Triassic oceanic subduction in northwestern West Qinling Mountain: Evidence from Mg andesite and high-Mg andesite
-
摘要:
三叠纪以来,西秦岭地区构造-岩浆活动极为强烈,中酸性侵入岩呈北西向弧状分布,前人做了大量卓有成效的工作,但对出露较少的火山岩鲜有研究。本次工作选取青海省同仁县麦秀和甘肃省夏河县甘加、德乌鲁3个地区的安山岩,从岩石学、岩石地球化学、年代学等进行分析。结果显示安山岩均属于钙碱性系列,具有富钾火山岩的特征。其中,麦秀安山岩中既有高镁安山岩,也有镁安山岩,而甘加与德乌鲁安山岩属于镁安山岩,为洋壳俯冲作用形成的两种典型火山岩类型。西秦岭地区安山岩形成时间东早西晚,由西向东安山岩基性程度降低,K2O、Na2O、∑REE等含量增高,MF、FL、DI、La/Sm等值变大,SI、Mg#等值降低,并且呈明显的线性特征,构成同仁—合作镁安山岩(镁闪长岩)岩浆弧组合,和北部隆务峡蛇绿岩带一起,组成岩性分布极性,从而判断出西秦岭西北部在三叠纪存在隆务峡蛇绿岩代表的洋壳板块向南俯冲作用。
Abstract:Since the Triassic, tectono-magmatic activity in West Qinling Mountains has been very intense and the intermediate-acid intrusive rocks are distributed in a NW-trending arc. A lot of effective work has been done by previous researchers, but research on volcanic rocks with less exposure remain insufficient. Petrological, geochemical and chronologic analysis was used for andesite in Maixiu County and Tongren County of Qinghai Province and Ganjia and Dewulu areas in Xiahe County of Gansu Province. The results show that andesite belongs to calc-alkaline series and shows the characteristics of potassium-rich volcanic rocks. Maixiu andesite contains both high-magnesium andesite and magnesian andesite, while Ganga and Deuru andesite belongs to magnesian andesite, being two typical types of volcanic rocks formed by oceanic crust subduction. The formation of andesite in West Qinling area occurred early in the East and late in the west. From west to east, andesite in West Qinling Mountain presents the following characteristics:1) The values of SiO2 and alkali decrease; 2) The formation of andesite took place earlier; 3) The values of K2O, Na2O, ∑REE increase; 4) The values of MF, FL, DI, La/Sm is larger; 5) The values of SI, Mg# decrease, with significant linear features. The magmatic arc assemblage of Xiahe-cooperative magnesian andesite (mafic diorite) is composed of Tongren-Hezuo magnesian magmatic arc assemblage and Longwu gorge ophiolite belt in the north. Polarity indicates that the oceanic crust plate represented by Longwu gorge ophiolite subducted southward in the Triassic in the northwestern part of West Qinling Mountain.
-
Keywords:
- Mg andesite /
- high Mg andesite /
- subduction /
- geological survey engineering /
- West Qinling Mountain /
- Qinghai
-
1. 引言
