Relationship between Jinshajiang-Honghe strike-slip fault and Cu-Au polymetallic mineralization of alkaline-rich porphyry
-
摘要:研究目的
金沙江—红河富碱斑岩及铜金多金属成矿带展布于青藏高原东南缘,北部产有玉龙超大型铜钼矿床,中部发育北衙超大型金多金属矿床,在南部的金平(铜厂)地区,铜钼(金)多金属成矿亦显现潜力,是中国西南地区最重要的铜金矿集区之一,已成为东特提斯成矿域内的研究热点。
研究方法本文在该富碱岩浆成矿带内长期工作的基础上,结合已有的研究,概述了该带内典型富碱斑岩和矿床特征。
研究结果富碱斑岩总体上以二长花岗斑岩和石英正长斑岩为主,显示富集碱质(K2O+Na2O含量高)、铝、轻稀土元素及亏损重稀土元素和高场强元素的特性,相似的Sr-Nd同位素组成显示源区主要为下地壳物质;同时在野外调查工作的基础上,讨论了区域走滑构造之次一级构造的发育特征及其对本区成岩成矿的制约,并进一步总结了东特提斯成矿域内受控于金沙江—红河区域走滑深大断裂及其次级构造活动的“区域构造-富碱岩浆-铜金多金属”成矿作用。
结论通过上述三地(玉龙、北衙、铜厂)主要矿区内主控岩断裂构造野外特征观察研究,提出金沙江—红河深大断裂的次一级近北西向构造控制了本区富碱岩浆活动及铜金多金属成矿的认识。
-
关键词:
- 富碱斑岩 /
- 构造-岩浆-成矿耦合 /
- 成矿系统 /
- 金沙江-红河走滑断裂 /
- 矿产勘查工程
创新点: 系统梳理了东特提斯成矿域金沙江—红河走滑构造带内典型富碱斑岩和矿床特征;通过野外详实的构造与成岩成矿关系的调查研究,提出研究区金沙江—红河深大断裂的次一级近北西向(或南北向)构造控制了富碱岩浆活动及铜金多金属成矿的认识。
Abstract:ObjectiveThis paper is the result of mineral exploration engineering.
ObjectiveThe Jinshajiang-Honghe alkaline-rich porphyry Cu-Au polymetallic metallogenic belt, which produces numbers of large-scale Cu-Au deposits including the Yulong at the north, the Beiya in the middle and the Tongchang at the south, for example, has becoming one of the most productive ore clusters and research focus in the east Tethys domain.
MethodsBased on long-term integrated field investigations and published data analysis, we summarized the characteristics of the typical deposits and the alkaline-rich porphyry.
ResultsThe alkaline-rich porphyry mainly consists of monzonitic granite porphyry and quartz syenite porphyry, showing high contents of K2O-Na2O, Al2O3, LREE and deficit in HREE and HFSE. Similar Sr-Nd isotopic composition indicates that the source area is mainly lower crust material. The development characteristics of regional strike-slip structures and their constraints on diagenesis and mineralization in this area are also discussed, and a "regional structure→alkaline-rich magma→Cu-Au polymetallic" mineralization process controlled by the deep Jinshajiang-Honghe strike-slip fault and its secondary structure activities in the east Tethys metallogenic domain is further summarized.
ConclusionsThrough field observation and study on the main faults in the three typical areas, we suggest that the alkaline-rich magma and related Cu-Au mineralization were primarily controlled by the secondary northwestward faults of the regional Jinshajiang-Honghe strike-slip fault.
-
1. 引言
与富碱岩浆(一般指K2O+Na2O含量大于8%)相关的多金属矿床是世界铜金产出的主要来源(Richard, 2009; Sillitoe, 2010)。与之相关的成矿带在世界上主要分布于北美加拿大的不列颠哥伦比亚省、西南太平洋、南美的一些地区(Cannell et al., 2005;Bissig and Cooke, 2014)以及中国的西南三江地区(侯增谦,2010;Deng et al., 2014)。金沙江—红河富碱斑岩带(金沙江—哀牢山岩带;张玉泉等,1987)是西南三江区域内该类成矿作用发育的典型代表,其位于扬子板块西缘与青藏高原结合部位,沿金沙江—红河走滑深大断裂带及邻区展布,区域上北起青海玉树,向南展布于滇西北衙一带,随后经金平铜厂、哈播,沿红河断裂进入越南,连接南海;带内不仅岩浆活动频繁,且成矿作用强烈,从北向南依次产出纳日贡玛、玉龙、马拉松多、北衙、马长箐、铜厂、哈播等斑岩-矽卡岩铜金多金属矿床,构成一条展布于青藏高原东南缘南北绵延上千千米的构造-岩浆成矿带(马鸿文,1989;曾普胜等,2002;侯增谦等,2004;梁华英等,2009;Li et al., 2016;Zhou et al., 2016;王建华,2017;Hou et al., 2017;Wu et al., 2017;Meng et al., 2018; 武精凯等,2019;Tong et al., 2019;周放等,2022;图 1),是中国重要的新生代成矿带,同时也是西南地区重要的铜金多金属产出基地。然而对于这一区域成矿带内成岩成矿与大型构造活动的细化研究,资料还较少。此外,带内富碱斑岩发育呈现出一定的规律性,如玉龙矿集区自北向南富碱斑岩年龄逐渐变新;岩性一般由钙碱性渐变为碱性,成矿方面,总体上北部以铜钼为主,南部则多见金多金属矿床(曾普胜等,2002;Deng et al., 2014; Li et al., 2016; Mao et al., 2017; Xu et al., 2019),这些特征反映了怎样的深部过程,目前积累的研究也是有限的。
图 1 金沙江—红河富碱斑岩铜金多金属成矿带Figure 1. The Jinshajiang-Honghe alkaline-rich porphyry Cu-Au metallogenic beltShowing the distribution pattern of the alkaline-rich porphyry controlled by the Jinshajiang-Honghe and its secondary faults (Data sources: Hou et al., 2003; Deng et al., 2014; Wang Jianhua, 2017; Wu Jingkai et al., 2019)本文在以往野外工作积累的基础之上,结合已有的资料,通过概述金沙江—红河富碱斑岩带上三个典型矿床(玉龙、北衙、铜厂)特征,富碱斑岩岩石学等各方面特性及成矿特征,讨论了该带内的富碱岩浆成因及演化过程,认为区域深大走滑断裂及其次级构造控制本区岩浆侵位及相关铜金多金属成矿,以期为本区区域成矿学研究及进一步的铜金多金属矿床勘查工作提供借鉴。
2. 区域地质背景
侯增谦等(2006a)根据青藏高原不同区域,不同时期的构造-岩浆-成矿事件发育特点,将青藏高原碰撞造山作用分为三个阶段,即主碰撞挤压(65~40 Ma),晚碰撞转换(40~25 Ma)及后碰撞伸展(~25 Ma)。其中,晚碰撞转换成矿作用发生于印度—欧亚大陆的持续汇聚和南北向挤压背景之下,以陆内俯冲、大规模逆冲推覆、走滑断裂系统(如嘉黎—高黎贡断裂、金沙江断裂、巴塘—丽江断裂、哀牢山—红河断裂、扬子板块内的鲜水河—小江断裂等;侯增谦等,2006b)的发育为特征,导致了拼贴地块大幅旋转和区域尺度的地壳缩短(邓军等,2014)、富碱斑岩及邻区火成岩的大规模产出(侯增谦等,2006b)。
