Discussion on the ore−forming fluids, materials sources and genesis of Erdaohe Pb−Zn−Ag deposit, Inner Mongolia
-
摘要:研究目的
二道河铅锌银矿位于大兴安岭中段,是近年来发现的具有代表性的大型矽卡岩型矿床,通过对该矿床成因的研究将有助于指导大兴安岭中段多金属矿床的勘查工作。
研究方法本文在野外地质调查的基础上,选取各成矿阶段热液石英进行流体包裹体研究,并结合矿石S、Pb同位素与方解石C、O同位素,探讨该矿床成矿流体及物质来源。
研究结果二道河矿床先后经历了矽卡岩阶段、石英硫化物阶段、石英碳酸盐阶段。测温结果显示,热液石英中的包裹体以气液两相为主,矽卡岩阶段石英中包裹体均一温度为310~435℃,盐度为11.7%~0.71% NaCleqv;石英−硫化物阶段石英中包裹体均一温度为195~310℃,盐度为12.9%~0.35% NaCleqv;石英−碳酸盐阶段石英中包裹体均一温度为148~195℃,盐度为4.18%~0.35% NaCleqv。方解石C、O同位素显示矿床经历了水岩反应,并有大气降水的加入。矿石硫同位素δ34S为5.4‰~10.0‰,来源于岩浆与地层的混合硫;铅同位素特征参数表明,铅的来源与造山相关的岩浆作用有关,以上地壳铅为主并混合了少量的深源铅。
结论综上所述,二道河铅锌银矿的成矿流体与物质来源应与蒙古—鄂霍茨克洋闭合造山后伸展导致的大规模岩浆作用有关。
创新点:通过矿区填图、矿区剖面测量和钻孔编录等方式,在查明二道河铅锌银地质特征的基础上通过多种地球化学手段探讨矿床的成矿流体演化特征、成矿来源及成因。
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveThe Erdaohe silver−lead−zinc deposit is located in the middle section of the Greater Khingan Range. It is a representative large−scale skarn−type deposit discovered in recent years. Studying the origin of this deposit will help guide the exploration of polymetallic deposits in the middle section of the Greater Khingan Range.
MethodsOn the basis of field geological survey, this paper made research on the fluid inclusion in the keatite selected at each stage of mineralization, and discussed the ore−forming fluid and material sources in combination with the S and Pb isotopes of ore and the C and O isotopes of calcite.
ResultsThe research result showed the formation of the deposit throughout the process from the skarn stage to the quarte−sulfide stage and to the quartz carbonate stage. According to the temperature measurement result, the inclusion in keatite was mainly characterized by gas−liquid phase, with the homogenization temperature of 310–435℃ at the skarn stage, 195–310℃ at the quarte−sulfide stage and 148–195℃ at the quartz carbonate stage, and the salinity of 11.7%–0.71% NaCleqv at the skarn stage, 12.9%–0.35% NaCleqv at the quartz−sulfide stage and 4.18%–0.35% NaCleqv at the quartz−carbonate stage. The C and O isotopes of calcite indicated a water−rock reaction of the deposit, in which atmospheric precipitation was found. The δ34S value of the S isotope of ore was 5.4‰–10.0‰ from a mixture of sulfurs in magma and strata; as per the characteristic parameter of lead isotope, the source of lead was associated with the orogeny−related magmatism, where the lead was mostly from the upper crust, and slightly from the deep source.
ConclusionsAccordingly, the ore−forming fluid and material sources were considered the products of the large−scale magmatism caused by the extension after the closure of Mongolia−Okhotsk for orogeny.
Highlights:Through methods such as geological mapping, orebody profiling, and drillhole logging, we clarify the geological characteristics of the Erdaohe lead−zinc−silver deposit. Based on this understanding, various geochemical techniques will be employed to explore the characteristics of ore−forming fluid evolution, the origin of mineralization, and the genesis of the deposit.
-
1. 引 言
大兴安岭成矿带位于中亚造山带东段,该区域经历了古亚洲洋、蒙古—鄂霍茨克洋、环太平洋构造域的叠加,复杂的构造运动及伴随的强烈岩浆活动使得该区域形成了一系列金属矿床,如拜仁达坝银铅锌多金属矿、甲乌拉铅锌银矿、乌奴格吐山斑岩型铜矿等(刘建明等, 2004; 佘宏全等, 2009; 曾庆栋等, 2016)。矽卡岩型多金属矿是大兴安岭成矿带重要的矿床类型之一,目前已发现的矽卡岩型矿床多集中在大兴安岭南段(白大明等, 2011)。近年来由于勘查力度的加大,大兴安岭中北段发现了一批铅锌银钼钨矿,显示出该区域有较大的找矿潜力。
二道河铅锌银多金属矿床地处大兴安岭成矿带中部,是近年来该地区发现的大型矿床之一。该矿床于2012年发现,提交矿石资源量21.86×106 t,(Pb+Zn)资源量1.47×106 t,Ag资源量2360 t,达到大型规模。二道河铅锌银矿是典型的接触交代矿床,该矿床自发现以来,一些学者对其开展了成因探讨(王建军等, 2013; 杨发亭, 2018)、地质特征解剖(崔学武等, 2015; 和静等, 2019)、稳定同位素地球化学(张璟等, 2017)及流体包裹体(衮民汕等, 2015)等方面的研究。但对二道河铅锌银矿床的成矿流体及成矿物质缺乏系统研究。
本文旨在通过流体包裹体显微测温与同位素地球化学相结合,研究探讨成矿流体及成矿物质来源、矿床成因,为后续研究及找矿工作提供参考。
2. 成矿地质背景
二道河铅锌银矿位于西伯利亚板块南东大陆边缘古生代陆缘增生带,先后经历了古生代古亚洲洋构造域,中生代蒙古—鄂霍茨克洋构造域和中—新生代环太平洋构造域,三大构造域的叠加使得该地区构造背景复杂(任纪舜等, 1999; 邵积东等, 2011)。
区域主要出露下古生界中下奥陶统多宝山组(O1-2d)中酸性、中基性火山岩、火山碎屑岩及中上奥陶统裸河组(O2-3lh)长石石英砂岩、粉(细)砂岩,变质泥质粉砂岩、泥灰岩、结晶灰岩、大理岩等,局部见有中泥盆统泥鳅河组(D1-2n)酸性凝灰岩、变质凝灰质砂砾岩、粉砂质板岩和上二叠统林西组(P2l)陆源碎屑沉积变质岩;中生界底层主要为中侏罗统塔木兰沟组(J2tm)安山岩、安山玄武岩、上侏罗统满克头鄂博组(J3mk)流纹岩、火山碎屑岩等;少量出露上侏罗统白音高老组(J3b)凝灰岩和上侏罗统马尼吐组(J3mn)辉石安山岩、英安岩、粗面岩、安山质角砾岩等(图1)。
