Clay mineral provenance and its response to paleochimate in the central Okinawa Trough since the last Deglaciation (19 ka)
-
摘要:
基于采自冲绳海槽中部的CS2站柱状沉积物黏土矿物和AMS14C年代分析,探讨了末次冰消期以来冲绳海槽中部黏土矿物的物质来源及其环境指示意义。结果显示,CS2站黏土矿物以伊利石为主,其次为绿泥石,高岭石和蒙脱石含量较少。根据黏土矿物分布趋势变化,CS2站柱状沉积物可划分为3个阶段:阶段(Ⅰ 19~12 ka BP)和阶段Ⅱ(12~8 ka BP)期间沉积物主要来源于长江,台湾和黄河物质也有一定影响,其物质来源主要受海平面升降的控制;阶段Ⅲ(8~0 ka BP)主要来源于长江和台湾,黄河贡献有限,主要受黑潮演化的影响。CS2站(蒙脱石+高岭石)/(伊利石+绿泥石)比值可以作为东亚季风演化的矿物学指标,指标变化显示出东亚冬季风强度相对夏季风的强度在16.4~14.8 ka BP和12.8~11.6 ka BP期间有两次显著的加强,指示当时气候相对寒冷干燥,结果可以与格陵兰冰心δ18O和三宝洞δ18O记录等很好对比。
Abstract:In this paper, the authors discussed the clay mineral provenances and their environmental significance since the last Deglaciation on the basis of clay minerals and AMS14C dating analysis carried out for Core CS2, which was located in the central Okinawa Trough. The results show that Core CS2 mainly consists of illite and lesser amounts of chlorite, with associated kaolinite and smectite. Downcore variability of clay mineral content allows Core CS2 to be divided into three units. The sediments were primarily derived from Changjiang with lesser amounts from Huanghe and Taiwan in unit 1 (19-12 ka BP) and unit 2 (12-8 ka BP), which was mainly controlled by sea level change. In unit 3 (8- 0 ka BP), the sediments were primarily derived from Changjiang and Taiwan, with lesser amounts from Huanghe, which was mainly controlled by Kuroshio evolution. The ratios of (smectite+ kaolinite)/(illite+chlorite) at CS2 were adopted as proxies for East Asian monsoon evolution. The consistent variation of this clay proxy with those from Sanbao Cave δ18O and GISP2 δ18O shows that two profound shifts of the East Asian winter monsoon intensity and the intensity of winter monsoon relative to summer monsoon occurred at 16.4-14.8 ka BP and12.8-11.6 ka BP.
-
Keywords:
- deglaciation /
- 19 ka /
- clay minerals /
- provenance /
- paleochimate /
- geological survey engineering /
- Okinawa Trough
-
1. 引言
冲绳海槽沉积物记录了晚第四纪以来高分辨率的海洋环境演变信息,是研究海陆相互作用及古气候演化的绝佳场所(Xu et al., 2018;窦衍光等,2018;密蓓蓓等,2019),而识别沉积物物源成为解决这一系列问题的关键(Dou et al., 2010a;Xu et al., 2012;Wang et al., 2015)。冲绳海槽与中国大陆和西太平洋连接,槽内火山、地震和热液活动频发,而且受到黑潮和沿岸物质的影响,其沉积环境复杂,物质来源多样(蔡明江等,2017)。诸多学者运用沉积学、矿物学、地球化学等方法对冲绳海槽物质来源进行了研究,认为陆源物质来源、海平面变化、洋流变化(特别是黑潮)和古气候演化是控制冲绳海槽沉积作用的主要因素(Diekmann et al., 2008;Dou et al., 2010a;Xu et al., 2012;Wang et al., 2015;胡思谊等,2019)。但目前对于末次冰消期以来冲绳海槽的物质来源仍存在争议:一种观点认为末次冰消期以来冲绳海槽物源没有变化,主要来自于中国大陆河流,尤其是长江和黄河以及东海陆架物质通过底流的侧向输入(Kao et al., 2003;Katayama et al., 2003),另一种观点则认为高海平面以来,特别是黑潮主轴重新进入冲绳海槽之后,黑潮对陆架物质向冲绳海槽输送的阻隔使得中国东部物质很难搬运至海槽内,沉积物质主要来自于台湾(Diekmann et al., 2008;Dou et al., 2010a)。本文对取自于冲绳海槽中部的CS2站柱状沉积物进行了AMS14C和黏土矿物分析,探讨了末次冰消期以来冲绳海槽中部黏土矿物的物质来源及其对环境的指示意义。
2. 区域概况
冲绳海槽是西北太平洋的一个典型边缘海盆,位于东海大陆架东南部,地处陆架边缘,琉球岛弧西侧,南起台湾北部宜兰平原,北到日本九州群岛,呈东南向凸出的弧形展布(图 1)。海槽全长1200km,总面积约1.4×105 km2,呈现北部浅南部深、两边浅中间深的形态,北部最大水深约为200 m,南部最大水深可达2300 m(Dou et al., 2010a)。槽内接受了来自周边海域巨量的碎屑物质,北部沉积物厚约8 km,南部约2 km(Dou et al., 2010a),主要以黏土粒级为主(54%~57%),粉砂组分含量约在40%,总体粒径偏细,以海槽中轴为对称轴呈现近似对称分布,由中央向海槽东西两坡,沉积物粒度逐渐变粗(王佳泽,2013)。冲绳海槽气候主要受到东亚季风影响,降水、气温以及大气环流具有显著的季节性特征(Lee et al., 2003)。东部的黑潮—对马暖流—黄海暖流体系以及西部靠近东亚大陆的黄海沿岸流—苏北沿岸流—闽浙沿岸流两个洋流体系影响着东亚大陆及周边岛屿物质向冲绳海槽的输运(Liu et al., 2015)。此外,研究认为冲绳海槽中—北段的张裂始于中中新世陆架前缘坳陷的裂陷,后于晚中新世向东跃迁至海槽,至晚上新世或者更新世早期,现今的构造格局基本稳定下来(李乃胜等,1998)。因此可以说末次冰消以来冲绳海槽中部的沉积作用可能并没有受到冲绳海槽大的构造运动的影响。