赣南地区位于南岭成矿带的东段,享有“世界钨都”之称,分布有包括西华山、漂塘、大吉山、画眉坳、盘古山等在内的与燕山期花岗岩有密切成因联系的钨锡多金属矿床(陈毓川等,1989;陈郑辉等,2006;毛景文等,2007;郭春丽等,2007;许建祥等,2008;刘善宝等,2010;方桂聪等,2014;刘丽君等,2017)。与石英脉型钨锡矿床有成因联系的花岗岩大多属于富含Li、F的高分异花岗岩(陈毓川等,1989;张文兰等,2006;王登红,2019;杨斌等,2021;秦拯纬等,2022),且通常伴有铍铌钽等稀有金属矿产,如大吉山矿区69号钽矿体(袁忠信等,1981)、画眉坳钨铍矿床、淘锡坑烂梗子区段的钨铍矿体等(刘善宝,2008)。这些高分异花岗岩与中国西部伟晶岩型锂铍稀有金属成矿花岗岩属于同一成因类型(袁忠信等,1981;李建康,2012;李建康等,2014;王登红等,2017;王成辉等,2019;Wang et al., 2020),但赣南地区石英脉型钨锡矿床是否共伴生有锂金属矿产却鲜有报道。本次工作在南岭东段赣南石雷矿区深部发现了云英岩型锂矿,证实了赣南石英脉型钨锡矿集区也有找锂矿的巨大潜力,这为进一步丰富研究赣南地区钨锡锂矿成矿理论研究和拓展岩体型锂矿找矿勘查空间提供了新思路。
2. 矿区地质特征
赣南位于南岭成矿带的东段,东邻武夷山成矿带,西接南北向的诸广山—万洋山岩浆岩带,由崇义—大余—上犹、于都—赣县、全南—定南—龙南等5个矿集区组成(图 1a)。石雷矿区位于赣南的西南部崇义—大余—上犹钨锡矿集区东段,北北东向的西华山—漂塘—茅坪矿田的中部(图 1b)。整个矿田长度约30 km,十余个矿床呈等间距分布(间距3~5 km),致矿花岗岩具有多阶段演化分异、多阶段侵入和多阶段成矿特征(毛景文等, 1998, 2007;裴荣富和熊群尧,1999;刘善宝等,2010)。
石雷矿区主要出露古生代碎屑岩地层。其中,寒武系类复理石建造分布广泛,且遭受了加里东期强烈褶皱,形成了西部正常东部倒转的复式向斜。泥盆系灰白色巨厚层状砾岩夹紫红色含砾砂岩及石英砂岩层零星分布,与下伏寒武系呈角度不整合接触。矿区中部地表主要出露加里东期石英闪长岩,呈北西展布,形成于434~439 Ma(He et al., 2010)。花岗岩是石雷矿区的主要致矿和赋矿地质体,侵入于石英闪长岩之中,并在接触带形成矽卡岩和似伟晶岩壳。花岗岩为隐伏岩体,钻孔揭露到花岗岩顶面最低标高为-52.93 m (ZK4901),最高标高162.87 m (ZK1107),与漂塘矿区的隐伏花岗岩体(岩凸最高标高为300 m)连为一体。岩相由早到晚依次是黑云母花岗岩((160±0.7)Ma)→二云母花岗岩((159.6±0.7)Ma)→白云母花岗岩((159.9±0.4)Ma),呈逐渐过渡关系,没有明显侵入界限(Zhang et al., 2017)。
矿区共发育7个脉带组,呈北东东走向,倾向北北西,倾角变化在69°~85°,矿脉带长度变化在500~ 1700 m,宽度变化在100~300 m,最大深度超过700 m;除中带脉带组产于加里东期石英闪长岩外,其余脉带均产于寒武系砂岩中,自上而下具有典型的“五层楼”分带特征。本次工作在对矿区11勘探线钻孔进行系统编录过程中,发现深部隐伏花岗岩顶部存在广泛的云英岩带。对钻孔ZKn11-11部分云英岩进行采样测试分析,其中的Li2O变化于0.204% ~0.514%(表 1)。根据其产状和矿物组成,含锂云英岩可以划分为石英脉(±钾长石)+云英岩、云母脉+ 云英岩等两种类型。
表 1 ZKn11-11云英岩W、Sn、Li测试分析结果Table 1. The W, Sn, Li analysis results of greisen samples of ZKn11-11(1)石英脉(±钾长石)+云英岩复合型锂矿化体:该类型的矿化广泛分布于花岗岩体和围岩(角岩带)中(图 2)。产于角岩带中的石英脉+云英岩复合脉位于隐伏花岗岩体的上部,主要由早期的角岩化、黑云母化和晚期的石英脉复合叠加而成,上部石英呈团块状,下部石英呈脉状穿插于角岩之中(图 2a)。产于花岗岩内接触带二云母花岗岩内石英(±钾长石)+云英岩型锂矿化体以石英脉为中心,其两侧围岩发生云英岩化蚀变,云英岩与二云母花岗岩呈逐渐过渡关系(图 2b)。
图 2 石雷矿区钨锡锂多金属矿体特征a、e、f—产于角岩化砂岩中的石英脉与黑云母石英复合脉; b、c、g、h—产于二云母花岗岩中的石英脉+云英岩复合脉复合型钨锡锂矿体; i、j—产于二云母花岗岩中的长石石英脉; d、k、l—产于二云母花岗岩中云母脉+云英岩(含钨锡矿化)复合脉; Bt—黑云母; Qtz—石英; Mus—白云母; Kfs—钾长石; Wf—黑钨矿; Py—黄铁矿Figure 2. Characteristics of tungsten, tin and lithium polymetallic ore bodies in the Shilei mining areaa, e, f-Quartz vein and biotite quartz composite vein occurring in hornfelized sandstone; b, c, g, h-Composite W-Sn-Li ore body of Quartz vein and greisen composite vein occurring in mica granite; i, j-Feldspar quartz veins occurring in mica granite; d, k, l-Mica vein+greisen (containing tungsten tin mineralization) composite vein occurred in two mica granite; Bt-Biotite; Qtz-Quartz; Mus-Muscovite; Kfs-K-feldspar; WfWolframite; Py-Pyrite(2)云母脉+云英岩复合型钨锡锂矿体:产于花岗岩体内接触带的二云母花岗岩中(图 2c),含钨锡石英脉穿插于云英岩中,脉两侧的云英岩中也有浸染状的细粒黑钨矿和锡石产出。