图 1 二道河铅锌银矿区域地质图(修改自内蒙古第三地质矿产勘查开发有限责任公司, 20121 )1—第四系;2—上侏罗统白音高老组一段;3—上侏罗统玛尼吐组;4—上侏罗统满克头鄂博组;5—中侏罗统塔木兰沟组;6—中泥盆统泥鳅河组;7—中上奥陶统裸河组;8—中下奥陶统多宝山组;9—上元古界青白口系佳疙瘩组;10—燕山晚期花岗斑岩;11—燕山晚期角闪石英二长斑岩;12—燕山早期钾长花岗岩;13—燕山早期花岗岩;14—燕山早期花岗斑岩−二长花岗斑岩;15—燕山早期黑云母二长花岗岩−二长花岗岩;16—燕山早期斜长斑岩;17—印支期花岗岩;18—华力西晚期花岗岩;19—华力西中期花岗闪长岩;20—华力西中期花岗岩;21—实测断层;22—实测与推测断层;23—不整合接触界线;24—二道河矿区Figure 1. Regional geological map of the Erdaohe Pb−Zn−Ag polymetallic deposit (modified from Inner Mongolia Third Geological Mineral Exploration Institute, 20121 )1–Quaternary; 2–Baiyingaolao Formation of Upper Jurassic; 3–Manitu Formation of Upper Jurassic; 4–Manketouebo Formation of Upper Jurassic; 5–Tamulangou Formation of Middle Jurassic; 6–Niqiuhe Formation of Middle Devonian; 7–Luohe Formation of Middle and Upper Ordovician; 8–Duobaoshan Formation of Middle and Lower Ordovician; 9–Jiageda Formation of Upper Proterozoic Qingbaikou System; 10–Late Yanshanian granite porphyry; 11–Late Yanshanian hornblende−quartz−monzonite porphyry; 12–Early Yanshanian moyite; 13–Early Yanshanian granite; 14–Early Yanshanian granite porphyry−monzonitic granite porphyry; 15–Early Yanshanian biotite adamellite−monzonitic granite porphyry; 16–Early Yanshanian plagiophyre; 17–Early Indosinian granite; 18–Late Hercynian granite; 19–Middle Hercynian granodiorite; 20–Middle Hercynian granite; 21–Fault; 22–Measured and inferred unknown faults; 23–Unconformable boundary line; 24–Erdaohe mining area区域内岩浆活动频繁,形成了多期的火山−侵入岩(图1),岩石类型主要为中基性—中酸性侵入岩,活动时代集中在中—晚华力西期至燕山期,尤其以燕山期侵入体为主,多以岩基、岩枝、岩株、岩脉的形式产出,包括华力西中期全胜林场岩体,印支期河口林场岩体,燕山期桑多尔林场岩体、巴升河岩体、哈布气岩体等。
区域地质构造十分复杂,断裂构造尤为发育,北东向构造和北西向构造构成本区总体构造格架,主要包括北东向的哈不气林场—伊气罕林场断裂、和勒河—固里河—根头河断裂、柴河—黄草沟断裂、小黑牛圈—提力郭勒大沟—哈尔乌珠尔断裂,北西向的淖尔河断裂、塔西屯—托欣河—木匠铺北沟断裂、哈干河断裂,区内另有部分近东西向的断裂构造,多呈构造片段,不甚发育,较明显的为沿根头河—梁河一线展布的断裂。区内褶皱发育一般,基本上均为一些轴向北东—北北东向开阔的短背斜、向斜。
3. 矿区地质
矿区出露地层比较简单,主要为古生界中下奥陶统多宝山组(O1-2d),上段为一套火山岩建造,以流纹质岩屑晶屑凝灰岩为主;其下段为一套浅海相细碎屑沉积岩建造,包括泥灰岩、灰岩、大理岩,在钻孔中见伏于碳酸盐岩段的火山碎屑岩段,主要为安山质凝灰岩(图2)。
矿区整体为一北东向复背斜,主要由碳酸盐性段组成,其枢纽北东向,向南西倾伏、倾没,在矿区北侧可见灰岩发育一系列次级褶皱。区内断裂构造发育,以北东向断裂为主,发育若干条次级断裂,矿区内岩石因受构造作用而多呈碎裂结构、碎斑结构、碎粒结构。
矿区岩浆活动较强烈,但未见与成矿有关岩体,推测成矿岩体为隐伏岩体。矿区内主要为因晚侏罗世—早白垩世的岩浆侵入活动而形成的闪长(玢)岩脉与花岗斑岩脉,均为成矿后形成,对矿体有一定的破坏作用。闪长岩呈小岩株、脉状或岩枝状侵入多宝山组地层,主要呈NE向顺层展布,出露面积大约<0.1 km2,斑状结构,主要矿物为斜长石,呈板状,自形—半自形,含量约60%,次要矿物为暗色矿物,主要是辉石和黑云母,多已被绿泥石交代,含量约25%,副矿物为针状磷灰石,岩石发育有绿泥石化、绢云母化、碳酸盐化,局部见有绿帘石化,可见少量磁铁矿、闪锌矿、方铅矿;闪长玢岩呈似斑状结构,主要矿物为斜长石,分为斜长石斑晶及基质中的细粒斜长石,均呈自形—半自形板状,含量约70%,次要矿物为暗色矿物,多被绿泥石交代完全,副矿物为黄铁矿,部分闪长玢岩有较强烈的碳酸盐化;花岗斑岩呈脉状或岩株状顺层产出,岩石为黄白色,斑状结构,块状构造,斑晶含量占10%~15%,斑晶主要为钾长石、石英及黑云母,黑云母基本已经全部发生绿泥石化蚀变,基质为隐晶质,主要由长英质矿物组成,磁铁矿含量<1%,部分为矿物蚀变过程中所析出。
4. 矿床地质特征
4.1 矿体特征
二道河铅锌银矿主要顺层产于火山碎屑岩与碳酸盐岩的层间及附近,岩石化学性质突变的Si−Ca界面以及成矿期构造作用所致的顺层(滑脱)剥离断层可能对成矿具有重要的控制作用。二道河铅锌银矿共圈定矿体42个,其中出露地表的有28个,盲矿体14个。矿体主要呈似层状、不规则脉状、透镜状顺层产出,走向一般为40°~60°,倾向NW,倾角20°~70°;长度一般为59~720 m,厚度2.8~76 m,一般中间及上部厚度大,向两侧和深部多发生顺层分枝并变薄至尖灭。以1、8、9号矿体规模最大,为该矿床的主要矿体,三者相互平行,略显斜列展布特征,其余矿体规模普遍较小,多呈脉状或条带状,部分呈透镜状。
1号矿体出露地表呈NE40°~60°方向展布,倾向NW,倾角20°~65°,呈透镜状,浅部厚大,向深部和北东部发生顺层指状分枝并逐渐尖灭,容矿岩石为矽卡岩,矿体长720 m,平均厚度76 m。平均品位Pb为1.34%、Zn为6.02%、Ag为134.59×10−6。
8号矿体为隐伏矿体,位于1号矿体底部8~68 m处,呈不规则透镜状,总体走向40°,倾向310°,倾角0°~40°,长415 m,平均厚度16.04 m,容矿岩石为矽卡岩,平均品位Pb为1.77%,Zn为2.39%,Ag为60.48×10−6。
9号矿体为隐伏矿体,位于8号矿体下部2~40 m,埋藏深度133~300 m,呈不规则脉状,总体走向40°,倾向310°,倾角0°~25°,长415 m,平均厚度11.82 m,容矿岩石为矽卡岩,平均品位Pb为1.24%,Zn为3.35%,Ag为68.5×10−6。
4.2 矿石特征
矿石类型主要以原生硫化物矿石为主,仅在地表见少量氧化矿石。矿石矿物主要为闪锌矿、方铅矿、辉银矿,伴生有少量黄铜矿、磁铁矿等。闪锌矿、方铅矿随矿化强度从稀疏浸染状至块状不等,偶见脉状构造。矿化强烈部位闪锌矿与方铅矿互相包裹共生,有时可见乳滴状黄铜矿(图3a),部分样品可见闪锌矿交代黄铁矿,后又被黄铜矿交代(图3b)。方铅矿除与闪锌矿共生外,可见方铅矿晶体沿闪锌矿边缘、裂隙交代闪锌矿(图3b)。黄铜矿呈粒状,多以集合体形式分布,呈乳滴状交代闪锌矿,或以包裹体状存在于闪锌矿中,有时可见黄铜矿交代闪锌矿后被方铅矿交代(图3b、d)。银矿物以辉银矿为主,同时方铅矿、闪锌矿也都是银矿物的主要载体矿物。脉石矿物包括绿帘石、绿泥石、方解石、石英、石榴石、绢云母、黄铁矿、磁黄铁矿、蔷薇辉石以及少量萤石。
4.3 蚀变特征
矿区围岩蚀变强烈,主要类型包括矽卡岩化、硅化、绢云母化、碳酸盐化、黄铁矿化、透辉石化、阳起石化及萤石化等,矽卡岩化是区内主要的蚀变类型,以石榴石矽卡岩、绿帘石矽卡岩为主,另有蔷薇辉石矽卡岩,或出现两种以上矽卡岩化类型的叠加。蚀变在水平层面具有明显的分带特征,从中心向外以此为石榴石矽卡岩化带(主要蚀变矿物为石榴石、蔷薇辉石、绿帘石、石英、萤石)→绿帘石矽卡岩化带(主要蚀变矿物为绿帘石、绿泥石、黄铁矿、磁黄铁矿、石英、方解石)→绿泥石化带(主要蚀变矿物为绿泥石、黄铁矿、方解石、石英、绢云母)→绢云母化带(主要蚀变矿物为绢云母、方解石),蚀变从中心向外逐渐减弱。蔷薇辉石发育的部位矿化极为发育,形成高品位矿体。闪锌矿、方铅矿发育部位绿帘石化也较强烈,表现出正相关性。
4.4 矿化阶段划分
根据热液矿物组合及其相互间的关系,可将二道河铅锌银多金属矿的成矿过程划分为矽卡岩阶段、石英−硫化物阶段、石英−碳酸盐阶段,依次为(表1):
表 1 二道河铅锌银矿热液矿物生成顺序Table 1. Paragenetic sequence of hydrothermal minerals in the Erdaohe Pb−Zn−Ag polymetallic deposit(1)矽卡岩阶段:该阶段早期主要形成石榴石、透辉石、蔷薇辉石等岛状和链状的无水硅酸盐矿物(图4a);晚期形成的矿物主要有绿帘石、阳起石,而且由于温度有所降低,溶液中的铁开始以磁铁矿的形式大量出现,这一阶段也形成了少量硬石膏、白云母、石英、蔷薇辉石等矿物。
图 4 二道河铅锌银矿各成矿阶段代表照片a—早期石榴石与石英共生;b—蔷薇辉石、闪锌矿、黄铁矿共生;c—蔷薇辉石、黄铁矿、石英共生;d—石英、闪锌矿与绿帘石共生;e—方解石、石英、萤石共生;f—晚期方解石穿插绿帘石Grt—石榴石;Qtz—石英;Rdn—蔷薇辉石;Py—黄铁矿;Sp—闪锌矿;Epi—绿帘石;Cal—方解石;Fl—萤石Figure 4. Representative photos of each mineralization stage of the Erdaohe Pb−Zn−Ag polymetallic deposita–Early garnet intergrowth with quartz; b–Rhodonite intergrowth with sphalerite and pyrite; c–Rhodonite intergrowth with sphalerite and quartz; d–Epidote intergrowth with sphalerite and quartz; e–Calcite intergrowth with quartz and fluorite; f–Late calcite interspersed with epidote; Grt–Garnet; Qtz–Quartz; Rdn–Rhodonite; Py–Pyrite; Sp–Sphalerite; Epi–Epidote; Cal–Calcite; Fl–Fluorite(2)石英−硫化物阶段:为成矿主阶段,以闪锌矿、方铅矿和黄铜矿等大量金属硫化物的形成为特征,矿石中的热液石英主要形成于该阶段。生成于该阶段的脉石矿物主要有绿帘石、阳起石、绿泥石、萤石、绢云母、方解石以及黄铁矿、磁黄铁矿(图4b、c、d)等。常见早阶段无水硅酸盐矿物被交代现象。
(3)石英−碳酸盐阶段:此阶段碳酸盐矿物明显增多,形成的矿物还有石英、绿泥石和绢云母以及少量黄铁矿。形成于本阶段的矿物可见交代早阶段的矿物;常见本阶段的碳酸盐细脉切穿早期形成的各种矿物及细脉,如碳酸盐脉切穿早期石英脉,碳酸盐脉切穿早期石榴石、绿帘石(图4e、f)等。
5. 样品处理及分析方法
