• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

云南安宁地区石虎山花岗岩年代学、地球化学特征和锆石Hf同位素组成及其成因

刘军平, 孙柏东, 崔晓庄, 熊波, 宋冬虎, 白春东, 张坤, 杨仕潘

刘军平, 孙柏东, 崔晓庄, 熊波, 宋冬虎, 白春东, 张坤, 杨仕潘. 云南安宁地区石虎山花岗岩年代学、地球化学特征和锆石Hf同位素组成及其成因[J]. 中国地质, 2020, 47(3): 693-708. DOI: 10.12029/gc20200310
引用本文: 刘军平, 孙柏东, 崔晓庄, 熊波, 宋冬虎, 白春东, 张坤, 杨仕潘. 云南安宁地区石虎山花岗岩年代学、地球化学特征和锆石Hf同位素组成及其成因[J]. 中国地质, 2020, 47(3): 693-708. DOI: 10.12029/gc20200310
LIU Junping, SUN Baidong, CUI Xiaozhuang, XIONG Bo, SONG Donghu, BAI Chundong, ZHANG Kun, YANG Shipan. Geochronology, geochemistry, zircon Hf isotopic composition and genesis of Shihushan granite in Anning, Yunnan Province[J]. GEOLOGY IN CHINA, 2020, 47(3): 693-708. DOI: 10.12029/gc20200310
Citation: LIU Junping, SUN Baidong, CUI Xiaozhuang, XIONG Bo, SONG Donghu, BAI Chundong, ZHANG Kun, YANG Shipan. Geochronology, geochemistry, zircon Hf isotopic composition and genesis of Shihushan granite in Anning, Yunnan Province[J]. GEOLOGY IN CHINA, 2020, 47(3): 693-708. DOI: 10.12029/gc20200310

云南安宁地区石虎山花岗岩年代学、地球化学特征和锆石Hf同位素组成及其成因

基金项目: 

云南省国土资源厅基金项目“云南省1:5万撒马基幅、因民幅、贵城幅、舒姑幅区域地质调查 D201905

中国地质调查局项目“云南1:5万二街、易门、鸣矣河、上浦贝幅区域地质调查” DD20160017

“云南区域地质调查片区总结与服务产品开发” 121201102000150012-02

详细信息
    作者简介:

    刘军平, 男, 1983年生, 硕士, 高级工程师, 从事区域地质与构造地质调查研究; E-mail:271090834@qq.com

    通讯作者:

    孙柏东, 男, 1986年生, 硕士, 工程师, 主要从事区域地质与构造地质调查研究; E-mail:sunbd1986@163.com

  • 中图分类号: P588.12;P597

Geochronology, geochemistry, zircon Hf isotopic composition and genesis of Shihushan granite in Anning, Yunnan Province

Funds: 

Project of 1:50000 Regional Geological Survey of Samaki, Yinmin, Guicheng and Shugu Sheets in Yunnan Province by Land and Resources Department of Yunnan Province D201905

Project of 1:50000 Regional Geological Survey of Erjie, Yimen, Mingyihe and Shangpubei Sheets in Yunnan Province DD20160017

Regional Geological Survey Area Summary and Service Product Development in Yunnan Province by China Geological Survey 121201102000150012-02

More Information
    Author Bio:

    LIU Junping, male, born in 1983, senior engineer, master, engages in regional geological and structural geological investigation and research; E-mail:271090834@qq.com

    Corresponding author:

    SUN Baidong: LIU Junping, male, born in 1983, senior engineer, master, engages in regional geological and structural geological investigation and research; E-mail:sunbd1986@163.com

  • 摘要:

    石虎山花岗岩岩体位于安宁市德滋村附近,本文对该岩体开展了LA-ICP-MS锆石U-Pb定年、岩石地球化学、锆石Hf同位素组成研究。结果获得(616±20)Ma的岩浆结晶年龄和(839±17)Ma、(766±15)Ma、(705.5±9.4)Ma的继承性年龄,说明岩体形成于新元古代埃迪卡拉纪;其中(839±17)Ma、(766±15)Ma、(705.5±9.4)Ma的继承性年龄组合可能是Rodinia超大陆裂解构造过程的记录,839 Ma、616 Ma可能是Rodinia超大陆在扬子板块西缘开始裂解与最终裂解时限。花岗岩主量、微量元素特征显示,其产生于伸展环境的高硅、过铝、高钾的A型花岗岩;锆石εHft)值均小于0,在t-t(Ma)和t-(176Hf/177Hf)图上,所有样品点均落在上地壳演化线之上,二阶段模式年龄变化范围为1.77~2.31 Ga,结合Nb/Y—Rb/Y图解,表明成岩物质主要来源于古元古代古老下地壳页岩60%部分熔融。