3. 含锂云母成分分析和初步认识
本次研究对11号勘探线两个坑内钻孔ZK11-09、ZK11-10(图 3)中的3件样品进行了分析。将钻孔样品制备为为厚度为30 μm的探针片,然后在国家地质测试实验中心,通过激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)分析出云母的成分。分析结果见于表 2。石雷矿区云英岩中的云母中Li2O的含量介于0.18%~0.89%。其中,ZK11-10-B2样品中Li2O的平均含量为0.30%;ZK11-10-B4样品中Li2O的平均含量为0.43%;ZK11-09-B9样品中Li2O的平均含量为0.52%。根据云母的Fetot+Mn+Ti-AlⅥ-Mg-Li图解(图 4),石雷矿区云英岩中的云母应属于白云母—多硅白云母(Guggenhim and Bailey, 1977; Tischendorf et al., 1977; Brigatti et al., 2001)。
表 2 石雷矿区云英岩中云母LA-ICP-MS原位分析结果Table 2. LA-ICP-MS in-situ analysis results of mica of greisen in the Shilei mining area云英岩是由花岗岩经高温热液作用形成的蚀变岩石,作为钨锡矿重要找矿标志,广泛发育于南岭钨锡矿床之中(陈毓川等,1989)。近年来,关于南岭成矿带及其邻区的钨锡矿床中云英岩带中富锂云母发现的报道陆续出现。不少的研究认为伴生于该类型的锂矿化主要赋存于铁锂云母-锂云母之中,例如栗木矿区的锂云母(李胜虎等,2015),大湖塘、香花岭、茅坪、漂塘、大厂矿区的铁锂云母(Legros et al., 2016, 2018;王正军等,2018;张勇等,2020;Guo et al., 2022)。石雷矿区云英岩中云母类型主要为Li含量较低的白云母—多硅白云母。根据矿山提供的钻孔样品测试分析结果,矿区深部、隐伏岩体顶部的云英岩化具有普遍性,其中仅中矿带角岩化砂岩中的云英岩的Li2O含量可达0.25%(视厚度为2.3 m);二云母花岗岩中发育视厚度为3.08 m,Li2O含量为0.15%~0.27%(平均0.21%)的石英(长石)脉—云英岩复合型锂矿化体;二云母花岗岩中发育的含云母脉云英岩连续4个样品(视厚度为3.08 m)的WO3含量为0.022%~2.61%,Sn为0.013%~ 0.93%;Li2O为0.14%~0.33%(平均0.22%),均达到共伴生品位要求,具有潜在的综合利用价值。该类型伴生的锂矿化的发现证实,钨锡矿中低锂含量云母的大量富集也可形成具有工业价值的锂矿体。此外,富锂云英岩主要发育于晚期的二云母花岗岩之中,其成矿来源显然不可能来自于稍早形成的黑云母花岗岩,但其成矿母岩是否为高分异的锂氟花岗岩,且钨锡矿与锂等稀有金属成矿关系如何依然有待进一步研究(Legros et al., 2018)。总之,该发现丰富了钨锡矿床的成矿理论,拓宽了区域云英岩型锂矿的找矿勘查思路,并为进一步该类型矿床的找矿空间提供了依据。
4. 南岭钨锡矿中云英岩型锂矿成矿潜力及找矿方向
随着锂云母提锂技术的逐渐成熟,赣西北九岭地区岩体型锂矿的找矿突破(李仁泽等,2020),赣南石英脉型钨锡矿床深部及外围云英岩型锂矿的引起了同行的关注(王学求等,2020;娄德波等,2022)。已有的资料表明(陈毓川等,1989),云英岩是岩浆气液交代花岗岩的产物,依据其形态,云英岩可以划分为岩体型和脉带型。岩体型云英岩主要分布于白云母花岗岩体的岩凸部位,如崇义县茅坪钨矿床,云英岩上部产有石英脉型钨锡矿脉带,其下是石英脉+云英岩脉带,呈“草帽”状,是岩体型和脉带型的复合型,主要含锂矿物为铁锂云母和含锂白云母,具有形成大型锂矿床的潜力;脉带型云英岩主要分布在花岗岩与围岩的内接触带上,如九龙脑岩体内洪水寨钨钼锂矿床,西华山钨矿床、张天堂岩体内塘飘孜钨矿床等,其赋矿围岩均为黑云母花岗岩,具有形成中型锂矿床的潜力。
以往的地质勘查工作仅评价云英岩中的钨锡矿,其共伴生云英岩中锂没有进行系统的评价。初步的野外地质调查表明,赣南地区已发现含锂矿物有铁锂云母(茅坪钨矿床、淘锡坝锡矿床等)、含锂多硅白云母(石雷钨锡矿床)、锂云母(铁山垅钨矿床外围),以铁锂云母为主,云英岩中锂含量的高低与含锂云母成正相关,现已发现铁锂云母脉的Li2O含量最高可达1.04%(淘锡坝)。西华山—漂塘—茅坪—塘漂孜钨矿带分布著名的西华山、漂塘、茅坪等大型钨锡矿床,其共伴生的云英岩均有不同程度锂矿化显示,个别矿床具有形成大型锂矿床的潜力。除对已知石英脉型钨锡矿床深部及外围云英岩开展锂矿地质勘查及评价工作外,需要注重对赣南地区花岗岩型锂矿床地质找矿工作部署。目前,龙南九曲地区已经新发现了白云母钠长石锂矿体,这为赣南地区寻找宜春“414”岩体型锂钽矿床提供了很好的线索。
总体上,南岭地区从早古生代特别到中生代强烈的断块运动及相伴随的岩浆活动,对内生稀有元素成矿起着主要作用,稀有元素成矿一般发生在多期活动的晚期岩体之中。随着国家科技水平不断提高, 新一轮科技革命的不断发展, 锂等战略性新兴产业矿产需求量将保持较快增长态势(王登红,2019;陈其慎等,2021;王成辉等,2022),南岭地区云英岩型锂矿的成矿作用研究和找矿勘查也将进一步得到重视。下一步工作中,需要开展同步的成矿理论研究工作,特别是一些复式岩体晚阶段岩浆作用与锂矿化的关系值得高度关注。
5. 结论
南岭东段石雷石英脉钨锡矿深部识别出云英岩型锂矿,含锂矿物主要为白云母-多硅白云母。其中,产于角岩化砂岩中的云英岩Li2O含量平均可达0.25%,二云母花岗岩中石英(长石)脉-云英岩Li2O含量平均为0.21%,二云母花岗岩中发育的含云母脉云英岩Li2O平均为0.22%,具有潜在的综合利用价值。南岭地区具有良好的岩体型锂矿成矿潜力和巨大的找矿前景,石英脉型钨锡矿深部及外围发育的云英岩是主要的找矿目标。
