Geochemistry and geochronology of cumulated gabbro from Kaladawan area, Altun Mountains, NW China: Evidence for oceanic crust evolution
-
摘要:研究目的
喀腊大湾地区地处阿尔金走滑断裂北侧与东西向阿尔金北缘断裂所夹持的区域;堆晶辉长岩呈近东西向带状断续出露于阿尔金北缘断裂以南4 km,南北两侧与枕状玄武岩等基性海相火山岩共生产出。作为洋壳的主要组成岩石类型,堆晶辉长岩的研究将进一步揭示早古生代阿尔金洋洋壳的演化特征。
研究方法本文对喀腊大湾地区堆晶辉长岩开展了岩石学、矿物学、地球化学及锆石SHRIMP U-Pb年代学测试和研究。
研究结果研究显示,喀腊大湾堆晶辉长岩分为伟晶结构和粗晶结构两种类型,并具渐变过渡特点,其地球化学特征具有低K2O含量(平均为0.44%)、平坦的稀土元素配分曲线(LREE/HREE平均值为2.54)、Eu正异常(δEu平均为1.05)、Nb和Ta的负异常(Nb平均2.31×10-6、Ta平均0.16×10-6)等特征,反映其产于弧后盆地构造环境。锆石SHRIMP U-Pb年龄为514~516 Ma,与相邻产出的中基性火山岩517 Ma非常接近,表明堆晶辉长岩形成于早古生代晚寒武世。
结论研究结果显示喀腊大湾地区晚寒武世存在明显的洋壳扩张,该结果与喀腊大湾地区岛弧型中酸性火山岩478~485 Ma和同碰撞中酸性侵入岩477~488 Ma共同构成了区域构造演化的一个完整序列,进一步确定了北阿尔金地区早古生代洋壳扩张、板块俯冲到陆块碰撞的演化历史。
创新点:首次在喀腊大湾地区发现堆晶辉长岩,为早古生代阿尔金洋的存在提供了进一步证据。
Abstract:This paper is the result of geological survey engineering.
ObjectiveThe Kaladawan area is located within the area defined by the NE-striking Altun strike-slip fault to the north and EWstriking northern Altun fault. The cumulated gabbro is exposed to the north Altun Fault 4 km to the south, basic marine volcanic rocks such as occipital basalt occur in both north and south. As the main component rock type of oceanic crust, the study of cumulate gabbro will further reveal the evolution characteristics of early Paleozoic Altun oceanic crust.
MethodsIn this paper, petrology, mineralogy, geochemistry and zircon SHRIMP U-Pb dating of cumulate gabbro in the Kaladawan area have been studied.
ResultsThe study shows that the cumulate gabbro in Kaladawan can be divided into two types: pegmatite and coarse-grained, and has the characteristics of gradual transition. The geochemistry features include low K2O content (average is 0.44%), flat REE partition curves (the average LREE/HREE value is 2.54), positive Eu anomalies (the average δEu value is 1.05), and negative Nb and Ta anomalies (the average Nb and Ta content is 2.31×10-6 and 0.16×10-6, respectively), which indicates that it occurs in the tectonic environment of the back-arc basin. The zircon SHRIMP U-Pb age of 514-516 Ma is very close to that of the adjacent intermediate-basic volcanic rocks of 517 Ma, indicating that the cumulate gabbro was formed in late Cambrian of the early Paleozoic.
ConclusionsThe results show that there was an obvious oceanic crust spreading during the late Cambrian in the Kaladawan area. This result, together with island arc intermediate-acid volcanic rocks 478-485 Ma and co-collisional intermediate-acid intrusive rocks 477-488 Ma, constitutes a complete sequence of regional tectonic evolution, and an evolutionary history of the early Paleozoic oceanic crust spreading and plate subduction to continental collision in the North Altun region is further determined.
-
1. 引言
阿尔金山喀腊大湾地区位于北东向阿尔金走滑断裂北侧与东西向阿尔金北缘断裂所夹持的区域内,北接塔里木地块南缘,南与柴达木盆地毗邻。阿尔金断裂带和阿尔金山地区的区域构造演化已经成为最近30年的研究热点(新疆维吾尔自治区地质矿产局,1993;郭召杰等,1998;刘良等, 1998, 1999;崔军文等,1999;Sobel and Arnaud, 1999;Yin et al., 2002;Liu et al., 2007;张建新等,2007;刘永顺等,2009;陈柏林等,2010;韩凤彬等,2012;高栋等,2022;高永宝等,2023)。在阿尔金山的红柳沟—拉配泉一带, 不仅有蛇绿混杂岩出露(刘良等,1999;吴峻等,2002;杨经绥等, 2002, 2008),同时在贝克滩一带还报道了出露的高压变质泥质岩(车自成等,1995;刘良等,1999)。近十余年对红柳沟—拉配泉这一蛇绿混杂岩带的研究又有了新的突破,在恰什坎萨依沟一带蛇绿混杂岩带内各岩相之间,发现有石榴蓝闪石片岩(蓝片岩)和榴辉岩出露(Zhang et al., 2005;张建新和孟繁聪,2006),并认为它们可以和北祁连造山带出露的HP/LT蓝片岩和榴辉岩对比,可能为同一洋壳俯冲变质作用的产物(Zhang et al., 2005),在红柳沟蛇绿混杂岩带内识别出地幔橄榄岩、镁铁-超镁铁质堆晶辉长岩、基性岩墙群等(杨经绥等,2008),同时认为阿尔金北缘蛇绿混杂岩带与北祁连蛇绿混杂岩带特征具有可比性(孟繁聪等,2010),进一步支持了北阿尔金北缘构造带是北祁连构造带西延部分的认识(许志琴等,1999)。但是绝大多数对红柳沟—拉配泉蛇绿混杂岩带的研究仅限于其西段的红柳沟一带,中东段大平沟—喀腊大湾—拉配泉一带鲜有报道。笔者在阿尔金东段喀腊大湾地区的海相基性火山岩中发现堆晶辉长岩,进行了地质特征、地球化学特征和年代学研究,并探讨了其形成环境及构造意义。
