• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程

宋哲, 李厚民, 李立兴, 丁建华, 孟洁

宋哲, 李厚民, 李立兴, 丁建华, 孟洁. 新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程[J]. 中国地质, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
引用本文: 宋哲, 李厚民, 李立兴, 丁建华, 孟洁. 新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程[J]. 中国地质, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
SONG Zhe, LI Houmin, LI Lixing, DING Jianhua, MENG Jie. Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes[J]. GEOLOGY IN CHINA, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303
Citation: SONG Zhe, LI Houmin, LI Lixing, DING Jianhua, MENG Jie. Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes[J]. GEOLOGY IN CHINA, 2020, 47(3): 590-606. DOI: 10.12029/gc20200303

新疆东天山黑尖山铁矿床富铁团块中磁铁矿的成分特征及岩浆-热液演化过程

基金项目: 

中国地质调查局项目 DD20190606

国家自然科学基金项目 41672078

国家自然科学基金项目 41272102

详细信息
    作者简介:

    宋哲, 男, 1990年生, 博士生, 从事金属矿床研究工作; E-mail:ddsz.2007@163.com

  • 中图分类号: P618.31

Magnetite compositions of the iron-rich agglomerates of the Heijianshan iron deposit in Eastern Tianshan Mountains and magmatic-hydrothermal evolution processes

Funds: 

China Geological Survey Program DD20190606

National Natural Science Foundation of China 41672078

National Natural Science Foundation of China 41272102

  • 摘要:

    黑尖山铁矿床是新疆东天山阿齐山—雅满苏成矿带中典型的海相火山岩型铁矿床。黑尖山矿床围岩安山质熔岩中发育大量不规则的富铁团块,可分为钠长石磁铁矿型、钠长石钾长石磁铁矿型、钾长石磁铁矿型、绿帘石磁铁矿型和石英磁铁矿型5种类型,可能代表了在岩浆-热液成矿过程中不同演化阶段的产物,对黑尖山铁矿床成矿过程及形成环境有指示意义。本文对上述5类富铁团块中的磁铁矿进行了主量元素分析,为了精确地测出磁铁矿中铁的总量,采用差分法加入不确定的O含量,并加以ZAF矩阵校正。对比5类富铁团块中磁铁矿Ti含量,钠长石磁铁矿型最高、钠长石钾长石磁铁矿型和钾长石磁铁矿型较高、绿帘石磁铁矿型和石英磁铁矿型最低,且Ti含量与Fe含量为正相关关系;绿帘石磁铁矿型和石英磁铁矿型富铁团块Fe含量特征与矿石中磁铁矿Fe含量相近。上述特征表明钠长石磁铁矿类型是残余富铁熔体中最早的结晶产物,钠长石钾长石磁铁矿和钾长石磁铁矿类型具有岩浆热液转变的特征,而绿帘石磁铁矿和石英-磁铁矿类型则是受热液完全交代的产物,说明矿床形成于岩浆-热液成矿作用。各类富铁团块内磁铁矿的Fe含量均大于相对应蚀变环边磁铁矿的Fe含量,表明富铁岩浆结晶与热液活动分异同期发生。

    Abstract:

    The Heijianshan iron deposit represents a typical submarine volcanic rock-hosted deposit of the Aqishan-Yamansu ore belt in Eastern Tianshan Mountains. Abundant irregular iron-rich agglomerates are developed in the brecciated andesite lava (wall rock), and they can be subdivided into five types, i.e., albite-magnetite type, albite-K-feldspar magnetite type, K-feldsparmagnetite type, epidote-magnetite type and quartz-magnetite type, likely representing evolving products of the magmatic-hydrothermal ore-forming process, which can constrain the ore-forming process and metallogenic environment of the Heijianshan iron deposit. Magnetite compositions of the five types of agglomerates were analyzed using electron microprobe analysis. For the purpose of obtaining precise Fe content, the content of undetermined O was added by difference method and the ZAF matrix correction was conducted. The Ti values of the five types of agglomerates display a positive relationship with the Fe values. Magnetite of the albite-magnetite type has highest Ti content, the albite-K-feldspar magnetite and the K-feldspar-magnetite types show medium Ti content, whereas the epidote-magnetite and quartz-magnetite types are characterized by the lowest Ti content. Also, the Fe content of the epidote-magnetite and the quartz-magnetite types is similar to that of the ores. These features indicate that the albite-magnetite type seems to have been the earliest crystallization product from a residual iron-rich melt, the albite-K-feldspar-magnetite and K-feldspar-magnetite types display features of magmatic-hydrothermal transition, whereas the epidote-magnetite and quartz-magnetite types represent products of hydrothermal alteration. The Fe content of magnetite of each type of agglomerate is higher than its content of the corresponding alteration zone, suggesting a simultaneous relationship between the crystallization of iron-rich agglomerates and hydrothermal activities.

  • 砷(As)在自然界普遍存在,是国际癌症研究机构(IARC)列出的第Ⅰ类明确致癌物(WHO, 2011Shahid et al., 2018)。饮用水砷浓度最敏感的毒性阈值尚未确定,世界卫生组织推荐的饮用水砷浓度限值为10 μg/L(WHO, 2011)。美国环境保护署(EPA)和国家研究委员会(NRC)指出,长期饮用浓度低至5 μg/L甚至3 μg/L的水可能会对人类健康造成慢性影响,引发癌症(Taheri et al., 2017)。饮用高砷地下水是人类遭受砷暴露风险的主要途径,全球有超过1亿人承受高砷地下水的暴露风险,其中中国有1900万(Duan et al., 2017; Li et al., 2017Cao et al., 2018Shahid et al., 2018)。

    高砷地下水在全球分布广泛,南亚、东南亚是地下水砷污染的典型地区,已经开展过深入而广泛的地球化学研究,解析高砷地下水的形成演化过程,追溯砷的来源及其溶出释放机制(Tang et al., 1996Wang et al., 1998Deng et al., 2009; Xie et al., 2012Li et al., 2013;Gan et al., 2014;Hu et al., 2015Gupta et al., 2017Zhang et al., 2017Han et al., 2017Li et al., 2018Gillispie et al., 2019Gao et al., 2020)。含砷矿物氧化溶解及还原活化是高砷地下水形成的主要机制(Gupta et al., 2017; Zhang et al., 2017; Shahid et al., 2018; Gillispie et al., 2019; Stopelli et al., 2020)。中国高砷地下水主要分布在大同盆地、江汉平原、河套盆地、银川盆地等内陆平原区;淮河流域是中国新发现的高砷地下水集中分布区,高砷地下水分布范围广,影响人口众多。根据2010年代开展的淮河流域地下水分析数据统计预测,淮河流域大部分地区的砷暴露风险概率大于0.4,统计发现流域内各村庄监测水井As浓度超过10 μg/L的比例达17%,最高检测值为620 μg/L(Li et al., 2017)。

    高砷地下水的形成是在水岩相互作用过程中多因素共同作用的结果。淮河流域富砷地下水砷污染系原生成因,以前的研究工作主要集中在地下水As的水文地球化学分布、饮水型砷中毒地方病的地理分布等方面(Zhang et al., 2010Chen et al., 2013; Li et al., 2017)。淮河流域高砷地下水的研究程度低,缺乏对高砷地下水的形成过程及其影响因素的深入解析,高砷地下水的形成演化机制不明。本次研究选择淮河平原代表性的高砷地下水小尺度流场,针对以往研究的薄弱环节,运用地下水水文地球化学分析方法,主要研究目标为:(1)分析典型高砷地下水的水文地球化学特征,评估其污染风险;(2)解析高砷地下水的形成演化过程;(3)追溯砷污染物的来源及溶出释放过程。开展高砷地下水的形成演化过程研究,为淮河流域高砷地下水的治理与公共健康风险控制提供科学依据。