致谢: 刘晓箫女士帮助绘制了相关图件,甘肃省地调院黄增宝博士仔细阅读了初稿,并提出许多有益的建议,在此表示感谢。 -
图 1 西秦岭同仁—合作地区岩浆岩分布图(据冯益民等,2002修改)
1—新近系、第四系;2—白垩系;3—晚三叠世火山岩;4—三叠系;5—石炭系、二叠系;6—花岗岩;7—蛇绿岩;8—断裂;9—岩体名称及年龄;10—地名;11—采样点;12—武山南英云闪长岩—奥长花岗岩-花岗闪长岩岩浆弧;13—同仁—岷县花岗岩—花岗闪长岩岩浆弧;14—同仁—武山—天水蛇绿岩
Figure 1. The distribution of magmatic rocks in Tongren-Hezuo area of West Qinling Mountain (modified from Feng Yiming et al; 2002)
1-Neogene and Quaternary; 2-Cretaceous; 3-Late Triassic volcanic rocks; 4-Triassic; 5- Carboniferous and Permian; 6-Granite; 7-Ophiolite; 8- Fault; 9-Rock body name and age; 10-Place name; 11-Sampling point; 12-South Wushan quartz-dolomitic diorite-syenite-granodiorite magmatic arc; 13-Tongren-Minxian granite-granodiorite magmatic arc; 14-Tongren-Wushan-Tianshui ophiolite
图 3 安山岩Nb /Y-Zr /TiO2-分类图解
Figure 3. Nb/Y-Zr /TiO2-classification of andesite in the study area
(after Winchester, 1977)
图 4 安山岩AR-SiO2图解
(据Wright,1969)
Figure 4. SiO2-AR diagram of andesite in the study area
(after Wright, 1969)
图 14 高镁/镁安山岩SiO2-MgO(a)、SiO2-FeO*/MgO(b)判别图解(据邓晋福等, 2010, 2015)
HMA—高镁安山岩;MA—镁安山岩;LF-CA—低铁钙碱性系列;CA—钙碱性系列;TH—拉斑玄武系列
Figure 14. SiO2-MgO(a), SiO2-FeO*(b)/MgO discriminant diagram of HMA/MA (after Deng Jinfu et al., 2010, 2015)
HMA—High magnesia andesite; MA—Magnesia andesite; LF-CA—Low iron calc-alkaline series; CA—Calc-alkaline series; TH—Tholeiite series
图 15 安山岩An-Ab-Or图解(据O’Connor,1965)
Figure 15. An-Ab-Or classification diagram of andesite in the study area (after O'Connor, 1965)
表 1 西秦岭安山岩主量元素(%)、微量元素(10-6)含量及主要参数
Table 1 The content of major elements (%), trace elements (10-6) and main parameters of andesite in West Qinling Mountain
表 2 不同构造环境安山岩主要参数(据Condie, 1986; 元素含量单位10-6)
Table 2 Andesite in different tectonic settings (after Condie, 1986; unit10-6)
-
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X
Che Zicheng, Luo Jinhai, Liu Liang. 2017. The Regional Tectonics of China and Its Adjacent Areas[M]. Beijing:Science Press, 58-59.
Condie K C. 1986. Geochemistry and tecnic setting of Early Proterozoic continental accretion in the southwestern United States[J]. J. Geol., 94:845-865. doi: 10.1086/629091
Dai Fuqiang, Zhao Zifu, Zheng Yongfei. 2015. Plate sheet mantle interaction:Genesis of andesitic volcanic rocks in the Dabie orogenic belt[J]. Journal of Jilin University (Earth Science Edition), 45(Supp. 1):15-20 (in Chinese with English abstract).