本次研究在野外详细观察基础上,选取各阶段样品13件,测试样品包括早期(矽卡岩阶段)的石英、主成矿期(石英−硫化物阶段)的石英、方解石,成矿后期(石英碳酸盐阶段)的石英、方解石、萤石,分别磨制包裹体片,开展流体包裹体岩相学、测温学与拉曼成分研究,及各阶段的石英H−O同位素测试。同时,从金属硫化物中选择黄铁矿样品7件、闪锌矿样品6件、方铅矿样品6件进行硫同位素测试;另选黄铁矿样品6件、闪锌矿样品3件、方铅矿样品5件进行铅同位素测试。除铅同位素外所有实验测试均在中国地质科学院矿产资源所进行。
流体包裹体显微测温采用Linkam THMS G600型显微冷热台,测温范围为−196~600℃,数据精度为±0.1℃。本次实验需对样品进行冷冻测温(冰点温度)和均一测温(均一温度)。冷冻测温时将温度下降至100℃后缓慢升温,当冷冻包裹体接近相变点时降低升温速率(小于1℃/min)以准确记录包裹体的冰点温度(Tmice)。测试均一温度时,现以20℃/min的速率进行升温,当气液两相包裹体接近均一时降低升温速率(小于1℃/min),当包裹体气相液相均一时,记录均一温度(Th)。依据冰点温度,利用NaCl−H2O体系的经验公式计算包裹体的盐度(Hall et al., 1988)。
C、O同位素采用磷酸法。测试过程为将磷酸与方解石反应充分后,由液氮吸收CO2气体,后由MAT251EM型质谱仪测试C、O同位素组成,测试精度可达±0.2%。本次测试校测标样选取GBW04416和GBW04417,δ13C以PDB为标准,δ18O以SMOW为标准。
S同位素采用SO2法。测试过程为利用氧化剂将筛选出的硫化物氧化为SO2,后由MT252型质谱仪收集并分析S同位素组成,该方法测试精度为±0.2%,标样为CDT。
Pb同位素在中国科学技术大学放射性成因同位素地球化学实验室进行,分析测试在德国Finnigan公司生产的MAT−262型质谱仪上完成,分离纯化在AG1−X8阴离子交换树脂上完成。比值测试采用单Re金属带并以硅胶为发射剂,铅同位素比值测量精度好于0.01%。
6. 流体包裹体
6.1 流体包裹体岩相学特征
偏光显微镜下对包裹体进行观察发现,所采集的样品大部分均发育一定数量的流体包裹体,主要为气液两相包裹体(图5),未见纯气相、纯液相包裹体,也未见含子晶包裹体。流体包裹体以富液相包裹体为主,气相百分数介于15%~30%,个别气相百分数达到60%为富气相包裹体,富气相包裹体占包裹体总数的10%以下。富液相包裹体多以群体状随机分布,多呈不规则六边形状、椭圆状、长条状等,大小不一,一般介于5~10 μm,个别大的包裹体可达35 μm,大的包裹体多呈细长条状,液相约占60%以上。富气相包裹体较少,一般所见到的富气相包裹体大多呈六边形,气相百分数可达50%~60%,个别甚至可达70%。经过观察,不同介质中的包裹体也存在一定的特点:石英中的包裹体以富液相包裹体为主,含少量富气相包裹体,包裹体多呈六边形、不规则状、椭圆状、长条状等,大小不一,一般介于5~10 μm,最大的可达18 μm(图5a~f);萤石中的包裹体以富液相包裹体为主,少量富气相包裹体,个别包裹体呈正六边形,有的呈不规则椭圆状,或者长条状,大小不一,一般介于5~10 μm,最大的可达22 μm(图5g~i);方解石中的包裹体以富液相包裹体为主,含少量富气相包裹体,包裹体呈长方形、菱形、不规则状,椭圆状,长条状等等,大小不一,一般介于5~10 μm,最大可达35 μm(图5j~l)。
6.2 包裹体显微热力学
挑选13个包裹体片中的200个包裹体进行测温实验,包裹体测温结果及参数见表2,均一温度与盐度分布见图6。矿区主要包裹体类型为富液相两相水溶包裹体(V−L型),因此本次研究主要观测该类型包裹体。将选定的包裹体降温至−100℃后缓慢升温,当冷冻状态的包裹体达到相变点时,记录包裹体冰点温度,继续加热直至包裹体均一为液相,记录其均一温度;根据冰点温度查表获得对应的包裹体盐度(Bodnar, 1993)。对不同成矿阶段的样品包裹体进行冰点温度及均一温度测试,发现包裹体的均一温度可明显分为高温、中温、低温三个阶段,分别与3个成矿阶段(矽卡岩阶段、石英硫化物阶段、石英−碳酸盐阶段)相对应。高温阶段测得的均一温度范围为310~435℃,温度峰值为370~380℃,盐度ω (NaCleqv)为11.7%~0.71%NaCleqv,盐度ω(NaCleqv)峰值为5.0%~1.5%NaCleqv;中温阶段测得的均一温度范围为195~310℃,温度峰值为260~270℃,盐度ω(NaCleqv)为12.9%~0.35%NaCleqv,盐度ω(NaCleqv)峰值为1.5%~0.5%NaCleqv;低温阶段测得的均一温度范围为148~195℃,温度峰值为165~175℃,盐度ω(NaCleqv)为4.18%~0.35%NaCleqv,盐度ω(NaCleqv)峰值为2.5%~0.5%NaCleqv;测温结果显示二道河铅锌银矿的成矿流体经历了从高温(310~435℃)到中温(195~310℃)以及低温(148~195℃)的演化过程。而且,随着温度的降低,从高温到中温阶段,流体的盐度变化并不大,基本在0.35%~12.90%NaCleqv变化;但到了低温阶段,盐度明显变低,为4.18%~0.35%NaCleqv。上述结果表明,成矿流体经历了从早期的高温、中高盐度到主成矿期的中温、中高盐度,再到后期的低温、低盐度的演化,同时后期可能有低温大气降水的混入。
表 2 二道河铅锌银矿流体包裹体测温结果Table 2. Results of microthermometric measurements of fluid inclusions in the Erdaohe Pb−Zn−Ag polymetallic deposit成矿温度 成矿阶段 测试矿物 大小/μm 气相比/% 冰点/℃ 盐度/% NaCleqv 均一温度/℃ 高温 矽卡岩阶段 Qtz、Fl、Cal 3~18 20~40 −1.1 11.7~0.71 310~435 中温 石英−硫化物阶段 Qtz、Fl、Cal 5~22 15~30 −0.2 12.9~0.35 195~310 低温 石英−碳酸盐阶段 Qtz、Cal 3~35 10~15 −0.5 4.18~0.35 148~195 7. 测试结果
7.1 C、O同位素特征
本次研究选取了二道河铅锌银矿石英−碳酸盐阶段10件方解石样品进行C、O同位素测试,测试结果见表3。4件石英−碳酸盐阶段方解石的碳、氧同位素组成为:δ13CV-PDB(‰)值为−8.5‰~−2.4‰,平均值为−4.7‰;δ18OV-PDB(‰)值为−38.4‰~−22.7‰,平均值为−32.3‰;δ18OV-SMOW(‰)值为−8.7‰~−1.7‰,平均值为−6.2‰;根据矿物与水的氧同位素平衡分馏方程1000lnα碳酸盐-水=2.78×106T−2–3.39计算得到成矿流体的氧同位素组成(T为同一个成矿阶段流体包裹体均一温度)(O'Neil et al., 1969)。4件石英−碳酸盐阶段方解石样品的δ18OH2O(‰)值为−7.7‰~−0.8‰,平均值为−5.2‰。
表 3 二道河铅锌银矿样品碳、氧同位素组成Table 3. Carbon and oxygen isotope compositions of calcite in the Erdaohe Pb−Zn−Ag polymetallic deposit样品编号 矿物 δ13CV-PDB/‰ δ18OV-PDB/‰ δ18OV-SMOW/‰ T/K δ18OH2O/‰ ED405-253 方解石 −8.5 −31.7 −1.7 439 −0.8 ED103-46.4 方解石 −4.1 −22.7 −7.5 439 −6.5 ED102-152 方解石 −3.8 −38.4 −8.7 439 −7.7 ED701-119 方解石 −2.4 −36.6 −6.8 439 −5.9 7.2 硫同位素特征
本次研究选取了二道河铅锌银矿主成矿阶段的19件硫化物进行S同位素测试。测试结果(表4)显示,所测试的主成矿阶段黄铁矿的δ34S值为8.0‰~10.0‰,均值8.8‰;闪锌矿的δ34S值为7.3‰~9.0‰,均值7.8‰;方铅矿的δ34S值为5.4‰~6.5‰,均值5.9‰。
表 4 二道河矿区硫同位素组成Table 4. Sulfer isotope composition of the Erdaohe deposit样号 测试矿物 δ34SV-CDT/‰ ED403-195 黄铁矿 8.8 ED104-268 黄铁矿 9.3 ED701-9 黄铁矿 7.7 ED701-47 黄铁矿 8.5 ED701-39 黄铁矿 8 ED705-50 黄铁矿 9.2 ED104-30 黄铁矿 10 ED701-9 闪锌矿 7.5 ED701-47 闪锌矿 7.3 ED102-47 闪锌矿 7.7 ED102-59 闪锌矿 7.4 ED102-109 闪锌矿 8.1 ED705-50 闪锌矿 9 ED103-36 方铅矿 5.5 ED701-47 方铅矿 6.1 ED701-39 方铅矿 5.7 ED102-59 方铅矿 5.9 ED102-76 方铅矿 5.4 ED707-167 方铅矿 6.5 7.3 铅同位素特征
本次研究选取二道河矿床14件金属硫化物样品进行Pb同位素测试,测试结果见表5。二道河铅锌银矿的金属硫化物的206Pb/204Pb的变化范围是18.414~18.518,均值为18.457;207Pb/204Pb的变化范围是15.620~15.765,均值为15.675;208Pb/204Pb的变化范围是38.407~38.909,均值为38.674。根据单阶段铅演化模式,利用Geokit软件算铅同位素相关参数,结果见表5。硫化物铅μ值9.50~9.78,ω值为36.56~39.36,均高于正常铅范围(μ=8.686~9.238,ω=35.055±0.59);Th/U值为3.72~3.9,低于正常铅范围(3.92±0.09)。以上结果表明,二道河矿床的铅源物质应具有较高成熟度。