2. 地质构造背景
在大地构造上,阿尔金山喀腊大湾地区位于阿尔金走滑断裂北侧与东西向阿尔金北缘断裂所夹持地区的东段,北接塔里木地块南缘,南与柴达木盆地毗邻,著名的阿尔金左行走滑断裂在研究区东南角穿越(图 1)。
图 1 阿尔金山喀腊大湾地区地质构造及堆晶辉长岩分布图1—中新统下油砂山组;2—中新统上干柴沟组;3—渐新统下干柴沟组;4—石炭系上统因格布拉克组;5—斯米尔布拉克组;6—卓阿布拉克组;7—金雁山组;8—太古界达格拉格布拉克组;9—早古生代闪长岩;10—早古生代花岗闪长岩;11—早古生代花岗岩;12—早古生代似斑状二长花岗岩;13—辉长岩;14—断裂;15—韧脆性变形带;16—堆晶辉长岩剖面(图 2)位置;17—堆晶辉长岩岩石化学采样点;18—堆晶辉长岩SHRIMP年龄采样点;19—基性火山岩SHRIMP年龄采样点;20—样号与年龄Figure 1. Distribution map of geological structure and cumulated gabbro in Kaladawan area, Altun Mountains1-Lower Youshashan Formation of Miocene; 2-Upper Ganchaigou Formation of Miocene; 3-Lower Ganchaigou Formation of Oligocene; 4-Yin'gebulake Formation of upper series of Carboniferous System; 5-Simi'erbulake Formation of upper Cambrian; 6-Zhabulake Formation of upper Cambrian; 7-Jinyanshan Formation; 8-Dagelagebulake Formation of Archean; 9-Diorite of Early Paleozoic; 10-Granodiorite of Early Paleozoic; 11-Granite of Early Paleozoic; 12-Porphyritic adamellite of Early Paleozoic; 13-Gabbro; 14-Fault; 15-Ductile-brittle deformation belt; 16-Section of cumulated gabbro (Fig. 2); 17-Samples of rocks geochemistry of cumulated gabbro; 18-Samples of SHRIMP age of cumulated gabbro; 19-Samples of SHRIMP age of basalt; 20-Samples number and SHRIMP age已有研究显示,在震旦纪晚期—古生代早期,红柳沟—拉配泉裂谷带(弧后盆地或有限洋盆)扩张,晚寒武世开始发生板块俯冲,至中奥陶世发生板块碰撞(崔军文等,1999;刘良等,1999;戚学祥等,2005;张建新等, 2007, 杨经绥等,2008)。晚中生代以来由于印度板块与欧亚板块碰撞造山的远程效应,阿尔金断裂带发生了大规模的左行走滑(崔军文等,1999;陈正乐等,2002;Liu et al., 2007;陈柏林等,2010),而阿尔金山北缘喀腊大湾地区更多地表现出挤压体制的变形特点。
区内构造线以近东西向为特征(图 1),主干断裂主要为东西向,一级断裂有喀腊达坂断裂和阿尔金北缘断裂,呈东西向横贯区域南北两侧;二级断裂有白尖山断裂,呈东西向贯穿于中北部;低级别(次级)小断裂也非常发育,呈北东东向和北西向,断裂性质以压性、压扭性为主。其中北部的阿尔金北缘断裂规模巨大,是太古界与下古生界寒武系之间的界线。在喀腊大湾沟沿北缘断裂发育糜棱岩化带和碎裂岩化带,宽度超过600 m。南部的喀腊达坂断裂是下古生界与震旦系(西段)或下古生界与新生界(东段)之间的界线。白尖山断裂部分为卓阿布拉克组(Є3zh)与斯米尔布拉克组(Є3s)之间的界线(图 1)。对于卓阿布拉克组(Є3zh)与斯米尔布拉克组(Є3s)火山岩的时代,1∶20万地质填图确定为中元古代,后改为震旦纪。最新研究和相关测年结果显示为晚寒武世—早奥陶世(刘永顺等,2009;陈柏林等, 2016a, b),结合基性火山岩和本文堆晶辉长岩年龄,卓阿布拉克组(Є3zh)与斯米尔布拉克组(Є3s)应属晚寒武世。
区内岩浆岩比较发育。对于区内中酸性侵入岩,1∶20万地质填图确定为元古代和晚古生代,依据新近测年数据(Gehrels et al., 2003;韩凤彬等,2012;孟令通等, 2015, 2016;刘锦宏等,2017;彭银彪等,2018;郑坤等,2019;吴玉等,2021),区内中酸性岩浆侵入活动主要为早古生代(图 1)。而对于中基性侵入岩,最早1∶20万地质填图确定为元古代,参考区域上红柳沟一带的研究(刘良等,1999;戚学祥等,2005;张建新等, 2007, 杨经绥等,2008;崔玲玲等,2010;郝瑞祥等,2013;王永等,2020)和本文研究,这套基性—超基性侵入岩属于早古生代。
3. 堆晶辉长岩宏观地质特征
喀腊大湾地区堆晶辉长岩主要出露于喀腊大湾沟中段,阿尔金北缘断裂带南侧约4 km,喀腊大湾东西叉沟岔口以南,以喀腊大湾东叉沟东侧与白尖山沟之间的部位为主,在喀腊大湾东叉沟西侧、西叉沟西侧和大平沟金矿西偏南10 km处也有出露(图 1)。
喀腊大湾东叉沟东侧2 km处的出露点,堆晶辉长岩与枕状玄武岩呈互层状产出,岩体走向(延长方向)为东西向,南北向出露宽度400~500 m,向东延伸约3 km,南侧与一套沉积岩系呈断层接触,沉积岩系之南为枕状玄武岩,北侧与玄武岩呈渐变关系,玄武岩被中粗粒似斑状二长花岗岩侵入接触(图 2)。在喀腊大湾东叉沟西侧,堆晶辉长岩剖面与东侧剖面基本一致,在喀腊大湾西叉沟西侧,堆晶辉长岩呈较大的俘虏体或包体出露于玄武岩中,在大平沟金矿西偏南10 km处,堆晶辉长岩出露宽度约200 m,与玄武岩呈渐变关系。上述出露的堆晶辉长岩沿东西走向呈带状断续出露(图 1)。
图 2 阿尔金山喀腊大湾地区堆晶辉长岩地质剖面1—似斑状二长花岗岩;2—枕状玄武岩;3—堆晶辉长岩;4—砾岩及含砾砂岩;5—粗砂岩及细砂岩;6—泥岩及泥灰岩;7—断层;8—采样点及其锆石U-Pb年龄Figure 2. Profile of cumulated gabbro in Kaladawan area, Altun Mountains1-Porphyritic monzogranite; 2-Pillow basalt; 3-Cumulated gabbro; 4-Conglomerate and pebbly sandstone; 5-Gritstone and fine sandstone; 6-Mudstone and marlstone; 7-Fault; 8-Samples and their zircon U-Pb age堆晶辉长岩呈灰绿色,在宏观上有伟晶结构和粗晶结构两类,伟晶结构堆晶辉长岩中的辉石和斜长石晶体可达10~30 mm(图 3a),粗晶结构辉长岩中的辉石和斜长石晶体一般为2~5 mm(图 3b、c),两种结构的辉长岩呈不规则状过渡关系。