Deng Jinfu, Lu Fengxiang, E Molan. 1987.Hannuoba basalt magma origin and the rise of the P-T route[J]. Geological Review, 33(4):317-324 (in Chinese).
Deng Jinfu, Xiao Qinghui, Su Shangguo, Liu Cui, Zhao Guochun, Wu Zongxu, Liu Yong. 2007. Igneous rock assemblages and tectonic environment:Discussion[J]. Geological Journal of China Universities, 13(3):392-402(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/scdzxb201603003
Deng Jinfu, Liu Cui, Feng Yanfang, Xiao Qinghui, Su Shangguo, Zhao Guochun, Kong Weiqiong, Cao Wenyan. 2010. High magnesian andesite/diorite (HMA) and magnesian andesite/diorite (MA):Two typical igneous rocks related to oceanic subduction[J]. Geology in China, 37(4):1112-1118 (in Chinese with English abstract).
Deng Jinfu, Feng Yanfang, Di Yongjun, Liu Cui, Xiao Qinghui, Su Shangguo, Zhao Guochun, Meng Fei, Ma Shuai, Yao Tu. 2015.Igneous tectonic assemblage of magmatic arc and ocean land transition[J]. Geological Review, 61 (3):473-484 (in Chinese with English abstract).
Deng Jinfu, Feng Yanfang, Di Yongjun, Su Shangguo, Xiao Qinghui, Wu Guangying. 2016. Intrusive Tectonic Map of China (1:2500000)[M]. Beijing:Geological Publishing House, 1-100 (in Chinese).
Feng Yimin, Cao Xuanduo, Zhang ErpengL. 2002. Structure, Orogeny and Dynamics of the Western Qinling Mountains Orogenic belt[M]. Xi'an:Xi'an Cartographic Publishing House, 1-263 (in Chinese).
Feng Yimin, Cao Xuanduo, Zhang Erpeng, Hu Yunxu, Pan Xiaoping, Yang Junlu, Jia Qunzi, Li Wenming. 2003. Evolution, tectonic framework and nature of the western Qinling Mountains orogenic belt[J]. Northwestern Geology, 36(1):1-10 (in Chinese with English abstract).
Gan Chengshi, Wang Yuejun, Zhang Yuzhi. 2016. The identification and implications of the Late Jurassic shoshonitic high-Mg andesite from the Youjiang basin[J]. Acta Petrologica Sircica, 32(11):3281-3294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201611004
Huang Xiongfei. 2016. Petrogenesis of the Indosinian Granitic Magmatism Andtectonic Evolution of the West Qinling Orogenic Belt[D]. Beijing: China University of Geosciences, 1-125 (in Chinese with English abstract).
Jiang Yaohui, Jin Guodong, Liao Shiyong. 2010. Geochemical and SrNd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China:Implications for a continental arc to continent-continent collision[J]. Lithos, 117, 183-197. doi: 10.1016/j.lithos.2010.02.014
Jiang Yaohui, Jin Guodong, Liao Shiyong. 2012. Petrogenesis and tectonic implications of ultrapotassic microgranitoid enclaves in Late Triassic arc granitoids, Qinling orogen, central China[J]. International Geology Review, 54 (2):208-226. doi: 10.1080/00206814.2010.513202
Lassiter J C and De Paolo D J. 1997.Plume/lithosphere interaction in thegeneration of continental and oceanic flood basalts: Chemical and isotopic constraints[C]//Mahoney J (ed.). Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism.Geophysical Monography 100. American Geophysical Union, 335-355.
Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms[M]. Blackwell, Oxford:193.
Li Xiaowei, Mo Xuanxue, Yu Xuehui, Ding Yi, Huang Xiongfei, Wei Ping, He Wenyan. 2013. Petrology and geochemistry of the Early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China:Products of subduction or syn-collision?[J]. Lithos, 172-173. http://d.old.wanfangdata.com.cn/Periodical/dzxb-e201702010
Li Zhucang, Li Yongjun, Qi Jianhong. 2016. Geochemical characteristics and tectonic environment analysis of Huari volcanic rocks of Lower Triassic formation in Western Qinling Mountains[J]. Northwestern Geology, 49(1):26-32 (in Chinese with English abstract).
Liu Shuwen, Li Qiugen, Tian Wei. 2011. Petrogenesis of Indosinian granitoids in middle-segment of south Qinling tectonic belt:Constraints from Sr-Nd isotopic systematics[J]. Acta Geologica Sinica, 85(3):610-638. doi: 10.1111/j.1755-6724.2011.00455.x
Long Xiaoping, Sun Min, Yuan Chao, Xiao Wenjiao, Chen Hanlin, Zhao Yongjiu, Cai Keda, Li Jiliang. 2006. Restricting the formation mechanism of Carboniferous volcano rocks in eastern Junggar and the Junggar basin closure time[J]. Acta Petrologica Sinica, 22 (1):31-40(in Chinese with English abstract).