金沙江—红河深大断裂带展布于青藏高原东南缘,区域上西起可可西里,经德钦奔子栏、香格里拉—丽江—宾川以西,向南至哀牢山一带与红河深大断裂带相连(图 1);断裂带东西宽数十至数百千米不等,由一组南北向至北西向的深大断裂系构成,在断裂边界部位常发育次一级断裂、褶皱系统及拉分盆地,空间上与金沙江—红河铜金多金属成矿带相伴产出。已有的资料显示(侯增谦2006a;邓军等,2010;和文言,2014;Meng et al., 2018),金沙江—红河断裂带是古特提斯洋闭合后形成的缝合带,同时也是冈瓦纳和劳亚两大特提斯古陆的结合带,具有长期的活动历史,对区内的断裂构造-岩浆-成矿作用演化影响深远。区域地层方面,三地矿区内发育的围岩地层时代以古生代—中生代为主(陈建平等,2009;周云满等,2014;王建华,2017)。带内岩浆活动以独具特色的富碱岩浆侵入和喷出为代表,年龄显示多为始新世末期约36 Ma(王建华,2017)。
3. 金沙江—红河富碱斑岩铜金多金属成矿带典型矿床
3.1 玉龙铜钼矿床
玉龙斑岩铜矿带呈北东—南西向展布,南北跨度约300 km、宽约15 km,位于金沙江—红河富碱斑岩铜金多金属成矿带的北部(图 1),含矿富碱斑岩体主要有玉龙、多霞松多、马拉松多、恒星错、莽总、马牧普等十余个,其中前三个产有大型铜多金属矿床。其中,成矿规模最大的玉龙斑岩体剖面形态为蘑菇状,地表呈“梨形”展布,岩性以二长花岗斑岩为主,出露面积约0.85 km2,侵位于三叠系碎屑岩和碳酸盐岩地层内,时代为40.9~38.9 Ma(Hou et al., 2003; 谢玉玲等,2005;姜耀辉等,2006;Jiang et al., 2006; 陈建平等,2009;Lin et al., 2017),成矿斑岩的时代在43.9~36.9 Ma(Deng et al., 2014)。矿化类型主要有富碱斑岩内部细脉状、浸染状斑岩型铜矿化,富碱斑岩与三叠系碳酸盐岩围岩接触带产出的透镜状矽卡岩型铜金矿化等(陈建平等,2009),自岩体向外,成矿显示出一定的分带特征。
3.2 北衙金多金属矿床
北衙(—马厂箐)铜金多金属矿集区位于金沙江—红河富碱斑岩多金属成矿带的中部。其中,最具代表性的北衙超大型金多金属矿床内的主要富碱斑岩体有万硐山、红泥塘及其附近隐伏的大沙地岩体等,其中尤以万硐山斑岩体规模最大;富碱斑岩体大致沿轴向近南北的北衙向斜核部分布,岩性以二长花岗斑岩、正长斑岩为主,主要侵入矿区内的二叠系玄武岩、三叠系碳酸盐岩和碎屑岩之中(Lu et al., 2013;He et al., 2015;Deng et al., 2015;王建华等, 2016, Mao et al., 2017;Chen et al., 2017;Zhou et al., 2018;Bao et al., 2018;鲍新尚等,2019)。北衙富碱斑岩的年代学研究已经积累了大量资料,成岩时代限定在始新世末期(38~34 Ma;王建华,2017)。矿化类型以富碱斑岩为中心向外,依次发育富碱斑岩内的细脉状斑岩型Cu(Mo)-Au矿化,斑岩与三叠系碳酸盐岩围岩接触带产出不规则状、囊状矽卡岩型Au-Cu-Fe矿化,以及外围广泛的围岩地层内发育似层状、脉状热液型Pb-Zn-Ag(Au)矿化,形成分带特征明显的斑岩金多金属成矿系列(Li et al., 2016; 王建华,2017),成矿分带性明显。
3.3 铜厂铜钼多金属矿床
铜厂铜钼(金)多金属矿床位于金沙江—红河富碱斑岩带最南端的金平地区,该区及周边还产出有著名的长安金矿和绿春哈播铜(钼-金)矿。铜厂矿区主要发育三期富碱斑岩,分别为早期的细粒正长岩,发育主要铜钼矿化的中期石英正长斑岩,以及晚阶段的正长斑岩;锆石U-Pb定年显示铜厂富碱斑岩的形成时代为35 Ma(Xu et al., 2014),周边富碱岩浆活动时限为36.3~34.6 Ma(Deng et al., 2014)。在富碱斑岩与中志留统碳酸盐岩及碎屑岩的接触带内发育有块状、浸染状的铜硫化物矿化和块状磁铁矿矿化;矽卡岩带向外的大理岩中可见少量的Pb-Zn矿化(Xu et al., 2014)。
总体看来,从北部的玉龙到中部的北衙,再到南端的铜厂,富碱斑岩形成时代差别不大,且成矿类型基本一致:普遍发育有斑岩体内的斑岩型矿化,斑岩与碳酸盐围岩接触带的矽卡岩型矿化及外围地层中的热液脉型矿化。此外,三地产出主要矿化类型的斑岩体群,区域空间上的分布均严格受控于金沙江—红河深大断裂带的次一级近南北向、北西向展布断裂(图 1,表 1),显示出鲜明的区域构造控制富碱岩浆活动-多金属成矿的特征。
表 1 金沙江—红河富碱斑岩铜金多金属成矿带内典型矿床特征Table 1. Geological characteristics of the typical deposits in the Jinshajiang-Honghe alkaline-rich porphyry Cu-Au metallogenic belt4. 富碱斑岩与成矿
4.1 富碱斑岩特征及成因
玉龙矿区富碱斑岩主要为二长花岗斑岩(亦有少量正长花岗斑岩和石英二长斑岩),多为浅灰色、浅肉红色,具斑状结构,块状构造;斑晶含量约40%,主要可见斜长石、角闪石、黑云母、钾长石、石英等;副矿物丰富,为榍石、磷灰石、锆石、金红石、磁铁矿等(Jiang et al., 2006)。在中部的北衙矿区,成矿主要与二长花岗斑岩相关,其次还有正长斑岩、石英正长斑岩、黑云母正长斑岩等(王建华等,2015)。其中,二长花岗斑岩为灰白色,具斑状结构,块状构造;斑晶由斜长石、钾长石和石英构成,副矿物可见榍石、锆石。铜厂矿区与成矿相关的富碱斑岩主要为石英正长斑岩(胥磊落等,2011),其次为花岗斑岩(武精凯等,2019);石英正长斑岩为灰白、肉红色,具斑状结构、块状构造,斑晶以斜长石、钾长石、石英及少量的角闪石为主,副矿物由榍石、磷灰石、锆石等构成(胥磊落等,2011)。
玉龙富碱斑岩SiO2和Al2O3含量均较高,分别变化于64.8%~73.5%和15.4%~17.0%,呈过铝质特征,而MgO含量较低;此外,岩石富碱,表现为K2O含量、K2O/Na2O比值均较高,后者在1.0~2.7(Jiang et al., 2006)。北衙富碱斑岩的SiO2含量在65.3%~71.4%,平均为68.2%,Al2O3含量变化范围为13.47%~15.17%,K2O+Na2O含量较高,在9.1%~11.3%,平均10.7%,K2O/Na2O比也较高,为1.5~4.3(Lu et al., 2013; Deng et al., 2015;王建华,2017)。铜厂富碱斑岩的SiO2含量为63.22%~68.90%,全碱总量为9.68%,K2O/Na2O值普遍大于1,均值为1.20(胥磊落等,2011)。在SiO2-(K2O+Na2O)图解上(图 2a),三地富碱斑岩呈现出相似性的岩石学分类,均落入碱性亚类系列,SiO2-K2O图解(图 2b)中则全部落入钾玄岩区域。
图 2 金沙江—红河富碱斑岩岩石分类图解a-SiO2-(K2O+Na2O)图解(底图据Irvine and Baragar, 1971);b-SiO2-K2O图解(底图据Peccerillo and Taylor, 1976);数据来源:玉龙(Jiang et al., 2006);北衙(Lu et al., 2013; Deng et al., 2015;王建华,2017);铜厂(胥磊落等,2011)Figure 2. Variation of the Jinshajiang-Honghe alkaline-rich porphyriesa-(K2O+Na2O)-SiO2(after Irvine and Baragar, 1971); b-K2O-SiO2(after Peccerillo and Taylor, 1976); Data sources: Yulong (Jiang et al., 2006); Beiya (Lu et al., 2013; Deng et al., 2015; Wang Jianhua, 2017); Tongchang (Xu Leiluo et al., 2011)微量元素特征方面,玉龙矿区富碱斑岩的稀土元素(ΣREE)总量为209.9×10-6~400.9×10-6,平均293.0×10-6,总体上富集轻稀土元素,具弱Eu和Ce异常(陈建平等,2009);北衙富碱斑岩稀土元素总量相对低,变化区间为54.59×10-6~113.7×10-6,轻重稀土元素分异较为明显,表现为高的LREE/HREE和(La/Yb)N比值,分别为7.8~12.9和4.9~26,岩石具有弱的负Eu异常,δEu=0.46~0.87(Lu et al., 2013; Deng et al., 2015;王建华,2017);铜厂矿区富碱斑岩则主要表现出轻稀土富集、重稀土亏损,同样具弱的负Eu异常(δEu=0.79~0.88)特征(胥磊落等,2011;武精凯等,2019)。三地富碱斑岩稀土元素特征具相似性。此外,三地富碱斑岩微量元素总体上均显示富集大离子亲石元素(LILE;Rb、Sr、Ba、Pb),亏损高场强元素(HFSE;Zr、Hf、Nb、Ta、Ti、P)的特征(姜耀辉等,2006;Lu et al., 2013; Deng et al., 2015;王建华,2017;武精凯等,2019),反映源区可能经历了早期的交代富集作用。表 2总结了金沙江—红河带内代表性富碱斑岩的主要特征。