堆晶辉长岩的矿物组成主要为辉石和基性斜长石,伟晶结构辉长岩由于晶体结晶颗粒太大,同一个显微照片中难以显示各矿物之间关系(图 3d),粗晶辉长岩辉石含量50%~60%,晶体呈短柱状,以单斜辉石为主,大小2~5 mm,自形晶体为主,部分为半自形,部分晶体发生蚀变,局部形成蛇纹石、绿泥石,斜长石含量40%~50%,晶体呈板状或柱状,半自形为主,具有带状双晶,大小2~5 mm,副矿物主要为磁铁矿(图 3e、f)。
4. 堆晶辉长岩地球化学特征
4.1 分析方法
此次研究共选取8件样品(序号1~8)进行了地球化学测试,测试在国家地质实验测试中心完成,检测方法、流程和精度依据DZ/T0223-2001、GB/T14506.28-2010、GB/T14506.2-2010、GB/T14506.14-2010、LY/T1253-1999和GB9835-1988。主量元素测试仪器为X射线荧光光谱仪(PW4400),测试结果见表 1;微量和稀土元素测试仪器为等离子质谱仪(X-series),测试结果见表 2和表 3。作为对比的米兰红柳沟辉长岩的地球化学数据(序号9~13)引自杨经绥等(2008)。
表 1 喀腊大湾地区与米兰红柳沟地区堆晶辉长岩主量元素分析结果(%)Table 1. Compositions of major elements (%) of cumulated gabbro in Kaladawan and Hongliugou area表 2 喀腊大湾地区与米兰红柳沟堆晶辉长岩稀土元素分析结果(10-6)Table 2. REEs contents (10-6) of cumulated gabbro in Kaladawan and Hongliugou area表 3 喀腊大湾地区与米兰红柳沟地区堆晶辉长岩微量元素分析结果(10-6)Table 3. Trace elements contents (10-6) of cumulated gabbro in Kaladawan and Hongliugou area4.2 主元素特征
主量元素分析表明,堆晶辉长岩SiO2含量为42.50%~48.34%,平均47.11%;A12O3含量为11.02%~22.98%,平均15.75%;CaO的含量为10.02%~11.53%,平均10.70%;Na2O > K2O,MgO的含量为5.88%~14.77%,平均8.81%;TiO2含量为0.09%~1.25%,平均0.85%。与喀腊大湾地区辉长岩相比,米兰红柳沟地区辉长岩具有高的CaO(17.31%~26.61%)和MnO(15.53%~17.37%),相对低的SiO2(40.95%~42.95%)、A12O3(0.03%~0.09%)、Na2O(0.22%~0.76%)、K2O(0.08%~0.10%)、TiO2(~0.01%)(表 1)。
4.3 稀土元素特征
测试样品的稀土元素的总体含量较低,为5.49×10-6~117.24×10-6(表 2),平均42.32×10-6,稀土元素的球粒陨石标准化配分曲线根据Eu异常明显分为三组,第一组表现为平坦型(图 4a),稀土元素总量最高,平均为70.01×10-6,个别样品(K421-1)轻重稀土有一定程度的分异(LREE/HREE=3.52),(La/Yb)N为2.96,绝大多数样品表现为无明显的Eu异常,δEu=0.91~1.02;第二组为样品K432-1和K432-2,稀土配分曲线平坦,稀土元素总量平均为23.48×10-6,轻重稀土分异不明显(LREE/HREE为2.39和1.87),(La/Yb)N为0.76和0.90,具有弱的Eu正异常,δEu分别为1.27和1.14;第三组为样品K412-1与K433-1,配分曲线表现为一定程度的右倾和明显的Eu正异常(δEu分别为3.51和2.86),稀土元素总量平均为5.71×10-6,与米兰红柳沟辉长岩的稀土元素配分曲线最为相似(图 4b)。结合主量元素特征,前2组样品基性程度明显偏低。
图 4 喀腊大湾地区(a)与米兰红柳沟(b)(据杨经绥等,2008)堆晶辉长岩稀土元素球粒陨石标准化配分图(标准化值据Sun and McDonough, 1989)Figure 4. Chondrite-normalized REE patterns of Kaladawan area (a) and Milan area(b) (after Yang Jingsui et al., 2008) cumulated gabbro in Altun Mountains (normalized values from Sun and McDonough, 1989)在原始地幔标准化蛛网图(图 5a)中,喀腊大湾地区堆晶辉长岩也可分3组,样品曲线总体比较平缓,普遍具有Nb、Ta负异常(图 5b),部分样品具有Sr正异常,但是从第一组到第三组,Nb、Ta负异常逐渐明显,Sr正异常也更明显,Zr、Hf负异常逐渐显现,曲线特征更接近红柳沟辉长岩。
图 5 喀腊大湾地区(a)与米兰红柳沟(b)(据杨经绥等,2008)堆晶辉长岩微量元素原始地幔标准化蜘蛛网图(标准化值据Sun and McDonough, 1989)Figure 5. Primitive mantle-normalized trace elements spidergram of Kaladawan area (a) and Milan area(b) (after Yang Jingsui et al., 2008) cumulated gabbro in Altun Mountains (normalized values from Sun and McDonough, 1989)总体上,这3组样品随着稀土元素总量的降低,轻重稀土分馏程度升高、δEu正异常逐渐明显,总体特征更接近红柳沟辉长岩,微量元素特征也显示了相同的规律,因此可以推测,喀拉大湾堆晶辉长岩和红柳沟辉长岩可能为同一岩浆源区来源的岩浆在不同演化阶段的表现。
5. 堆晶辉长岩SHRIMP锆石U-Pb年代学
5.1 测年样品与处理
在喀腊大湾东大叉沟东侧的粗晶结构和伟晶结构堆晶辉长岩各选1个样品,用常规方法将岩石样品粉碎至约300 μm,经磁法和密度分选后,淘洗、挑纯锆石单矿物。多数锆石颗粒中等偏大,在0.12~0.20 mm,部分可达0.25~0.30 mm,少数锆石颗粒偏小。然后将锆石样品和标样(TEM)一起用环氧树脂固定于样品靶上。样品靶表面经研磨抛光,直至锆石新鲜截面露出。
锆石SHRIMP U-Pb年龄测试在北京离子探针中心的网络虚拟实验室完成,通过SHRIMP远程共享控制系统(SHRIMP Remote Operation Systerm, SROS)控制位于澳大利亚科廷理工大学的SHRIMPⅡ分析仪,数据通过Internet网络实现传输,依据Compston et al.(1992)、William et al.(1996)和William(1998)的分析流程和原理,采用跳峰扫描, 记录ZrO+、204Pb+、背景值、207Pb+、208Pb+、U+、Th+、ThO+和UO+ 9个离子束峰,每7次扫描记录一次平均值。一次离子流为4.0 nA,加速电压约10 kV的O-2,样品靶上的离子束斑直径为25~30 μm,质量分辨率约5000(1%峰高)。应用澳大利亚地调局标准锆石TEM(417 Ma)进行元素间的分馏校正。应用RSES(澳大利亚国立大学)参考标样锆石M257(年龄417 Ma,U含量840×10-6)标定所测锆石的U、Th和Pb含量。分析时每测3~4次样品后测定一次标样(TEM),以控制仪器的稳定性和离子记数统计的精确性。数据处理采用Ludwig(2001, 2003)的Isoplot及SQUID1.02程序,并尽量避免系统误差(宋彪等,2006)。测试结果见表 4,并给出204Pb和208Pb两种普通铅校正的年龄结果。表 4中所列单个数据点的误差均为1σ,加权平均年龄具95%的置信度。本文使用208Pb校正的结果(也满足U含量≥Th含量的条件,即表 4中为绝大多数232Th/238U≤1)。