Ludwig K R. 2003. Users manual for isoplot/Ex(rsv.3.0): A Geochronologica Toolkit for Microsoft excel: Berkrley[J]. Geochronology Center Special Publication, No. 1a: 1-55.
Lu Xinxiang. 1998.The tectonic evolution of Qinling Mountains revealed by granites in Qinling Mountains. Advances in the study of granites in Qinling Mountains[J]. Advances in Geosciences, 13(2):213-214 (in Chinese).
Muller, Rocknms, Groves. 1992. Geochemical discrimination between shonitic and potassic volcanic rocks from different tectonic settings:A pilot study[J]. Mineral Petrol, 46:259-289. doi: 10.1007/BF01173568
Muller, Groves. 2000. Potassic Igneous Rocks and Associated GoldCopper Mineralization[M]. 3rd ed. Berlin:Springer-Verlag, 252.
O'Connor J T. 1965. A classification for quartz-rich igneous rocks basedon feld spar ratios[G]. U.S. Geol. Surv. Prof. Paper, 525B: B79-B84.
Pan Guitang, Chen Zhiliang, Li Xingzhen. 1997.The Formation and Evolution of Geological Structure of Eastern Tethys[M]. Beijing:Geological Publishing House, 86-97(in Chinese).
Pan Guitang, Xiao Qinghui. 2016. Tectonic Map of China (1:2500000)[M]. Beijing:Geological Publishing House, 1-70 (in Chinese).
Pan Guoqiang, Zhao Lianze, Xia Mulin. 1997. Tectonic model of the Dabieshan collision orogen and its geological evolution[J]. Regional Geology of China, 16(1):43-50 (in Chinese with English abstract).
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745
Qin Jiangfeng, Lai Shaocong. 2011. The genesis and deep dynamics of Late Triassic Granites in the Qinling Mountains orogenic belt[M]. Beijing:Science Press, 1-267 (in Chinese).
Qiu Jiansheng, Xu Xisheng, Jiang Shaoyong. 2003. Causes of deep crustal subduction and potassium rich volcano rocks[J]. Earth Science Frontiers, 10(3):191-197(in Chinese with English abstract).
Ren Jishun, Jiang Chunfa, Zhang Zhengkun. 1980. Tectonics and evolution of China[M]. Beijing:Science Press, 1-106(in Chinese).
Ren Jishun, Zhang Zhengkun, Niu Baogui. 1991. Study on the process of assembling the Qinling Orogenic Belt and the Yangtze Block in the Yangtze Region[C]//Ye Lianjun, Qian Xianglin, Zhang guowei. Selected Papers on the Academic Symposium of Qinling Mountains Orogenic Belt. Xi' an: Northwestern University Press, 99-110(in Chinese).
Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Holland H D and Turekian KK (eds.). The Crust Vol. 3 Treatise on Geochemistry[J]. Oxford: Elsevier-Pergamon, 1-64.
Sun S S, McDonough W F. 1989. Chemical and isotope systematic of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins.Geological Society Special Publication, 42: 313-345.
Taylor S R and Mc Lennan S M. 1985. The continental crust its composition and evolution-an examination of the geochemical record preserved in sedimentary-rocks[J]. Science, 231(4739):751-752. http://cn.bing.com/academic/profile?id=fba2286231668c4e09f69361d33835c7&encoded=0&v=paper_preview&mkt=zh-cn
Wang Qingchen, Cong Bolin. 1998. Tectonic framework of the ultrahigh-pressure metamorphic zone from the Dabie Mountains[J]. Acta Petrologica Sinica, 14(4):481-492 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199804008
Wright J B A. 1969. Simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geol. May, 106(4):370-384. doi: 10.1017/S0016756800058222
Winchester, P A Floyd. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
Xia Linqi, Xia Zuchun, Xu Xueyi, Li Xiangmin, Ma Pingzhong. 2007.Discrimination of continental basalts and island arc basalts using geochemical methods[J]. Journal of Petrology and Mineralogy, 26(1):77-88 (in Chinese with English abstract).
Xiao Qinghui, Li Tingdong, Pan Guitang, Lu Songninan, Ding Xiaozhong, Deng Jinfu, Feng Yinmin, Liu Yong, Kou Caihua, Yang Linlin. 2016.A petrological approach to the identification of Oceanic and terrestrial transformations the identification of oceanic arcs and initial subduction[J]. Geology China, 43(3):721-737(in Chinese with English abstract).
Xu Xueyi, Chen Juanlu, Gao Ting, Li Ping, Li Ting. 2014.Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane[J]. Acta Petrologica Sinica, 30(2):371-389(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402006
Yan Zhen. 2002. Deposition and Mineralization of the Late Paleozoic Arc Basin in West Qinling Mountains[D]. Beijing: Institute of Geology and Geophysics, Graduate University of Chinese Academy of Sciences, 20-50 (in Chinese with English abstract).
Yan Zhen, Wang Zongqi, Li Jiliang. 2008. Restoration of tectonic prototype of sedimentary basin in orogenic belt[J]. Geological Bulletin of China, 27(12):2001-2013 (in Chinese with English abstract).