    Abstract:

    The LA-ICP-MS zircon U-Pb age, rock geochemistry and zircon Hf isotopic composition of the Shihushan granite located in Dezi Village of Anning area were investigated in this study. The zircon U-Pb dating yielded a magmatic crystallization age of (616±20) Ma and inherited ages of (839±17) Ma, (766±15) Ma and (705.5±9.4) Ma, indicating pluton emplacement in Neoproterozoic Ediacaran Stage. The authors hold that the magmatic crystallization age of (616±20) Ma indicates the pluton emplacement in Neoproterozoic Ediacaran Stage, and the assemblage of inherited ages of (839±17) Ma, (766±15) Ma and (705.5±9.4) Ma represents the splitting of the Rodinia supercontinent. The age of (839±17) Ma may represent the initiation of the breakup of the Rodinia supercontinent, while the age of (616±20) Ma may represent the final stage of the breakup event. The major and trace elements of alkali feldspar granite show the characteristics of A-type granite with high SiO2-K2O-Al2O3 content, indicating an extensional environment. Zircons from samples have low εHf(t) value (< 0). All samples are plotted on the upper crustal evolution area on t-t (Ma) and t-(176Hf/177Hf) diagrams. The two-stage Hf model ages range from 1.77 Ga to 2.31 Ga. According to the Nb/Y-Rb/Y diagram, the petrogenic material mainly originated from the 60% melting of the shale of the Paleoproterozoic lower crust.

  • 赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989陈郑辉等,2006毛景文等,2007郭春丽等,2007许建祥等,2008刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989张文兰等,2006王登红,2019杨斌等,2021秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981李建康,2012李建康等,2014王登红等,2017王成辉等,2019Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。

    赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007裴荣富和熊群尧,1999刘善宝等,2010)。

    图  1  赣南石雷钨锡矿地质简图
    Figure  1.  Simplified geological map of Shilei tungsten and tin deposits in the Southern Jiangxi Province

    石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。

    矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。

    表  1  ZKn11-11云英岩W、Sn、Li测试分析结果
    Table  1.  The W, Sn, Li analysis results of greisen samples of ZKn11-11
    下载: 导出CSV 
    | 显示表格

    (1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。

    图  2  石雷矿区钨锡锂多金属矿体特征
    a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿
    Figure  2.  Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining area
    a, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite

    (2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。

    本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-Al-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。

    图  3  石雷矿区11号勘探线简图
    Figure  3.  No.11 Sketch map of exploration line in the Shilei mining area
    表  2  石雷矿区云英岩中云母LA-ICP-MS原位分析结果
    Table  2.  LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area
    下载: 导出CSV 
    | 显示表格
    图  4  石雷矿区云英岩中云母的Fetot+Mn+Ti+Al-Mg-Li判别图解(据Guggenhim and Bailey, 1977)
    Figure  4.  Fetot+Mn+Ti+Al vs. Mg-Li discriminant diagram of the mica of greisen in the Shilei mining area (after Guggenhim and Bailey, 1977)

    云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018王正军等,2018张勇等,2020Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。

    随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。

    以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。

    总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019陈其慎等,2021王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。

    南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。

    致谢: 论文写作过程中得到了云南省地质调查教授级高工李静的热心帮助;锆石LA-ICP-MS分析和阴极发光照片得到了南京宏创地矿袁秋云及湖北省地质实验室测试中心岩石矿物研究室朱丹、潘诗洋的帮助;审稿人提出了宝贵的修改意见。在此一并表示衷心感谢。
  • 图  1   研究区大地构造位置(a)及样品采集位置图(b)

    Figure  1.   Geotectonic location in study area(a)and sampling location diagram(b)

    图  2   碱长花岗岩野外(a、b)及典型结构显微(c,正交偏光;d,单偏光)照片

    Kfs—钾长石;Qtz—石英;Ms—白云母

    Figure  2.   Outcrop photos(a, b)and micrographs showing typical textures(c, crossed nicols; d, plainlight)of the alkali-feldspar granite