表 4 阿尔金山喀腊大湾地区堆晶辉长岩锆石SHRIMP U-Pb分析结果Table 4. SHRIMP U-Pb dating for zircons of the cumulated gabbro from Kaladawan area of Altun Mountains5.2 测年结果
5.2.1 K432-1样品
该样品锆石晶体中等,长100~160 μm,宽50~80 μm,长宽比为1.4∶1~1.9∶1,锆石自形程度高,多数呈中等柱状,少数为短柱状,且具明显的振荡环带和扇形环带,同时锆石的Th/U值为0.33~0.87,平均0.623(表 4),都说明为岩浆成因锆石,其中少部分锆石可见继承核。
该样品共分析了14个锆石颗粒的15个测点,单个点的206Pb/238U年龄介于416~539 Ma(表 4,图 6a),其中7个颗粒的分析结果在谐和图上组成密集的一簇(图 6b),206Pb/238U加权平均年龄为(514±3)Ma(MSWD=0.96),这一年龄应该代表了堆晶辉长岩的结晶年龄。颗粒2.1和4.1的CL图像显示,锆石的边缘局部振荡环带有所破坏(出现不规则黑色斑带),可能是受到后期构造或蚀变作用的影响而发生少量放射性成因Pb的丢失,因此显示了较年轻的年龄(443±13)Ma和(461±10)Ma。测点3.2位置锆石清洁干净,为正常锆石颗粒,而3.1一侧颗粒边部出现不规则黑色斑带,受到后期构造或蚀变的影响而发生少量放射性成因Pb的丢失,也给出了较年轻的年龄(416±10)Ma,所以2.1、3.1和4.1的数据未参与年龄计算。颗粒7.1、8.1、13.1、14.1和15.1为正常锆石颗粒,只是207Pb/235U的误差大于207Pb/238U的误差或者偏离U-Pb演化曲线稍远也没有参与年龄计算(图 6b)。
图 6 阿尔金喀腊大湾地区堆晶辉长岩锆石SHRIMP U-Pb年龄谐和图a—K432-1样品全部锆石颗粒SHRIMP U-Pb年龄谐和图;b—图a局部放大,K432-1样品部分锆石颗粒SHRIMP U-Pb年龄谐和图;c—K432-2样品全部锆石颗粒SHRIMP U-Pb年龄谐和图;d—图c局部放大,K432-2样品部分锆石颗粒SHRIMP U-Pb年龄谐和图Figure 6. Zircon SHRIMP U-Pb concordia diagrams of the cumulated gabbro in Kladawan area, Altun Mountainsa-SHRIMP U-Pb concordia diagrams of all zircon grains from sample K432-1; b-SHRIMP U-Pb concordia diagrams of part zircon grains from sample K432-1; c-SHRIMP U-Pb concordia diagrams of all zircon grains from sample K432-2; d-SHRIMP U-Pb concordia diagrams of part zircon grains from sample K432-25.2.2 K432-2样品
该样品锆石晶体中等,长80~140 μm,宽50~70 μm,长宽比为1.4∶1~2∶1,锆石自形程度高,多数呈中等柱状,少数为短柱状,且具明显的振荡环带和扇形环带,Th/U比为0.33~0.87,平均0.623(表 4),指示它们为岩浆成因锆石,少部分锆石可见继承核。
该样品共分析了13个锆石颗粒的13个测点,单个测点年龄介于484~537 Ma(表 4,图 6c),其中7个颗粒的分析结果在谐和图上组成密集的一簇(图 6d),206Pb/238U加权平均年龄为(516±8)Ma(MSWD=0.56),代表了堆晶辉长岩的结晶年龄。测点2.1和14.1的锆石的边缘局部振荡环带有所破坏(出现少量不规则黑色斑带),可能是部分受到后期构造或蚀变的影响而发生少量放射性成因Pb的丢失,获得较年轻的年龄(484±17)Ma和(491±14)Ma,未参与最终计算。颗粒1.1、5.1、6.1和8.1锆石颗粒正常,但是207Pb/235U的误差大于207Pb/238U的误差或者偏离U-Pb演化曲线稍远也没有参与计算(图 6d)。
综上,喀腊大湾地区堆晶辉长岩形成于514~516 Ma,该年龄与其南侧的中基性火山岩517 Ma(陈柏林等,2016a)非常接近(图 2),也由此可以确定其代表的喀腊大湾地区蛇绿混杂岩形成时代为早古生代晚寒武世。
6. 讨论
6.1 堆晶辉长岩形成的构造背景
堆晶辉长岩作为蛇绿岩套的组成部分,是判别一个地区是否存在蛇绿岩带的重要依据。现有研究表明,蛇绿岩主要产出于大洋中脊,作为洋壳的一部分存在,其次为产于弧后盆地环境。喀腊大湾地区的辉长岩,其相对平坦的稀土元素分配型式及低的K2O含量(0.07%~1.02%,平均0.44),具有大洋中脊玄武岩的特征,其Nb、Ta的负异常,表现出消减带的特征,其Ti含量比红柳沟堆晶辉长岩明显偏高。在V-Ti/1000投影图中5个样品落入岛弧构造环境区、3个样品落入洋中脊构造环境区(图 7a);在Yh/Yb-Ta/Yb投影图中7个样品落入岛弧构造环境区、1个样品落入岛弧构造环境区左侧,落入岛弧构造环境区的7个样品中4个样品落入大洋岛弧构造环境区、2个样品落入活动大陆边缘(陆缘弧)构造环境区、1个样品落入大洋岛弧与陆缘弧过渡区(图 7b);在Hf/3-Th-Nb/16投影图中1个样品位于岛弧与洋中脊边界上,另7个样品落入岛弧构造环境区,其中6个在岛弧钙碱性系列区、1个在拉斑系列区(图 7c);在2×Nb-Zr/4-Y投影图中1个样品落入板内玄武岩区、1个样品落入岛弧构造环境,4个样品落入洋中脊构造环境区,另外3个样品偏离,但其中2个接近洋中脊构造环境区(图 7d)。总体来说,喀腊大湾地区的堆晶辉长岩既具有明显的洋中脊性质,又带有相当的岛弧烙印的特点,所以很可能形成于弧后盆地构造环境。
图 7 喀腊大湾地区堆晶辉长岩微量元素地球化学图解a—V - Ti/1000图解(底图据Shervais, 1982);b—Yh/Yb - Ta/Yb图解(底图据Pearce, 1982);c—Hf/3-Th-Nb/16图解(底图据Wood et al., 1979);d—2×Nb-Zr/4-Y图解(底图据Meschede, 1986);投影点序号同表 3 IAB—岛弧玄武岩;MORB—洋中脊玄武岩;OIB—洋岛玄武岩;WPB—板内玄武岩;WPT—板内拉斑玄武岩;WPAB—板内碱性玄武岩;SHO—钾玄岩;CAB—钙碱性玄武岩;IAT—岛弧拉斑玄武岩;TR—过渡型玄武岩;TH—拉斑玄武岩;ALK—碱性玄武岩Figure 7. Trace element geochemistry diagram of cumulated gabbro in Kladawan areaa-V versus Ti/1000 diagram (after Shervais, 1982); b-Yh/Yb versus Ta/Yb diagram (after Pearce, 1982); c-Hf/3-Th-Nb/16 diagram (after Wood et al., 1979); d-2×Nb-Zr/4-Y diagram (after Meschede, 1986); The sequence numbers of points are the same as Table 3 IAB-Island arc basalt; MORB-Mid-ocean ridge basalt; OIB-Oceanic island basalt; WPB-Intraplate basalt; WPT-Intraplate tholeiite; WPAB-Intraplate alkaline basalt; SHO-Shoshonite; CAB-Calc-alkaline basalt; IAT-Island arc tholeiite; TR-Transitional basalt; TH-Tholeiite; ALK-Alkaline basalt杨经绥等(2008)研究米兰红柳沟地区堆晶辉长岩的地球化学显示具有很低的K2O含量(0.08%~0.48%),反映出大洋中脊玄武岩的特征,另一方面,杨经绥等(2008)通过对米兰红柳沟蛇绿岩剖面中深成堆晶岩的研究,主要为异剥橄榄岩—橄榄二辉石岩—(橄榄)辉石岩—辉长岩—斜长岩组合,认为其产出于弧后盆地环境。