表 5 二道河铅锌银矿石铅同位素组成及参数Table 5. Lead isotope parameters of the Erdaohe Pb−Zn−Ag ores样品号 样品名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ ω Th/U △α △β △γ ED102-47 方铅矿 18.417 15.640 38.480 9.540 37.030 3.760 77.360 20.850 36.110 ED701-9 方铅矿 18.420 15.635 38.460 9.530 36.880 3.750 76.880 20.490 35.210 ED701-18 方铅矿 18.424 15.646 38.498 9.550 37.120 3.760 77.950 21.250 36.700 ED705-30 方铅矿 18.398 15.628 38.436 9.520 36.840 3.750 76.170 20.060 34.880 ED705-50 方铅矿 18.518 15.764 38.894 9.780 39.360 3.890 89.480 29.320 50.720 ED701-18 闪锌矿 18.481 15.697 38.837 9.650 38.680 3.880 82.970 24.680 46.770 ED705-30 闪锌矿 18.461 15.652 38.731 9.560 37.930 3.840 78.600 21.560 42.120 ED705-169 闪锌矿 18.414 15.620 38.407 9.500 36.560 3.720 75.410 19.440 33.160 ED102-47 黄铁矿 18.462 15.677 38.768 9.610 38.310 3.860 81.010 23.320 44.440 ED102-136 黄铁矿 18.507 15.720 38.909 9.690 39.060 3.900 85.240 26.230 49.130 ED701-18 黄铁矿 18.472 15.696 38.658 9.650 37.980 3.810 82.860 24.640 42.180 ED701-98 黄铁矿 18.449 15.667 38.735 9.590 38.160 3.850 80.030 22.660 43.420 ED705-30 黄铁矿 18.492 15.732 38.865 9.710 39.080 3.900 86.360 27.130 49.050 ED705-169 黄铁矿 18.480 15.675 38.759 9.600 38.160 3.850 80.850 23.120 43.520 8. 讨 论
8.1 成矿流体及物质来源
由于矿区内与方解石共生的矿物中不含石墨,且激光拉曼分析未测得CH4等还原性流体,因此本矿区热液方解石的碳同位素组成可近似作为成矿热液总碳同位素组成(Ohmoto, 1972; 王晓虎等, 2012)。研究区4件方解石样品的δ13CV-PDB略低于海相碳酸盐(δ13C≈0‰),均落在岩浆体系范围内(δ13C≈−30‰~−3‰),暗示碳可能来源于深部岩浆。在δ18OV-SMOW−δ13CV-PDB图解中(图7),样品均落于大气降水影响范围内,且总体上呈近似水平展布,这种分布通常是因为脱气作用或水−岩反应导致的(刘家军等, 2004)。结合矿区内未见其他含碳矿物,流体包裹体中未见流体沸腾作用,仅见极少量三相包裹体,但不见高盐度富液相包裹体与低盐度富气相包裹体并存的现象,因此研究区方解石沉淀并非CO2的脱气作用形成,而是由水−岩反应和温度降低耦合作用共同导致的。
图 7 二道河铅锌银多金属矿床方解石的C、O同位素值分布(改自刘家军等, 2004)Figure 7. C−O isotope of clacite in the Erdaohe Pb−Zn−Ag polymetallic deposit (modified from Liu Jiajun et al., 2004)通过对热液矿床的硫同位素研究可以判断硫的来源,目前硫同位素组成已经成为判断硫源及成矿流体来源的主要工具(Ohmoto, 1972; Rye and Ohmoto, 1974; Fontbote and Gorzawski, 1990; Seal, 2006; 陈永清等, 2014;丁伟品等,2022)。二道河矿床S同位素总体上δ34S黄铁矿>δ34S闪锌矿>δ34S方铅矿,在同一个样品ED701-47中也呈现出类似的规律,说明矿区硫同位素基本达到了平衡,结合矿区未见硫酸盐矿物的事实,故硫化物的δ34S可以代表成矿热液的总硫同位素组成(Sakai, 1968; Ohmoto, 1972; 郑永飞等, 2000)。二道河铅锌银矿硫化物δ34S变化相对较窄,为5.4‰~10.0‰,说明二道河矿床的硫源应是一个均一的硫源。一般认为δ34S有3种不同来源(Chaussidon and Lorand, 1990; Rollinson, 1993):地幔硫(δ34S接近0,介于0±3‰)、海水硫(δ34S约为20‰)和还原(沉积)硫(以δ34S负值为特征)。二道河矿床硫同位素整体略高于幔源硫,远低于海水硫而远高于还原硫,表明二道河矿床的硫源以岩浆硫为主,混染了少量地层硫。成矿流体是金属硫化物的载体,因此硫同位素的来源也间接指示出成矿流体的来源。也就是说,二道河矿床的成矿流体以岩浆出溶流体为主,后期混入了一定量的大气水。
铅同位素是判断成矿物质来源的有力工具而得到广泛的应用。二道河铅锌银矿的铅同位素在207Pb/204Pb−206Pb/204Pb铅同位素模式图(图8)中,所有样品均落在造山带演化线之上,部分样品落在上地壳演化线及之上,说明二道河矿床的铅来源可能是造山带铅与上地壳铅的混合来源。Δβ−Δγ图解能消除时间因素的影响,同时提供更丰富的地质过程与物质来源信息(朱炳泉等, 1998; 陈永清等, 2014)。在铅同位素Δβ−Δγ图解中,部分样品落入上地壳铅区域中,其他样品落入上地壳与地幔混合的俯冲带有关的岩浆作用的铅源区域中,且呈较明显的线性分布,显示了铅的混合来源。在铅同位素构造判别图解(图9)中,样品落入造山带与上地壳范围内(图10),也说明铅是混合来源。综合二道河矿床铅同位素特征,其矿石铅同位素具有混合铅的特征,这种混合可能与俯冲造山作用相关,最终形成了以上地壳铅为主、混合少量深源铅的成矿作用。
图 8 二道河铅锌银矿石铅同位素组成(据Zartman and Doe, 1981)A—地幔;B—造山带;C—上地壳;D—下地壳Figure 8. Lead isotope compositions in the Erdaohe Pb−Zn−Ag ores (after Zartman and Doe, 1981)A–Mantle; B–Orogenic belt; C–Upper crust; D–Lower crust图 9 铅同位素Δβ−Δγ分类(据朱炳泉等, 1998)1—地幔铅;2—上地壳铅;3—上地壳与地幔混合的俯冲带铅(3a—岩浆作用,3b—沉积作用);4—化学沉积型铅;5—海底热水作用铅;6—中深变质作用铅;7—深变质下地壳铅;8—造山带铅;9—古老页岩上地壳铅;10—退变质铅Figure 9. Diagram of genetic classification by lead isotopes (after Zhu Bingquan et al., 1998)1–Lead from mantle; 2–Lead from upper crust; 3–Subducting lead from upper and mantle (3a–magmatism; 3b–sedimentation); 4–Lead of chemical deposition; 5–Lead of submarine hot-water; 6–Lead of mesometamorphism; 7–Hypometamorphic lead from lower crust; 8–Lead of orogenic belt; 9–Lead of upper crust in ancient shale; 10–Lead of retrograde metamorphism图 10 铅同位素构造环境判别(据朱炳泉等, 1998)LC—下地壳;UC—上地壳;OIV—洋岛火山岩;OR—造山带;A、B、C、D代表各区域中样品相对集中区Figure 10. Discrimination of tectonic setting by lead isotopes (after Zhu Bingquan et al., 1998)LC–Lower crust; UC–Upper crust; OIV–Ocean island volcanics; OR–Orogenic belt; A, B, C and D represent the relative concentration of samples in each region8.2 矿床成因探讨
二道河铅锌银矿位于中亚造山带东段,该区域依次叠加了古亚洲洋构造域、蒙古—鄂霍茨克洋构造域和古太平洋构造域,构造形迹十分复杂(邵济安等, 1997; 孙德有等, 2004; Wu et al., 2007; Miao et al., 2008; 佘宏全等, 2009; Han et al., 2011; 康永建等, 2014)。二道河矿区主成矿期黄铁矿Re−Os等时线为145 Ma(郭向国,2020),这与兴安岭地区由挤压环境向伸展环境的转换时间吻合(葛文春等, 2005; Lin et al., 2013),可能是因为蒙古—鄂霍次克洋闭合后大兴安岭地区进入碰撞后的区域伸展作用(刘凯等, 2018; 唐宗源, 2019; 刘艳荣等, 2023),同时叠加了古太平洋俯冲的弧后伸展作用(佘宏全等, 2012; Wang et al., 2015),区域上的朝不楞铁锌矿(140.7 Ma;聂凤军等, 2007)、太平庄钼矿(130 Ma;翟德高等, 2009)等属同时期伸展环境下形成。这一时期强烈的伸展构造既促成深部岩浆可以混合上地壳物质,也形成了一系列深大断裂,这些深大断裂与古断裂贯通,为深源物质的上涌提供了通道。由深部岩浆演化形成的中酸性岩浆沿基底断裂上升,同化少量地壳物质后在有利位置冷凝侵位,形成矿区的隐伏成矿岩体。随着温度、压力的降低和富水矿物的结晶,岩浆流体相、熔体相逐渐分离,由于Pb、Zn等元素优先进入流体相(肖庆辉, 2002; Heinrich, 2007; 冷成彪等, 2009),因而形成高温高盐度富含成矿元素的初始流体。在岩浆热源的驱动下初始成矿流体沿浅部裂隙向远端运移,并在岩石化学性质突变的Si−Ca界面(火山碎屑岩与碳酸盐岩不同岩性层间及附近)等有利部位发生水岩反应(张长青等, 2012; 姚晓峰等, 2014; 张革利等, 2020; 石永红等, 2022)。
在矽卡岩阶段,高温成矿流体(310~435℃)交代围岩,形成石榴石等无水矽卡岩矿物;石英−硫化物阶段相比于矽卡岩阶段,成矿流体温度降低,而盐度相对稳定,显示了初期成矿流体以简单的冷却为主要特征;而石英−硫化物阶段与石英−碳酸盐阶段相比存在显著的盐度降低,由于Zn、Pb主要以Cl−络合物形式运移(Baker et al., 2004),Cl−含量的降低显著的影响了Zn、Pb的运载平衡,从而导致金属大量沉淀卸载,这种金属的沉淀卸载可能与pH的降低有关(Williams−Jones et al., 2010)。C、O同位素显示成矿流体晚期混入了大气降水。
9. 结 论
(1)二道河矿床各成矿阶段流体包裹体均以富液相的气液两相水溶液包裹体为主,属NaCl−H2O体系。方解石C、O同位素显示成矿流体来源于岩浆流体,并在晚期有一定比例的大气降水或地下水混入。