    淮河流域地处中国东部,流域西起桐柏山、伏牛山,东临黄海,南以大别山、江淮丘陵、通扬运河及如泰运河分界,北以黄河、泰山为界与黄河流域毗邻,地理坐标:111°55′~121°25′E,30°55′~36°36′N,面积为27万km2。该流域处于中国南北气候过渡带,属暖温带半湿润季风气候区,年平均气温11~16℃。其地质构造上位于华北板块、扬子板块、秦岭造山系3个构造单元的交接地带(Zhang et al., 2015) (图 1)。

    图  1  淮河流域安徽太和县地质背景、采样部署及水文地质剖面
    Figure  1.  Geological background, sampling sites and hydrogeological profile of Taihe County of Anhui Province in Huaihe River Basin

    研究区安徽省太和县位于淮河流域中部,以冲积平原地貌为主,海拔高程一般15~50 m,地势由西北向东南微倾。研究区分布最广的地下水类型为松散岩类孔隙水,水文地质分区划分为淮河中游淮北冲积平原区。自新近纪(23 Ma)以来,淮河流域形成了巨厚的新近系、第四系松散沉积物,为区域地下水的形成与分布提供了良好的水文地质条件。研究区地下水系统自上而下划分为浅层、中深层、深层含水系统(Li et al., 2018)。浅层地下水赋存于50 m以浅的全新统、上更新统地层,与大气降水、地表水关系密切,地下水埋深一般为2~4 m,均在极限蒸发深度以内,蒸发是浅层地下水的主要排泄途径。中深层地下水赋存于50~150 m的中、下更新统地层,深层地下水主要赋存于150~500 m的新近系(图 1)。由于中、深层地下水埋藏较深(埋深大于50 m),含水层之间有着黏性土层相隔,不能直接接受大气降水的补给,径流缓慢,人工开采是深层地下水的主要排泄途径。

    太和县是淮河平原典型的高砷地下水分布区(图 1),本次研究选择太和县马集镇及相邻区的高砷地下水小尺度流场为天然实验场,采集测试地下水样品。本次研究采用精度为1 km×1 km(局部1 km×0.5 km)的近似网格法布设采样点。本次研究于2019年5、9月采集样品,共采集地下水样64件。采集的地下水样品,主要取自研究区井深不到50 m的浅井,水位埋深4~50 m,含水层为第四系砂层、细砂层、粉砂层。

    地下水样品水化学分析了As、K+、Na+、Ca2+、Mg2+、Cl-、SO42-、HCO3-、F-、Br-、总碱度和总酸度。阳离子(Na+, K+, Ca2+, Mg2+)采用电感耦合等离子体发射光谱法(ICP-OES)测定,阴离子(HCO3-, SO42-, Cl-, F-, Br-)用离子色谱法测定,总碱度、总酸度采用酸滴定法测定,地下水As浓度测试采用荧光光谱仪(AFS-820,中国),As检出限为0.05 μg/L,精密度<1.0%。样品测试分析由中国地质调查局南京地质调查中心实验测试中心完成。研究区地下水化学分析结果见表 1

    表  1  淮河流域安徽太和县地下水化学测试分析(2019年6月、9月采样)
    Table  1.  Chemical assay data of groundwater quality in Taihe County of Anhui Province in Huaihe River Basin (sampled in June and September 2019)
    下载: 导出CSV 
    | 显示表格

    根据热力学原理,水岩反应中矿物的溶解与沉淀由各种矿物在地下水中的饱和指数(SI) 决定,利用SI可以识别水质和水化学演化过程(Zhu et al., 2011Han et al., 2014Taheri et al., 2017)。SI的数学表达式为:

    其中IAP是离子活性积,Ks是矿物的平衡常数。SI<0、SI = 0、SI>0分别为矿物处于溶解、平衡、沉淀阶段的热力学判据,通常认为0.5>SI>-0.5为近饱和状态。

    地下水化学分析以SPSS 19.0为平台对数据进行描述统计、相关分析、回归分析,以Phreeqc 3.40为平台选择确定矿物相,计算矿物饱和指数,专题图以Coreldraw X4、AquaChem 3.70为平台制作。

    根据地下水化学测试分析结果,依据国家地下水质量标准GB/T 14848-2017分类标准(MLR,2017),地下水中As、Cu、Mo、Ba、Na+、Cl-、SO42-、HCO3-、CO32-、NO3-、NO2-、F-、COD、I、TDS、Mn、HBO2等的均值、标准差与质量分类见表 1。影响太和马集研究区松散岩类孔隙水水质的主要无机组分是砷、钡、钠、氯、氟、碘、锰、硝酸盐、硫酸盐、硼、溶解性总固体,其中砷、氟、锰、钠、硼是最主要影响因子,单项指标超过地下水质量Ⅲ类标准的样品比例均超过50%(表 1表 2)。

    表  2  安徽太和县地下水化学统计分析与评价
    Table  2.  Statistics and evaluation of groundwater chemistry of Taihe Conty, Anhui Province in Huaihe River Basin
    下载: 导出CSV 
    | 显示表格

    依据世界卫生组织推荐的饮用水质量标准(WHO, 2011),影响研究区地下水水质的主要因素是As、F浓度。研究区浅层地下水砷浓度为(5.75±5.42) μg/L,呈现明显的空间变异性;超过世界卫生组织饮用水推荐准则值(10 μg/L)样品比例为23%,呈现高暴露风险。地下水氟浓度为(1.29±0.40) mg/L,超过推荐限值(1.5 mg/L)样品比例达31%。

    本次研究采集分析的地下水均为浅层孔隙水,含水岩组为全新统和上更新统含水岩组。根据水化学分析结果,研究区浅层地下水的总溶解固体(TDS)浓度为(719.29±310.20) mg/L,其中大部分样品为低盐度淡水(<1000 mg/L),26%在微咸水(1000~3000 mg/L)范围内。地下水的化学成分受主要离子(SO42-、Cl-、HCO3-、Na+、Ca2+、Mg2+)控制。阴离子成分以HCO3-为主,SO42-和Cl-次之,浓度分别为(617.93±220.25)、(83.73±73.09)、(54.03±58.81) mg/L。阳离子以Na+为优势离子,其次为Ca2+、Mg2+,浓度分别为(186.04±120.17)、(46.17±27.91)、(39.48±12.39) mg/L。

    研究区测试样品总碱度(516±169) mg/L,总酸度(20.00±4.63) mg/L,地下水呈碱性。测试样品总碱度与HCO3-浓度极显著正相关,相关系数R=0.997(P≤0.01),故水样中总碱度表现为HCO3-碱度,总碱度大小总体上反映了HCO3-含量的大小。高砷地下水总碱度主要分布在400~700 mg/L(图 2),研究区碳酸盐岩矿物风化作用和离子交换反应升高了地下水的碱度。

    图  2  淮河流域安徽太和县高砷地下水总碱度图解
    Figure  2.  Diagram of total alkalinity of high-arsenic groundwater in Taihe County of Anhui Province, Huaihe River Basin

    优势离子决定了地下水的类型,按piper三线图统计,研究区水化学类型以HCO3-Na为主,其次为HCO3-Na·Mg、HCO3-Na·Ca,HCO3-Na·Ca·Mg型。高砷地下水的水化学类型主要为HCO3-Na型(图 3)

    图  3  淮河平原安徽太和县地下水piper图
    Figure  3.  Piper diagram of the groundwater in Taihe County of Anhui Province, Huaihe River Basin