Yin Hongfu, Zhang Kexin, Feng Qinglai. 2004. The archipelagic ocean system of eastern Eurasian Tethys[J]. Aeta Geologica Sinica, 78(l):230-236. http://cn.bing.com/academic/profile?id=faf5e1ec8e3737821bd14c90395d0aaf&encoded=0&v=paper_preview&mkt=zh-cn
Yin Yong, Yin Xianming. 2009. Porphyry-type Cu-Mo-Au mineralization related to adakitic and Himalayan granites of the northern West Qinling Mountains[J]. Acta Petrologica Sinica, 25 (5):1239-1252(in Chinese with English abstract).
Zhang Guowei, Zhang Zongqing, Dong Yunpeng. 1995. Tectonic characteristics and tectonic significance of the main tectonic lithostratigraphic units in the Qinling Mountains orogenic beltt[J]. Chinese Journal of Petrology, 11(2):101-113 (in Chinese with English abstract).
Zhang Guowei, Zhang Benren, Yuan Xuecheng. 2001. Qinling Mountains Orogenic Belt and Continental Dynamics[M]. Beijing:Science Press, 40-90 (in Chinese).
Zhang Guowei, Guo Anlin, Yao Anping. 2004. The continental tectonic junction of Western Qinling Mountains and Songpan in Chinese tectonics[J]. Earth Science Frontiers, 11 (3):23-32(in Chinese with English abstract).
Zhang Kexin, Huang Jichun, Yin Hongfu, Wang Guocan, Wang Yongbiao, Feng Qinglai, Tian Jun. 2000. Application of radiolarians and other fossils in non-Smithstrata:Exemplified by the Animaqing mélange belt in eastern Kunlun Mountains[J]. Science in China(SeriesD), 43(4):364-374. doi: 10.1007/BF02959447
Zhang Kexin, Yin Hongfu, Zhu Yunhai. 2001. Geological Mapping Theory, Method and Practice in Orogenic Melange Area[M]. Wuhan:China University of Geosciences Press, 1-165 (in Chinese with English abstract).
Zhang Kexin, Zhu Yunhai, Lin Qixiang, Kou Xiaohu, Fan Guangming, Chen Fengning, Luo Genming. 2007. The discovery of the mafic ultramafic zone for the first time in the long valley area of Tongren County, Qinghai[J]. Geological Bulletin of China, 26(6):661-667(in Chinese with English abstract).
Zhang Qi, Yin Xianming, Yin Yong, Jin Weijun, Wang Yuanglong, Zhao Yanqing. 2009. The prospecting problems of gold-copper mineralization in Western Qinling Mountains related to adakite and Himalaya type granite related[J]. Acta Petrologica Sinica, 25(12):3103-3122 (in Chinese with English abstract).
车自成, 罗金海, 刘良. 2017.中国及其邻区区域大地构造学[M].北京:科学出版社, 58-59. 代富强, 赵子福, 郑永飞. 2015.板片-地幔相互作用:大别造山带碰撞后安山质火山岩成因[J].吉林大学学报(地球科学版), 45(增刊1):15-20. http://d.old.wanfangdata.com.cn/Periodical/kxtb200312022 邓晋福, 路凤香, 鄂莫岚. 1987.汉诺坝玄武岩岩浆起源及上升的p-t路线[J].地质论评, 33(4):317-324. doi: 10.3321/j.issn:0371-5736.1987.04.003 邓晋福, 肖庆辉, 苏尚国, 刘翠, 赵国春, 吴宗絮, 刘勇. 2007.火成岩组合与构造环境:讨论[J].高校地质学报, 13(3):392-402. doi: 10.3969/j.issn.1006-7493.2007.03.009 邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕.2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 邓晋福, 冯艳芳, 狄永军, 刘翠, 肖庆辉, 苏尚国, 赵国春, 孟斐, 马帅, 姚图. 2015.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 61(3):473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001 邓晋福, 冯艳芳, 狄永军, 苏尚国, 肖庆辉, 伍光英. 2016.中国侵入岩大地构造图(1:2500000)[M].北京:地质出版社, 1-100 冯益民, 曹宣铎, 张二朋. 2002.西秦岭造山带结构造山过程及动力学[M].西安:西安地图出版社, 1-263. 冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003.