图 1 冲绳海槽流系及CS2站柱状沉积物位置图(据赵德博,2017修改)Figure 1. Location of Core CS2 and ocean current system of Okinawa Trough (modified from Zhao Debo, 2017)3. 材料与方法
3.1 样品来源
CS2站柱状沉积物由中国地质调查局海洋地质研究所利用重力取样器取自冲绳海槽中部区域(26.41°N,125.73°E,水深1825 m,图 1)。在实验室内对该岩心进行了分样和详细描述。岩心长度为425 cm,为连续沉积,没有明显的间断、倒转和浊积层,主要由灰色黏土质粉砂组成。其中104~124 cm发育典型的火山灰层,与日本周边广泛分布的7.3 ka BP左右喷发的K-Ah火山灰层具有可对比性(Kitagawa et al., 1995)。
3.2 AMS14C测年
为获得较高分辨率的地层年代框架,以40 cm等间距选取10个层位,每个层位挑选约20 mg直径大于200 μm的浮游有孔虫Neogloboquadrina dutertrei,在美国Beta实验室进行AMS14C年代测试。原始测年数据利用CALIB7.0.4软件(Hughen et al., 2004)进行日历年龄校正,400 a的大气与海水间的全球碳储库差异由程序自动减去。本文所指的年龄均为日历年龄,其他层位的年代数据通过线性内插和外推获得。
3.3 黏土矿物分析
黏土矿物取样间隔为8 cm,采用黏土粒级组分(< 2 µm)定向薄片的X射线衍射(XRD)方法(Wan et al., 2007)。样品测试前用15% H2O2和0.5 mol/L HCl反应去除有机质和钙质,加去离子水离心清洗2次,每次离心时间设定为6 min,转速为3500 rpm。按Stoke原理抽取上部 < 2 µm的悬浮液,分别制成自然片和加热片,分别在自然条件和乙二醇饱和条件下进行测试,扫描角度3°~30°(2θ),步长0.02°。黏土矿物的鉴定和解释主要依据2种测试条件下获得的XRD叠加图谱的综合对比,使用Jade5.0软件对主要衍射峰面积进行拟合、提取特征峰强度值,按Biscaye(1965)方法计算了4种黏土矿物(蒙脱石、伊利石、高岭石和绿泥石)的相对含量。伊利石结晶度根据10Å衍射峰处的半高宽来确定,低值表示结晶程度高,指示物源区水解作用较弱,为干冷气候条件,高值表示结晶程度低指示物源区水解作用较强,为温暖湿润气候环境(Krumm and Buggish, 1991;Ehrmann,1998)。伊利石的化学指数通过5Å/10Å峰面积比来计算,比值大于0.5为富Al伊利石,指示水解作用较强烈;小于0.5为富Fe-Mg伊利石,主要对应物理风化结果(Gingele et al., 1998;Gingele et al., 2001)。
4. 结果
4.1 年代结果
CS2站柱状样AMS14C测年结果如表 1所示。
表 1 CS2孔AMS14C年龄数据Table 1. AMS14C age data of Core CS2结合7.3 ka BP的K-Ah火山事件,建立了地层年代序列(图 2)。CS2站岩心形成于19 ka以来,岩心自下而上沉积速率总体上呈递减趋势,岩心底部沉积速率较高,顶部沉积速率较低。18.2~15.8 ka BP之间沉积速率均在30 cm/ka之上,之后呈阶梯状下降,除4.3~5.8 ka BP期间沉积速率较高之外,14.3 ka BP以来沉积速率均在25 cm/ka以上,特别是4 ka BP以来沉积速率仅为10.5 cm/ka。
4.2 黏土矿物特征
XRD分析结果显示,CS2站柱状沉积物黏土矿物主要由伊利石组成,其次为绿泥石,高岭石和蒙脱石含量较低(图 3)。伊利石含量为56%~78%,平均67%,绿泥石含量为7%~21%,平均17%,高岭石含量为5%~15%,平均10%,蒙脱石含量为1%~ 12%,平均6%。伊利石结晶度范围为0.24°~0.37°△2θ,平均值为0.28°△2θ,结晶程度极好;伊利石化学指数在0.22~0.71(平均值为0.44),多数小于0.50,说明伊利石为富Fe-Mg伊利石,形成于强烈的物理侵蚀环境。
根据黏土矿物分布趋势变化,可将CS2柱状沉积物大致划分为3个沉积阶段,阶段Ⅰ(19~12 ka BP)、Ⅱ (12~8 ka BP)、Ⅲ (8~0 ka BP)(图 3)。阶段Ⅰ,自下而上,伊利石含量呈现不断增加的趋势,蒙脱石含量变化趋势相反,高岭石和绿泥石含量较为稳定,伊利石结晶度和化学指数都呈现增大的趋势;阶段Ⅱ,自12 ka以来,伊利石含量呈现增加的趋势,绿泥石和蒙脱石略有减少,高岭石含量较为稳定,伊利石结晶度呈减小的趋势,伊利石结晶度无明显的变化趋势;排除可能受人为扰动的表层样品,阶段Ⅲ,自8 ka BP以来,伊利石和绿泥石呈现先增加后减少的趋势,蒙脱石和高岭石呈现明显的先减少后增加的趋势,伊利石结晶度自8 ka以来持续减小,伊利石化学指数逐渐增加,4种黏土矿物含量在4 ka BP附近有一个较为明显的转折点。
5. 黏土矿物物质来源分析
黏土矿物主要由物源区原岩风化作用生成,其中伊利石和绿泥石是相对寒冷、干旱气候条件下由原岩经风化水解的初始产物;高岭石是在温暖、潮湿的气候条件下原岩经过强烈的水解作用形成;蒙脱石与火山岩的化学风化作用密切相关,主要是铁镁质硅铝酸盐原岩的化学风化产物。不同气候条件,不同原岩类型的物源区黏土矿物组合具有独特性(李传顺等,2012),因此黏土矿物组合可用于示踪沉积物的物质来源(Dou et al., 2010a;Xu et al., 2014)。
在海底缺氧低温的环境下,火山物质很难风化成蒙脱石(Aumento et al., 1976),在火山灰层(K- Ah)及相邻层位,没有出现蒙脱石含量增加,反而有降低的趋势,因此基本可以排除火山喷发对研究区黏土矿物的贡献。长江和黄河每年向亚洲东部边缘海输入470 Mt和1100 Mt的沉积物;台湾岛地形陡峭,降雨充沛,加上频繁的构造运动,每年可以向周边海域提供300 Mt的沉积物(Milliman and Farnsworth, 2011),因此长江、黄河和台湾可以为冲绳海槽提供充足的物质来源。黄河的蒙脱石含量高于长江,常被作为区分黄河和长江来源沉积物的标准(Wan et al., 2007;Liu et al., 2010)。台湾由于其频繁的构造运动和季节性降雨,沉积物处于较低程度的风化状态,沉积物中伊利石和绿泥石含量较高,高岭石和蒙脱石含量较低(Wan et al., 2007;李传顺等,2012)。为判别CS2站的物质来源,选择蒙脱石、伊利石+绿泥石、高岭石3种矿物组合进行三角图投点,并与长江、黄河(含古黄河)、台湾河流三个潜在物源区进行对比(图 4)。