    Cl和Br也是地下水中普遍存在的溶质,由于Cl、Br在天然水中的保守行为和高溶解度,离子交换反应与矿物表面吸附等过程不能显著改变Cl和Br的浓度。岩盐(NaCl)矿物结构中不含较大的Br离子,其Cl/Br比值一般为104~105(摩尔比),岩盐溶解随着氯离子浓度的增加将产生Cl/Br比值的快速增加;相比之下,地下水的蒸发过程可以改变地下水中Cl和Br的绝对浓度,但不会改变地下水岩盐饱和之前的Cl/Br比值。因此应用Cl、Br及Cl/Br比值可以识别区分地下水的溶解、蒸发等演化过程(Cartwright et al., 2006Deng et al., 2009Xie et al., 2012Xing et al., 2013Han et al., 2014Taheri et al., 2017)。

    研究区测试样品的Cl-浓度范围0.70~210 mg /L,均值(54.03±58.81) mg/L,Br-浓度范围为10.7~324 μg/L,均值(104±87.9) μg/L。Cl-浓度与Br-浓度显著正相关,相关系数0.75(P≤0.01)。样品的Cl-、Br-浓度较低,Cl/Br(mol)均值为1097±1044,比值变化范围51.0~4603。样品中大部分的Cl/Br比值超过600,显示显著的空间变异性;As超标地下水(>10 μg/L)的Cl/Br比值范围544~3093,均值993。测试样品Cl/Br比值最高值超过4600,地下水Cl浓度不超过6 mmol /L,地下水溶解少量的岩盐是Cl/Br比值快速增大最可能的机制,较大的Cl/Br比值变化范围反映出各测试样品岩盐溶解量的不同。Cl/Br比与Cl浓度之间的关系(图 4)表明,蒸发作用、岩盐溶解作用是控制浅层地下水分布的主导过程,高砷地下水Cl/Br比值随Cl浓度的增加而相对不变,说明高砷地下水更大程度受到蒸发作用的影响。

    图  4  淮河流域安徽太和县地下水Cl/Br比值与Cl相关图
    Figure  4.  Correlation between Cl/Br ratio and Cl of groundwater in Taihe County of Anhui Province, Huaihe River Basin

    Ca/Na、Mg/Na、HCO3/Na(mol)比值可以表示地下水矿化度的强弱,也可以得到地下水来源及水质演化的相关信息,在一定程度上为区域水文地球化学演化过程提供判断依据(Zhu et al., 2011; Liu et al., 2018)。从研究区地下水Mg /Na-Ca/Na、HCO3/Na-Ca/Na关系图(图 5)可知,随着Ca/Na比值的增大,地下水的Mg /Na、HCO3/Na比值逐渐增加。地下水主要阳离子浓度比值主要分布于蒸发盐矿物溶解与硅酸盐矿物风化作用之间,少部分分布于硅酸盐矿物风化作用与碳酸盐矿物溶解作用之间,表明研究区地下水受到蒸发盐溶解、硅酸盐风化、碳酸盐溶解等过程的共同影响。高砷地下水的离子比值主要分布于蒸发盐矿物溶解与硅酸盐矿物风化作用之间,显示高砷地下水更大程度受到蒸发盐溶解与硅酸盐矿物风化过程的影响。

    图  5  淮河流域安徽太和县高砷地下水Ca/Na-Mg/Na、HCO3/Na-Ca/Na图解
    Figure  5.  Diagram of Ca/Na-Mg/Na and HCO3/Na-Ca/Na of groundwater in Taihe County of Anhui Province, Huaihe River Basin

    Na/Cl比值(mol)是表征地下水中Na+富集程度的一个水文地球化学参数,可以用来反映离子交换程度(Xing et al., 2013Han et al., 2014Yang et al., 2016Taheri et al., 2017)。淮河流域属于干旱—半干旱地区,蒸发作用强烈,导致岩盐在沉积层累积,岩盐溶解是平原盆地区地下水中Na+和Cl-的主要来源之一。如果岩盐溶解为Na+与Cl-的主要来源,则Na/Cl(mol)-的比值应为1∶1,高于此比值的Na+则可能有其他来源。本次研究全区采集地下水样Na/Cl比值为9.63±57.4,绝大部分样品远大于1∶1,呈现显著的空间变异性,Na/Cl比值随Cl浓度的增加呈下降趋势;高砷地下水(10>As≥5 μg/L)、污染地下水(As≥10 μg/L)的Na/Cl比值分别为43.1±85.1、15.7±16.0,全部位于岩盐溶解线上方(图 6)。由此推断,研究区地下水的Na+并不仅仅来源于岩盐溶解,地下水总体上可能经历强烈的阳离子交换作用,而且高砷地下水的离子交换作用更为显著。

    图  6  淮河流域安徽太和县高砷地下水Na-Cl图解
    Figure  6.  Na-Cl diagram of groundwater in Taihe County of Anhui Province, Huaihe River Basin

    水岩相互作用控制着地下水中主要离子浓度及其赋存状态。本次研究利用PHREEQC 3.7计算矿物饱和指数,结果表明:近饱和矿物方解石(0.41)、文石(0.26)、菱镁矿(0.04) 的SI值接近0,处于准平衡状态;未饱和矿物岩盐(-6.52)、石膏(-1.99)、硬石膏(-2.23)、萤石(-1.02)的SI值小于-0.5,表明存在岩石溶解的趋势;白云石(0.70) 的SI大于0.5,存在化学沉淀的趋势(表 3)。地下水中Cl-、F-、SO42-部分源自岩盐、萤石及石膏、硬石膏矿物的溶解释出。

    表  3  淮河流域安徽太和县地下水矿物饱和指数
    Table  3.  Saturation indices of groundwater in Taihe County of Anhui Province, the Huaihe River Basin
    下载: 导出CSV 
    | 显示表格

    在自然环境pH、Eh条件下,砷元素主要以无机氧化态As(Ⅴ)和还原态As(Ⅲ)元素价态存在。沉积物(土壤)中含砷矿物通常以砷酸盐、亚砷酸盐和硫化物等矿物相存在,在还原条件下,砷黄铁矿是砷的稳定宿主,其伴生砷与地下水砷分布高度相关(Hu et al., 2015; Taheri et al., 2017; Duan et al., 2017; Zhang et al., 2017; Shahid et al., 2018; Gillispie et al., 2019)。地下水动态、氧化还原电位(Eh)、酸碱度(pH)的变化影响沉积物砷的吸附-解析过程,进而影响水体砷的浓度,高pH、低Eh还原条件促进沉积物中砷的解吸和溶解进入地下水而在溶液中积累(高存荣等, 2010; 王杰等, 2015; Duan et al., 2017; Taheri et al., 2017; Zhang et al., 2017; Gillispie et al., 2019)。

    地下水中的SO42-可能源自石膏溶解与硫化物氧化,全区地下水SO42-/Ca2+ (mol) 比值为0.76,地下水的SO42-不仅仅源于石膏矿物的溶解,还有硫化物的氧化。测试样品中的As和SO42-浓度之间正相关(相关系数R=0.584)。分析样品中As<3 μg/L、3 μg/L≤As<5 μg/L、5 μg/L≤As<10 μg/L与As≥10 μg/L地下水的SO42-浓度均值分别为0.74、1.09、0.92与0.93 mmol/L,高砷地下水呈现相对高的硫酸盐浓度。