西秦岭造山带的演化构造格局和性质[J].西北地质, 36(1):1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001 甘成势, 王岳军, 张玉芝. 2016.右江盆地晚侏罗世钾玄质高镁安山岩的厘定及其构造意义[J], 岩石学报, 32 (11):3281-3294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201611004 黄雄飞. 2016.西秦岭印支期花岗质岩浆作用与造山带演化[D].北京: 中国地质大学(北京), 1-125 李注苍, 李永军, 齐建宏. 2016.西秦岭下三叠统华日组火山岩地球化学特征及构造环境分析[J].西北地质, 49(1):26-32. doi: 10.3969/j.issn.1009-6248.2016.01.003 龙晓平, 孙敏, 袁超, 肖文交, 陈汉林, 赵永久, 蔡克大, 李继亮. 2006.东准噶尔石炭系火山岩的形成机制及其对准噶尔洋盆闭合时限的制约[J].岩石学报, 22(1):31-40. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200601003 卢欣祥. 1998.秦岭花岗岩揭示的秦岭构造演化过程——秦岭花岗岩研究进展[J], 地球科学进展, 13 (2):213-214. doi: 10.3321/j.issn:1001-8166.1998.02.020 路凤香, 桑隆康. 2001.岩石学[M].北京:地质出版社, 10-11. 秦江峰, 赖绍聪. 2011.秦岭造山带晚三叠世花岗岩成因与深部动力学[M].北京:科学出版社, 1-267. 潘桂棠, 陈智梁, 李兴振. 1997.东特提斯地质构造形成演化[M].北京:地质出版社. 86-97. 潘桂棠, 肖庆辉. 2016.中国大地构造图(1:2500000)[M].北京:地质出版社, 1-70. 潘国强, 赵连泽, 夏木林. 1997.大别山碰撞造山带的构造模型及其地质演化[J].地质通报, 16(1):43-50. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD701.007.htm 邱检生, 徐夕生, 蒋少涌. 2003.地壳深俯冲与富钾火山岩成因[J].地学前缘, 10(3):191-197. doi: 10.3321/j.issn:1005-2321.2003.03.018 任纪舜, 姜春发, 张正坤. 1980.中国大地构造及其演化[M].北京:科学出版社, 1-106. 任纪舜, 张正坤, 牛宝贵. 1991.论秦岭造山带-中朝与扬子陆块的拼合过程[C]//叶连俊, 钱祥麟, 张国伟.秦岭造山带学术讨论会论文选集[M].西安: 西北大学出版社, 99-110. 王清晨, 从柏林. 1998.大别山超高压变质带的大地构造框架[J].岩石学报, 14(4):481-492. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199804008 夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 26(1):77-88. doi: 10.3969/j.issn.1000-6524.2007.01.011 肖庆辉, 李廷栋, 潘桂棠, 陆松年, 丁孝忠, 邓晋福, 冯益民, 刘勇, 寇彩化, 杨琳琳. 2016.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J].中国地质, 43(3):721-737. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160303&flag=1 徐学义, 陈隽璐, 高婷, 李平, 李婷. 2014.西秦岭北缘花岗质岩浆作用及构造演化[J], 岩石学报, 30 (2):371-389 http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402006 闫臻. 2002.西秦岭晚古生代弧前盆地沉积与成矿作用[D].北京: 中国科学院研究生院地质与地球物理研究所, 20-50. http://www.irgrid.ac.cn/handle/1471x/174667 闫臻, 王宗起, 李继亮. 2008.造山带沉积盆地构造原型恢复[J], 地质通报, 27(12):2001-2013. doi: 10.3969/j.issn.1671-2552.2008.12.005 殷勇, 殷先明. 2009.西秦岭北缘与埃达克岩和喜马拉雅型花岗岩有关的斑岩型铜-钼-金成矿作用[J].岩石学报, 25 (5):1239-1252. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200905016 张国伟, 张宗清, 董云鹏. 1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报, 11(2):101-113. doi: 10.3321/j.issn:1000-0569.1995.02.002 张国伟, 张本仁, 袁学诚. 2001.秦岭造山带与大陆动力学[M].北京:科学出版社, 40-90. 张国伟, 郭安林, 姚安平. 2004.中国大陆构造中的西秦岭松潘大陆构造结[J].地学前缘, 11(3):23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004 张克信, 殷鸿福, 朱云海. 2001.造山带混杂岩区地质填图理论、方法与实践[M].武汉:中国地质大学出版社, 1-165. 张克信, 朱云海, 林启祥, 寇晓虎, 樊光明, 陈奋宁, 罗根明. 2007.青海同仁县隆务峡地区首次发现镁铁质-超镁铁质岩带[J].地质通报, 26(6):661-667. doi: 10.3969/j.issn.1671-2552.2007.06.005 张旗, 殷先明, 殷勇, 金惟俊, 王元龙, 赵彦庆. 2009.西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题[J].岩石学报, (12):3103-3122. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912001 -
期刊类型引用(3)
1. 张学艳,许强平. 安徽省无为市浪尖山黑色熔剂用石灰岩矿地质特征及开采技术条件分析. 地下水. 2025(01): 209-211 . 百度学术
2. 沈东升,鲍祺祺,邱钧健,古佛全,龙於洋. 氧化钙对危险废物焚烧飞灰热处理过程中铅释放的抑制. 环境科学学报. 2022(09): 238-244 . 百度学术
3. 陆世才,农良春,叶胜,江沙,龙鹏,聂继绩,陈俊宏. 广西平广林场那厘矿区熔剂用石灰岩矿矿床地质特征及成因探讨. 现代矿业. 2022(08): 65-67+72 . 百度学术
其他类型引用(1)