表 2 金沙江—红河带内主要富碱斑岩特征Table 2. Main characteristics of the Jinshajiang-Honghe alkaline-rich porphyries关于富碱斑岩岩浆成因演化的认识,目前的主要观点有:“裂谷”成因(张玉泉等,1987);区域热异常背景下的“减压熔融作用”(Zhang and Schärer,1999);印度大陆俯冲相关的“大陆俯冲模型”(Wang et al., 2001);新特提斯洋壳俯冲于印度大陆板片之下断离的“俯冲断离模型”(Flower et al., 2013)以及加厚岩石圈地幔“拆沉模型”(Lu et al., 2013)。可见,对其认识尚不统一。已有的研究表明,玉龙富碱斑岩的(87Sr/86Sr)i比值为0.7063~0.7077,εNd(t)为-2.0~-3.0,εHf(t)为+3.1~+5.9,综合指示玉龙富碱斑岩来源于交代岩石圈地幔的部分熔融(Hou et al., 2003; Jiang et al., 2006)。北衙富碱斑岩(87Sr/86Sr)i含量变化于0.70714~0.70852,εNd(t)为-4.19~-8.60,εHf(t)为-4~+4,锆石δ18O值为6.6%~7.8%,综合显示北衙富碱斑岩来源于富钾的角闪岩相加厚下地壳的部分熔融(Lu et al., 2013;Deng et al., 2015;王建华,2017;Mao et al., 2017)。铜厂富碱斑岩的(87Sr/86Sr)i值为0.70709~0.70775,εNd(t)值为-7.1~-6.8,锆石εHf(t)为-6.4~+ 2.6,指示富碱斑岩主要来源于加厚的富钾的铁镁质下地壳(胥磊落等,2011;Xu et al., 2014;武精凯等,2019)。三地富碱斑岩均表现出与代表角闪岩相下地壳物质的滇西地区普遍发育的始新世酸性岩中角闪岩捕掳体相似的Sr-Nd同位素特征(图 3),综合指示斑岩源区可能主要为富碱的下地壳物质,也印证了上述研究的观点。结合带内斑岩普遍具有的EMII型富集地幔端员(Lu et al., 2013; 和文言,2014;Deng et al., 2015; Liu et al., 2015)特征,笔者认为在始新世末期(约36 Ma),印度—欧亚大陆持续碰撞使经受了早期交代作用的加厚岩石圈地幔底部发生位移扰动,这一过程可能引发下部热的软流圈物质上涌对流并诱发了角闪岩相下地壳的物质部分熔融,产生了具富集地幔源区印迹的富碱斑岩岩浆。
图 3 金沙江—红河富碱斑岩的Sr-Nd同位素组成(据Lu et al., 2013修改)数据来源:玉龙(Hou et al., 2003; Jiang et al., 2006);北衙(Lu et al., 2013; Deng et al., 2015;王建华,2017;Mao et al., 2017);铜厂(胥磊落等,2011;Xu et al., 2014; 武精凯等,2019)Figure 3. Sr-Nd isotope compositions of the Jinshajiang-Honghe alkaline-rich porphyries (modified from Lu et al., 2013)Data sources: Yulong (Hou et al., 2003; Jiang et al., 2006); Beiya (Lu et al., 2013; Deng et al., 2015; Wang Jianhua, 2017; Mao et al., 2017); Tongchang (Xu Leiluo et al., 2011; Xu et al., 2014; Wu Jingkai et al., 2019)4.2 成矿特征
矿床地球化学方面,玉龙、北衙和铜厂三地已积累的大量研究(下文),结论一致地指出三地的铜金多金属成矿作用直接相关于富碱斑岩的岩浆演化。
在北部的玉龙矿区,流体包裹体的研究显示玉龙斑岩铜多金属矿床的成矿作用与二长花岗斑岩的侵位及其成矿流体演化直接相关(李萌清等,1981);谢玉玲等(2005)的研究进一步显示,流体温度压力的降低引起的流体不混溶是造成斑岩型矿化矿质沉淀的主要因素。对流体包裹体的氢氧同位素测定结果显示,成矿流体来源于混合有部分大气水的岩浆水(陈建平等,2009)。芮宗瑶(1984)指出玉龙矿区的成矿以岩浆硫为主,且岩体到接触带向外,岩浆硫的比例依次减小。
对北衙矿区内主要成矿类型(矽卡岩型矿化)的辉钼矿Re-Os测年结果表明其形成时代为(36.82±0.48) Ma,与富碱斑岩活动一致(He et al., 2015);北衙矿区的流体包裹体研究显示,成矿流体主要来自斑岩体结晶分异出的岩浆热液(王建华等,2015;He et al., 2017;王璇等,2018)、成矿晚期阶段混合了高氧逸度的大气水(Hu et al., 2004;肖晓牛等,2011;和文言,2014;刘博,2014;Fu et al., 2016, 2017)。对北衙矿区内三类主要原生矿化中硫化物的硫同位素研究(斑岩型:δ34S值为-1.6~3.6;刘秉光等,1994;徐受民,2007;肖晓牛等,2011;和文言,2014。矽卡岩型:δ34S值为0.2~3.7;和文言,2014;王建华,2017。热液型:δ34S值为-2.3~1.5;吴松,2016;王建华,2017)显示,其与富碱斑岩的硫同位素组成(δ34S值变化于+0.1~+3.7‰;吕伯西等,1993)基本一致,均在深源岩浆硫同位素组成范围,与北衙富碱斑岩直接相关;而北衙矿区外围热液型铅锌矿化中闪锌矿的初始锶同位素组成(0.70892~0.71077;王建华,2017)亦显示出其与富碱斑岩相似的特征。
Xu et al. (2014)通过铜厂铜钼矿中黄铁矿单矿物流体包裹体的Ar-He同位素研究发现,成矿流体主要来自于石英正长斑岩岩浆,也有源于大气和围岩的成分加入,且铜厂矿区热液黄铁矿的δ34S值指示成矿流体中硫的最初来源为岩浆。
5. 区域构造-富碱岩浆-铜金多金属成矿
5.1 三地控岩断裂特征
5.1.1 玉龙矿区日前玛断裂
图 4a所示观测点为江达县妥坝乡向东约25 km青泥洞乡一带的日前玛断裂,表现为上盘的紫红色碎屑岩沿其与下盘碳酸盐岩界面下降的特点,产状倾向245°,倾角45°左右,向碎屑岩红层一侧倾角有变缓的趋势,总体上表现出张性断裂特征;其走向北西—南东延伸,向南东可能在贡觉县以东地区与区域温泉断裂相连。玉龙矿区主要富碱斑岩的分布主要受控于该北西向日前玛—温泉断裂(图 1,Hou et al., 2003;图 4a)。
图 4 金沙江—红河走滑断裂带的次一级断裂a—玉龙矿区南部日前玛张性断裂(观察地点:青泥洞乡南西;镜头方向:321°);b—北衙矿区马鞍山张性断裂(观察地点:焦石硐;镜头方向:55°;王建华,2017);c—铜厂乡南东的张性断裂(观察地点:董棕河村;镜头方向:238°)Figure 4. Secondary faults of the Jinshajiang-Honghe strike-slip faulta-The Riqianma extensional fault in the southern area of the Yunlong deposit near Qingnidong town; b-The Maanshan extensional fault in the Jiaoshidong of the Beiya deposit (after Wang Jianhua, 2017); c-The extensional Dongzonghe fault in the southeast of the Tongchang deposit5.1.2 北衙矿区马鞍山断裂
近南北—北西向展布的马鞍山张性断裂是北衙矿区内的主干断裂,南北露头延伸约20 km,主要斜切北衙向斜西翼,在矿区西部杨家院、绞家院、焦石硐一带通过,断裂总体上表现为南部向西倾,北部则主要向东倾斜,倾角普遍较陡。据笔者野外调查,马鞍山断裂普遍出露于金沙江—红河走滑深大断裂带以东数十千米范围内,为其次一级构造,且可能在大理挖色一带与其贯通,空间上与北衙矿区的主要富碱斑岩相伴产出(图 1)。
图 4b所示的是马鞍山张性断裂在北衙矿区焦石洞西采石场出露点:断层总体表现为近10 m的断层破碎带,由两侧地层岩石的构造角砾及其间填充的泥砂质组成,断层破碎带两侧地层产状突变较陡。点东(上盘)为中三叠统北衙组灰白色、青灰色泥质灰岩,为泥晶结构,块状构造;由方解石和泥质组成,在靠近断层面附近岩层节理发育,破碎强烈,其间可见褐铁矿染,据构造透镜体排布和岩层错断特点可知其为下降盘。点西(下盘)为下三叠统青天堡组紫红色、砖红色泥质粉砂岩,具泥砂质结构,块状、中厚层状构造;主要成分为长石、石英及泥砂质,岩石同样在断层通过处强烈破碎,节理、劈理发育,将岩石切割成5~15 mm见方的细小碎块。二者为高角度正断层接触。
5.1.3 铜厂矿区董棕河断裂