图 4 CS2站与潜在物源区沉积物黏土矿物含量对比图1—长江、黄河黏土矿物(据Xu,1983;杨作升,1988;范德江等,2001;Yang et al., 2003);2—古黄河黏土矿物(据Liu et al., 2010);3—台湾东、西部河流黏土矿物(据李传顺等,2012)Figure 4. Ternary diagram showing variations in clay minerals of Core CS2 and potential provenances1-Clay minerals of the Yangtze River and the Yellow River (after Xu, 1983; Yang Zuosheng, 1988; Fan Dejiang, etc., 2001;Yang et al., 2003); 2-Ancient clay minerals of the Yellow River (after Liu et al., 2010); 3-Taiwan River clay minerals in the east and the west (after Li Chuanshun et al., 2012)阶段Ⅰ(19~12 ka BP)黏土矿物组合与长江物质最为接近,部分层位靠近黄河和台湾。此阶段对应末次冰消期,海平面较低(图 5),古长江口靠近冲绳海槽中部(Dou et al., 2010a;Xu et al., 2017),因此研究区接受了大量古长江河流物质的输入,导致此阶段沉积速率较高(图 5)。随着海平面持续波动上升,古长江口不断远离冲绳海槽,导致陆源物质输入逐渐减少,同样导致岩心沉积速率自底部而上也逐渐减小(图 5)。因此,CS2站阶段Ⅰ沉积物主要来源于长江,台湾和黄河物质也可能有一定影响,其沉积物输入主要受海平面升降控制。
图 5 黏土矿物滑动平均曲线和沉积速率及其与海平面波动、格陵兰GISP2冰心δ18O曲线、三宝洞石笋δ18O曲线间对比H1— Heinrich 1事件;YD—新仙女木事件;1—海平面数据(据Lambeck et al., 2002;Liu et al., 2004);2—格陵兰GISP2冰心数据(据Stuiver et al.,1995;Grootes and Stuiver, 1997);3—三宝洞石笋数据(据Cheng et al., 2016)Figure 5. Vertical changes of (kaolinite+ smectite)/(illite + chlorite) and sedimentation rates for Core CS2 with sea-level fluctuation, and the stable isotopes of stalagmites in GISP2 and Sanbao CaveH1-Heinrich Event 1;YD-Younger Dryas; 1-Sea level data (after Lambeck et al., 2002; Liu et al., 2004); 2-Greenland GISP2 ice core data (after Stuiver et al., 1995; Grootes and Stuiver, 1997); 3-Sanbao cave stalagmite data (after Cheng et al., 2016)阶段Ⅱ(12~8 ka BP)与阶段Ⅰ相比黏土矿物组合变化不大,与长江最为接近,部分层位靠近黄河和台湾(图 4)。12~8 ka BP期间对应全新世早期,此时海平面急剧升高,到8 ka BP左右到达现今位置(Xu et al., 2017)。古长江口与冲绳海槽的距离随海平面升高而逐渐变大,导致由中国大陆进入冲绳海槽的物质减少,CS2站阶段Ⅱ相应地表现出大陆来源的蒙脱石含量不断减少,沉积速率进一步降低(图 5)。综上所述,海平面的升高导致大陆来源物质减少,但CS2站阶段Ⅱ物质来源与阶段Ⅰ基本相同,主要来源于长江,台湾和黄河的影响有限,沉积物中陆源物质输入的变化主要受海平面升降控制。
阶段Ⅲ (8~0 ka BP)对应全新世中期至今,此阶段伊利石平均含量较之前相对增加,绿泥石、蒙脱石和高岭石平均含量较之前相对减少,黏土矿物组合界于长江和台湾之间,说明该阶段物质来源较之前发生了变化,台湾贡献相对增大,中国大陆河流贡献进一步减小,物质主要来自长江和台湾的混源。根据4种黏土矿物含量的变化特征,以4 ka BP为界,可将该阶段细分为两部分。8~4 ka BP期间,由于黑潮的主轴重新进入(Jian et al., 2000;Diekmann et al., 2008),为冲绳海槽带来大量台湾细粒物质(Diekmann et al., 2008),导致CS2站在该阶段伊利石含量增加,沉积速率增大。前人对冲绳海槽中部DGKS9604孔的物源分析同样表明,中全新世期间台湾来源物质对研究区的贡献可达50%(Dou et al., 2010a)。同时黑潮的“水障作用”阻挡了中国大陆河流(如长江)的沉积物向冲绳海槽搬运,本阶段蒙脱石含量的减少也证明了以相对高含量蒙脱石为代表的大陆河流来源物质减少。4 ka以来黑潮减弱(向荣等,2000;Jian et al., 2000;蔡明江等,2017),相应的台湾物质输入减少,CS2站表现出伊利石含量不断减少。同时黑潮对大陆物质的阻挡作用减弱,以高含量蒙脱石为特征的大陆河流(如长江)物质得以进入冲绳海槽,CS2站表现出4 ka以来蒙脱石含量不断增加。此时长江物质的输入应该十分有限,不足以抵消台湾物质减少的影响,因此4 ka以来CS2站沉积速率较低。综上所述,8 ka以来研究区物质主要来源于长江和台湾,黄河贡献有限,物质来源主要受控于黑潮演化的影响。
王玥铭等(2018)对位于冲绳海槽中部的OKT12站研究结果表明,10ka BP之后由于海平面上升、东亚夏季风增强、黑潮变动的影响,物质来源由之前的中国东部物质转变为台湾。而且临近站位的OKI04物质来源研究结果同样表明,7.5 ka BP以来中国东部人海物质影响减少,台湾物质贡献增多(王佳泽,2013)。CS2站物质来源的的变化与同区域前人研究结果相比,虽然存在时间上的差异性,但均能够证明中全新世以来台湾物质对冲绳海槽中部区域物质供给增加。
6. 古环境响应
前人研究认为,中国大陆东部河流(如长江)物质输入主要发生在冬季,东亚冬季风驱动的流系可将长江等河流物质以悬浮体方式向冲绳海槽中部输运(Wang et al., 2015)。台湾物质主要由黑潮携带至冲绳海槽,而黑潮主要受控于夏季风的影响(Zheng et al., 2016;赵德博,2017)。台湾伊利石和绿泥石含量较高,几乎不含蒙脱石和高岭石(Wan et al., 2007;李传顺等,2012),因此冲绳海槽的蒙脱石和高岭石应该主要来自于长江等大陆东部河流,伊利石和绿泥石主要来自于台湾和长江的混源。利用黏土矿物作为东亚季风的指标已经在冲绳海槽得到广泛的应用(Dou et al., 2010a;Dou et al., 2010b;Wang et al., 2015)。当冬季风盛行时,由冬季风驱动的流系可将中国大陆河流(如长江)的蒙脱石和高岭石搬运到CS2站;相反,当夏季风盛行时,由夏季风驱动的黑潮将更多的伊利石和绿泥石从台湾搬运到冲绳海槽中部,同时强盛的黑潮的“水障作用”阻挡了中国大陆河流(如长江)的蒙脱石和高岭石向冲绳海槽搬运。因此CS2站沉积物(蒙脱石+高岭石)(/伊利石+绿泥石)数值可以作为东亚冬、夏季风相对强度变化的一个矿物学指标,高比值指示冬季风相对夏季风的加强,而低比值则暗示夏季风相对冬季风的加强。