    经X射线衍射物相分析,淮河流域浅层(0.2~1 m)沉积物主要矿物成分为石英、钾长石、方解石和黏土矿物,含量分别为47.1%、3.79%、8.27%和33.4%。部分样品中含有少量黄铁矿和菱铁矿,含量分别为2.5%和47.1%,未检测到赤铁矿,反映还原性地下水环境。据地下水化学数据与表层沉积物物相分析结果推测淮河流域沉积物中砷在还原条件下可能以含砷硫化物相存在,由于长期大量开采地下水,地下水流系统环境改变,破坏了含水层固液相动态交换的平衡,触发As从固相释放到地下水中。碳酸盐矿物的溶解通常会增加碱度(pH)值,在高pH条件下,含砷硫化物的氧化速率增加,地下水SO42-浓度增高,促进As向水体的释出。pH值的增大也促进As从金属氧化物(Fe、Mn)中解析从而增加水中As浓度(Duan et al., 2017; Taheri et al., 2017; Zhang et al., 2017; Gillispie et al., 2019)。因此推测含水层沉积物含砷矿物氧化溶解与还原活化是导致原生砷向地下水释出的主要过程。研究区地下水表现出的高矿化度和强烈蒸发作用可能与农业灌溉有较大关系,含水层中原生的矿物组分是造成高砷水的最主要原因。另外,高强度的深层地下水抽取灌溉也可能是导致的高砷水进入浅水含水层的原因之一。

    高砷地下水的形成是多因素综合作用的结果,是一个复杂的水文地质过程。高砷地下水的形成是含砷矿物集聚、固相砷的溶解析出及富集砷的水文地质条件等在水岩相互作用过程中多因素综合作用的结果。本次研究选择流域内典型的高砷地下水小尺度流场为天然实验场,解析高砷地下水的形成演化过程,追溯砷的来源及其溶出释放机制。

    (1) 研究区地下水砷含量为(5.75±5.42) μg/L,具有明显的空间变异性,超过世界卫生组织饮用水推荐准则值的测试样品比例为23%,呈现高暴露风险,饮用高砷地下水可能是威胁人类健康的主要途径。

    (2) 根据水化学成分解析,研究区地下水经历蒸发作用、岩盐溶解、水岩相互作用等过程的共同影响。高砷地下水的化学类型主要为HCO3-Na型,高砷地下水更大程度受到蒸发作用、阳离子交换作用的影响。

    (3) 研究区高砷地下水系原生成因,高砷地下水的As源自含水层沉积物原生砷的溶出释放。碱性环境下,含水层沉积物含砷矿物氧化溶解与还原活化可能是高砷地下水形成的主要机制。

  • 图  1   东天山地区构造格架及阿齐山—雅满苏弧后盆地铁矿分布图(修改自秦克章等,2003

    Figure  1.   Tectonic framework in the Eastern Tianshan orogenic belt and distribution of iron ore deposits in Aaqishan-Yamansu backarc basin (modified from Qin Kezhang et al., 2003)

    图  2   黑尖山铁矿床地质图(修改自新疆维吾尔自治区地质调查院,2003赵联党等,2017

    Figure  2.   Geological map of the Heijianshan iron deposit (modified from Xinjiang Uygur Autonomous Region Geological Survey, 2003 and Zhao Liandang et al., 2017)

    图  3   钠长石磁铁矿型富铁团块手标本及显微镜下特征

    a—安山岩熔岩中的富铁团块(HJS-4);b—富铁团块中的杏仁结构及其冷凝边(HJS-4);c —含有钠长石、磁铁矿、石英杏仁体的富铁团块(HJS-6);d —具有硅化和绿帘石化的安山质熔岩(HJS-6)(b, c, d均为单偏光镜下成像); Ab—钠长石;Mag—磁铁矿;Amy—杏仁体;BAL—含角砾的安山质熔岩;IRA—富铁团块;Epi—绿帘石化

    Figure  3.   Photographs and photomicrographs illustrating the features of the albite-magnetite type iron-rich agglomerates

    a-Iron-rich agglomerates in brecciated andesite lava (HJS-4); b -Amygdaloidal structure and chilled margin of the iron-rich agglomerates (HJS- 4); c-Iron-rich agglomerates composed of albite, magnetite and quartz amygdale (HJS-6); d-Andesite lava showing silicification and epidotization (HJS-6) (b, c, d are under plainlight); Ab-Albite, Mag-Magnetite; Amy- Amygdale; BAL- Brecciated andesite lava; IRA-Iron-rich agglomerates; Epi-Epidotization

    图  4   钠长石钾长石磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块附近的石英-绿帘石晶洞(HJS16-1);b—含有板条状钠长石、细粒磁铁矿、石英杏仁体的富铁团块(HJS16-1);c—富铁团块(HJS16-1);d—具有玻晶交织结构的安山质熔岩(HJS16-1)(b, c为单偏光镜下成像,d为正交偏光成像); Ab—钠长石;Mag—磁铁矿;Kfs—钾长石;Amy—杏仁体;BAL—含角砾的安山熔岩;IRA—富铁团块;Epi—绿帘石化

    Figure  4.   Photographs and photomicrographs illustrating the features of the albite-K-feldspar-magnetite type iron-rich agglomerates

    a-Quartz-epidote geode near the iron-rich agglomerates (HJS16-1); b-Iron-rich agglomerates composed of lath-shaped albite, fine-grained magnetite and quartz amygdale (HJS16-1); c-Iron-rich agglomerates (HJS16-14); d-Andesite lava showing hyalopilitic structure (HJS16-1) (b, c are under plainlight); d crossed nicols); Mag- Magnetite; Kfs- K- feldspar; Amy- Amygdale; BAL- Brecciated andesite lava; IRA- Iron- rich agglomerates; Epi-Epidotization

    图  5   钾长石磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块附近的绿帘石化边(HJS16-11);b—由绿泥石和少量钛铁矿组成的富铁团聚体中的杏仁体(HJS16-4);c—安山质熔岩中沿裂隙侵入的富铁熔体(HJS16-11);d—具有绿帘石化的富铁团块(HJS16-11)(b, c, d均为单偏光镜下成像); Mag—磁铁矿;Kfs—钾长石;Ep—绿帘石;Amy—杏仁体;BAL—含角砾的安山熔岩;IRA—富铁团块;Epi—绿帘石化

    Figure  5.   Photographs and photomicrographs illustrating the features of the K-feldspar-magnetite type iron-rich agglomerates

    a-Epidotization rim of the iron-rich agglomerates (HJS16-11);b-Amygdale in the iron-rich agglomerates composed of chlorite and a trace amount of titanite (HJS16-4);c-Iron-rich melt that intruded along the fractures in the andesite lava (HJS16-11); d-Iron-rich agglomerates with epidotization (HJS16-11) (b, c, d are under plainlight); Ab-Albite, Mag-Magnetite; Kfs-K-feldspar; Ep-Epidote; Amy-Amygdale; BAL-Brecciated andesite lava; IRA-Iron-rich agglomerates; Epi-Epidotization.