据野外调查,董棕河断裂出露于金平铜厂乡南东约5 km的董棕河村附近,构造形迹主要由断层崖地貌(图 4c)显示,野外观察显示上盘下降特征,为高角度张性断裂;产状普遍为倾向240°,倾角75°左右,区域上走向北西延伸,在铜厂北西约30 km的营盘乡一带仍有出露,应为区域性延伸的北西向张性断裂,且推测其在元阳一带与金沙江—红河主走滑断裂带贯通。铜厂一带的富碱斑岩分布主要受控于董棕河断裂的展布(图 1)。
综上,产出三地主要矿化类型的富碱斑岩,区域空间上的分布均严格受控于金沙江—红河深大断裂带的次一级近南北向、北西向张性断裂(图 1),如上述玉龙矿集区的日前玛断裂,北衙矿集区的马鞍山断裂以及铜厂地区的董棕河断裂,区域构造相伴控制富碱岩浆活动-多金属成矿的特征明显。
5.2 走滑断裂带次级断裂控制富碱岩浆上侵
Ebinger and Sleep (1998)认为切穿岩石圈的构造通道(如走滑断裂带)的“减压效应”可产生足够的压力梯度致使岩石圈底部的熔体运移汇聚。因此,走滑断裂带或区域是深源熔体和流体上升的一种主要通道(Storti et al., 2003)。Deng et al. (1998)指出,陆内强烈的走滑剪切作用会形成一些张性或张剪性的次级斜向断裂,此类不同走向的主-次级断裂的构造有利部位(如次级断裂或断裂交汇部位等)可成为岩浆熔体上侵的通道。Richards (2003)则进一步指出,挤压转换背景下,沿大型走滑构造发育的垂向通道可引导岩浆上侵,并使其在上地壳的次级断裂中侵位,例证如阿根廷的西北部(Chernicoff et al., 2002)及其他地区(Brown and Solar, 1999;Adiyaman et al., 2001)。
上已述及,通过金沙江—红河富碱斑岩带周边详细的野外地质调查,识别出控制三地岩浆侵位的近北西向断裂(玉龙的前日玛,北衙的马鞍山和铜厂的董棕河断裂)为金沙江—红河走滑深大断裂的次一级断裂。金沙江—红河走滑深大断裂普遍被看作青藏高原主碰撞向晚碰撞过渡阶段,挤压转换应力背景下,扬子西缘地体斜向碰撞形成的大型构造产物(侯增谦,2010;李文昌等,2010;邓军等,2010)。据此笔者认为,在青藏高原主碰撞向晚碰撞过渡的挤压转换时期(40~26 Ma;侯增谦等,2006a),扬子西缘的金沙江—红河一带,由于地块间的斜向碰撞发生广泛而强烈的深切岩石圈的走滑剪切构造,其活动形成的减压带,诱发了带内自北向南富碱岩浆沿着走滑通道的向上运移,并在上地壳次一级的张性断裂带(如上述日前玛、马鞍山和董棕河等)内侵位,最终导致了金沙江—红河富碱斑岩带的形成及随后的铜金多金属成矿作用(图 5)。而整个带上表现出的北部以铜钼为主,南部以金多金属为主的成矿特征,可能反映的是区域上不同位置深部岩浆源区的差异性。
Figure 5. Formation of the Jinshajiang-Honghe alkaline-rich magma controlled by the regional Jinshajiang-Honghe strike-slip faults and its secondary structures (after Lu et al., 2013; Deng et al., 2015; Wang Jianhua et al., 2016)5.3 成矿作用及富碱斑岩铜金多金属成矿系统
如上所述,已有的研究已揭示金沙江—红河富碱斑岩铜金多金属成矿带内具分带特征的成矿事件直接相关于富碱岩浆演化。基于对北衙金多金属成矿系统的实例(Li et al., 2016; 王建华,2017;图 6)和其余两地成矿特征的研究(姜耀辉等,2006;陈建平等,2009;周云满等,2014;武精凯等,2019),金沙江—红河富碱斑岩带的“区域构造-富碱岩浆-铜金多金属”成矿作用总体上可概括为:受控于金沙江—红河大型走滑断裂带次一级断裂的富碱岩浆的侵位,在其演化的晚期,携带矿质的成矿流体从岩浆中分异,含矿流体的不混溶等物理化学过程导致了成矿流体的沸腾,成矿流体在富碱斑岩与碳酸盐岩围岩的接触部位形成矽卡岩及矽卡岩型Au-Cu-Fe矿体;与此同时,发生了不混溶作用的流体与部分高氧逸度大气水混合,在富碱斑岩体及其接触带广泛的裂隙内沉淀成矿物质,形成斑岩型Cu(Mo)-Au矿体和矽卡岩型Cu(Au)多金属矿体;随着成矿流体向外围地层或构造中的迁移,气水进一步混入及流体与围岩的水-岩反应,导致了成矿流体温度、压力、盐度的逐渐降低,由此在围岩的构造发育部位形成热液型Pb-Zn-Ag(Au)多金属矿体。从内向外的三类主要矿化类型构成了由区域构造-岩浆-成矿耦合作用所致的铜金多金属成矿系统(Li et al., 2016; 王建华,2017)。
Figure 6. Sketched map of the ore-forming system in Beiya (after Li et al., 2016; Wang Jianhua, 2017)5.4 值得关注的问题
然而,随着研究工作的深入,一些问题也显现出来。例如,带内富碱斑岩在岩石学上既不同于典型的碱性岩,又异于普通的钙碱性岩石系列,通常表现出比普通钙碱性岩石系列高铝富碱的特征(Deng et al., 1998;曾普胜等2002;和文言,2014),深部岩浆演化及其成矿专属性的研究有待加强。带内富碱斑岩的形成时代似乎表现出自北向南渐新,产出的矿床在北部以铜钼矿床为主,南部则以金多金属矿床居多,此类差异具体缘于怎样的深部岩浆-成矿制约?虽有如Xu et al. (2014)的少量资料(认为三地成矿的差异可能在于幔源物质贡献的多少),但目前研究还是有限的。而在区域分布上,富碱斑岩不仅产出于主干金沙江—红河深大断裂带临区,在其以东扬子板块内的小江断裂带内亦有发育,这样的分布特征是否受控于统一的区域构造活动也值得关注。
6. 结论
(1)金沙江—红河富碱斑岩铜金多金属成矿带内的典型矿床具有一定的成矿分带性特征。三地富碱斑岩总体上以二长花岗斑岩和石英正长斑岩为主;岩石显示出富集碱质、铝、轻稀土元素和亏损重稀土元素和高场强元素的特性;且具有相似的指示下地壳源区的Sr-Nd同位素组成。
(2)带内的富碱岩浆活动及相关的铜金多金属成矿作用受控于青藏高原晚碰撞构造转换时期金沙江—红河深大断裂带次一级近北西(或南北)向张性断裂(如玉龙的日前玛断裂,北衙的马鞍山断裂和铜厂的董棕河断裂等)的构造活动。
致谢: 衷心感谢审稿专家提出的宝贵意见和云南黄金集团及西部矿业玉龙铜矿的同仁们在野外工作中提供的帮助。 -
图 1 金沙江—红河富碱斑岩铜金多金属成矿带
表示金沙江—红河走滑断裂带的次级构造控制富碱斑岩的分布(数据来源:Hou et al., 2003; Deng et al., 2014; 王建华,2017;武精凯等,2019)
Figure 1. The Jinshajiang-Honghe alkaline-rich porphyry Cu-Au metallogenic belt
Showing the distribution pattern of the alkaline-rich porphyry controlled by the Jinshajiang-Honghe and its secondary faults (Data sources: Hou et al., 2003; Deng et al., 2014; Wang Jianhua, 2017; Wu Jingkai et al., 2019)
图 2 金沙江—红河富碱斑岩岩石分类图解
a-SiO2-(K2O+Na2O)图解(底图据Irvine and Baragar, 1971);b-SiO2-K2O图解(底图据Peccerillo and Taylor, 1976);数据来源:玉龙(Jiang et al., 2006);北衙(Lu et al., 2013; Deng et al., 2015;王建华,2017);铜厂(胥磊落等,2011)
Figure 2. Variation of the Jinshajiang-Honghe alkaline-rich porphyries
a-(K2O+Na2O)-SiO2(after Irvine and Baragar, 1971); b-K2O-SiO2(after Peccerillo and Taylor, 1976); Data sources: Yulong (Jiang et al., 2006); Beiya (Lu et al., 2013; Deng et al., 2015; Wang Jianhua, 2017); Tongchang (Xu Leiluo et al., 2011)
图 3 金沙江—红河富碱斑岩的Sr-Nd同位素组成(据Lu et al., 2013修改)
数据来源:玉龙(Hou et al., 2003; Jiang et al., 2006);北衙(Lu et al., 2013; Deng et al., 2015;王建华,2017;Mao et al., 2017);铜厂(胥磊落等,2011;Xu et al., 2014; 武精凯等,2019)
Figure 3. Sr-Nd isotope compositions of the Jinshajiang-Honghe alkaline-rich porphyries (modified from Lu et al., 2013)