将(蒙脱石+高岭石)(/伊利石+绿泥石)与格陵兰GISP2冰心δ18O和三宝洞石笋δ18O相对比,发现以上3个指标具有十分相似的变化趋势(图 5),并识别出两个东亚冬季风加强阶段: 16.4~14.8 ka BP和12.8~11.6 ka BP,这与Wang et al. (2015)的研究结果相符。16.4~14.8 ka BP期间可能是H1事件(Heinrich 1事件)在冲绳海槽沉积物中的相应(徐兆凯等,2012;蔡明江等,2017),GISP2冰心δ18O曲线与三宝洞石笋δ18O曲线显示该时期为寒冷期,(蒙脱石+高岭石)(/伊利石+绿泥石)也表现为高值期,表明冬季风在此阶段处于强盛时期,中国大陆东部河流(如长江)物质在冬季风驱动的海流作用下向冲绳海槽运输。12.8~11.6 ka BP期间对应普遍存在的新仙女木事件(Li et al., 2001;徐方建等,2009;徐方建等,2011),期间全球较为寒冷,GISP2冰心δ18O与三宝洞石笋δ18O显示该时期为寒冷期,(蒙脱石+高岭石)(/伊利石+绿泥石)同样表现为高值期,表明冬季风在此阶段处于强盛时期。以上研究结果表明冲绳海槽中部CS2站(蒙脱石+高岭石)(/伊利石+绿泥石)可作为东亚冬、夏季风相对强度变化的一个矿物学指标。值得注意的是4~0 ka BP期间,(蒙脱石+高岭石)(/伊利石+绿泥石)比值总体为低值,说明此时冬季风较弱,中国东部大陆河流(如长江)物质输入减少,同时4 ka以来黑潮减弱(向荣等,2000;Jian et al., 2000;蔡明江等,2017),台湾来源物质输入减少,导致CS2站在本阶段沉积速率达到最低值。另一方面,黑潮的减弱使得中国东部河流(如长江)物质更容易突破黑潮的阻挡到达研究区域,因此在CS2站表现出自4 ka以来蒙脱石和高岭石含量不断升高。
7. 结论
对位于冲绳海槽中部CS2站进行了AMS14C测年、黏土矿物分析,并与其潜在物源区的黏土矿物进行了对比,探讨了末次冰消期以来冲绳海槽中部物质来源及其对环境的指示意义,得出以下结论:
(1)CS2站沉积物黏土矿物主要由伊利石(56%~78%,平均67%)组成,绿泥石次之(7%~21%,平均17%),高岭石(5%~15%,平均10%)和蒙脱石(1%~12%,平均6%)较少。伊利石结晶度范围在0.24°~0.37° Δ2θ,平均为0.28° Δ2θ,伊利石化学指数在0.22~0.71(平均值为0.44),多数小于0.50,表明伊利石结晶度非常好,主要为富Fe-Mg伊利石。
(2)根据黏土矿物特征变化规律,将CS2柱状沉积物划分为3个沉积阶段:阶段Ⅰ(19~12 ka BP)、阶段Ⅱ(12~8 ka BP)、阶段Ⅲ(8~0 ka BP)。与各潜在物源区黏土矿物对比显示,CS2站阶段Ⅰ(19~12 ka BP)和阶段Ⅱ(12~4 ka BP)期间物质来源较为稳定,主要来源于长江,台湾和黄河物质也有一定影响,物质来源主要受海平面升降控制。阶段Ⅲ主要来源于长江和台湾,黄河贡献有限,黑潮演化是该阶段最主要控制因素。
(3)选取CS2站(蒙脱石+高岭石)(/泥石)比值作为东亚冬、夏季风相对强度变化的一个矿物学指标。高比值指示冬季风相对夏季风的加强,而低比值则暗示夏季风相对冬季风的加强。指标变化显示出东亚冬季风强度和冬季风相对夏季风的强度在16.4~14.8 ka BP和12.8~11.6 ka BP期间有两次显著的加强,指示当时气候相对寒冷干燥,结果可以与格陵兰冰心GISP2冰心δ18O和三宝洞石笋δ18O记录等很好对比。
致谢: 感谢国家深海基地管理中心杨继超博士和林震博士对本文的指导和修改。 -
图 1 冲绳海槽流系及CS2站柱状沉积物位置图(据赵德博,2017修改)
Figure 1. Location of Core CS2 and ocean current system of Okinawa Trough (modified from Zhao Debo, 2017)
图 4 CS2站与潜在物源区沉积物黏土矿物含量对比图
1—长江、黄河黏土矿物(据Xu,1983;杨作升,1988;范德江等,2001;Yang et al., 2003);2—古黄河黏土矿物(据Liu et al., 2010);3—台湾东、西部河流黏土矿物(据李传顺等,2012)
Figure 4. Ternary diagram showing variations in clay minerals of Core CS2 and potential provenances
1-Clay minerals of the Yangtze River and the Yellow River (after Xu, 1983; Yang Zuosheng, 1988; Fan Dejiang, etc., 2001;Yang et al., 2003); 2-Ancient clay minerals of the Yellow River (after Liu et al., 2010); 3-Taiwan River clay minerals in the east and the west (after Li Chuanshun et al., 2012)
图 5 黏土矿物滑动平均曲线和沉积速率及其与海平面波动、格陵兰GISP2冰心δ18O曲线、三宝洞石笋δ18O曲线间对比
H1— Heinrich 1事件;YD—新仙女木事件;1—海平面数据(据Lambeck et al., 2002;Liu et al., 2004);2—格陵兰GISP2冰心数据(据Stuiver et al.,1995;Grootes and Stuiver, 1997);3—三宝洞石笋数据(据Cheng et al., 2016)
Figure 5. Vertical changes of (kaolinite+ smectite)/(illite + chlorite) and sedimentation rates for Core CS2 with sea-level fluctuation, and the stable isotopes of stalagmites in GISP2 and Sanbao Cave
H1-Heinrich Event 1;YD-Younger Dryas; 1-Sea level data (after Lambeck et al., 2002; Liu et al., 2004); 2-Greenland GISP2 ice core data (after Stuiver et al., 1995; Grootes and Stuiver, 1997); 3-Sanbao cave stalagmite data (after Cheng et al., 2016)