6.2 对阿尔金北缘早古生代构造演化的启示
蛇绿岩带(堆包括晶辉长岩)作为洋壳残留已被广泛接受,而喀腊大湾及其邻区红柳沟等地的蛇绿岩带所反映的阿尔金北缘地区,在早古生代到底是一个广阔的大洋盆还是有限洋盆(或弧后盆地)确实存在争议。目前被多数学者认可的是,震旦纪末—早古生代柴北缘—南阿尔金为开阔的大洋盆,而阿尔金北缘(红柳沟—拉配泉一带)为有限洋盆或弧后盆地(修群业等,2007;刘良等,2009;张建新等, 2010, 2015;董顺利等,2013;盖永升等,2015;孟令通等,2015;王立社等,2015)。
郭召杰等(1998)和刘良等(1998)最早报道阿尔金北缘的蛇绿岩带及其年龄,刘良等(1999)和吴峻等(2002)报道蛇绿混杂岩中洋中脊型变基性火山岩(MORB)和洋岛玄武岩(OIB)及其年龄,之后杨经绥等(2002)发现代表大洋扩张的具有MORB性质的席状岩墙群,刘良等(1999)取得的红柳沟蛇绿岩年龄504 Ma,而车自成等(2002)和杨经绥等(2008)测得贝壳滩洋岛玄武岩的年龄524 Ma和红柳沟蛇绿岩中的辉长岩年龄479 Ma,确定了阿尔金北缘西段红柳沟地区蛇绿岩及其主要岩类的形成时代。同时,张建新等(2007)测得红柳沟恰什坎萨依沟石榴石蓝片岩和低温榴辉岩的变质时代为490~512 Ma,进一步限定了阿尔金北缘地区洋壳俯冲碰撞的时间为晚寒武世—早奥陶世。有部分研究者获得阿尔金北缘地区蛇绿混杂岩较年轻的年龄,如恰什坎萨依沟枕状玄武岩448.6 Ma(修群业等,2007)和449 Ma(杨子江等,2012),虽然可以解释为洋壳形成和演化有一定的时间跨度,但是在440~419 Ma的志留纪早中期,本区已经出现了以似斑状二长花岗岩、钾长花岗岩为代表的碰撞后中酸性岩浆岩(吴才来等, 2005, 2007;韩凤彬等,2012),也没有其他海相沉积的遗迹,代表该时期阿尔金北缘有限洋盆(弧后盆地)已经闭合并碰撞成山。所以,这几个较年轻年龄不一定能够代表阿尔金北缘地区蛇绿混杂岩的形成年龄,很可能是后期的改造年龄或者是放射性元素的部分丢失所致。
前人的研究大部分都限于红柳沟—恰什坎萨依一带的阿尔金北缘西端地区(东西方向约60 km范围),而恰什坎萨依以东包括大平沟至喀腊大湾在内,直到甘肃阿克赛青崖子以西的近400多千米地段鲜有研究,杨经绥等(2008)和张志诚等(2009)获得喀腊大湾以东200 km的阿克赛青崖子MORB型辉长岩年龄为521 Ma,与本文获得的喀拉大湾地区蛇绿混杂岩带的形成时代非常接近,前者被认为具有俯冲带上叠型(SZZ型)蛇绿岩套的特征。喀腊大湾地区蛇绿混杂岩的发现及形成时代的确认,使阿尔金北缘蛇绿混杂岩真正具有带状延伸的特征,同时,喀腊大湾堆晶辉长岩的时代与该区岛弧性质中酸性火山岩478~485 Ma(陈柏林等,2016b)及相关的岛弧型(同碰撞)中酸性侵入岩477~488 Ma(韩凤彬等,2012)在区域构造演化序列上相吻合。
本研究的堆晶辉长岩地球化学特征显示出岛弧或者陆缘弧的某些构造属性,与代表广阔大洋的南阿尔金—柴北缘蛇绿混杂岩带相关岩石形成的构造环境存在一些差异。因此可以认为喀腊大湾地区堆晶辉长岩以及蛇绿混杂岩代表了红柳沟—拉配泉有限洋盆(弧后盆地)扩张所形成的洋壳的残留。这也为北阿尔金北缘属于有限洋盆或弧后盆地的认识补充了依据。堆晶辉长岩作为蛇绿岩带重要的岩石类型在喀腊大湾地区被发现,进一步确定了阿尔金北缘(也称北阿尔金或红柳沟—拉配泉蛇绿岩带)早古生代经历了洋壳扩张、板块俯冲到陆块碰撞的演化历史。
6.3 对阿尔金走滑断裂位移量的启示
在北祁连地区也存在一套俯冲-增生杂岩/火山弧系统,张建新等(1997)较早探讨了它们的形成时代,认为其形成于早古生代奥陶纪(495~466 Ma)。北祁连俯冲杂岩带中蛇绿岩的时代为早寒武世—奥陶纪(夏林圻,1998;史仁灯等,2004;相振群等,2007),宋述光等(2004)获得北祁连山榴辉岩的锆石SHRIMP年龄为468 Ma,与阿尔金北缘的俯冲-增生杂岩/火山弧和辉长岩的形成时代比较一致(稍微显新),相关的中酸性侵入岩和火山岩及其构造环境也十分相似。许志琴(1999)最早从阿尔金走滑断裂两侧的地质体对比研究中估算阿尔金走滑断裂的位移量为350~400 km,之后张建新等(2007)、孟繁聪等(2010)和陈柏林等(2010)分别从高压变质带、蛇绿混杂岩带和成矿带等方面进一步分析了阿尔金北缘与北祁连山属于同一构造带,是被晚中生代以来阿尔金走滑断裂断错成现在的位置。本文喀腊大湾地区堆晶辉长岩的年龄数据与北祁连山堆晶辉长岩的一致性进一步支持了阿尔金走滑断裂小位移观点,这对于阿尔金北缘地区成矿条件分析和地质找矿也具有重要现实意义。
7. 结论
(1)阿尔金喀拉大湾堆晶辉长岩的锆石SHRIMP U-Pb年龄为514~516 Ma,形成于早古生代晚寒武世,地球化学特征反映其形成于弧后盆地构造环境,说明北阿尔金地区晚寒武世存在明显的洋壳扩张作用。
(2)喀拉大湾晚寒武世堆晶辉长岩与该地区岛弧型中酸性火山岩(478~485 Ma)、同碰撞中酸性侵入岩(477~488Ma)共同构成了区域构造演化的一个完整序列,进一步确定了北阿尔金地区早古生代洋壳扩张、板块俯冲到陆块碰撞的演化历史。
-
图 1 阿尔金山喀腊大湾地区地质构造及堆晶辉长岩分布图
1—中新统下油砂山组;2—中新统上干柴沟组;3—渐新统下干柴沟组;4—石炭系上统因格布拉克组;5—斯米尔布拉克组;6—卓阿布拉克组;7—金雁山组;8—太古界达格拉格布拉克组;9—早古生代闪长岩;10—早古生代花岗闪长岩;11—早古生代花岗岩;12—早古生代似斑状二长花岗岩;13—辉长岩;14—断裂;15—韧脆性变形带;16—堆晶辉长岩剖面(图 2)位置;17—堆晶辉长岩岩石化学采样点;18—堆晶辉长岩SHRIMP年龄采样点;19—基性火山岩SHRIMP年龄采样点;20—样号与年龄
Figure 1. Distribution map of geological structure and cumulated gabbro in Kaladawan area, Altun Mountains
1-Lower Youshashan Formation of Miocene; 2-Upper Ganchaigou Formation of Miocene; 3-Lower Ganchaigou Formation of Oligocene; 4-Yin'gebulake Formation of upper series of Carboniferous System; 5-Simi'erbulake Formation of upper Cambrian; 6-Zhabulake Formation of upper Cambrian; 7-Jinyanshan Formation; 8-Dagelagebulake Formation of Archean; 9-Diorite of Early Paleozoic; 10-Granodiorite of Early Paleozoic; 11-Granite of Early Paleozoic; 12-Porphyritic adamellite of Early Paleozoic; 13-Gabbro; 14-Fault; 15-Ductile-brittle deformation belt; 16-Section of cumulated gabbro (Fig. 2); 17-Samples of rocks geochemistry of cumulated gabbro; 18-Samples of SHRIMP age of cumulated gabbro; 19-Samples of SHRIMP age of basalt; 20-Samples number and SHRIMP age