    Kfs-K-Feldspar; Qtz-Quartz; Ms-Muscovite

    图  3   石虎山花岗岩类Q′-ANOR图解(据Streckeisen and Le Maitre,1979)

    2—碱长花岗岩;3a—正长花岗岩;3b—二长花岗岩;4—花岗闪长岩;5-英云闪长岩;6'-石英碱长正长岩;7'-石英正长岩;8'-石英二长岩;9'-石英二长闪长岩、石英二长辉长岩;10'—石英闪长岩、石英辉长岩、石英斜长岩;6—碱长正长岩;7—正长岩;8—二长岩;9—二长闪长岩、二长辉长岩;10—闪长岩、辉长岩、斜长岩

    Figure  3.   Q′-ANOR diagram of the Shihushan granite(after Streckeisen and Le Maitre, 1979)

    2-Alkali-feldspar granite; 3a-Syen granite; 3b-Monzonitic granite; 4-Granodiorite; 5-Yingyun diorite; 6'-Quartz alkali long syenite 7'-Quartz syenite; 8'-Quartz monzonite; 9'-Quartz diorite Quartz two long gabbro; 10'-Quartz diorite, quartz gabbro, quartz plagioclase; 6-alkali syenite; 7-Syenite; 8-Monnicite; 9-Two long Diorite, Erchang gabbro; 10-Diorite, gabbro, plagioclase

    图  4   石虎山岩体A/CNK-A/NK及SiO2-K2O图解(据Rickwood,1989

    Figure  4.   A/CNK-A/NK(a)and SiO2-K2O(b)diagram of the Shihushan granite(after Rickwood, 1989)

    图  5   石虎山岩体稀土元素配分样式图及微量元素原始地幔标准化蜘蛛网图

    (原始地幔数据引自Sun and McDonough, 1989

    Figure  5.   Chondrite-normalized REE patterns(a)and normalized diagram for trace elements(b)of Shihushan granite

    (Chondrite values are from Sun and McDonough, 1989)

    图  6   石虎山岩体代表性锆石阴极发光(CL)图像

    Figure  6.   The CL images of zircons from Shihushan granite

    图  7   碱长花岗岩(样品D0120)锆石U-Pb年龄谐和线图

    Figure  7.   Concordia plot of the zircon U-Pb age data for alkali-feldspar granite(Sample D0120)

    图  8   石虎山花岗岩Hf同位素t-t(Ma)和t-(176Hf/177Hf)图解

    Figure  8.   t-t(Ma)和t-(176Hf/177Hf)diagram of the Hf isotope of Shihushan granite

    图  9   石虎山岩体花岗岩类岩石(Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO图解(a,据Whalen et al., 1987)及Nb/Y-Rb/Y图解(b,据Jahn et al., 1999)

    Figure  9.   (Zr+Nb+Ce+Y)-(K2O+Na2O)/CaO diagram (a, after Whalen et al., 1987) and Nb/Y-Rb/Y of the Shihushan granite (b, after Jahn et al., 1999)

    图  10   石虎山岩体花岗岩类岩石Al2O3/TiO2-CaO/Na2O(a)及Rb/Sr-Rb/Ba(b)源区判别图解(据Sylvester,1998)

    Figure  10.   Al2O3/TiO2-CaO/Na2O(a)and Rb/Sr-Rb/Ba(b)of the Shihushan granite(after Sylvester, 1998)

    图  11   石虎山岩体岩石Yb-Sr(a,据Zhang Qi,2006)及(Y+Rb)-Rb(b,据Pearce,1996)图解

    Ⅰ—高Sr低Yb花岗岩;Ⅱ—低Sr低Yb花岗岩;Ⅲ—高Sr高Yb花岗岩;Ⅳ—低Sr高Yb花岗岩;Ⅴ—极低Sr高Yb花岗岩VAG—火山弧花岗岩;Syn-COLG —同碰撞花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩

    Figure  11.   Yb-Sr diagram of the(a, after Zhang Qi, 2006)and(Y+Rb)-Rb of the Shihushan granite(b, after Pearce, 1996)