表 1 CS2孔AMS14C年龄数据
Table 1 AMS14C age data of Core CS2
-
Aumento F, Mitchell W S and Fratta M. 1976. Interaction between sea water and oceanic layer two as a function of time and depth- Ⅰ. Field evidence[J]. Canadian Mineralogist, 14(3): 269-290. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641522/
Biscaye P E. 1965. Mineralogy and sedimentation of recent Deep-Sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 76(7): 803-832. http://ci.nii.ac.jp/naid/30024530802
Cai Mingjiang, Li Tiegang, Yu Xinke, Chen Hongjin, Xu Zhaokai.2017. Provenance of detrital deposits and paleoenvironmental changes in the middle Okinawa since 18.5 ka: Evidence from major elements[J]. Marine Geology Frontiers, 33(5): 22- 31 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1040618216300027
Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S T, Kelly M, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. 2016. The Asian Monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 534: 640-646. https://experts.umn.edu/en/publications/the-asian-monsoon-over-the-past-640000-years-and-ice-age-terminat
Diekmann B, Hofmann J, Henrich R, Fütterer D K, Röhl U, Wei K Y.paleoclimate and ice dynamics[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 139(3/4): 213-231. doi: 10.1007/s00382-012-1448-3
Fan Dejiang, Yang Zuosheng, Mao Deng, Guo Zhigang. 2001. Clay minerals and geochemistry of the sediments from the Yangtze and / Yellow Rivers[J]. Marine Geology and Quaternary Geology, 21(4): 7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200104001.htm
Gingele F X, Müller P M, Schneider R R. 1998. Orbital forcing of freshwater input in the Zaire Fan Area-clay mineral evidence from the last 200 Kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 138(1/4): 17-26. https://www.sciencedirect.com/science/article/pii/S0031018297001211
Gingele F X, Deckker P D, Hillenbrand C D. 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia- source and transport by ocean currents[J]. Marine Geology, 179(3/4): 135-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40d3df0d2289fd07ed3e235080786f5d
Grootes P M, Stuiver M. 1997. Oxygen 18/16 variability in greenland snow and ice with 10- 3 to 10- 5- year time resolution[J]. Journal of Geophysical Research 102: 26455-26470. doi: 10.1029/97JC00880
Hughen K A, Baillie M G L, Bard E, Beck J W, Bertrand C J H, Blackwell P G, Buck C E Burr G S, Cutler K B, Damon P E, Edwards R L, Fairbanks R G, Friedrich M, Guilderson T P, Kromer B, McCormac G, Manning S, Ramsey C B, Reimer P, Reimer R W, Remmele S, Southon J R, Stuiver M, Talamo S, Taylor F W, Plicht J Ⅴ, Weyhenmeyer C E. 2004. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP[J]. Radiocarbon, 46(3): 1059-1086. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be3a2904ee83bfd9d48a9e9b0fdc13e5
Hu Siyi, Zeng Zhigang, Yin Xuebo, Zhu Bowen, Fang Xue, Qi Haiyan.2019. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology and Quaternary Geology, 39(1): 69-82 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201901008