图 2 阿尔金山喀腊大湾地区堆晶辉长岩地质剖面
1—似斑状二长花岗岩;2—枕状玄武岩;3—堆晶辉长岩;4—砾岩及含砾砂岩;5—粗砂岩及细砂岩;6—泥岩及泥灰岩;7—断层;8—采样点及其锆石U-Pb年龄
Figure 2. Profile of cumulated gabbro in Kaladawan area, Altun Mountains
1-Porphyritic monzogranite; 2-Pillow basalt; 3-Cumulated gabbro; 4-Conglomerate and pebbly sandstone; 5-Gritstone and fine sandstone; 6-Mudstone and marlstone; 7-Fault; 8-Samples and their zircon U-Pb age
图 4 喀腊大湾地区(a)与米兰红柳沟(b)(据杨经绥等,2008)堆晶辉长岩稀土元素球粒陨石标准化配分图(标准化值据Sun and McDonough, 1989)
Figure 4. Chondrite-normalized REE patterns of Kaladawan area (a) and Milan area(b) (after Yang Jingsui et al., 2008) cumulated gabbro in Altun Mountains (normalized values from Sun and McDonough, 1989)
图 5 喀腊大湾地区(a)与米兰红柳沟(b)(据杨经绥等,2008)堆晶辉长岩微量元素原始地幔标准化蜘蛛网图(标准化值据Sun and McDonough, 1989)
Figure 5. Primitive mantle-normalized trace elements spidergram of Kaladawan area (a) and Milan area(b) (after Yang Jingsui et al., 2008) cumulated gabbro in Altun Mountains (normalized values from Sun and McDonough, 1989)
图 6 阿尔金喀腊大湾地区堆晶辉长岩锆石SHRIMP U-Pb年龄谐和图
a—K432-1样品全部锆石颗粒SHRIMP U-Pb年龄谐和图;b—图a局部放大,K432-1样品部分锆石颗粒SHRIMP U-Pb年龄谐和图;c—K432-2样品全部锆石颗粒SHRIMP U-Pb年龄谐和图;d—图c局部放大,K432-2样品部分锆石颗粒SHRIMP U-Pb年龄谐和图
Figure 6. Zircon SHRIMP U-Pb concordia diagrams of the cumulated gabbro in Kladawan area, Altun Mountains
a-SHRIMP U-Pb concordia diagrams of all zircon grains from sample K432-1; b-SHRIMP U-Pb concordia diagrams of part zircon grains from sample K432-1; c-SHRIMP U-Pb concordia diagrams of all zircon grains from sample K432-2; d-SHRIMP U-Pb concordia diagrams of part zircon grains from sample K432-2
图 7 喀腊大湾地区堆晶辉长岩微量元素地球化学图解
a—V - Ti/1000图解(底图据Shervais, 1982);b—Yh/Yb - Ta/Yb图解(底图据Pearce, 1982);c—Hf/3-Th-Nb/16图解(底图据Wood et al., 1979);d—2×Nb-Zr/4-Y图解(底图据Meschede, 1986);投影点序号同表 3 IAB—岛弧玄武岩;MORB—洋中脊玄武岩;OIB—洋岛玄武岩;WPB—板内玄武岩;WPT—板内拉斑玄武岩;WPAB—板内碱性玄武岩;SHO—钾玄岩;CAB—钙碱性玄武岩;IAT—岛弧拉斑玄武岩;TR—过渡型玄武岩;TH—拉斑玄武岩;ALK—碱性玄武岩
Figure 7. Trace element geochemistry diagram of cumulated gabbro in Kladawan area
a-V versus Ti/1000 diagram (after Shervais, 1982); b-Yh/Yb versus Ta/Yb diagram (after Pearce, 1982); c-Hf/3-Th-Nb/16 diagram (after Wood et al., 1979); d-2×Nb-Zr/4-Y diagram (after Meschede, 1986); The sequence numbers of points are the same as Table 3 IAB-Island arc basalt; MORB-Mid-ocean ridge basalt; OIB-Oceanic island basalt; WPB-Intraplate basalt; WPT-Intraplate tholeiite; WPAB-Intraplate alkaline basalt; SHO-Shoshonite; CAB-Calc-alkaline basalt; IAT-Island arc tholeiite; TR-Transitional basalt; TH-Tholeiite; ALK-Alkaline basalt
表 1 喀腊大湾地区与米兰红柳沟地区堆晶辉长岩主量元素分析结果(%)
Table 1 Compositions of major elements (%) of cumulated gabbro in Kaladawan and Hongliugou area
表 2 喀腊大湾地区与米兰红柳沟堆晶辉长岩稀土元素分析结果(10-6)
Table 2 REEs contents (10-6) of cumulated gabbro in Kaladawan and Hongliugou area
表 3 喀腊大湾地区与米兰红柳沟地区堆晶辉长岩微量元素分析结果(10-6)
Table 3 Trace elements contents (10-6) of cumulated gabbro in Kaladawan and Hongliugou area
表 4 阿尔金山喀腊大湾地区堆晶辉长岩锆石SHRIMP U-Pb分析结果
Table 4 SHRIMP U-Pb dating for zircons of the cumulated gabbro from Kaladawan area of Altun Mountains
-
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 1-941 (in Chinese with English abstract).