Data sources: Yulong (Hou et al., 2003; Jiang et al., 2006); Beiya (Lu et al., 2013; Deng et al., 2015; Wang Jianhua, 2017; Mao et al., 2017); Tongchang (Xu Leiluo et al., 2011; Xu et al., 2014; Wu Jingkai et al., 2019)
图 4 金沙江—红河走滑断裂带的次一级断裂
a—玉龙矿区南部日前玛张性断裂(观察地点:青泥洞乡南西;镜头方向:321°);b—北衙矿区马鞍山张性断裂(观察地点:焦石硐;镜头方向:55°;王建华,2017);c—铜厂乡南东的张性断裂(观察地点:董棕河村;镜头方向:238°)
Figure 4. Secondary faults of the Jinshajiang-Honghe strike-slip fault
a-The Riqianma extensional fault in the southern area of the Yunlong deposit near Qingnidong town; b-The Maanshan extensional fault in the Jiaoshidong of the Beiya deposit (after Wang Jianhua, 2017); c-The extensional Dongzonghe fault in the southeast of the Tongchang deposit
图 5 受控于金沙江—红河断裂带及其次级构造的富碱岩浆成因演化过程(据Lu et al., 2013;Deng et al., 2015; 王建华等,2016)
Figure 5. Formation of the Jinshajiang-Honghe alkaline-rich magma controlled by the regional Jinshajiang-Honghe strike-slip faults and its secondary structures (after Lu et al., 2013; Deng et al., 2015; Wang Jianhua et al., 2016)
图 6 北衙富碱斑岩金多金属成矿系统示意图(据Li et al., 2016; 王建华,2017)
Figure 6. Sketched map of the ore-forming system in Beiya (after Li et al., 2016; Wang Jianhua, 2017)
表 1 金沙江—红河富碱斑岩铜金多金属成矿带内典型矿床特征
Table 1 Geological characteristics of the typical deposits in the Jinshajiang-Honghe alkaline-rich porphyry Cu-Au metallogenic belt
表 2 金沙江—红河带内主要富碱斑岩特征
Table 2 Main characteristics of the Jinshajiang-Honghe alkaline-rich porphyries
-
Adiyaman O, Chorowicz J, Arnaud O N, Gundogdu M N, Gourgaud A. 2001. Late Cenozoic tectonics and volcanism along the North Anatolian fault: New structural and geochemical data[J]. Tectonophysics, 338: 135-165. doi: 10.1016/S0040-1951(01)00131-7
Bao X S, Yang L Q, He W Y, Gao X. 2018. Importance of magmatic water content and oxidation state for porphyry-style Au mineralization: An example from the giant Beiya Au deposit, SW China[J]. Minerals, 8(10): 1-13.
Bao Xinshang, Yang Liqiang, He Wenyan, Gao Xue, Li Mengmeng. 2019. Constraints of chemical composition of biotite and zircon on crystallization conditions of magma: An example from the Beiya giant Au deposit, SW China[J]. Acta Petrologica Sinica, 35(5): 1447-1462(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.05.08
Bissig T, Cooke D R. 2014. Introduction to the special issue devoted to alkalic porphyry Cu-Au and epithermal Au deposit[J]. Economic Geology, 109: 819-825. doi: 10.2113/econgeo.109.4.819
Brown M, Solar G S. 1999. The mechanism of ascent and emplacement of granitic magma during transpression: A syntectonic granite paradigm[J]. Tectonophysics, 312: 1-33. doi: 10.1016/S0040-1951(99)00169-9
Cannell J, Cooke D R, Walshe J L, Stein H. 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100: 979-1003. doi: 10.2113/gsecongeo.100.5.979
Chen B, Long X P, Wilde S A, Yuan C, Wang Q, Xia X P, Zhang Z F. 2017. Delamination of lithospheric mantle evidenced by Cenozoic potassicrocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau[J]. Lithos, 284/285: 709-729. doi: 10.1016/j.lithos.2017.05.019
Chen Jianping, Tang Juxing, Cong Yuan, Dong Qingjie, Hao Jinhua. 2009. Geological characteristics and metallogenicmodel in the Yulong porphyry copper deposit, east Tibet[J]. Acta Geologica Sinica, 83(12): 1887-1900(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.12.007
Chernicoff C J, Richards J P, Zappettini E O. 2002. Crustal lineament control on magmatism and mineralization in northwestern Argentina: Geological, geophysical, and remote sensing evidence[J]. Ore Geology Reviews, 21: 127-155. doi: 10.1016/S0169-1368(02)00087-2
Deng Jun, Hou Zengqian, Mo Xuanxue, Yang Liqiang, Wang Qingfei, Wang C M. 2010. Superimposed orogenesis and metallogenesis in Sanjiang Tethys[J]. Mineral Deposits, 29(1): 37-42(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.01.005
Deng Jun, Wang Changming, Li Wenchang, Yang Liqiang, Wang Qingfei. 2014. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys[J]. Earth Science Frontiers, 21(1): 52-64(in Chinese with English abstract).