Jian Z M, Wang P X, Saito Y, Wang J L, Pflaumann U, Oba T, Cheng X R. 2000. Holocence variability of the Kuroshio current in the Okinawa Trough, northweastern Pacific Ocean[J]. Earth and Planetary Science Letters, 184(1): 305-319. https://www.sciencedirect.com/science/article/pii/S0012821X00003216
Kao S J, Lin F J, Liu K K. 2003. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 50(6/ 7): 1203-1217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd68a8a290607f180349bfa74251b61d
Kitagawa H, Fukuzawa H, Nakamura T, Okamura M, Takemura K, Hayashida A, Yasuda Y. 1995. AMS14C dating of varved sediments from Lake Suigetsu, Central Japan and Atmospheric 14C change during the Late Pleistocene[J]. Radiocarbon, 37(2): 371-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=RDC37_02-JATS\RDC\RDC37_02\S0033822200030848h.xml
Katayama H, Watanabe Y. 2003. The Huanghe and Changjiang contribution to seasonal variability in terrigenous particulate load to the Okinawa Trough[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 50(2): 475-485. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29d3e89e514544da4fababd6fc044944
Krumm S, Buggisch W. 1991. Sample preparation effects on illite crystallinity measurements: Grain- size gradation and particle orientation[J]. Metamorphic Geology, 9(6): 671-677. https://www.researchgate.net/publication/229533769_Sample_preparation_effects_on_illite_crystallinity_measurement_grain-size_gradation_and_particle_orientation
Lambeck K, Yokoyama Y, Purcell T. 2002. Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2[J]. Quaternary Science Reviews, 21(1/2/3): 343-360. https://www.sciencedirect.com/science/article/pii/S0277379101000713
Lee H J and Chao S Y. 2003. A climatological description of circulation in and around the East China Sea[J]. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 50(6/7): 1065-1084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52c84e1484ae46d3b34bbd7833ffcaae
Li T G, Liu Z X, Hall M A, Berne S, Saito Y, Cang S X, Cheng Z B.2001. Heinrich event imprints in the Okinawa Trough: Evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1/4): 133-146. http://www.sciencedirect.com/science/article/pii/S0031018201003327
Li Chuanshun, Shi Xuefa, Gao Shuji, Chen Mingde, Liu Yanguang, Xi fangsheng, Lü Huahua, Zou Jianjun, Liu Shengfa, Qiao Shuqing. 2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers[J]. Chinese Science Bulletin, 57(2/ 3): 169-177 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JXTW201206016
Lee H J, Chao S Y. 2003. A climatological description of circulation in and around the East China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 50(6/7): 1065-1084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52c84e1484ae46d3b34bbd7833ffcaae
Liu S D, Qiao L L, Li G X. 2015. Distribution and cross- front transport of suspended particulate matter over the inner shelf of the east China sea[J]. Continental Shelf Research, 107: 92-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b6a97d0501a76d7cdd6cec394b18f9b