Che Zicheng, Liu Liang, Liu Hongfu, Luo Jinhai. 1995. The discovery of the HP metamorphic rocks and its environment[J]. Chinese Science Bulletin, 40(11): 1298-1300 (in Chinese).
Che Zicheng, Liu Liang, Luo Jinhai. 2002. Tectonics of China and Adjacent Region[M]. Beijing: Science Press, 207-369 (in Chinese with English abstract).
Chen Bailin, Cui Lingling, Bai Yanfei, Wang Shixin, Chen Zhengle, Li Xuezhi, Qi Wanxiu, Liu Rong. 2010. A determining on displacement of the Altun Tagh sinistral strike-slip fault, NW China: New evidence from the tectonic metallogenetic belt in the eastern part of Altun Tagh Mountains[J]. Acta Petrologica Sinica, 26(11): 3387-3396 (in Chinese with English abstract).
Chen Bailin, Li Li, Qi Wanxiu, Chen Zhengle, Wang Yong, Hao Ruixiang, Li Songbin, Zhou Yonggui, Jiang Rongbao, Han Fengbin, Cui Lingling, Zhao Shuming. 2016a. Geological characteristics and metallogenic age of Kalladawan iron ore-field in Altun Mountains, northwestern China[J]. Mineral Deposit, 35(2): 315-334 (in Chinese with English abstract).
Chen Bailin, Li Songbin, Jiang Rongbao, Chen Zhengle, Han Fengbin, Cui Lingling, Li Li, Zhao Shuming, Qi Wanxiu, Yang Yi, Wang Shixin, Wang Yong, Zhou Yonggui, Hao Ruixiang. 2016b. Zircon SHRIMP U-Pb dating of intermediate-acidic volcanic rocks from Kaladawan area, Altun Mountains and its tectonic environment[J]. Acta Geologica Sinica, 90(4): 708-727 (in Chinese with English abstract).
Chen Zhengle, Wan Jinglin, Wang Xiaofeng, Chen Xuanhua, Pan Jinhua. 2002. Rapid strike-slip of the Altun Tagh fault at 8 Ma and its geological implications[J]. Acta Geoscientica Sinica, 23(4): 295-300 (in Chinese with English abstract).
Compston W, Williams I S, Kirschvink J L. 1992. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, London, 149(2): 171-184. doi: 10.1144/gsjgs.149.2.0171
Cui Junwen, Tang Zemin, Deng Jinfu, Yue Yongjun, Meng Lingshun, Yu Qinfan. 1999. Altun Fault System[M]. Beijing: Geological Publishing House, 1-249 (in Chinese with English abstract).
Cui Lingling, Chen Bailin, Yang Nong, Chen Zhengle, Ding Wenjun. 2010. Geochemistry and genesis of basic-intermediate volcanic rocks from Kaladawan, east Altun Tagh Mountains[J]. Journal of Geomechanics, 16(1): 96-107 (in Chinese with English abstract).
Dong Shunli, Li Zhong, Gao Jian, Zhu Lian. 2013. Progress of studies on Early Paleozoic tectonic framework and crystalline rock geochronology, in Altun-Qilian-Kunlun orogen[J]. Geological Review, 59(4): 731-746 (in Chinese with English abstract).
Gai Yongsheng, Liu Liang, Kang Lei, Yang Wenqiang, Liao Xiaoying, Wang Yawei. 2015. The origin and geologic significance of plagiogranite in ophiolite belt at north Altyn Tagh[J]. Acta Petrologica Sinica, 31(9): 2549-2565 (in Chinese with English abstract).
Gao Dong, Wu Cailai, Gao Yuanhong, Wu Di, Zheng Kun, Xu Nan, Chen Hongjie. 2022. Genesis of the Yusupualeke Tagh granitic pluton in the South Altun and its implications for the regional Early Paleozoic tectonic evolution[J]. Geology in China, 49(5): 1636-1655 (in Chinese with English abstract).
Gao Yongbao, Zhao Xinmin, Wang Bo, Zhang Jiangwei, Jin Moushun, Yang Shengfei, Yan Zhouquan, Teng Jiaxin, Zhao Huibo, Chao Yinyin. 2023. Geological characteristics, associated granites and the prospecting potential of the super-large Kaerqiaer-Kumutashi fluorite mineralization belt in the West Altyn-Tagh Orogen, NW China[J]. Geology in China, 50(3): 704-729 (in Chinese with English abstract).
Gehrels G E, Yin A, Wang X F. 2003. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 108(B9): 1978-2012.
Guo Z J, Zhang Z C, Wang J J. 1998. Sm-Nd isochron age of ophiolite along northern margin of Altun Tagh Mountains and its tectonic significance[J]. Chinese Science Bulletin, 44(5): 456-458.
Han Fengbin, Chen Bailin, Cui Lingling, Wang Shixin, Chen Zhengle, Jiang Rongbao, Li Li, Qi Wanxiu. 2012. Zircon SHRIMP U-Pb age of intermediate-acid intrusive rocks in Kaladawan area, eastern Altun Mountains, NW China, and its implication[J]. Acta Petrologica Sinica, 28(7): 2277-2291 (in Chinese with English abstract).