    Ⅰ-granite with high Sr and low Yb; Ⅱ-granite with low Sr and low Yb; Ⅲ-granite with high Sr and high Yb; Ⅳ-granite with low Sr and high Yb; Ⅴ-granite with overly low Sr and high Yb; VAG-Volcanic arc granites; Syn-COLG-syn-collision granites; WPG-within plate granites; ORG-ocean ridge granites

    表  1   石虎山岩体碱长花岗岩的主量元素(%)和微量元素(10-6)分析结果

    Table  1   Major (%) and trace element (10-6) compositions of the Shihushan granite

    下载: 导出CSV

    表  2   碱长花岗岩(D0120)锆石LA-ICP-MS U-Th-Pb同位素分析结果

    Table  2   LA-ICP-MS zircon U-Pb age data of alkali-feldspar granite (D0120)

    下载: 导出CSV

    表  3   碱长花岗岩(D0120)Hf同位素组成

    Table  3   Analytical data of zircon Hf isotope composition of alkali-feldspar granite (D0120)

    下载: 导出CSV
  • Bi Zhengjia, Zeng Zhongcheng, Zhang Kunkun, Cao Tongli, Liu Demin, Chen Ning, Zhao Jianglin, Li Qi, Li Dewei.2016. Geochronology, geochemical characteristics and tectonic implications of the amphibolite from Paxialayidang area on the southern margin of Altun terrain[J]. Geology in China, 43(4):1149-1164(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201604003

    Boynton W W. 1984. Cosmochemistry of the rare earth element: Meteorite studies[C]//Hen derson P(eds). Rare Earth Element Geochemistry: Development in Geochemistry.Amsterdam: Elsevier, 63-114.

    Chappell B W, White A J R. 1992. I-and S-type granites in the Lachlan fold belt[J].Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(83):1-26. http://cn.bing.com/academic/profile?id=6f03caf823d3c86871acbbe1254988a2&encoded=0&v=paper_preview&mkt=zh-cn

    Cheng Jiaxiao, Luo Jinhai, Wu Yudong, Han Kui, Wang Shidi.2014.Geochronology, geochemistry and tectonic significance of the Xiatianba granite in northeastern Yunnan[J]. Acta Geologica Sinica, 88(3):337-346(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004

    Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, Zhuo Wenwen, Xiong Guoqing, Lu Junze, Deng Qi, Wu Wei, Liu Jianhui. 2013. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in Central Yunnan and its geological significance[J]. Geoscience, 27(3):547-556(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201303005

    Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, Zhuo Wenwen, Jiang Zhuofei, Wu Yi, Deng Qi, Wei Yanan. 2015. New evidence for the formation age of basalts from the lowermost Chengjiang Formation in the western Yangtze Block and its geological implications[J]. Acta Petrologica Mineralogica, 33(1):1-13(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201501001

    Du Lilin, Geng Yuanshen, Yang Chonghui, Wang Xinshe, Ren Liudong, Zhou Xiwen, Wang Yanbin, Yang Zhushen.2006.The stipulation of Neoproterozoic TTG in western Yangtze block and its significance[J]. Acta Petrologica et Mineralogica, 25(4):273-281(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200604002

    Harris N B W, Inger S.1992.Trace element modelling of pelitederived granites[J].Contributions to Mineralogy and Petrology, 110(1):46-56. doi: 10.1007/BF00310881

    Harris N B W, Pearce J A, Tindle A G. 1986.Geochemica1 characteristics of collision-zone magmatism[J]. Geological Society, London, Special Publication, l9:67-81. http://orca.cf.ac.uk/8483/

    Hoskin PWO, Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry, 53:27-62. doi: 10.2113-0530027/

    Jiang Xinsheng, Wang Jian, Cui Xiaozhuang, Zhuo Wenwen, Xiong Guoqing, Lu Junze, Liu Jianhui. 2012. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province (SW China) and its geological significance[J]. Sci. China (Earth Sci.), 42(10):1496-1507(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7730b1d40712f46ff9b9eda31281d360&encoded=0&v=paper_preview&mkt=zh-cn

    Ji Bo, Huang Botao, Li Xiangmin, Wang Lei.2019.Geochronology and geochemical characteristics of the Early Ordovician granite from Hongmiaogou area in northwest margin of South Qilian and its geological significance[J]. Northwestern Geology, 52(4):63-75(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xbdz201904005

    Kalsbeek F, Jepsen H. Nutman A. 2001. From source migmatites to plutons:tracking the origin of ca.435Ma S-type granites in the East Greenland Caledonian orogen[J].Lithos, 57:1-21. https://www.sciencedirect.com/science/article/pii/S0024493700000712

    Li Tong, Yuan Huayu, Wu Shengxi.1998.On the average chemical composition of granitoids in china and the world[J]. Geotectonica et Metallogenia, 22(1):29-34(in Chinese with English abstract).