Liu J, Saito Y, Kong X H, Wang H, Wen C, Yang Z G, Nakashima R.2010. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 278(1/4): 54-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9c7322595f1f6ce2db864df80595cc52
Liu J P, Milliman J D, Gao S, Cheng P. 2004. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 209(1/4): 45-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ccad625dc0d06563bf36fcc4ddf9885
Li Naisheng, Jiang Lili, Li Changzhen. 1998. The study on crustal structure of Okinawa trough[J]. Oceanologia et Limnologia Sinica, 29(4): 441-450 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S004019510700354X
Mi Beibei, Wang Zhongbo, Qiu Xiaohua, Zhang Yong, Lan Xianhong.2019. Reconstruction of the redox environment in Okinawa Trough and its climatic implications since mid- Holocene[J]. Marine Geology and Quaternary Geology, 39(4): 107- 115 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201904011
Milliman J D, Farnsworth K L. 2011. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge University Press.
Stuiver M, Grootes P M, Braziunas T F. 1995. The GISP2 δ18O climate record of the past 16500 years and the role of the sun, ocean, and volcanoes[J]. Quaternary Research, 44(3): 341-354. https://www.sciencedirect.com/science/article/pii/S0033589485710794
Wan S M, Li A C, Clift P D, et al. 2006. Development of the East Asian Summer Monsoon: Evidence from the sediment record in the South China Sea since 8.5Ma[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 139-159. https://www.sciencedirect.com/science/article/abs/pii/S0031018206004007
Wan S M, Li A C, Clift P D, Jiang H Y. 2007. Development of the East Asian Monsoon: Mineralogical and sedimentologic records in the Northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3/4): 561-582. https://www.sciencedirect.com/science/article/abs/pii/S0031018207003963
Wang J Z, Li A C, Xu K H, Zheng X F, Huang J. 2015. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa Trough since 17 ka[J]. Marine Geology, 366: 49-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c613de4b4afebdb42dbf79a5e3327906
Wang Jiaze. 2013. The Characteristics and Provenances of the Core Sediments in the Middle Okinawa Trough and Their Paleoenvironment Implications since 17 ka[D]. Chinese Academy of Sciences (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0025322715000924
Wang Yueming. 2018. Sediment provenance change and its response to holocene climate change in the Middle Okinawa Trough since 16 ka[J]. Acta Sediemntologica Sinica, 36(6): 1157-1168 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1040618216300027
Xiang Rong, Cao Qiyuan, Yan Jun. 2000. Comment on the study of paleokuroshio evolution[J]. Marine Sciences, 24(7): 34- 37 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx200007013
Xu D Y. 1983. Mud sedimentation on the East China Sea shelf[C]// Proceedings of International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea. Hangzhou: China Ocean Press: 506-516.