Deng J, Wang Q F, Li G J, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China[J]. Earth-Science Reviews, 138: 268-299. doi: 10.1016/j.earscirev.2014.05.015
Deng J, Wang Q F, Li G J, Hou Z Q, Jiang C Z, Danyushevsky L. 2015. Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China[J]. Ore Geology Reviews, 70: 457-485. doi: 10.1016/j.oregeorev.2015.02.015
Deng W M, Huang X, Zhong D L. 1998. Alkali-rich porphyry and its relation with intraplate deformation of north part of Jinsha River belt in western Yunnan, China[J]. Science in China (Series D), 41(3): 297-305. doi: 10.1007/BF02973119
Ebinger C J, Sleep N H. 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume[J]. Nature, 395: 788-791. doi: 10.1038/27417
Flower M F J, Hoàng N, Lo C H, Chí C T, Cu'ò'ng N Q, Liu F T, Deng J F, Mo X X. 2013. Potassic magma genesis and the Ailao Shan-Red River fault[J]. Journal of Geodynamics, 69: 84-105. doi: 10.1016/j.jog.2012.06.008
Fu Y, Sun X M, Zhou H Y, Lin H, Yang T J. 2016. In-situ LA-ICP-MS U-Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China[J]. Ore Geology Reviews, 77: 43-56. doi: 10.1016/j.oregeorev.2016.02.001
Fu Y, Sun X M, Zhou H Y, Lin H, Jiang L Y, Yang T J. 2017. In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its metallogenic implications[J]. Ore Geology Reviews, 80: 828-837. doi: 10.1016/j.oregeorev.2016.08.030
He W Y, Mo X X, He Z H, White N C, Chen J B, Yang K H, Wang R, Yu X H, Dong G C, Huang X F. 2015. The geology and mineralogy of the Beiyaskarn gold deposit in Yunnan, Southwest China[J]. Economic Geology, 110: 1625-1641. doi: 10.2113/econgeo.110.6.1625
He W Y, Yang L Q, Campbell M C, Lu Y J, Joël B, Bao X S, Gao X Q, Lu Y G, Xing Y L. 2017. Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H-O-S-Pb isotopes[J]. Ore Geology Reviews, 90: 847-862. doi: 10.1016/j.oregeorev.2016.10.035
He Wenyan. 2014. The Beiya giant gold-polymetallic deposit: magmatism and metallogenic model[D]. Beijing: China University of Geosciences (Beijing), 1-154(in Chinese with English abstract).
Hou Zengqian, Ma H W, Zaw K. 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 98: 125-145.
Hou Zengqian, Yang Zhuseng, Xu Wenyi, Mo Xuanxue, Ding Lin, Gao Yongfeng, Dong Fangliu, Li Guangming, Qu Xiaoming, Li Guangming, Zhao Zhidan, Jiang Sihong, Meng Xiangjin, Li Zhenqing, Qin Kezhang, Yang Zhiming. 2006a. Metallogenesis in the Tibetan collisional orogenic belt: I. Mineralization in main collisional orogenic setting[J]. Mineral Deposits, 25(4): 337-358(in Chinese with English abstract).
Hou Zengqian, Pan Guitang, Wang Anjian, Mo Xuanxue, Tian Shihong, Sun Xiaoming, Ding Lin, Wang Erqi, Gao Yongfeng, Xie Yuling, Zeng Pusheng, Qin Kezhang, Xu Jifeng, Qu Xiaoming, Yang Zhiming, Yang Zhuseng, Feng Hongcai, Meng Xiangjin, Li Zhenqing. 2006b. Metallogenesis in the Tibetan collisional orogenic belt: Ⅱ. Mineralization in late-collisional transformation setting[J]. Mineral Deposits, 25(5): 521-543(in Chinese with English abstract).
Hou Zengqian, Zhong Dalai, Deng Wanming. 2004. A tectonic model for porphyry copper-molybdenum-gold metallogenic belts on the eastern margin of the Qinghai-Tibet plateau[J]. Geology in China, 31(1): 1-13(in Chinese with English abstract).
Hou Z Q, Zhou Y, Wang R, Zheng YC, He W Y, Zhao M, Evans N J, Weinberg RF. 2017. Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges[J]. Geology, 45: 563-566.
Hou Zengqian. 2010. Metallogenesis of continental collision[J]. Acta Geologica Sinica, 84(1): 30-58(in Chinese with English abstract).
Hu R Z, Burnard P G, Bi X W, Zhou M F, Peng J T, Su W C, Wu K X. 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China[J]. Chemical Geology, 203(3/4): 305-317.
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal Earth Science, 8: 523-548. doi: 10.1139/e71-055
Jiang H Y, Jiang S Y, Ling H F, Dai B Z. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints[J]. Earth and Planetary Science Letters, 241: 617-633. doi: 10.1016/j.epsl.2005.11.023
Jiang Yaohui, Jiang Shanyong, Lin Hongfei, Dai Baozhang. 2006. Petrogenesis of Cu-bearing porphyry associated with continent-continent collisional setting: Evidence from the Yulong porphyry Cu ore-belt, east Tibet[J]. Acta Petrologica Sinica, 27(10): 3109-3122(in Chinese with English abstract).
Li Mengqing, Rui Zongyao, Chen Laixian. 1981. Fluid inclusions and mineralization of the Yulong porphyry copper (molybdenum) deposit[J]. Acta Geologica Sinica, 3: 216-232(in Chinese with English abstract).
Li Wenchang, Pan Guitang, Hou Zengqian, Mo Xuanxue, Wang Liquan. 2010. The Muti-Island-Basin-Collision-Orogenic Metallogenesis and prospecting technologies in "Sanjiang" Region, SW China[M]. Beijing: Geological Publishing House, 1-491 (In Chinese).
Li W C, Wang J H, He Z H, Dou S. 2016. Formation of Au-polymetallic ore deposits in alkaline porphyries at Beiya, Yunnan, Southwest China[J]. Ore Geology Reviews, 73: 241-252. doi: 10.1016/j.oregeorev.2015.05.003
Liang Huaying, Mo Jihai, Sun Weidong, Zhang Yuquan, Zeng Ti, Huo Guangqian, Charllote A. 2009. Study on geochemical composition and isotope ages of the Malasongduo porphyry associated with Cu-Mo mineralization[J]. Acta Petrologica Sinica, 25(2): 385-392(in Chinese with English abstract).
Lin B, Wang L, Tang J, Song Y, Chen Z. 2017. Zircon U-Pb geochronology of ore-bearing porphyries in baomai deposit, Yulong copper belt, Tibet[J]. Earth Science——Journal of China University of Geosciences, 42(9): 1454-1471. doi: 10.3799/dqkx.2017.517
Liu B, Liu H, Zhang C Q, Mao Z H, Zhou Y M, Huang H, He Z H, Su G S. 2015. Geochemistry and geochronology of porphyries from the Beiya gold-polymetallic orefield, western Yunnan, China[J]. Ore Geology Reviews, 69: 360-379. doi: 10.1016/j.oregeorev.2015.03.004
Liu Bingguang, Lu Defu, Cai Xinping. 1999. Study on the Gold Deposits in Yunnan and Sichuan[M]. Beijing: Maritime Press, 1-241 (In Chinese).
Liu Bo. 2014. Diagenetic and Metallogenic Features of Beiya Polymetallic Deposit in Northwest Yunnan[D]. Beijing: China University of Geosciences (Beijing), 1-74(in Chinese with English abstract).