    图  6   绿帘石磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块(HJS16-9);b—与石英,绿帘石共生的镜铁矿(HJS16-13);c—具有斑状构造,杏仁结构的富铁团块(HJS16-9);d —被绿帘石和石英完全交代的钾长石和钠长石(HJS16-13)(b, c, d均为单偏光镜下成像); Mag—磁铁矿;Kfs—钾长石;Ep—绿帘石;Qtz—石英;Spe—镜铁矿;Amy—杏仁体;BAL—含角砾的安山熔岩;IRA—富铁团块

    Figure  6.   Photographs and photomicrographs illustrating the features of the epidote-magnetite type iron-rich agglomerates

    a-Iron-rich agglomerates (HJS16-9); b-Specularite platelets coexisting with epidote and quartz (HJS16-3); c-Iron-rich agglomerates showing porphyritic texture and amygdaloidal structure (HJS16-9);d-K-feldspar and albite completely replaced by epidote and quartz (HJS16-13) (b, c, d are under plainlight); Mag-Magnetite; Kfs-K-feldspar; Ep-Epidote; Qtz-Quartz; Spe-Specularite; Amy-Amygdale; BAL-Brecciated andesite lava; IRA-Iron-rich agglomerates

    图  7   石英磁铁矿型富铁团块手标本及显微镜下特征

    a—富铁团块(HJS16-3);b—富铁团块的核部和边部(HJS16-3);c—保留玻晶交织结构的被石英交代的板条状长石(HJS16-3);d—冷凝边(HJS16-3)(b, c, d均为单偏光镜下成像); Mag—磁铁矿;Kfs—钾长石;Ep—绿帘石;Qtz—石英;BAL—含角砾的安山熔岩;IRA—富铁团块

    Figure  7.   Photographs and photomicrographs illustrating the features of the quartz-magnetite type iron-rich agglomerates

    a-Iron-rich agglomerates (HJS16-3); b-Core and rim of iron-rich agglomerates (HJS16-3);c-Lath-shaped feldspar replaced by quartz with hyalopilitic structure retained (HJS16-3); d -Chilled margin (HJS16-3) (b, c, d are under plainlight); Mag-Magnetite; Kfs-K-feldspar; EpEpidote; Qtz-Quartz; BAL-Brecciated andesite lava; IRA-Iron-rich agglomerates

    图  8   黑尖山矿床富铁团块电子探针分析特征(背散射显微成像)

    Figure  8.   Characteristics of iron-rich agglomerates in the Heijianshan deposit by electron microprobe analysis (backscatter microscopic imaging)

    图  9   富铁团块内磁铁矿主量元素成分蛛网图

    IOCG,Kiruna,BIF,Skarn数据来自Dupuis and Beaudoin (2011);AM—钠长石磁铁矿型;AKM—钠长石钾长石磁铁矿型;KM—钾长石磁铁矿型;EM—绿帘石磁铁矿型;QM—石英磁铁矿型

    Figure  9.   Multi-element diagram for the magnetite of iron-rich agglomerates in the Heijianshan deposit

    IOCG, Kiruna, BIF, Skarn from Dupuis and Beaudoin (2011); AMAlbite-magnetite type; AKM-Albite-K-feldspar-magnetite type; KM-K-feldspar-magnetite type; EM-Epidote-magnetite type; QM-Quartz-magnetite type

    图  10   富铁团块内磁铁矿与黑尖山矿床磁铁矿成分对比

    黑尖山磁铁矿成分数据来自Zhao et al. (2016);AM—钠长石磁铁矿型; AKM—钠长石钾长石磁铁矿型; KM—钾长石磁铁矿型; EM—绿帘石磁铁矿型; QM—石英磁铁矿型; MOM—含假象磁铁矿的块状矿石; MOS—含硫化物的块状矿石; DO—浸染状矿石

    Figure  10.   Comparison of magnetite compositions between magnetite in iron-rich agglomerates and ore in the Heijianshan deposit

    Comparison of magnetite compositions in Heijianshan deposit after Zhao et al. (2016); AM-Albite-magnetite type; AKM-Albite-Kfeldspar-magnetite type; KM-K-feldspar-magnetite type; EMEpidote-magnetite type; QM-Quartz-magnetite type; MOMMassive ore with mushketovite; MOS-Massive ore with sulfides; DO-Disseminated ore

    图  11   黑尖山铁矿床富铁团块核部磁铁矿和雅满苏铁矿床富铁碎屑中的磁铁矿成分对比

    雅满苏铁矿床富铁碎屑中的磁铁矿成分来自Li et al. (2015);AM—钠长石磁铁矿型; AKM—钠长石钾长石磁铁矿型; KM—钾长石磁铁矿型; EM—绿帘石磁铁矿型; QM—石英磁铁矿型; OIO—更长石铁氧化物型; OAIO—更长石钠长石铁氧化物型; AIO—钠长石铁氧化物型; AKIO—钠长石钾长石铁氧化物型; KIO—钾长石铁氧化物型

    Figure  11.   Comparison of magnetite compositions in iron-rich agglomerates of the Heijianshan iron deposit and in iron-rich fragments of the Yamansu iron deposit

    Comparison of magnetite compositions in iron- rich fragments of the Yamansu iron deposit after Li et al. (2015); AM- Albite- magnetite type, AKM-Albite-K-feldspar-magnetite type; KM-K-feldspar-magnetite type; EM-Epidote-magnetite type; QM-Quartz-magnetite type; OIOOligoclase-iron oxide type; OAIO-Oligoclase-albite-iron oxide type; AIO-Albite-iron oxide type; AKIO-Albite-K-feldspar-iron oxide type; KIO-K-feldspar-iron oxide type

    表  1   黑尖山铁矿床富铁团块磁铁矿电子探针测试成分(%)

    Table  1   Major element analyses (EMPA) for magnetite from iron-rich agglomerates in the Heijianshan iron deposit(%)

    下载: 导出CSV
  • Barton M D. 2014. Iron Oxide (-Cu-Au-REE-P-Ag-U-Co)Systems[J]. University of Arizona. Chapter 515-541. http://cn.bing.com/academic/profile?id=8362c8dd757fbd24a9265e23f92ddb5d&encoded=0&v=paper_preview&mkt=zh-cn

    Charlier B, Grove T L. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent[J]. Contributions to Mineralogy and Petrology, 164:27-44. doi: 10.1007/s00410-012-0723-y

    Chen Jie, Duan Shigang, Zhang Zuoheng, Luo Gang, Jiang Zongsheng, Luo Wenjuan, Wang Dachuan, Zheng Renqiao. 2014.Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang:Constraints on genesis of the deposit[J]. Geology in China, 41(6):1833-1852(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c592e3c3fc18dba718dced3b07eea055&encoded=0&v=paper_preview&mkt=zh-cn

    Dare S A S, Barnes S, Beaudoin G. 2015. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LAICP-MS[J]. Mineralium Deposita, 50:607-617. doi: 10.1007/s00126-014-0560-1

    Ding Jianhua, Li Houmin, Li Lixing, Chen Jing and Deng Gang. 2017.Geological and geochemical features and genetic significant of carbonatite in Yamasu iron deposit, Xinjiang[J]. Mineral Deposits, 36(1):219-236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201701014

    Duan Chao, Li Yanhe, Mao Jingwen, Hou Kejun, Yuan Shunda. 2012.Zircon trace element characteristics of intrusions in the Washan iron deposit of Ningwu volcanic basin and their geological significance[J]. Geology in China, 39(6):1874-1884(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206030

    Duan Shigang, Zhang Zuoheng, Wei Mengyuan, Tian Jingquan, Jiang Zongsheng, Li Fengming, Zhao Jun, Wang Houfang. 2014.Geochemistry and zircon U-Pb geochronology of the diorite associated with the Wuling iron deposit in Western Tianshan Mountains, Xinjiang[J]. Geology in China, 41(6):1757-1770(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406001

    Duchesne J C, Shumlyanskyy L, Charlier B. 2006. The Fedorivka layered intrusion (Korosten Pluton, Ukraine):an example of highly differentiated ferrobasaltic evolution[J]. Lithos, 89:353-376. doi: 10.1016/j.lithos.2006.01.003

    Dupuis C, Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 46:319-335. doi: 10.1007/s00126-011-0334-y

    Fang Weixuan, Huang Zhuanying, Tang Hongfeng, Gao Zhenquan. 2006. Lithofacies, geological and geochemical characteristics and tectonic setting of Late Carboniferous volcanic-sedimentary rocks in the Kumtag-Shaquanzi area, east Tianshan[J]. Geology in China, 33(3):529-544(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200603009