Xu F J, Dou Y G, Li J, Cai F, Zhao J T, Wen Z H, Chen X H, Zhang Y, Wang L B, Li H. 2018. Low- latitude climate control on sea- surface temperatures recorded in the southern Okinawa Trough during the last 13.3 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 210-217. https://www.sciencedirect.com/science/article/abs/pii/S0031018217307617
Xu Fangjian, Li Anchun, Li Tiegang, Chen Shiyue, Cao Yingchang, Dong Chunmei. 2011. Sedimentation rate and typical climatic events recorded in the inner shelf of the east China Sea since the last deglaciation [J]. Journal of Stratigraphy, 35(1): 66- 74 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201101008
Xu Fangjian, Li Anchun, Xiao Shangbin, Wan Shiming, Liu Jianguo, Zhang Yongchao. 2009. Paleoenvironmental evolution in the inner shelf of the East China Sea since the last deglaciation[J]. Acta Sedimentologica Sinica, 27(1): 118- 127 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200901016
Xu Zhaokai, Chang Fengming, Li Tiegang, Nan Qingyun, Jiang Fuqing, Li Anchun. 2012. Provenance of sediments in the northern Okinawa Trough over the last 24 ka: High resolution record from major elements[J]. Marine Geology and Quaternary Geology, 32 (4): 73-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201204013.htm
Xu Z K, Li T G, Chang F M, Choi J Y, Lim D, Xu F J. 2012. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: Rare earth elements evidence[J]. Journal of Rare Earths, 30(11): 1184-1190. https://www.sciencedirect.com/science/article/pii/S1002072112602026
Xu Z K, Li T G, Chang F M, Wang S M, Choi J Y, Lim D. 2014. Clay- sized sediment provenance change in the northern Okinawa Trough since 22 kyr BP and its paleoenvironmental implication[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 399:236-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b494aebf361652d206101125ea3bd729
Xu Z K, Li T G, Clift P D, Lim D, Nan Q Y, Wan S M, Choi J Y, Cai M J, Chen H J. 2017. Sediment provenance and paleoenvironmental change in the middle Okinawa Trough during the last 18.5 ky: Clay mineral and geochemical evidence[J]. Quaternary International, 440 (A): 139-149. https://www.sciencedirect.com/science/article/pii/S1040618216300027
Yang S Y, Jung H S, Lim D Ⅰ, Li C X. 2003. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 63(1/2): 93-120. https://www.sciencedirect.com/science/article/abs/pii/S0012825203000333
Yang Zuosheng. 1988. Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang rivers and their relationship to the climate environment in their sediment source areas[J]. Oceanologia et Limnologia Sinica, 19(4): 336- 346 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ198804005.htm
Zhao Debo. 2017. Sedimentary Evolution in Northern Okinawa Trough and Their Environmental Response since the Last 400 ka[D]. University of Chinese Academy of Sciences (in Chinese with English abstract).
Zheng X F, Li A C, Kao S J, Gong X, Frank M, Kuhn G, Cai W, Yan H, Wan S, Zhang H, Jiang F, Hathorne E, Chen Z, Hu B. 2016. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 452: 247-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=275345088cfcc3aa5c5e46fae7adbd86
蔡明江, 李铁刚, 于心科, 陈红瑾, 徐兆凯. 2017. 18.5 ka以来冲绳海槽中部沉积物碎屑态来源和古环境变化的常量元素记录[J].海洋地质前沿, 33(5): 22-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201705003 窦衍光, 陈晓辉, 李军, 蔡峰, 温珍河, 徐刚, 邹亮. 2018.东海外陆架-陆坡-冲绳海槽不同沉积单元底质沉积物成因及物源分析[J].海洋地质与第四纪地质, 38(4): 21-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201804002 范德江, 杨作升, 毛登, 郭志刚. 2001.长江与黄河沉积物中黏土矿物及地化成分的组成[J].海洋地质与第四纪地质, 21(4): 7-12. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ200104001.htm 胡思谊, 曾志刚, 殷学博, 朱博文, 方雪, 齐海燕. 2019.冲绳海槽岩心沉积物稀土元素特征及物源指示[J].海洋地质与第四纪地质, 39(1): 69-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201901008 李传顺, 石学法, 高树基, 陈明德, 刘焱光, 方习生, 吕华华, 邹建军, 刘升发, 乔淑卿. 2012.台湾河流沉积物的黏土矿物组成特征与物质来源[J].科学通报, 57(2/3): 169-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201202010 李乃胜, 姜丽丽, 李常珍. 1988.冲绳海槽地壳结构的研究[J].海洋与湖沼. 29(4), 441-450. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ199804015.htm 密蓓蓓, 王中波, 仇晓华, 张勇, 蓝先洪. 2019.中全新世以来冲绳海槽氧化还原环境重建及其气候效应[J].海洋地质与第四纪地质, 39(4): 107-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201904011 王玥铭. 2018. 16 ka以来冲绳海槽中南部沉积物物源演化及其对古气候的响应[J].沉积学报, 36(6): 1157-1168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201806009 王佳泽. 2013. 17 ka以来冲绳海槽中部柱状样沉积学特征及其物源环境指示意义[D].北京: 中国科学院大学. 向荣, 曹奇原, 阎军. 2000.古黑潮演化研究评述[J].海洋科学, 24 (7):34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx200007013 徐方建, 李安春, 李铁刚, 陈世悦, 操应长, 董春梅. 2011.末次冰消期以来东海内陆架沉积速率及其气候环境响[J].地层学杂志, 35 (1): 66-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201101008 徐方建, 李安春, 肖尚斌, 万世明, 刘建国, 张永超. 2009.末次冰消期以来东海内陆架古环境演化[J].沉积学报, 27(1): 118-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200901016 徐兆凯, 常凤鸣, 李铁刚, 南青云, 蒋富清, 李安春. 2012. 24 ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J].海洋地质与第四纪地质, 32(4): 73-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201204009 杨作升. 1988.黄河、长江、珠江沉积物中黏土的矿物组合、化学特征及其与物源区气候环境的关系[J].海洋与湖沼, 19(4): 336-346. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ198804005.htm 赵德博. 2017. 40万年以来冲绳海槽北部沉积演化史及其环境响应[D].北京: 中国科学院大学. -
期刊类型引用(2)
1. 邓韬,许冬,肖婷露,叶黎明,章伟艳. 西太平洋海山盆地沉积物黏土矿物特征及其指示意义. 海洋学研究. 2023(03): 56-72 . 百度学术
2. 洪勃,李喜安,王力,孙建强,简涛,孟杰. 延安晚更新世黄土颗粒微观各向异性特征及其成因分析. 中国地质. 2021(03): 900-910 . 本站查看
其他类型引用(1)