    Li Xianhua, Zhou Hanwen, Li Zhengxiang, Liu Ying, Kinny P.2001.Zircon U-Pb age and petrochemical characteristics the Neoproterozoic bimodal volcanics from western Yangtze block[J].Geochimica, 30(4):315-322(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200104003

    Li Xianhua, Wang Xuance, Li Wuxian, Li Zhengxiang. 2008.Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China:From orogenesis to intracontinental rifting[J]. Geochimica, 37(4):382-398(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=02c7c89066668b374044ba3690a31840&encoded=0&v=paper_preview&mkt=zh-cn

    Li Pengchun, Chen Guanghao, Xu Deru, He Zhuanli, Fu Gonggu.2007.Petrogeochemical and Geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in northeastern Hunan Province[J]. Geotectonica et Metallogenia, 31(1):126-136(in Chinese with English abstract).

    Ling Wenli, Gao Shan, Cheng Jianping, Jiang Linsheng, Yuan Honglin, Hu Zhaochu. 2006. Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication:constraint from the ELA-ICPMS U-Pb geochronology of zircons from Huangling and Hannan complexes[J]. Acta Petrologica Sinica, 22(2):387-396(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=1d7f038c6314965cb7b667f9d3ec557e&encoded=0&v=paper_preview&mkt=zh-cn

    Liu Shuwen, Yan Quanren, Li Qiugen, Wang Zongqi. 2009.Petrogenesis of granitoid rocks in the Kangding Complex, western margin of the Yangtze Craton and its tectonic significance[J].Acta Petrologica Sinica, 25(8):1883-1896(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908013

    Liu Junping, Zeng Wentao, Xu Yunfei, Sun Baidong, Hu Shaobin, Liu Guichun, Song Donghu, Lu Bozhen, Wang Xiaofeng. 2018. The definition and geological significance of tuffs about 1.85 Ga in Yimen area, central Yunnan Province[J]. Geological Bulletin of China, 37(11):2055-2062(in Chinese with English abstract).

    Liu Junping, Xia Caixiang, Sun Baidong, Hu Shaobin, Wang Xiaofeng, Wang Wei, Guan Xueqing, Song Donghu, Lu Boye. 2019. Tuffs from the Neoproterozic Chengjiang Formation in the Yimen region, central Yunnan:Zircon U-Pb dating and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 39(1):14-21(in Chinese with English abstract).

    Liu Junping, Tian Sumei, Cong Feng, Sun Baidong, Huan Xiaoming, Xun Yunfei.2017.The Sale granite form the southern part of the Lancang River, western Yunnan:Zircon U-Pb age, geochemistry and geological implications[J].Sedimentary Geology and Tethyan Geology, 37(4):59-70(in Chinese with English abstract).

    Liu Junping, Li Jing, Wang Genhou, Sun Baidong, Hu Shaobin, Yu Saiying, Wang Xiaohu, Song Donghu. 2020a.Geochemistry and UPb age of zircons of mafic intrusion in the southwestern margin of the Yangtze plate:Response to breakup of the Columbia supercontinent[J].Geological Review, 66(2):350-364(in Chinese with English abstract).

    Liu Junping, Sun Baidong, Wang Xiaofeng, Liu Wei, Ma Jinhua, Guan Xueqing, Song Donghu, Lü Boye. 2020b.The zircon U-Pb age, geochemical characteristics and tectonic significance of the spherical basalt in the early Mesoproterozoic in Lufeng area central Yunnan[J]. Geological Review, 66(1):35-51(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp202001004

    Liu Junping, Li Jing, Duan Xiangdong, Cao Xiaomin, Hu Shaobin, Li Kaibi, Wang Lu, Guan Xueqing, Zeng Wentao, Liu Fagang, Zhang Hu, Yu Saiying.2020c.Material sources of selenium-rich soil and its natural selenium-rich wild bacteria in Yimen area, central Yunnan[J].Geological Review, 66(3):786-794(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp202003021