(2)硫同位素研究显示二道河矿床的矿石硫来源于地层与岩浆的混合硫;铅同位素研究显示铅来源于受俯冲造山作用影响的,以上地壳铅为主并混合少量深源铅的岩浆作用。
(3)二道河铅锌银矿床应是蒙古—鄂霍次克洋闭合造山后伸展环境下岩浆作用的产物,是由岩浆析出的高温中盐度热液与围岩发生复杂的水岩反应及后期大气降水的加入共同导致金属大规模堆积而形成。
1 ➊内蒙古第三地质矿产勘查开发有限责任公司. 2012. 内蒙古自治区扎兰屯市二道河矿区银铅锌矿勘探报告[R]. 1–167. -
图 1 二道河铅锌银矿区域地质图(修改自内蒙古第三地质矿产勘查开发有限责任公司, 2012
1 )1—第四系;2—上侏罗统白音高老组一段;3—上侏罗统玛尼吐组;4—上侏罗统满克头鄂博组;5—中侏罗统塔木兰沟组;6—中泥盆统泥鳅河组;7—中上奥陶统裸河组;8—中下奥陶统多宝山组;9—上元古界青白口系佳疙瘩组;10—燕山晚期花岗斑岩;11—燕山晚期角闪石英二长斑岩;12—燕山早期钾长花岗岩;13—燕山早期花岗岩;14—燕山早期花岗斑岩−二长花岗斑岩;15—燕山早期黑云母二长花岗岩−二长花岗岩;16—燕山早期斜长斑岩;17—印支期花岗岩;18—华力西晚期花岗岩;19—华力西中期花岗闪长岩;20—华力西中期花岗岩;21—实测断层;22—实测与推测断层;23—不整合接触界线;24—二道河矿区
Figure 1. Regional geological map of the Erdaohe Pb−Zn−Ag polymetallic deposit (modified from Inner Mongolia Third Geological Mineral Exploration Institute, 2012
1 )1–Quaternary; 2–Baiyingaolao Formation of Upper Jurassic; 3–Manitu Formation of Upper Jurassic; 4–Manketouebo Formation of Upper Jurassic; 5–Tamulangou Formation of Middle Jurassic; 6–Niqiuhe Formation of Middle Devonian; 7–Luohe Formation of Middle and Upper Ordovician; 8–Duobaoshan Formation of Middle and Lower Ordovician; 9–Jiageda Formation of Upper Proterozoic Qingbaikou System; 10–Late Yanshanian granite porphyry; 11–Late Yanshanian hornblende−quartz−monzonite porphyry; 12–Early Yanshanian moyite; 13–Early Yanshanian granite; 14–Early Yanshanian granite porphyry−monzonitic granite porphyry; 15–Early Yanshanian biotite adamellite−monzonitic granite porphyry; 16–Early Yanshanian plagiophyre; 17–Early Indosinian granite; 18–Late Hercynian granite; 19–Middle Hercynian granodiorite; 20–Middle Hercynian granite; 21–Fault; 22–Measured and inferred unknown faults; 23–Unconformable boundary line; 24–Erdaohe mining area
图 4 二道河铅锌银矿各成矿阶段代表照片
a—早期石榴石与石英共生;b—蔷薇辉石、闪锌矿、黄铁矿共生;c—蔷薇辉石、黄铁矿、石英共生;d—石英、闪锌矿与绿帘石共生;e—方解石、石英、萤石共生;f—晚期方解石穿插绿帘石Grt—石榴石;Qtz—石英;Rdn—蔷薇辉石;Py—黄铁矿;Sp—闪锌矿;Epi—绿帘石;Cal—方解石;Fl—萤石
Figure 4. Representative photos of each mineralization stage of the Erdaohe Pb−Zn−Ag polymetallic deposit
a–Early garnet intergrowth with quartz; b–Rhodonite intergrowth with sphalerite and pyrite; c–Rhodonite intergrowth with sphalerite and quartz; d–Epidote intergrowth with sphalerite and quartz; e–Calcite intergrowth with quartz and fluorite; f–Late calcite interspersed with epidote; Grt–Garnet; Qtz–Quartz; Rdn–Rhodonite; Py–Pyrite; Sp–Sphalerite; Epi–Epidote; Cal–Calcite; Fl–Fluorite
图 7 二道河铅锌银多金属矿床方解石的C、O同位素值分布(改自刘家军等, 2004)
Figure 7. C−O isotope of clacite in the Erdaohe Pb−Zn−Ag polymetallic deposit (modified from Liu Jiajun et al., 2004)
图 8 二道河铅锌银矿石铅同位素组成(据Zartman and Doe, 1981)
A—地幔;B—造山带;C—上地壳;D—下地壳
Figure 8. Lead isotope compositions in the Erdaohe Pb−Zn−Ag ores (after Zartman and Doe, 1981)
A–Mantle; B–Orogenic belt; C–Upper crust; D–Lower crust
图 9 铅同位素Δβ−Δγ分类(据朱炳泉等, 1998)
1—地幔铅;2—上地壳铅;3—上地壳与地幔混合的俯冲带铅(3a—岩浆作用,3b—沉积作用);4—化学沉积型铅;5—海底热水作用铅;6—中深变质作用铅;7—深变质下地壳铅;8—造山带铅;9—古老页岩上地壳铅;10—退变质铅
Figure 9. Diagram of genetic classification by lead isotopes (after Zhu Bingquan et al., 1998)
1–Lead from mantle; 2–Lead from upper crust; 3–Subducting lead from upper and mantle (3a–magmatism; 3b–sedimentation); 4–Lead of chemical deposition; 5–Lead of submarine hot-water; 6–Lead of mesometamorphism; 7–Hypometamorphic lead from lower crust; 8–Lead of orogenic belt; 9–Lead of upper crust in ancient shale; 10–Lead of retrograde metamorphism
图 10 铅同位素构造环境判别(据朱炳泉等, 1998)
LC—下地壳;UC—上地壳;OIV—洋岛火山岩;OR—造山带;A、B、C、D代表各区域中样品相对集中区
Figure 10. Discrimination of tectonic setting by lead isotopes (after Zhu Bingquan et al., 1998)
LC–Lower crust; UC–Upper crust; OIV–Ocean island volcanics; OR–Orogenic belt; A, B, C and D represent the relative concentration of samples in each region
表 1 二道河铅锌银矿热液矿物生成顺序
Table 1 Paragenetic sequence of hydrothermal minerals in the Erdaohe Pb−Zn−Ag polymetallic deposit
表 2 二道河铅锌银矿流体包裹体测温结果
Table 2 Results of microthermometric measurements of fluid inclusions in the Erdaohe Pb−Zn−Ag polymetallic deposit
成矿温度 成矿阶段 测试矿物 大小/μm 气相比/% 冰点/℃ 盐度/% NaCleqv 均一温度/℃ 高温 矽卡岩阶段 Qtz、Fl、Cal 3~18 20~40 −1.1 11.7~0.71 310~435 中温 石英−硫化物阶段 Qtz、Fl、Cal 5~22 15~30 −0.2 12.9~0.35 195~310 低温 石英−碳酸盐阶段 Qtz、Cal 3~35 10~15 −0.5 4.18~0.35 148~195 表 3 二道河铅锌银矿样品碳、氧同位素组成
Table 3 Carbon and oxygen isotope compositions of calcite in the Erdaohe Pb−Zn−Ag polymetallic deposit
样品编号 矿物 δ13CV-PDB/‰ δ18OV-PDB/‰ δ18OV-SMOW/‰ T/K δ18OH2O/‰ ED405-253 方解石 −8.5 −31.7 −1.7 439 −0.8 ED103-46.4 方解石 −4.1 −22.7 −7.5 439 −6.5 ED102-152 方解石 −3.8 −38.4 −8.7 439 −7.7 ED701-119 方解石 −2.4 −36.6 −6.8 439 −5.9 表 4 二道河矿区硫同位素组成
Table 4 Sulfer isotope composition of the Erdaohe deposit