    Feng Jing, Xu Shiqi, Tian Jiangtao, Yang Zaifeng, Gao Yongfeng. 2009. Study on metallogenic regularity of marine volcanic-type iron ore of east Tianshan of Xinjiang and methods discuss[J]. Xinjiang Geology, 27(4):330-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200904006

    Fenner C N. 1929. The crystallization of basalt[J]. American Journal of Science, 18:225-253. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx201802006

    Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type[J]. Economic Geology, 73 (4):478-485. doi: 10.2113/gsecongeo.73.4.478

    Gleason J D, Marikos M A, Barton M D, Johnson D A. 2000.Neodymium isotopic study of rare earth element sources (Fe-PREE) systemsand mobility in hydrothermal Fe oxide[J]. Geochimica et Cosmochimica Acta, 64:1059-1068. doi: 10.1016/S0016-7037(99)00325-7

    Hildebrand R S. 1986. Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada[J]. Economic Geology, 81:640-659. doi: 10.2113/gsecongeo.81.3.640

    Hou Tong, Zhang Zhaochong, Du Yangsong. 2010. Deep ore magmahydrothermal system of Zhonggu ore field in southern part of Ningwu Basin[J]. Earth Science Frontiers, 17(1):186-194(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201001018.htm

    Hou Tong, Zhang Zhaochong, Pirajno F, Santosh M, Encarnacion J, Liu Junlai, Zhao Zhidan, Zhang Lijian. 2014a. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China:An overview[J]. Ore Geol. Rev., 57:498-517. doi: 10.1016/j.oregeorev.2013.08.007

    Hou Tong, Zhang Zhaochong, Santosh M, Encarnacion J, Zhu Jiang, Luo Wenjuan. 2014b. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China:Constraints on the metallogenesis[J]. Ore Geol. Rev., 56:487-502. doi: 10.1016/j.oregeorev.2013.03.008

    Huang Xiaowen, Qi Liang, Meng Yumiao. 2013. Trace element and REE geochemistry of minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-)Fe deposits, eastern Tianshan Mountains[J]. Mineral Deposits, 32(6):1188-1210(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201306007

    Huang Xiaowen, Qi Liang, Wang Yichang, Liu Yingying. 2014. Re-Os dating of magnetite from the Shaquanzi Fe-Cu deposit, eastern Tianshan, NW China[J]. Sci. China (Earth Sci.), 57:267-277. doi: 10.1007/s11430-013-4660-z

    Jang Y D, Naslund H R, McBirney A R. 2001. The differentiation trend of the Skaergaard intrusion and the timing of magnetite crystallization:Iron enrichment revisited[J]. Earth and Planetary Science Letter, 189:189-196. doi: 10.1016/S0012-821X(01)00366-1

    Jiang Hongjun, Han Jinsheng, Chen Huayong, Zheng Yi, Zhang Weifeng, Lu Wanjian, Deng Gang, Tan Zhixiong. 2018.Hydrothermal alteration, fluid inclusions and stable isotope characteristics of the Shaquanzi Fe-Cu deposit, eastern Tianshan:implications for ore genesis and deposit type[J]. Ore Geol. Rev, 200:385-400. https://www.sciencedirect.com/science/article/pii/S0169136816301135

    Knipping J L, Bilenker L D, Simon A C, Reich M, Barra F, Deditius A P, Wälle M, Heinrich C A, Holtz F, Munizaga R. 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 171:15-38. doi: 10.1016/j.gca.2015.08.010

    Li Houmin, Wang Denghong, Li Lixing, Chen Jing, Yang Xiuqing, Liu Mingjun. 2012. Metallogeny of iron deposits and resource potential of major iron minerogenetic units in China[J]. Geology in China, 39(3):559-580(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201203001

    Li Houmin, Li Lixing, Yang Xiuqing, Cheng Yanbo. 2015a. Types and geological characteristics of iron deposits in China[J]. Journal of Asian Earth Sciences, 103:2-22. doi: 10.1016/j.jseaes.2014.11.003

    Li Houmin, Ding Jianhua, Zhang Zhaochong, Li Lixing, Chen Jing, Yao Tong. 2015b. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China:Constraints on metallogenesis[J]. Journal of Asian Earth Sciences, 113:1068-1081. doi: 10.1016/j.jseaes.2015.06.026

    Li Houmin, Li Lixing, Ding Jianhua, Li Yanhe, Song Zhe, Meng Jie, Ma Yubo. 2018. Occurrence of the Iron-rich melt in the Heijianshan Iron deposit, Eastern Tianshan, NW China:Insights into the origin of volcanic rock-hosted Iron deposits[J]. Acta Geologica Sinica (English Edition), 92(2):666-681. doi: 10.1111/1755-6724.13548

    Li Xiaolinbin, Gong Xiaoping, Ma Huadong, Han Qiong, Song Xianglong, Xie Lei, Feng Jun, Wang Jianshe. 2014. Geochemical characteristics and petrogenic age of volcanic rocks in the Shikebutai iron deposit of West Tianshan Mountains[J]. Geology in China, 41(6):1791-1804(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406003

    Love G. 1993 X-ray absorption correction[C]//Scott V D, Love G (eds.). Quantitative Electron-Probe Microanalysis. Ellis Horwood Ltd Press (Chichester, UK), 163-192.

    Luo Ting, Liao Qun'an, Chen Jiping, Zhang Xionghua, Guo Dongbao, Hu Zhaochu. 2012. LA-ICP-MS zircon U-Pb dating of the volcanic rocks from Yamansu Formation in the Eastern Tianshan, and its geological significance[J]. Earth Science——Journal of China University of Geosciences, 37(6):1338-1352(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024

    Mao Jingwen, Goldfarb R J, Wang Yitian, Hart C J, Wang Zhiliang, Yang Jianmin. 2005. Late Paleozoic base and precious metal deposits, east Tianshan, Xinjing, China:Characteristics and geodynamic setting[J]. Episodes, 28:23-35. doi: 10.18814/epiiugs/2005/v28i1/003

    Nadoll P, Angerer T, Mauk J L, French D, Walshe J. 2014. The chemistry of hydrothermal magnetite:a review[J]. Ore Geology Reviews, 61:1-32. doi: 10.1016/j.oregeorev.2013.12.013

    Naslund H R. 1983. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts[J]. American Journal of Science, 283:1034-1059. doi: 10.2475/ajs.283.10.1034

    Naslund H R, Henriquez F, Nystroem J O, Vivallo W, Dobbs F M. 2002. Magmatic iron ores and associated mineralization: Examples from the Chilean high Andes and coastal Cordillera[C]//Porter T M (ed.). Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective: Adelaide, Australia. PGC Publishing.

    Nyström J O, Henriquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden:Ore textures and magnetite geochemistry[J]. Economic Geology, 89:820-839. doi: 10.2113/gsecongeo.89.4.820

    Park C F. 1961. A magnetite "flow"in northern Chile[J]. Economic Geology, 56:431-441. doi: 10.2113/gsecongeo.56.2.431

    Philpotts A R. 1982. Compositions of immiscible liquids in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 80:201-218. doi: 10.1007/BF00371350

    Porter T M. 2002. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective. Australian Mineral Foundation[M]. PGC Publishing, Adelaide. 2, 153-161.

    Qin Kezhang, Peng Xiaoming, San Jinzhu, Xu Xingwang, Fang Tonghui, Wang Shulai, Yu Haifeng. 2003. Types of major ore deposits, division of metallogenic belts in Eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization[J]. Xinjiang Geology, 21(2):143-150(in Chinese with English abstract).

    Reed S J B. 1993. Electron Microprobe Analysis[M]. Cambridge University Press (Cambridge, UK), 260.