    Ludwing K R.2003.Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[J].Berkelery:Berkeley Geochronology Center, California39. doi: 10.1016-j.immuni.2011.10.010/

    Pearce J A.1996.Sources and setting of granitic rocks[J].Episodes, 19:120-125. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_ed02224d8e7f2feb1e959144a3da6304

    Pei Xianzhi, Li Zuochen, Ding Saping, Li Ruibao, Feng Jianyun, Sun Yu, Zhang Yafeng, Liu Zhanqing. 2009. Neoproterozoic Jiaoziding peraluminous granite in the northwest margin of Yangtze Block:Zircon SHRIMP U-Pb age and geochemistry, and their tectonic significance[J].Earth Science Frontiers, 6(3):232-249(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1872579108600962

    Richwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J].Lithos, 22(4):247-263. doi: 10.1016-0024-4937(89)90028-5/

    Sun S S, McDonough W F. 1989. Chemical and isotope systematicas of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society Special Publication, 42: 313-345.

    Wang Mengxi, Wang Yan, Zhao Hongjun. 2012. Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze Block, SW China:Constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup[J].Chin. Sci. Bull., 57(34):3283-3294(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=aab349c7b20c832ed119344491faf943&encoded=0&v=paper_preview&mkt=zh-cn

    Wang Hairan, Zhao Hongge, Qiao Jianxin, Gao Shaohua. 2013.Theory and application of zircon U-Pb isotope dating technique[J]. Geology and Resources, 22(3):229-242(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz201303012

    Wang Zhengjiang, Wang Jian, Yang Ping, Xie Shangke, Zhuo Wenwen, He Jianglin. 2011. The discovery and geological implications of the Neoproterozoic A-type granites in the upper Yangtze craton[J]. Sedimentary Geology and Tethyan Geology, 31(2):1-11(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201102001

    Whalen J B, Currie K L, Chappell B W. 1987. A-Type granites:Geochemical characteristics discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4):407-419. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201103007

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J].Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001

    Xia Linqi, Li Xiangmin, Yu Jiyuan, Wang Guoqiang.2016.Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4):1087-1138(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201604001

    Xie Shiwen, Gao Shan, Liu Xiaoming, Gao Rishen. 2009. U-Pb Ages and Hf Isotopes of Detrital Zircons of Nanhua Sedimentary Rocks from the Yangtze Gorges:Implications for Genesis of Neoproterozoic Magmatism in South China[J].Earth Science——Journal of China University of Geosciences, 34 (1):117-126(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200901011

    Yan Danping, Zhou Meifu, Song Honglin, John Malpas. 2002. Where was south china located in the reconstruction of Rodinia[J]. Earth Science Frontiers, 9(4):249-256(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0bff7d2646e4e5bb84e999160f6944eb&encoded=0&v=paper_preview&mkt=zh-cn

    Yan Shengwu, Bai Xianzhou, Wu Wenxiang, Zhu Bing, Zhan Qiongyao, Wen Long, Yang Hui, Wang Yuting. 2017. Genesis and geological implications of the Neoproterozoic A-type granite from the Lugu area, western Yangtze block[J].Geology in China, 44(1):136-150(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701010

    Zhang Qi, Wang Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the basis of Sr and Yb contents and its implications[J].Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001

    Zhang Pei, Zhou Zuyi, Xu Changhai, Zhang Qinglin. 2008.Geochemistry of Pengguan complex in the longmenshan region, western Sichuan province, SW China:Petrogenesis and tectonic implications[J].Geotectonica et Metallogenia, 32(1):105-116(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7591aebbbe49c44736efeba9f4e0317d&encoded=0&v=paper_preview&mkt=zh-cn

    Zhao Fengqing, Zhao Wen ping, Zuo Yicheng, Li Zonghui, Xue Keqin. 2006. U-Pb geochronology of NeoProterozoic magmatic rocks in Hanzhong, southern Shananxi, China[J]. Geological Bulletin of China, 25(3):383-389(in Chinese with English abstract).