Lu Y J, Kerrich R, Kemp A I S, Mccuaig T C, Hou Z Q, Hart C J R, Li Z X, Cawood P A, Bagas L, Yang Z M, Cliff J, Belousova E A, Jourdan F, Evans N J. 2013. Intercontinental Eocene-Oligocene porohyry Cu mineral system of Yunnan, western Yangtze craton, China: Compositional characteristics, souces, and implications for continental collision metallogeny[J]. Economic Geology, 108: 1541-1576. doi: 10.2113/econgeo.108.7.1541
Lü Boxi, Duan Jianzhong, Pan Changyun. 1993. Granites and Their Mineralization Specificity in the Sanjiang Area[M]. Beijing: Geological Publishing House, 1-328(In Chinese).
Ma Hongwen. 1989. On the tectonic environment of magmatism in Yulong porphyry copper belt, eastern Tibet[J]. Acta Petrologica Sinica, 2(1): 1-11(in Chinese with English abstract). doi: 10.1111/j.1755-6724.1989.mp2001001.x
Mao J W, Zhou Y M, Liu H, Zhang C Q, Fu D G, Liu B. 2017. Metallogenic setting and ore genetic model for the Beiya porphyry-skarn polymetallic Au orefield, western Yunnan, China[J]. Ore Geology Reviews, 86: 21-34. doi: 10.1016/j.oregeorev.2017.02.003
Meng X M, Mao J W, Zhang CQ, Zhang D Y, Liu H. 2018. Melt recharge, fo2-T condition, and metal fertility of felsic magma: Zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China[J]. Mineralium Deposita, 53: 649-663. doi: 10.1007/s00126-017-0768-y
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63-81. doi: 10.1007/BF00384745
Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 37: 247-250.
Rui Zongyao. 1984. Porphyry Cu (Mo) Deposits in China[M]. Beijing: Geological Publishing House, 350(in Chinese).
Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3
Storti F, Holdsworth R E, Salvini F. 2003. Intraplate strike-slip deformation belts[J]. Geological Society, London, Special Publication, 210: 1-14. doi: 10.1144/GSL.SP.2003.210.01.01
Tong X, Zhao Z D, Niu Y L, Zhang S Q, Cousens B, Liu D, Zhang Y, Han M Z, Zhao Y X, Lei S A, Shi Q S, Zhu D C, Sheikh L, Lutfi W. 2019. Petrogenesis and tectonic implications of the Eocene-Oligocene potassic felsic suites in western Yunnan, eastern Tibetan Plateau: Evidence from petrology, zircon chronology, elemental and Sr-Nd-Pb-Hf isotopic geochemistry[J]. Lithos, 340/341: 287-315. doi: 10.1016/j.lithos.2019.04.023
Wang Jianhua, Li Wenchang, He Zhonghua, Yin Guanghou, Zhou Yunman. 2016. Geological and Sr-Nd-Pb isotopic characteristics of the Dashadi porphyry in the Beiya gold polymetallic deposit in western Yunnan and their geological implications[J]. Acta Petrologica Sinica, 32(8): 2367-2378 (in Chinese with English abstract).
Wang Jianhua, Li Wenchang, Wang Keyong, Yin Guanghou, Wu Song, Jiang Wentao. 2015. The characteristics and evolution of the ore-forming fluids in the Beiya porphyry Au-polymetallic deposit, western Yunnan[J]. Acta Petrologica Sinica, 31(11): 3269-3280(in Chinese with English abstract).
Wang J H, Yin A, Harrison T M, Grove M, Zhang Y Q, Xie G H. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth and Planetary Science Letters, 188: 123-133. doi: 10.1016/S0012-821X(01)00315-6
Wang Jianhua. 2017. Alkaline-rich Porphyry Au-polymetallic Metallogeny System in Beiya, Heqin, West Yunnan[D]. Kunming: Kunming University of Science and Technology, 1-130(in Chinese with English abstract).
Wang Xuan, Yang Lin, Deng Jun, Li Huajian, Yu Huazhi, Dong Chaoyi. 2018. Identification of multistage hydrothermal mineralization in the Beiya gold deposit: Evidence from geology, petrography, fluid inclusion, H-O-S isotopes[J]. Acta Petrologica Sinica, 34(5): 1299-1311(in Chinese with English abstract).
Wu Jingkai, Zhao Zhidan, Yang Yiyun, Lei Hangshan, Miao Zhuang, Liu Dong, Zhu Dicheng, Yu Xuehui. 2019. Petrogenesis and geological implications of the alkali-rich porphyry in southern Ailaoshan-Red River shear zone[J]. Acta Petrologica Sinica, 35(2): 485-504(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.14
Wu Song. 2016. Geochemical characteristics and Genesis of Stratified Pb-Zn-Ag Polymetallic Deposit in the Outer Belt of the Beiya Gold Deposit, Northwest Yunnan Province[D]. Kunming: Kunming University of Science and Technology, 1-75(in Chinese with English abstract).
Wu W B, Liu J L, Zhang L S, Qi Y C, Ling C Y. 2017. Characterizing a middle to upper crustal shear zone: Microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticityanalysis of the northern Ailao Shan-Red River shear zone, China[J]. Journal of Asian Earth Sciences, 139: 95-114. doi: 10.1016/j.jseaes.2016.12.026
Xiao Xiaoniu, Yu Xuehui, Mo Xuanxue, Li Yong, Huang Xingkai. 2011. Geochemical characteristics of metallogenesis in the gold-polymetallic deposit in Beiya, western Yunnan Province[J]. Geology and Exploration. 47(2): 170-179(in Chinese with English abstract).
Xie Yuling, Hou Zegnqian, Xu Jiuhua, Yang Zhiming, Xu Wenyi, He Jianping. 2005. Evolution of muti-stage fluid and mineralization: Evidence from fluid inclusions in Yulong porphyry copper deposit, east Tibet[J]. Acta Petrologica Sinica, 21(5): 1409-1415(in Chinese with English abstract).
Xu L L, Bi X W, Hu R Z, Tang Y Y, Jiang G H, Qi Y Q. 2014. Origin of the ore-forming fluids of the Tongchang porphyry Cu-Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: Constraints from He, Ar and S isotopes[J]. Journal of Asian Earth Sciences, 79: 884-894. doi: 10.1016/j.jseaes.2013.02.013
Xu Leiluo, Bi Xianwu, Su Wenchao, Qi Youqiang, Li Liang, Chen Youwei, Dong Shaohua, Tang Yongyong. 2011. Geochemical characteristics and petrogenesis of the quartz syenite porphyry from the Tongchang Porphyry Cu (Mu-Au) deposit in Jinping county, Yunnan Province[J]. Acta Petrologica Sinica, 22(3): 697-706(in Chinese with English abstract).
Xu Shouming. 2007. Mineralization Model of the Beiya Gold Deposit in Northwest Yunnan and Its Relationship with Cenozoic Alkali-rich Porphyry[D]. Beijing: China University of Geosciences (Beijing), 1-115(in Chinese with English abstract).
Xu Y, Zhu J J, Hu R Z, Bi X W, Yu H J, Xu L L, Liu B H, Huang M L, Sheng X Y. 2019. Heterogeneous lithospheric mantle beneath the southeastern Tibetan Plateau: Evidence from Cenozoic high-Mg potassic volcanic rocks in the Jinshajiang-Ailaoshan Cenozoic magmatic belt[J]. Journal of Asian Earth Sciences, 180: 1-18.
Xu Zhiqin, Li Haibing, Yang Jingsui. 2006. An orogenic plateau: the orogenic collage and orogenic types of the Qinghai-Tibet plateau[J]. Earth Science Frontiers, 13(4): 1-17(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.04.002
Zeng Pusheng, Mo Xuanxue, Yu Xuehui. 2002. Nd, Sr and Pb isotopic characteristics of the alkaline-rich porphyries in western Yunnan and its compression strike-slip setting[J]. Acta Petrologica Et Mineralogica, 21(3): 231-241(in Chinese with English abstract).
