321/j.issn:0023-074X.1995.14.015
    陈红杰, 吴才来, 雷敏, 郭文峰, 张昕, 郑坤, 高栋, 吴迪. 2018.南阿尔金陆块科克萨依新元古代花岗岩成因及地质意义[J].地球科学, 43(4):1278-1292. http://d.old.wanfangdata.com.cn/Periodical/dqkx201804022
    崔军文, 唐哲民, 邓晋福, 岳永军, 孟令顺, 余钦范. 1999.阿尔金断裂系[M].北京: 地质出版社, 137-213.
    董国安, 杨怀仁, 杨宏仪, 刘敦一, 张建新, 万渝生等. 2007.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报, 52(13);1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015
    董洪凯, 郭金城, 陈海燕, 提振海, 刘广, 刘思林, 薛鹏远, 邢伟伟. 2014.新疆阿尔金地区长沙沟一带奥陶纪侵入岩及其演化特征[J].西北地质, 47(4):73-87. doi: 10.3969/j.issn.1009-6248.2014.04.008
    郭金城, 徐旭明, 陈海燕, 李先, 董洪凯, 提振海. 2014.新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义[J].西北地质, 47(4):170-177. doi: 10.3969/j.issn.1009-6248.2014.04.018
    郭进京, 赵风清, 李怀坤. 1999.中祁连东段晋宁期碰撞型花岗岩及其地质意义[J].地球学报, 20(1):10-15. doi: 10.3321/j.issn:1006-3021.1999.01.002
    康磊, 刘良, 曹玉亭, 王超, 杨文强, 梁莎. 2013.阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J].岩石学报, 29(9):3039-3048. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309007
    康磊, 校培喜, 高晓峰, 奚仁刚, 杨再朝. 2016.阿尔金南缘早古生代岩浆作用及碰撞造山过程[J].地质学报, 90(10):2527-2550. doi: 10.3969/j.issn.0001-5717.2016.10.001
    李琦, 曾忠诚, 陈宁, 赵江林, 张若愚, 易鹏飞, 高海峰, 毕政家. 2015.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义[J].现代地质, 29(6):1271-1283. doi: 10.3969/j.issn.1000-8527.2015.06.002
    李琦, 曾忠诚, 陈宁, 张若愚, 赵江林, 王天毅, 易鹏飞. 2018.阿尔金造山带青白口纪亚干布阳片麻岩年龄、地球化学特征及其地质意义[J].地质通报, 37(4):642-654. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201804012
    李向民, 马中平, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009.阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究[J].岩石学报, 25(4):862-872. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200904011
    林慈銮, 孙勇, 陈丹玲, 第五春荣. 2006.柴北缘鱼卡河花岗质片麻岩的地球化学特征和锆石LA-ICP-MS定年[J].地球化学, 35(5):489-505. doi: 10.3321/j.issn:0379-1726.2006.05.004
    柳小明, 高山, 袁洪林, Bodo Hatten, Dorf Uünther, 陈亮, 胡圣红. 2002. 193nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析[J].岩石学报, 18(3):408-418. https://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252034725.html
    刘良, 车自成, 罗金海, 王焰, 高章鉴. 1996.阿尔金山西段榴辉岩的确定及其地质意义[J].科学通报, 42(11):931-934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199616013
    刘良, 车自成, 王焰, 罗金海, 王建其, 高章鉴. 1998.阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据[J].科学通报, 43(8):880-883. doi: 10.3321/j.issn:0023-074X.1998.08.022
    刘良, 张安达, 陈丹玲, 杨家喜, 罗金海, 王超. 2007.阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J].地学前缘, 14(1):98-107. doi: 10.3321/j.issn:1005-2321.2007.01.009
    刘懿馨, 沙鑫, 马蓁, 王金荣. 2018.北祁连西段双龙镁铁质-超镁铁质岩地球化学特征及构造意义[J].岩石学报, 34(2).:383-397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201802015
    刘永顺, 于海峰, 辛后田, 陆松年, 修群业, 李铨. 2009.阿尔金山地区构造单元划分和前寒武纪重要地质事件[J].地质通报, 28(10):1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009
    路凤香, 桑隆康. 2002.岩石学[M].北京: 地质出版社, 82-94.
    陆松年. 2001.从罗迪尼亚到冈瓦纳超大陆——对新元古代超大陆研究几个问题的思考[J].地学前缘, 8(4):441-448. doi: 10.3321/j.issn:1005-2321.2001.04.027
    陆松年. 2002.青藏高原北部前寒武纪地质初探[M].北京: 地质出版社, 1-125.
    陆松年, 陈志宏, 李怀坤, 郝国杰, 周红英, 相振群. 2004.秦岭造山带中-新元古代(早期)地质演化[J].地质通报, 23(2):107-112. doi: 10.3969/j.issn.1671-2552.2004.02.002
    裴先治, 丁仨平, 张国伟, 刘会彬, 李佐臣, 李王晔. 2007.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报, 81(6):772-786. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200706005
    万渝生, 许志琴, 杨经绥, 张建新. 2003.祁连造山带及邻区前寒武纪深变质基底的时代和组成[J].地球学报, 24(4):319-324. doi: 10.3321/j.issn:1006-3021.2003.04.005