    Zhu Weiguang, Liu Bingguang, Deng Hailin, Zhong Hong, Li Chaoyang, Pi Daohui, Li Zhide, Qin Yu.2004.Advance in the study of Neoproterozoic Mafic-Ultramafic Rocks in the Western Margin of the Yangtze Craton[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 23(3):255-264(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200403013

    毕政家, 曾忠诚, 张昆昆, 曹同礼, 刘德民, 陈宁, 赵江林, 李琦, 李德威.2016.阿尔金南缘帕夏拉依档沟斜长角闪岩年代学、地球化学及其构造意义[J].中国地质, 43(4):1149-1164. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160403&flag=1
    程佳孝, 罗金海, 武昱东, 韩奎, 王师迪.2014.滇东北下田坝花岗岩年代学、地球化学及其构造意义[J].地质学报, 88(3):337-346. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201403004
    崔晓庄, 江新胜, 王剑, 卓皆文, 熊国庆, 陆俊泽, 邓奇, 伍皓, 刘建辉.2013.滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J].现代地质, 27(3):547-556. http://d.old.wanfangdata.com.cn/Periodical/xddz201303005
    崔晓庄, 江新胜, 王剑, 卓皆文, 江卓斐, 伍皓, 邓奇, 魏亚楠.2015.扬子西缘澄江组底部玄武岩形成时代新证据及其地质意义[J].岩石矿物学杂志, 33(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201501001
    杜利林, 耿元生, 杨崇辉, 王新社, 任留东, 周喜文, 王彦斌, 杨铸生.2006.扬子地台西缘新元古代TTG的厘定及其意义[J].岩石矿物学杂志, 25(4):273-281. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz200604002
    计波, 黄博涛, 李向民, 王磊. 2019.南祁连西北缘肃北红庙沟地区早奥陶世花岗岩年代学、地球化学特征及其地质意义[J].西北地质, 52(4):63-75. http://d.old.wanfangdata.com.cn/Periodical/xbdz201904005
    江新胜, 王剑, 崔晓庄, 卓皆文, 熊国庆, 陆俊泽, 刘建辉. 2012.滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义[J].中国科学:地球科学, 42(10):1496-1507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201210004
    黎彤, 袁怀雨, 吴胜昔.1998.中国花岗岩类和世界花岗岩类平均化学成分的对比研究[J].大地构造与成矿学, 22(1):29-34. doi: 10.1016-j.bmcl.2010.01.156/
    李献华, 周汉文, 李正祥, 刘颖, Kinny P. 2001.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征[J].地球化学, 30(4):315-322. http://d.old.wanfangdata.com.cn/Periodical/dqhx200104003
    李献华, 王选策, 李武显, 李正祥. 2008.华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J].地球化学, 37(4):382-398. http://d.old.wanfangdata.com.cn/Periodical/dqhx200804012
    李鹏春, 陈广浩, 许德如, 贺转利, 符巩固. 2007.湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论[J].大地构造与成矿学, 31(1):126-136. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200701015
    凌文黎, 高山, 程建萍, 江麟生, 袁洪林, 胡兆初. 2006.扬子陆核与陆缘新元古代岩浆事件对比及其构造意义——来自黄陵和汉南侵入杂岩ELAICPMS锆石U-Pb同位素年代学的约束[J].岩石学报, 22(2):387-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200602011
    刘军平, 曾文涛, 徐云飞, 孙柏东, 胡绍斌, 刘桂春, 宋冬虎, 吕勃烨, 王晓峰. 2018.滇中易门地区约1.85Ga凝灰岩的厘定及其地质意义[J].地质通报, 37(11):2055-2062. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201811011
    刘军平, 夏彩香, 孙柏东, 胡绍斌, 王晓峰, 王伟, 关学卿, 宋冬虎, 吕勃烨.2019.滇中易门地区新元古代澄江组凝灰岩锆石U-Pb年龄及其地质意义[J].沉积与特提斯地质, 39(1):14-21. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201901002
    刘军平, 田素梅, 丛峰, 孙柏东, 黄晓明, 徐云飞.2017.滇西澜沧江南段沙乐花岗岩的锆石U-Pb年龄、地球化学特征及其地质意义[J].沉积与特提斯地质, 37(4):59-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201704005
    刘军平, 李静, 王根厚, 孙柏东, 胡绍斌, 俞赛赢, 王小虎, 宋冬虎.2020a.扬子板块西南缘基性侵入岩锆石定年及地球化学特征——Columbia超级大陆裂解的响应[J].地质论评, 66(2):350-364. http://www.cqvip.com/QK/91067X/202002/7101307142.html