    Rhodes A L, Oreskes N, Sheets S. 1999. Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile[J]. Soc. Econ. Geol. Spec. Publ., 7:299-332. http://cn.bing.com/academic/profile?id=10cfc5d71dc40bbbdd76334d8627bd53&encoded=0&v=paper_preview&mkt=zh-cn

    Sillitoe R H, Burrows D R. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile[J]. Economic Geology, 97:1101-1109. http://cn.bing.com/academic/profile?id=96d032a9b70002f6dd387b2209e6926c&encoded=0&v=paper_preview&mkt=zh-cn

    Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yueheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Sanjeewa P K.Malaviarachchi. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt:tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Res., 20:516-531. doi: 10.1016/j.gr.2010.11.015

    Tornos F, Velasco F, Morata D, Barra F, Rojo M. 2011. The magmatic hydrothermal evolution of the El Laco as tracked by melt inclusions and isotope data[C]//Barra F, Reich M F T (eds.).Proceedings of the 11th Biennial SGA Meeting. Antofagasta, Chile, 443-445.

    Tornos F, Velasco F, Hanchar J M. 2016. Iron oxide melts, magmatic magnetite and superheated magmatic-hydrothermal systems:The El Laco deposit, Chile[J]. Geology, 44(6):427-430. doi: 10.1130/G37705.1

    Van Baalen M R. 1993. Titanium mobility in metamorphic systems:A review[J]. Chemical Geology, 110:233-249. doi: 10.1016/0009-2541(93)90256-I

    Veksler I V. 2009. Extreme iron enrichment and liquid immiscibility in mafic intrusions:Experimental evidence revisited[J]. Lithos, 111:72-82. doi: 10.1016/j.lithos.2008.10.003

    Velasco F, Tornos F, Hanchar J M. 2016. Immiscible iron-and silicarich melts and magnetite geochemistry at El Laco volcano(northern Chile):Evidence for a magmatic origin for the magnetite deposits[J]. Ore Geology Reviews, 79:346-366. doi: 10.1016/j.oregeorev.2016.06.007

    Wang Dachuan, Jia Jindian, Duan Shigang, Zhang Zuoheng, Jiang Zongsheng, Chen Jie. 2014. Mineralogy and stable isotopic characteristics of the Tiemulike iron deposit in West Tianshan Mountains[J]. Geology in China, 41(6):1853-1872(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406007

    Wang Guocan, Zhang Meng, Zhang Xionghua, Liao Qun'an, Wang Wei, Tian Jinming, Xuan Zeyou. 2019. Significant Paleozoic tectonic events in the northern part of the east Tianshan Mountains, Xinjiang and their implications for the evolution of CAOB:New evidence from 1:50000 geological survey of Banfanggou and Xiaoliugou sheets[J]. Geology in China, 46(5):954-976(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201905003

    Wang Tiezhu, Che Linrui, Yu Jinjie, Lu Bangcheng. 2014. Electron microprobe analysis and REE geochemical characteristics of minerals from the Meishan iron deposit in Nanjing-Wuhu area, Eastern China[J]. Geology in China, 41(6):1964-1985(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406013

    Williams P J, Barton M D, Johnson D A, Fontbote L, de Haller A, Mark G, Oliver N H S, Marschik R. 2005. Iron Oxide CopperGold Deposits: Geology, Space-time Distribution and Possible Modes of Origin[J]. Economic Geology 100th Anniversary Volume SEG, Denver, 371-405.

    Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, Sun Shu, Li Jiliang. 2004. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China):Implications for the continental growth of central Asia[J]. Am. J. Sci., 304:370-395. doi: 10.2475/ajs.304.4.370

    Xinjiang Uygur Autonomous Region Geological Survey (abv.XUARGS), 2003. Report for Target Selection and Potential Resources in Caixiashan-Jintan in the Eastern Tianshan, Xinjiang[R]. 1-187 (in Chinese).

    Xu Lulu, Chai Fengmei, Li Qiang, Zeng Hong, Geng Xinxia, Xia Fang, DengGang. 2014.Geochemistry and zircon U-Pb age of volcanic rocks from the Shaquanzi Fe-Cu deposit in east Tianshan mountains and their geological significance[J]. Geology in China, 41(6):1771-1790 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406002

    Xu Shiqi, Zhao Tongyang, Feng Jing, Gao Yongfeng, Tian Jiangtao, Yang Zaifeng, Liu Dequan. 2011. Study on regional metallogenic regularity of marine volcanic type iron ore in the east Tianshan of Xinjiang[J]. Xinjiang Geology, 29(2):173-177 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201102012.htm

    Yang Shuiyuan, Zhang Ruoxi, Jiang Shaoyong, Xie Jing. 2017.Electron Probe Microanalysis of variable oxidation state oxides: protocol and Pitfalls[J]. Geostandards and Geoanalytical Research.

    Zeng Hong, Chai Fengmei, Zhou Gang, Geng Xinxia, Li Qiang, Meng Qingpeng, Xu Lulu. 2014. Mineralogy of skarn and magnetite of the Yamansu iron deposit and its geological significance[J]. Geology in China 41(6):1914-1928 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201406010

    Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xueyan, Wang Meng. 2014. Spatiotemporal distribution and tectonic settings of the major iron deposits in China:an overview[J]. Ore Geol. Rev., 57:247-263. doi: 10.1016/j.oregeorev.2013.08.021

    Zhang Zhaochong, Chai Fengmei, Xie Qiuhong. 2016. Highangle subduction in a thermal structure with warm mantlecool crust:formation of submarine volcanic-hosted iron deposits[J]. Geology in China, 43(2):367-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201602001.htm

    Zhang Zhenliang, Feng Xuanjie, Gao Yongwei, Wang Zhihua, Dong Fuchen, Tan Wenjuan. 2015. A tentative discussion on the genetic type and ore-forming process of main late Paleozoic magnetite deposits in West Tianshan Mountains, Xinjiang[J]. Geology in China, 42 (2):737-758 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503025

    Zhang Weifeng, Chen Huayong, Han Jinsheng, Zhao Liandang, Huang Jianhan, Yang Juntao, Yan Xuelu. 2016. Geochronology and geochemistry of igneous rocks in the Bailingshan area:Implications for the tectonic setting of late Paleozoic magmatism and iron skarn mineralization in the eastern Tianshan, NW China[J]. Gondwana Res., 38:40-59. doi: 10.1016/j.gr.2015.10.011

    Zhao Hongjun, Chen Xiufa, He Xuezhou, Zhang Xinyuan, Zhang Chao, Wang Liangliang, Chen Yuming, Chen Xifeng, Lu Minjie, Zhou Shangguo, Huang Feixin, Yao Chunyan, Yang Yanchen. 2018. A study of genetic type characteristics and important distribution zones of global iron deposits[J]. Geology in China, 45(5):890-919 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201805003

    Zhao Liandang, Chen Huayong, Zhang Li, Li Dengfeng, Zhang Weifeng, Wang Chengming, Yang Juntao, Yan Xuelu. 2017.Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:Metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geol. Rev., 91:110-132. doi: 10.1016/j.oregeorev.2017.10.014

    Zhao Liandang, Chen Huayong, Zhang Li, Li Dengfeng, Zhang Weifeng, Wang Chengming, Yang Juntao, Yan Xuelu. 2016.Magnetite geochemistry of the Heijianshan Fe-Cu (-Au) deposit in Eastern Tianshan:metallogenic implications for submarine volcanic-hosted Fe-Cu deposits in NW China[J]. Ore Geol. Rev., 100:422-440. https://www.sciencedirect.com/science/article/pii/S0169136816301342