样号 测试矿物 δ34SV-CDT/‰ ED403-195 黄铁矿 8.8 ED104-268 黄铁矿 9.3 ED701-9 黄铁矿 7.7 ED701-47 黄铁矿 8.5 ED701-39 黄铁矿 8 ED705-50 黄铁矿 9.2 ED104-30 黄铁矿 10 ED701-9 闪锌矿 7.5 ED701-47 闪锌矿 7.3 ED102-47 闪锌矿 7.7 ED102-59 闪锌矿 7.4 ED102-109 闪锌矿 8.1 ED705-50 闪锌矿 9 ED103-36 方铅矿 5.5 ED701-47 方铅矿 6.1 ED701-39 方铅矿 5.7 ED102-59 方铅矿 5.9 ED102-76 方铅矿 5.4 ED707-167 方铅矿 6.5 表 5 二道河铅锌银矿石铅同位素组成及参数
Table 5 Lead isotope parameters of the Erdaohe Pb−Zn−Ag ores
样品号 样品名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb μ ω Th/U △α △β △γ ED102-47 方铅矿 18.417 15.640 38.480 9.540 37.030 3.760 77.360 20.850 36.110 ED701-9 方铅矿 18.420 15.635 38.460 9.530 36.880 3.750 76.880 20.490 35.210 ED701-18 方铅矿 18.424 15.646 38.498 9.550 37.120 3.760 77.950 21.250 36.700 ED705-30 方铅矿 18.398 15.628 38.436 9.520 36.840 3.750 76.170 20.060 34.880 ED705-50 方铅矿 18.518 15.764 38.894 9.780 39.360 3.890 89.480 29.320 50.720 ED701-18 闪锌矿 18.481 15.697 38.837 9.650 38.680 3.880 82.970 24.680 46.770 ED705-30 闪锌矿 18.461 15.652 38.731 9.560 37.930 3.840 78.600 21.560 42.120 ED705-169 闪锌矿 18.414 15.620 38.407 9.500 36.560 3.720 75.410 19.440 33.160 ED102-47 黄铁矿 18.462 15.677 38.768 9.610 38.310 3.860 81.010 23.320 44.440 ED102-136 黄铁矿 18.507 15.720 38.909 9.690 39.060 3.900 85.240 26.230 49.130 ED701-18 黄铁矿 18.472 15.696 38.658 9.650 37.980 3.810 82.860 24.640 42.180 ED701-98 黄铁矿 18.449 15.667 38.735 9.590 38.160 3.850 80.030 22.660 43.420 ED705-30 黄铁矿 18.492 15.732 38.865 9.710 39.080 3.900 86.360 27.130 49.050 ED705-169 黄铁矿 18.480 15.675 38.759 9.600 38.160 3.850 80.850 23.120 43.520 -
[1] Bai Daming, Fu Guoli, Nie Fengjun, Jiang Sihong, Liu Yifei. 2011. Integrated Ore–prospecting model for the skarn polymetallic deposit in southeastern Inner Mongolia[J]. Journal of Jinlin University (Earth Science Edition), 41(6): 1968−1976 (in Chinese with English abstract).
[2] Baker T, Van Achterberg E, Ryan C G, Lang J R. 2004. Composition and evolution of ore fluids in a magmatic–hydrothermal skarn deposit[J]. Geology, 32(2): 117−120. doi: 10.1130/G19950.1
[3] Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57(3): 683−684. doi: 10.1016/0016-7037(93)90378-A
[4] Chaussidon M, Lorand J. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North–Eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 54(10): 2835−2846. doi: 10.1016/0016-7037(90)90018-G
[5] Chen Yongqing, Zhou Ding, Guo Lingfen. 2014. Genetic study on the Huaaobaote Pb–Zn–Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H, O isotopes[J]. Journal of Jinlin University (Earth Science Edition), 44(5): 1478−1491 (in Chinese with English abstract).
[6] Cui Xuewu, Jiang Shenghua, Li Hongbao, Chang Yaohui. 2015. Integrated prospecting model of Erdaohe silver–lead–zinc deposit in the Zhalantun area, Inner Mongolia[J]. Mineral Exploration, 6(6): 667−678 (in Chinese with English abstract).
[7] Ding Weipin, Xie Caifu, Huang Cheng, Zhang Bin, Xin Zhuo, Zhan Huasi, Zheng Lilong, Kong Fanquan, Wang Hongbing, Huang Fulin. 2022. Sources of Permian lead-zine ore-forming materials in Sichuan‒Yunnan‒Guizhou area: C‒H‒O‒S‒Pb isotope constraints: An example from Taipingzi lead-zinc deposit in Yunnan Provinces[J]. Geology in China, 49(6): 1845‒1861 (in Chinese with English abstract).
[8] Fontbote L, Gorzawski H. 1990. Genesis of the Mississippi valley–type Zn–Pb deposit of San Vicente, central Peru: Geologic and isotopic (Sr, O, C, S, Pb) evidence[J]. Economic Geology, 85(7): 1402−1437. doi: 10.2113/gsecongeo.85.7.1402
[9] Ge Wenchun, Wu Fuyuan, Zhou Changyong, Zhang Jiheng. 2005. Zircon U–Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3): 749−762 (in Chinese with English abstract).
[10] Gun Minshan, Lü Xinbiao, Li Jie, Xu Yiqun, Wang Lin, Wang Shaobin. 2015. Study on fluid inclusions in Erdaohe lead–zinc polymetallic deposit in Inner Mongolia[J]. Acta Mineralogica Sinica, 35(S1): 579 (in Chinese).
[11] Guo Xiangguo. 2020. Metallogenesis of Erdaohe Skarn–type Lead–Zinc Deposit in the Middle Segment of the Great Hinggan Range[D]. Beijing: China University of Geosciences (Beijing).
[12] Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl–KCl–H2O solutions[J]. Economic Geology, 83(1): 197−202. doi: 10.2113/gsecongeo.83.1.197
[13] Han G Q, Liu Y J, Neubauer F, Genser J, Li W, Zhao Y L, Liang C Y. 2011. Origin of terranes in the eastern Central Asian Orogenic Belt, NE China: U–Pb ages of detrital zircons from Ordovician–Devonian sandstones, North Da Xing'an Mts.[J]. Tectonophysics, 511(3/4): 109−124. doi: 10.1016/j.tecto.2011.09.002
[14] He Jing, Huang Ming, Cong Yanan. 2019. Geological characteristics and prospecting indicators of Erdaohe silver–lead–zinc deposit in Inner Mongolia[J]. Inner Mongolia Science Technology and Economy, (12): 58 (in Chinese with English abstract).