    王超, 刘良, 车自成, 陈丹玲, 张安达, 罗金海. 2006.阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨[J].高校地质学报, 12(1):74-82. doi: 10.3969/j.issn.1006-7493.2006.01.008
    王超. 2011.塔里木盆地南缘前寒武纪地质演化[D].西安: 西北大学博士学位论文, 1-137.
    王惠初, 袁桂邦, 辛后田, 郝国杰, 张宝华, 王青海. 2004.柴达木盆地北缘鱼卡河岩群的地质特征和时代[J].地质通报, 23(4):314-321. doi: 10.3969/j.issn.1671-2552.2004.04.003
    王立社, 张巍, 段星星, 龙晓平, 马中平, 宋忠宝, 孙吉明. 2015.阿尔金环形山花岗片麻岩同位素年龄及成因研究[J].岩石学报, 31(1);119-132. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501009
    王涛, 张宗清, 王晓霞, 王彦斌, 张成立. 2005.秦岭造山带核部新元古代碰撞变形及其时代——强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J].地质学报, 79(2):220-231. doi: 10.3321/j.issn:0001-5717.2005.02.008
    王永, 王斌, 陈柏林, 吴玉, 孟令通, 何江涛, 陈安东. 2017.塔里木板块归属Colombia超大陆的新证据:来自北阿尔金地区2.0~1.8 Ga花岗质片麻岩体[J].中国地质, 44(2):407-408. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170218&flag=1
    王中刚, 于学元, 赵振华. 1989.稀土元素地球化学[M].北京: 科学出版社, 223-224.
    吴才来, 郜源红, 雷敏, 秦海鹏, 刘春花, 李名则, Frost B R, Wooden J L. 2014.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J].岩石学报, 30(8):2297-2323. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408014
    吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    校培喜, 高晓峰, 胡云绪, 谢从瑞, 过磊, 奚仁刚, 董增产, 康磊. 2014.阿尔金-东昆仑西段成矿带地质背景研究[M].北京: 地质出版社, 54-55.
    辛后田, 赵凤清, 罗照华, 刘永顺, 万渝生, 王树庆. 2011.塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的确定及其地质意义[J].地质学报, 85(12):1978-1993. http://www.cqvip.com/qk/95080x/201112/40476459.html
    许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报, 73(3):193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001
    于海峰, 陆松年, 梅华林, 赵风清, 李怀坤, 李惠民. 1999.中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义[J], 岩石学报, 15(4):532-538. doi: 10.3321/j.issn:1000-0569.1999.04.005
    曾忠诚, 边小卫, 赵江林, 刘向东, 张若愚, 李琦, 何元方, 菅坤坤. 2019.阿尔金南缘冰沟南组火山岩锆石U-Pb年龄及其前寒武纪构造演化意义[J].地质论评, 65(1):103-118. http://d.old.wanfangdata.com.cn/Periodical/dzlp201901012
    张建新, 万渝生, 孟繁聪, 杨经绥, 许志琴. 2003.柴北缘夹榴辉岩的片麻岩(片岩)地球化学、Sm-Nd和U-Pb同位素研究——深俯冲的前寒武纪变质基底?[J]岩石学报, 19(3):443-451 http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303008
    张建新, 孟繁聪, Mattinson C G. 2007.南阿尔金-柴北缘高压-超高压变质带研究进展、问题及挑战[J].高校地质学报, 13(3):526-545. doi: 10.3969/j.issn.1006-7493.2007.03.021
    张建新, 李怀坤, 孟繁聪, 相振群, 于胜尧, 李金平. 2011.塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石UPb年代学的制约[J].岩石学报. 27(1):23-46. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101002
    张若愚, 曾忠诚, 朱伟鹏, 陈宁, 赵江林, 李琦, 王秦伟, 饶静文. 2016.阿尔金造山带帕夏拉依档岩体锆石U-Pb年代学、地球化学特征及地质意义[J].地质论评, 62(5):1283-1299. http://d.old.wanfangdata.com.cn/Periodical/dzlp201605014
    张若愚, 曾忠诚, 陈宁, 李琦, 王天毅.赵江林. 2018.阿尔金造山带南缘中-晚奥陶世正长花岗岩的发现及其地质意义[J].地质通报, 37(4):545-558. http://www.cqvip.com/QK/95894A/201804/675118727.html
    赵振华, 王中刚, 雏天人, 增田彰正. 1991.阿尔泰花岗岩类型与成岩模型的REE及O、Pb、Sr、Nd同位素组成依据[J].矿物岩石地球化学通报, 24(3):176-178. http://www.cnki.com.cn/Article/CJFDTotal-KYDH199103024.htm
  • 期刊类型引用(3)

    1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
    2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
    3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术

    其他类型引用(1)

图(16)  /  表(3)
计量
  • 文章访问数:  3440
  • HTML全文浏览量:  797
  • PDF下载量:  4637
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-04-01
  • 修回日期:  2018-05-29
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2020-06-24

目录

/

返回文章
返回
x 关闭 永久关闭