    Zhao Liandang, Chen Huayong, Zhang Li, Zhang Zengjie, Li Dengfeng, Zhang Weifeng, Lu Wanjian, Yang Jun and Yan Xuelu. 2017. H-O isotope characteristics and geological significance of Heijianshan Fe-Cu (-Au) deposit in eastern Tianshan, Xinjiang[J]. Mineral Deposits, 36(1):38-56 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-KCDZ201701003.htm

    陈杰, 段士刚, 张作衡, 罗刚, 蒋宗胜, 骆文娟, 王大川, 郑仁乔.2014.新疆西天山式可布台铁矿地质、矿物化学和S同位素特征及其对矿床成因的约束[J].中国地质, 41(6):1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006
    丁建华, 李厚民, 李立兴, 陈靖, 邓刚.2017.新疆雅满苏铁矿区碳酸盐岩地质地球化学特征及其对矿床成因的制约[J].矿床地质, 36(1):219-236. http://d.old.wanfangdata.com.cn/Periodical/kcdz201701014
    段超, 李延河, 毛景文, 侯可军, 袁顺达. 2012.宁芜火山岩盆地凹山铁矿床侵入岩锆石微量元素特征及其地质意义[J].中国地质, 39(6):1874-1884. doi: 10.3969/j.issn.1000-3657.2012.06.030
    段士刚, 张作衡, 魏梦元, 田敬佺, 蒋宗胜, 李凤鸣, 赵军, 王厚方.2014.新疆西天山雾岭铁矿闪长岩地球化学及锆石U-Pb年代学[J].中国地质, 39(6):1757-1770. doi: 10.3969/j.issn.1000-3657.2014.06.001
    方维萱, 黄转盈, 唐红峰, 高珍权.2006.东天山库姆塔格-沙泉子晚石炭世火山-沉积岩相学地质地球化学特征与构造环境[J].中国地质, 33(3):529-544. doi: 10.3969/j.issn.1000-3657.2006.03.009
    冯京, 徐仕琪, 田江涛, 杨在峰, 高永峰.2009.东天山海相火山岩型铁矿成矿规律研究方法[J].新疆地质, 27(4):330-336. doi: 10.3969/j.issn.1000-8845.2009.04.006
    侯通, 张招崇, 杜杨松.2010.宁芜南段钟姑矿田的深部矿浆-热液系统[J].地学前缘, 17(1):186-194. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001015
    黄小文, 漆亮, 孟郁苗.2013.东天山黑峰山、双峰山及沙泉子(铜)铁矿床的矿物微量和稀土元素地球化学特征[J].矿床地质, 32(6):1188-1210. doi: 10.3969/j.issn.0258-7106.2013.06.007
    李厚民, 王登红, 李立兴, 陈靖, 杨秀清, 刘明军.2012.中国铁矿成矿规律及重点矿集区资源潜力分析[J].中国地质, 39(3):559-580. doi: 10.3969/j.issn.1000-3657.2012.03.001
    李厚民, 丁建华, 李立兴, 姚通.2014.东天山雅满苏铁矿床矽卡岩成因及矿床成因类型[J].地质学报, 88(12):2477-2489. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412024
    李潇林斌, 弓小平, 马华东, 韩琼, 宋相龙, 谢磊, 凤骏, 王建设. 2014.西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义[J].中国地质, 39(6):1791-1804. doi: 10.3969/j.issn.1000-3657.2014.06.003
    罗婷, 廖群安, 陈继平, 张雄华, 郭东宝, 胡兆初. 2012.东天山雅满苏组火山岩LA-ICP-MS锆石U-Pb定年及其地质意义[J].地球科学——中国地质大学学报, 37(6):1338-1352. http://d.old.wanfangdata.com.cn/Periodical/dqkx201206024
    秦克章, 彭晓明, 三金柱, 徐兴旺, 方同辉, 王书来, 于海峰.2003.东天山主要矿床类型、成矿区带划分与成矿远景区优选[J].新疆地质, 21(2):143-150. doi: 10.3969/j.issn.1000-8845.2003.02.001
    王大川, 贾金典, 段士刚, 张作衡, 蒋宗胜, 陈杰. 2014.西天山铁木里克铁矿床矿物学及稳定同位素特征[J].中国地质, 41(6):1853-1872. doi: 10.3969/j.issn.1000-3657.2014.06.007
    王国灿, 张孟, 张雄华, 廖群安, 王玮, 田锦明, 玄泽悠.2019.东天山北部古生代重大构造事件及其对中亚造山带演化的启示:基于1:5万板房沟幅和小柳沟幅地质调查新证据[J].中国地质, 46(5):954-976. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190502&flag=1
    王铁柱, 车林睿, 余金杰, 陆邦成.2014.宁芜地区梅山铁矿床矿物的电子探针分析和稀土元素地球化学特征[J].中国地质, 41(6):1964-1985. doi: 10.3969/j.issn.1000-3657.2014.06.013
    吴昌志, 张遵忠, Khin Zaw, Fernando Della-pasque, 唐俊华, 郑远川, 汪传胜, 三金柱.2006.东天山觉罗塔格红云滩花岗岩年代学-地球化学及其构造意义[J].岩石学报, 22; 1121-1134. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605006
    新疆维吾尔自治区地质调查院.2003.新疆东天山彩霞山-金滩一带靶区优选及资源评价报告[R]. 1-187.
    徐璐璐, 柴凤梅, 李强, 曾红, 耿新霞, 夏芳, 邓刚.2014.东天山沙泉子铁铜矿区火山岩地球化学特征、锆石U-Pb年龄及地质意义[J].新疆地质, 41(6):1771-1790. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201406002
    徐仕琪, 赵同阳, 冯京, 高永峰, 田江涛, 杨在峰, 刘德权.2011.东天山海相火山岩型铁矿区域成矿规律研究[J].新疆地质, 29(2):173-177. doi: 10.3969/j.issn.1000-8845.2011.02.011
    曾红, 柴凤梅, 周刚, 耿新霞, 李强, 孟庆鹏, 徐璐璐.2014.新疆雅满苏铁矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J].中国地质, 41(6):1914-1928. doi: 10.3969/j.issn.1000-3657.2014.06.010
    赵宏军, 陈秀法, 何学洲, 张新元, 张潮, 王靓靓, 陈玉明, 陈喜峰, 卢民杰, 周尚国, 黄费新, 姚春彦, 杨言辰.2018.全球铁矿床主要成因类型特征与重要分布区带研究[J].中国地质, 45(5):890-919. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180502&flag=1
    张招崇, 柴凤梅, 谢秋红. 2016.热幔-冷壳背景下的高角度俯冲:海相火山岩型铁矿的形成[J].中国地质, (2):367-379. doi: 10.3969/j.issn.1000-3657.2016.02.001
    张振亮, 冯选洁, 高永伟, 王志华, 董福辰, 谭文娟2015.新疆西天山晚古生代主要磁铁矿床(点)成因类型与成矿过程探讨[J].中国地质, (3):737-758. doi: 10.3969/j.issn.1000-3657.2015.03.025
    赵联党, 陈华勇, 张莉, 张增杰, 李登峰, 张维峰, 陆万俭, 杨骏, 闫学录. 2017.新疆黑尖山Fe-Cu (-Au)矿床氢氧同位素特征及其地质意义[J].矿床地质, 36(1):38-56. http://d.old.wanfangdata.com.cn/Periodical/kcdz201701003
图(11)  /  表(1)
计量
  • 文章访问数:  3320
  • HTML全文浏览量:  724
  • PDF下载量:  3841
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 修回日期:  2020-04-14
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2020-06-24

目录

/

返回文章
返回
x 关闭 永久关闭