Zhang L S, Schärer U. 1999. Age and origin of magmatism along the Cenozoic Red River shear belt, China[J]. Contributions to Mineralogy and Petrology, 134(1): 67-85. doi: 10.1007/s004100050469
Zhang Yuquan, Xie Yingwen, Tu Guangzhi. 1987. Preliminary studies of the alkali-rich intrusive rocks in the Ailaoshan-Jinshajiang belt and their bearing on rift tectonics[J]. Acta Petrologica Sinica, 3(1): 19-28(in Chinese with English abstract).
Zhou Fang, Wang Baodi, He Juan, Hao Ming, Wang Peng. 2022.3D visualization modeling and application study of porphyry-skarn gold-copperdeposits in Beiya Area, Yunnan Province[J]. Geology in China, 49(1): 241-252 (in Chinese with English abstract).
Zhou H Y, Sun X M, Fu Y, Lin H, Jiang L Y. 2016. Mineralogy and mineral chemistry of Bi-minerals: Constraints on ore genesis of the Beiya giant porphyry-skarn gold deposit, southwestern China[J]. Ore Geology Reviews, 72: 408-424.
Zhou Y M, Zhang C Q, He Z H, Liu H, Zhou G W, Sun J, Liu B. 2018. Geological characteristics and ore-controlling factors of the Beiya gold-polymetallic ore deposit, northwestern Yunnan Province[J]. Acta Geologica Sinica, 92(5): 1841-1861. doi: 10.1111/1755-6724.13680
Zhou Yunman, Zhang Jialiang, Dong Wenwei, Pu Jiazhong. 2014. Breakthrough of gold ore prospecting to depth of Chang'an gold deposit in southern Ailaoshan metallogenic belt[J]. Contributions to Geology and Mineral Resources Research, 29(2): 185-191(in Chinese with English abstract).
鲍新尚, 杨立强, 和文言, 高雪, 李萌萌. 2019. 黑云母和锆石化学组分对岩浆结晶条件的约束: 以滇西北衙超大型金矿床为例[J]. 岩石学报, 35(5): 1447-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201905009.htm 陈建平, 唐菊兴, 丛源, 董庆吉, 郝金华. 2009. 藏东玉龙斑岩铜矿地质特征及成矿模型[J]. 地质学报, 83(12): 1887-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200912007.htm 邓军, 侯增谦, 莫宣学, 杨立强, 王庆飞, 王长明. 2010. 三江特提斯复合造山与成矿作用[J]. 矿床地质, 29(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201001006.htm 邓军, 王长明, 李文昌, 杨立强, 王庆飞. 2014. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 21(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201401008.htm 和文言. 2014. 滇西北衙超大型金多金属矿床岩浆作用与成矿模式[D]. 北京: 中国地质大学(北京), 1-154. 侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟详金, 李振清, 秦克章, 杨志明. 2006a. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 25(4): 337-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200802002.htm 侯增谦, 潘桂堂, 王安建, 莫宣学, 田世洪, 孙晓明, 丁林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006b. 青藏高原碰撞造山带: Ⅱ. 晚碰撞转换成矿作用[J]. 矿床地质, 25(5): 521-543. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606000.htm 侯增谦, 钟大赉, 邓万明. 2004. 青藏高原东缘斑岩铜钼金成矿带的构造模式[J]. 中国地质, 31(1): 1-13. http://geochina.cgs.gov.cn/geochina/article/abstract/20040101?st=search 侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201001001.htm 姜耀辉, 蒋少涌, 凌洪飞, 戴宝章. 2006. 陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J]. 岩石学报, 27(10): 3109-3122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603019.htm 李萌清, 芮宗瑶, 程莱仙. 1981. 玉龙斑岩铜(钼)矿床的流体包裹体及成矿作用研究[J]. 地质学报, 3: 216-232. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198103005.htm 李文昌, 潘桂棠, 侯增谦, 莫宣学, 王立全. 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 1-491. 梁华英, 莫济海, 孙卫东, 张玉泉, 曾提, 胡光黔, Charllote A. 2009. 玉龙铜矿带马拉松多斑岩体岩石学及成岩成矿系统年代学分析[J]. 岩石学报, 25(2): 385-392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902012.htm 刘秉光, 陆德富, 蔡新平. 1999. 滇川西部金矿床研究[M]. 北京: 海洋出版社, 1-241. 刘博. 2014. 滇西北衙金多金属矿床成岩成矿地质特征[D]. 北京: 中国地质大学(北京), 1-74. 吕伯西, 段建中, 潘长云. 1993. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社, 1-328. 马鸿文. 1989. 论藏东玉龙斑岩铜矿带岩浆活动的构造环境[J]. 岩石学报, 2(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198901000.htm 芮宗瑶. 1984. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 350. 王建华, 李文昌, 和中华, 尹光候, 周云满. 2016. 滇西北衙金矿区大沙地岩体地质特征、Sr-Nd-Pb同位素及地质意义[J]. 岩石学报, 32(8): 2367-2378. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201608009.htm 王建华, 李文昌, 王可勇, 尹光候, 吴松, 姜文涛. 2015. 滇西北衙斑岩型金多金属矿床成矿流体特征及其演化[J]. 岩石学报, 31(11): 3269-3280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201511008.htm 王建华. 2017. 滇西鹤庆北衙富碱斑岩金多金属成矿系统研究[D]. 昆明: 昆明理工大学, 1-130. 王璇, 杨林, 邓军, 李华健, 于华之, 董超一. 2018. 北衙金矿多期热液成矿作用识别: 来自地质、岩相学、流体包裹体和H-O-S同位素证据[J]. 岩石学报, 34(5): 1299-1311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201805006.htm 吴松. 2016. 滇西北衙金矿外带似层状Pb-Zn-Ag多金属矿床地球化学特征及其成因研究[D]. 昆明: 昆明理工大学, 1-75. 武精凯, 赵志丹, 杨逸云, 雷杭山, 苗壮, 刘栋, 朱弟成, 喻学惠. 2019. 云南哀牢山-红河断裂带南段新生代富碱斑岩岩石成因和地质意义[J]. 岩石学报, 35(2): 485-504. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902014.htm 肖晓牛, 喻学惠, 莫宣学, 李勇, 黄行凯. 2011. 滇西北衙金多金属矿床成矿地球化学特征[J]. 地质与勘探, 47(2): 170-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201102006.htm 谢玉玲, 侯增谦, 徐九华, 杨志明, 徐文艺, 何建平. 2005. 藏东玉龙斑岩铜矿床多期流体演化与成矿的流体包裹体证据[J]. 岩石学报, 21(5): 1409-1415. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505010.htm 胥磊落, 毕献武, 苏文超, 齐有强, 李亮, 陈佑维, 董少花, 唐永永. 2011. 云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨[J]. 岩石学报, 22(3): 697-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110026.htm 徐受民. 2007. 滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系[D]. 北京: 中国地质大学(北京), 1-115. 许志琴, 李海兵, 杨经绥. 2006. 造山的高原: 青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 13(4): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604001.htm 曾普胜, 莫宣学, 喻学惠. 2002. 滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景[J]. 岩石矿物学杂志, 21(3): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200203004.htm 张玉泉, 谢应雯, 涂光炽. 1987. 哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究[J]. 岩石学报, 3(1): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198701002.htm 周放, 王保弟, 贺娟, 郝明, 王鹏. 2022. 云南北衙斑岩-矽卡岩金铜矿床三维可视化建模与应用[J]. 中国地质, 49(1): 241-252. http://geochina.cgs.gov.cn/geochina/article/abstract/20220115?st=search 周云满, 张家良, 董文伟, 普家忠. 2014. 哀牢山南段长安金矿深部找矿新进展[J]. 地质找矿论丛, 29(2): 185-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201402004.htm -
期刊类型引用(2)
1. 魏平堂. 高原湖泊水体污染源地质调查新思路构建:以洱海水体污染调查为例. 环境工程. 2023(S2): 1103-1109+1113 . 百度学术
2. 王宏,李友余,张锦让,周清. 云南宁蒗水草坝二长花岗斑岩岩石成因:锆石U-Pb年龄及地球化学约束. 地质通报. 2022(08): 1382-1393 . 百度学术
其他类型引用(1)