[15] Heinrich C A. 2007. Fluid–fluid interactions in magmatic–hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65(1): 363−387. doi: 10.2138/rmg.2007.65.11
[16] Kang Yongjian, She Hongquan, Xiang Anping, Tian Jing, Li Jinwen, Yang Yuncheng, Guo Zhijun, Dong Xuzhou. 2014. Indo–Chinese magmatic activity in the Badaguan ore district of Inner Moingolia and its metallogenic implications[J]. Geology in China, 41(4): 1215−1225 (in Chinese with English abstract).
[17] Leng Chengbiao, Zhang Xingchun, Wang Shouxu, Qin Zhaojian, Wu Kongwen, Ren Tao. 2009. Advances of researches on the evolution of ore–forming fluids and the vapor transport of metals in magmatic–hydrothermal systems[J]. Geological Review, 55(1): 100−112 (in Chinese with English abstract).
[18] Lin W, Charles N, Chen Y, Chen K, Faure M, Wu L, Wang F, Li Q L, Wang J, Wang Q C. 2013. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints[J]. Gondwana Research, 23(1): 78−94. doi: 10.1016/j.gr.2012.02.012
[19] Liu Jiajun, He Mingqin, Li Zhiming, Liu Yuping, Li Zhaoying, Zhang Qian, Yang Weiguang, Yang Aiping. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping sliver–copper polymetallic ore concentration area in Lanping Basin of Yunnan Province and its significance[J]. Mineral Deposits, (1): 1−10 (in Chinese with English abstract).
[20] Liu Jianming, Zhang Rui, Zhang Qingzhou. 2004. The regional metallogeny of Da Hing Gan Ling, China[J]. Earth Science Frontiers, (1): 269−277 (in Chinese with English abstract).
[21] Liu Kai, Wu Taotao, Liu Jinlong, Bao Qingzhong, Du Shouying. 2018. Geochronology and geochemistry of volcanic rocks in Manketou'ebo Formation of Tulihe area, northern Da Hinggan Mountains[J]. Geology in China, 45(2): 367−376 (in Chinese with English abstract).
[22] Liu Yanrong, Guan Qiangbing, Zhang Haidong, Zhou Qunjun, Dang Shun'an. 2023. Sulfides Rb-Sr and zircon U‒Pb ages of the Erdaohezi Pb‒Zn deposit in the western slope of the Great Xing'an Range and their constraints on tectonic setting[J]. Geological Bulletin of China, 42(11): 1843‒1853 (in Chinese with English abstract).
[23] Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late–stage tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5/6): 348−370. doi: 10.1016/j.jseaes.2007.11.005
[24] Nie Fengjun, Zhang Wanyi, Du Andao, Jiang Sihong, Liu Yan. 2007. Re–Os isotopic age dating of molybdenite separates from the Chaobuleng iron–polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia[J]. Acta Geoscientica Sinica, 28(4): 315−323 (in Chinese with English abstract).
[25] Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 67(5): 551−578. doi: 10.2113/gsecongeo.67.5.551
[26] O'Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 51(12): 5547−5558. doi: 10.1063/1.1671982
[27] Ren Jishun, Niu Baogui, Liu Zhigang. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, (3): 85−93 (in Chinese with English abstract).
[28] Rollinson H. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. London: Longman Scientific and Technical, 52–61.
[29] Rye R O, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review[J]. Economic Geology, 69(6): 826−842. doi: 10.2113/gsecongeo.69.6.826
[30] Sakai H. 1968. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochemical Journal, 2(1): 29−49. doi: 10.2343/geochemj.2.29
[31] Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61(1): 633−677. doi: 10.2138/rmg.2006.61.12
[32] Shao Jian, Mou Baolei, He Guoqi, Zhang Lüqiao. 1997. The geological function of northern North China during the superimposition of the paleo–Asian and paleo–Pacific regions[J]. Science in China (Earth Science), (5): 390−394 (in Chinese).
[33] Shao Jidong, Wang Hui, Zhang Mei, Zhao Wentao. 2011. Division of tectonic units in Inner Mongolia and its geological characteristics[J]. Western Resources, (2): 51−56 (in Chinese).
[34] She Hongquan, Li Honghong, Li Jinwen, Zhao Shibao, Tan Gang, Zhang Dequan, Jinjun, Dong Yingjun, Feng Chengyou. 2009. The metallogenetical characteristics and prospecting direction of the copper–lead–zinc polymetal deposits in the northern–central Daxing'anling Mountain, Inner Monglia[J]. Acta Geologica Sinica, 83(10): 1456−1472 (in Chinese with English abstract).
[35] She Hongquan, Li Jinwen, Xiang Anping, Guan Jidong, Yang Yuncheng, Zhang Dequan, Tan Gang, Zhang Bin. 2012. U–Pb ages of the zircons from primary rocks in middle–northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, (2): 217−240 (in Chinese with English abstract).
[36] Shi Yonghong, Wang Yong, Chen Bailin, Tan Renwen, Gao Yun, Shen Jinghui. 2022. Characteristics of silicon-calcium surface ore-controlling in Fengtai ore‒concentration areas, West Qinling Mountains: Examples from Qiandongshan Pb-Zn deposit[J]. Geology in China, 49(1): 226‒240 (in Chinese with English abstract).
[37] Sun Deyou, Wu Fuyuan, Zhang Yanbin, Gao Shan. 2004. The final closing time of the west Lamulun River–Changchun–Yanji Plate suture zone: Evidence from the Dayushan granitic pluton, Jinlin Province[J]. Journal of Jinlin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).
[38] Tang Zongyuan. 2019. Petrogenesis and Geodynamic Mechanism of the Mesozoic Volcanic Rocks in the Central Great Xing'an Range[D]. Changchun: Jilin University, 1–174.
[39] Wang Jianjun, Wang Zhong, Zhang Da, Yu Qiuye, Di Yongjun, Sun Yanjie, Xiong Guangqiang, Zhao Hongtao, Liu Min. 2013. Geological characteristics and origin of Erdaohe lead–zinc–silver–copper deposit in Zhalantun, Inner Mongolia[J]. Acta Mineralogica Sinica, 33(S2): 498−499 (in Chinese).
[40] Wang T, Guo L, Zhang L, Yang Q, Zhang J, Tong Y, Ye K. 2015. Timing and evolution of Jurassic–Cretaceous granitoid magmatism in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97: 365−392. doi: 10.1016/j.jseaes.2014.10.005
[41] Wang Xiaohu, Hou Zengqian, Song Yucai, Wang Guanghui, Zhang Hongrui, Zhang Chong, Zhuang Tianming, Wang Zhe, Zhang Tianfu. 2012. Baiyangping Pb–Zn–Cu–Ag polymetallic deposit in Lanping basin: A discussion on characteristics and source of ore–forming fluids and source of metallogenic materials[J]. Earth Science—Journal of China University of Geosciences, 37(5): 1015−1028 (in Chinese with English abstract).
[42] Williams–Jones A E, Samson I M, Ault K M, Gagnon J E, Fryer B J. 2010. The genesis of distal zinc skarns: Evidence from the Mochito deposit, Honduras[J]. Economic Geology, 105(8): 1411−1440. doi: 10.2113/econgeo.105.8.1411
[43] Wu F Y, Zhao G C, Sun D Y, Wilde S A, Yang J H. 2007. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 30(3/4): 542−556.
[44] Xiao Qinghui. 2002. Granite Research Thinking and Methods[M]. Beijing: Geological Publishing House (in Chinese).
[45] Yang Fating. 2018. Metallogenic regularity and prospecting prediction of Erdaohe silver polymetallic deposit in the middle section of Daxinganling[J]. Western Resources, (6): 71−72 (in Chinese).
[46] Yao Xiaofeng, Ye Tianzhu, Tang Juxing, Zheng Wenbao, Ding Shuai, Li Yongsheng, Zhen Shimin. 2014. The effect of Si–Ca interface on skarn formation and polymetallic mineralization in the Jiama deposit, Tibet[J]. Geology in China, 41(5): 1577−1593 (in Chinese with English abstract).
[47] Zartman R E, Doe B R. 1981. Plumbotectonics—the model[J]. Tectonophysics, 75(1/2): 135−162.
[48] Zeng Qingdong, Liu Jianming, Chu Shaoxiong, Guo Yunpeng, Gao Shuai, Guo Lixiang, Zhai Yuanyuan. 2016. Ploy–metal mineralization and exploration potential in Southern segment of the Da Hinggan Mountains[J]. Journal of Jinlin University (Earth Science Edition), 46(4): 1100−1123 (in Chinese with English abstract).
[49] Zhai Degao, Liu Jiajun, Wang Jianping, Peng Runmin, Wang Shouguang, Li Yuxi, Chang Zhongyao. 2009. Re–Os isotopic chronology of molybdenite from the Taipinggou porphyry–type molybdenum deposit in Inner Mongolia and its geological significance[J]. Geoscience, 23(2): 262−268 (in Chinese with English abstract).