    刘军平, 孙柏东, 王晓峰, 刘伟, 马进华, 关学卿, 宋冬虎, 吕勃烨. 2020b.滇中禄丰地区中元古代早期球颗玄武岩的锆石U-Pb年龄、地球化学特征及其大地构造意义[J].地质论评, 66(1):35-51. http://d.old.wanfangdata.com.cn/Periodical/dzlp202001004
    刘军平, 李静, 段向东, 曹晓民, 胡绍斌, 李开毕, 王路, 关学卿, 曾文涛, 刘发刚, 张虎, 俞赛赢. 2020c.滇中易门地区富硒土壤物质来源及其天然富硒野生菌初步研究[J].地质论评, 66(3):786-794. http://d.old.wanfangdata.com.cn/Periodical/dzlp202003021
    刘树文, 闰全人, 李秋根, 王宗起. 2009.扬子克拉通西缘康定杂岩中花岗质岩石的成因及其构造意义[J].岩石学报, 25(8):1883-1896. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908013
    裴先治, 李佐臣, 丁仨平, 李瑞保, 冯建赟, 孙雨, 张亚峰, 刘战庆.2009.扬子地块西北缘轿子顶新元古代过铝质花岗岩锆石SHRIMP U-Pb年龄和岩石地球化学及其构造意义[J].地学前缘, 16(3):231-249. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200903026.htm
    王梦玺, 王焰, 赵红军. 2012.扬子板块北缘周庵超镁铁质岩体锆石U-Pb年龄和Hf-O同位素特征:对源区性质和Rodinia超大陆裂解时限的约束[J].科学通报, 57(34):3283-3294. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201234009.htm
    王海然, 赵红格, 乔建新, 高少华. 2013.锆石U-Pb同位素测年原理及应用[J].地质与资源, 22(3):229-242. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201303012
    汪正江, 王剑, 杨平, 谢尚克, 卓皆文, 何江林. 2011.上扬子克拉通内新元古代A型花岗岩的发现及其地质意义[J].沉积与特提斯地质, 31(2):1-11. http://d.old.wanfangdata.com.cn/Periodical/yxgdl201102001
    吴福元, 李献华, 郑永飞, 高山. 2007.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
    夏林圻, 李向民, 余吉远, 王国强. 2016.祁连山新元古代中-晚期至早古生代火山作用与构造演化[J].中国地质, 43(4):1087-1138. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160401&flag=1
    谢士稳, 高山, 柳小明, 高日胜.2009.扬子克拉通南华纪碎屑锆石UPb年龄、Hf同位素对华南新元古代岩浆事件的指示[J].地球科学-中国地质大学学报, 34(1):117-126. http://www.cnki.com.cn/Article/CJFDTotal-DQKX200901012.htm
    颜丹平, 周美夫, 宋鸿林, John Malpas. 2002.华南在Rodinia古陆中位置的讨论——扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比[J].地学前缘, 9(4):249-256. http://d.old.wanfangdata.com.cn/Periodical/dxqy200204004
    鄢圣武, 白宪洲, 伍文湘, 朱兵, 詹琼窑, 文龙, 杨辉, 王玉婷. 2017.扬子地块西缘新元古代泸沽A型花岗岩成因与变泥质岩熔融[J].中国地质, 44(1):136-150. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170110&flag=1
    张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报, 22(9):2249-2269. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609001
    张沛, 周祖翼, 许长海, 张青林.2008.川西龙门山彭灌杂岩地球化学特征:岩石成因与构造意义[J].大地构造与成矿学, 32(1):105-116. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200801014
    赵凤清, 赵文平, 左义成, 李宗会, 薛克勤. 2006.陕南汉中地区新元古代岩浆岩U-Pb年代学[J].地质通报, 25(3):383-389. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200603007
    朱维光, 刘秉光, 邓海琳, 钟宏, 李朝阳, 皮道会, 李志德, 覃喻.2004.扬子地块西缘新元古代镁铁-超镁铁质岩研究进展[J].矿物岩石地球化学通报, 23(3):255-264. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb200403013
  • 期刊类型引用(3)

    1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
    2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
    3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术

    其他类型引用(1)

图(11)  /  表(3)
计量
  • 文章访问数:  2852
  • HTML全文浏览量:  765
  • PDF下载量:  4906
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-04-19
  • 修回日期:  2020-04-27
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2020-06-24

目录

/

返回文章
返回
x 关闭 永久关闭