[50] Zhang Changqing, Ye Tianzhu, Wu Yue, Wang Chenghui, Ji Hai, Li Li, Zhang Tingting. 2012. Discussion on controlling role of Si–Ca boundary in locating Pb–Zn deposits and its prospecting significance[J]. Mineral Deposits, 31(3): 405−416 (in Chinese with English abstract).
[51] Zhang Geli, Tian Tao, Wang Ruiting, Gao Weihong, Chang Zongdong. 2020. S, Pb isotopic composition of the Dongtangzi Pb−Zn deposit in the Fengtai ore concentration area of Shaanxi Province for tracing sources of ore−forming materials[J]. Geology in China, 47(2): 472−484 (in Chinese with English abstract).
[52] Zhang Jing, Shao Jun, Jiang Shan, Yang Hongzhi. 2017. A study of the stable isotope geochemistry of Erdaohe Pb–Zn ore deposit in Inner Mongolia[J]. Geological Review, 63(S1): 225−227 (in Chinese).
[53] Zheng Yongfei, Xu Baolong, Zhou Gentao. 2000. Geochemical studies of stable isotopes in minerals[J]. Earth Science Frontiers, (2): 299−320 (in Chinese with English abstract).
[54] Zhu Bingquan, Li Xianhua, Dai Tongmo. 1998. The Theory and Application of Isotope System in Earth Science—Also on the Evolution of Crust and Mantle in Chinese Mainland[M]. Beijing: Science Press (in Chinese).
[55] 白大明, 付国立, 聂凤军, 江思宏, 刘翼飞. 2011. 内蒙古东南部矽卡岩型金属矿床的综合找矿模式[J]. 吉林大学学报(地球科学版), 41(6): 1968−1976. [56] 陈永清, 周顶, 郭令芬. 2014. 内蒙古花敖包特铅锌银多金属矿床成因探讨: 流体包裹体及硫、铅、氢、氧同位素证据[J]. 吉林大学学报(地球科学版), 44(5): 1478−1491. [57] 崔学武, 姜胜华, 李洪宝, 常耀辉. 2015. 内蒙古二道河银铅锌矿床综合找矿模式[J]. 矿产勘查, 6(6): 667−678. doi: 10.3969/j.issn.1674-7801.2015.06.003 [58] 丁伟品, 谢财富, 黄诚, 张斌, 辛卓, 詹华思, 郑立龙, 孔凡全, 王红兵, 黄福林. 2022. 川滇黔二叠系铅锌成矿物质来源:C‒H‒O‒S‒Pb同位素制约—以云南太平子铅锌矿为例[J]. 中国地质, 49(6): 1845‒1861. [59] 葛文春, 吴福元, 周长勇, 张吉衡. 2005. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U–Pb年龄及地质意义[J]. 岩石学报, 21(3): 749−762. doi: 10.3321/j.issn:1000-0569.2005.03.015 [60] 衮民汕, 吕新彪, 李杰, 徐益群, 王琳, 王邵斌. 2015. 内蒙古二道河铅锌多金属矿床流体包裹体研究[J]. 矿物学报, 35(S1): 579. [61] 郭向国. 2020. 大兴安岭中段二道河矽卡岩型铅锌矿成矿作用研究[D]. 北京: 中国地质大学(北京). [62] 和静, 黄明, 丛亚楠. 2019. 内蒙古二道河银铅锌矿床地质特征与找矿标志[J]. 内蒙古科技与经济, (12): 58. [63] 康永建, 佘宏全, 向安平, 田京, 李进文, 杨郧城, 郭志军, 董旭舟. 2014. 内蒙古八大关矿区印支期岩浆活动及其找矿意义[J]. 中国地质, 41(4): 1215−1225. doi: 10.3969/j.issn.1000-3657.2014.04.015 [64] 冷成彪, 张兴春, 王守旭, 秦朝建, 吴孔文, 任涛. 2009. 岩浆−热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评, 55(1): 100−112. doi: 10.3321/j.issn:0371-5736.2009.01.012 [65] 刘家军, 何明勤, 李志明, 刘玉平, 李朝阳, 张乾, 杨伟光, 杨爱平. 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质, (1): 1−10. doi: 10.3969/j.issn.0258-7106.2004.01.001 [66] 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘, (1): 269−277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [67] 刘凯, 吴涛涛, 刘金龙, 鲍庆中, 杜守营. 2018. 大兴安岭北段图里河地区满克头鄂博组火山岩年代学及地球化学[J]. 中国地质, 45(2): 367−376. doi: 10.12029/gc20180211 [68] 刘艳荣, 关强兵, 张海东, 周群君, 党顺安. 2023. 大兴安岭西坡二道河子铅锌矿床硫化物Rb‒Sr、锆石U‒Pb年龄及其对构造背景的制约[J]. 地质通报, 42(11): 1843‒1853. [69] 聂凤军, 张万益, 杜安道, 江思宏, 刘妍. 2007. 内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼–锇同位素年龄及地质意义[J]. 地球学报, 28(4): 315−323. doi: 10.3321/j.issn:1006-3021.2007.04.001 [70] 任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, (3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008 [71] 邵济安, 牟保磊, 何国琦, 张履桥. 1997. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学(地球科学), (5): 390−394. [72] 邵积东, 王惠, 张梅, 赵文涛. 2011. 内蒙古大地构造单元划分及其地质特征[J]. 西部资源, (2): 51−56. [73] 佘宏全, 李红红, 李进文, 赵士宝, 谭刚, 张德全, 金俊, 董英君, 丰成友. 2009. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J]. 地质学报, 83(10): 1456−1472. doi: 10.3321/j.issn:0001-5717.2009.10.010 [74] 佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U–Pb测年及其与区域构造演化关系[J]. 岩石学报, 28(2): 217−240. [75] 石永红, 王永, 陈柏林, 谭人文, 高允, 申景辉. 2022. 西秦岭凤太矿集区铅锌矿床硅钙面控矿作用—以铅硐山铅锌矿床为例[J]. 中国地质, 49(1): 226‒240. [76] 孙德有, 吴福元, 张艳斌, 高山. 2004. 西拉木伦河—长春—延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报 (地球科学版), 34(2): 174−181. [77] 唐宗源. 2019. 大兴安岭中段中生代火山岩成因及地球动力学机制[D]. 长春: 吉林大学, 1–174. [78] 王建军, 王忠, 张达, 于秋野, 狄永军, 孙燕杰, 熊光强, 赵红涛, 刘敏. 2013. 内蒙古扎兰屯二道河铅锌银铜矿床地质特征及成因初探[J]. 矿物学报, 33(S2): 498−499. [79] 王晓虎, 侯增谦, 宋玉财, 王光辉, 张洪瑞, 张翀, 庄天明, 王哲, 张天福. 2012. 兰坪盆地白秧坪铅锌铜银多金属矿床成矿流体及成矿物质来源[J]. 地球科学(中国地质大学学报), 37(5): 1015−1028. [80] 肖庆辉. 2002. 花岗岩研究思维与方法[M]. 北京: 地质出版社. [81] 杨发亭. 2018. 大兴安岭中段二道河银多金属矿床成矿规律及找矿预测[J]. 西部资源, (6): 71−72. doi: 10.3969/j.issn.1672-562X.2018.06.029 [82] 姚晓峰, 叶天竺, 唐菊兴, 郑文宝, 丁帅, 李永胜, 甄世民. 2014. 西藏甲玛矿床硅钙界面对矽卡岩成岩及多金属成矿的影响[J]. 中国地质, 41(5): 1577−1593. doi: 10.3969/j.issn.1000-3657.2014.05.014 [83] 曾庆栋, 刘建明, 禇少雄, 郭云鹏, 高帅, 郭理想, 翟媛媛. 2016. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 46(4): 1100−1123. [84] 翟德高, 刘家军, 王建平, 彭润民, 王守光, 李玉玺, 常忠耀. 2009. 内蒙古太平沟斑岩型钼矿床Re–Os等时线年龄及其地质意义[J]. 现代地质, 23(2): 262−268. doi: 10.3969/j.issn.1000-8527.2009.02.010 [85] 张长青, 叶天竺, 吴越, 王成辉, 吉海, 李莉, 张婷婷. 2012. Si/Ca界面对铅锌矿床定位的控制作用及其找矿意义[J]. 矿床地质, 31(3): 405−416. doi: 10.3969/j.issn.0258-7106.2012.03.001 [86] 张革利, 田涛, 王瑞廷, 高卫宏, 常宗东. 2020. 凤太矿集区东塘子铅锌矿床S、Pb同位素组成对成矿物质来源的示踪[J]. 中国地质, 47(2): 472−484. doi: 10.12029/gc20200214 [87] 张璟, 邵军, 江山, 杨宏智. 2017. 内蒙古二道河铅锌矿床稳定同位素地球化学研究[J]. 地质论评, 63(S1): 225−227. [88] 郑永飞, 徐宝龙, 周根陶. 2000. 矿物稳定同位素地球化学研究[J]. 地学前缘, (2): 299−320. doi: 10.3321/j.issn:1005-2321.2000.02.001 [89] 朱炳泉, 李献华, 戴橦谟. 1998. 地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M]. 北京: 科学出版社.