Hao Ruixiang, Chen Bailin, Chen Zhengle, Wang Yong, Li Songbin, Han Fengbin, Zhou Yonggui. 2013. Geochemical characteristics of basalts from Kaladawan in east Altun Mountains of Xinjiang and their implication[J]. Acta Geoscientica Sinica, 34(2): 307-317 (in Chinese with English abstract).
Liu Jinhong, Liu Liang, Gai Yongsheng, Kang Lei, Yang Wenqiang, Liao Xiaoying, Yang Min. 2017. Zircon U-Pb dating and Hf isotopic compositions of the Baijianshan granodiorite in North Altyn Tagh and its geological significance[J]. Acta Geologica Sinica, 91(5): 1022-1038 (in Chinese with English abstract).
Liu Liang, Che Zicheng, Wang Yan, Luo Jinhai, Wang Jianqi, Gao Zhangqian. 1998. The evidences of Sm-Nd isochron age for the Early Paleozoic ophiolite in Mangya area, Altun Mountains[J]. Chinese Science Bulletin, 43(9): 754-756 (in Chinese). doi: 10.1007/BF02898953
Liu Liang, Che Zicheng, Wang Yan, Luo Jinhai, Chen Danling. 1999. The petrological characters and geotectonic setting of high-pressure metamorphic rock belts in Altun Mountains[J]. Acta Petrologica Sinica, 15(1): 57-64 (in Chinese with English abstract).
Liu Liang, Chen Danling, Wang Chao, Zhang Chengli. 2009. New progress on geochronology of high-pressure/ultra high-pressure metamorphic rocks from the south Altyn Tagh, the north Qaidam and the north Qinling orogenic, NW China and their geological signification[J]. Journal of Northwest University, 39(3): 472-479(in Chinese with English abstract).
Liu Y J, Neubauer F, Genser J, Ge X H, Takasu A, Yuan S H, Chang L H, Li W M. 2007. Geochronology of the initiation and displacement of the Altyn strike-slip fault, western China[J]. Journal of Asian Earth Sciences, 29(2/3): 243-252.
Liu Yongshun, Yu Haifeng, Xin Houtian, Lu Songnian, Xiu Qunye, Li Quan. 2009. Tectonic units division and Precambrian significant geological events in Altyn Mountains, China[J]. Geological Bulletin of China, 28(10): 1430-1438 (in Chinese with English abstract).
Ludwig K R. 2001. Squid 1.02: A user's manual[C]//Berkeley Geochronology Center Special Publication, 2: 15-35.
Ludwig K R. 2003. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[C]//Berkeley Geochronology Center Special Publication, 40: 1-70.
Meng Fancong, Zhang Jianxin, Yu Shengyao, Chen Songyong. 2010. The Early Paleozoic pillow basalt in northern Altyn, western China and its tectonic implications[J]. Acta Geologica Sininca, 84(7): 981-990 (in Chinese with English abstract).
Meng Lingtong, Chen Bailin, Luo Dike, Wang Yong, Sun Yue, Wu Yu, Zhang Hao, Wang Tong. 2015. SHRIMP zircon U-Pb geochronology of northern highland 4337 granodiorite in Kaladawan area of northern Altun Mountains and its tectonic implications[J]. Journal of Jilin University (Earth Science Edition), 45(6): 1757-1771 (in Chinese with English abstract).
Meng Lingtong, Chen Bailin, Wang Yong, Sun Yue, Wu Yu, Zhang Webngao, He Jiangtao. 2016. Timing of early Palaeozoic tectonic regime transition in north Altun: Evidence from granite[J]. Geotectonica et Metallogenia, 40(2): 295-307 (in Chinese with English abstract).
Meschede M. 1986. Method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5
Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S(ed. ). Orogenic Andesites and Related Rocks, Chichester. England: John Wiley and Sons, 528-548.
Peng Yinbiao, Yu Shengyao, Zhang Jianxin, Li Sanzhong, Sun Deyou. 2018. Timing of Early Paleozoic oceanic crust subduction in North Altun: Evidence from plagiogranite and granodiorite[J]. Geology in China, 45(2): 334-350 (in Chinese with English abstract).
Qi Xuexiang, Li Haibing, Wu Cailai, Yang Jingsui, Zhang Jianxin, Meng Fancong, Shi Rendeng, Chen Songyong. 2005. Zircon SHRIMP dating of granodiorite in the Qiashikansayi area, northern Altun Tagh Mountains[J]. Chinese Science Bulletin, 50(6): 571-576 (in Chinese). doi: 10.1360/csb2005-50-6-571
Shervais J W. 1982. Ti V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 59(1): 101-118. doi: 10.1016/0012-821X(82)90120-0
Shi Rendeng, Yang Jingsui, Wu Cailai, Wooden J. 2004. First SHRIMP dating for the formation of the Late Sinian Yueshigou ophiolite, north Qilian Mountains[J]. Acta Geologica Sinica, 78(5): 640-657(in Chinese with English abstract).
Sobel E R, Arnaud N. 1999. A possible middle Paleozoic suture in the Altun Tagh, NW China[J]. Tectonics, 18(1): 64-74. doi: 10.1029/1998TC900023
Song Biao, Zhang Shuanghong, Wang Yanbin, Zhao Yue. 2006. Avoidance of systematic bias of SHRIMP zircon U-Pb dating: Necessity of staged calibrations[J]. Rock and Mineral Analysis, 25(1): 9-14(in Chinese with English abstract).
Song S G, Zhang L F, Niu Y L, Song B, Zhang G B, Wang Q J. 2004. Zircon U-Pb SHRIMP ages of eclogites from the north Qilian Mountains, NW China and their tectonic implication[J]. Chinese Science Bulletin, 49(8): 592-595.
Wang Lishe, Li Zhiming, Qiu Yinjiang, Yang Pengfei, Jiang Hanbin, Duan Xingxing, Zhan Xiaodi. 2015. Geochemistry and geological significance of eclogite from Huanxingshan in Altyn Tagh[J]. Xinjiang Geology, 33(2): 143-150 (in Chinese with English abstract).
Wang Yong, Wu Yu, Chen Bailin, Chen Zhengle, Wang Bin, Shi Yonghong, Tan Renwen, Gao Yun, Shen Jinghu. 2020. Geochemical characteristics and metallogenic potential of ultrabasic rocks in North Altun area, Xinjiang[J]. Geology in China, 47(4): 1220-1240 (in Chinese with English abstract).
Wood D A, Joron J L, Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings[J]. Earth and Planetary Science Letters, 45: 326-336. doi: 10.1016/0012-821X(79)90133-X
Williams I S, Buick S, Cartwright I. 1996. An extended episode of Early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia[J]. Journal of Metamorphic Geology, 14(1): 29-47. doi: 10.1111/j.1525-1314.1996.00029.x
Williams I S. 1998. U-Th-Pb geochronology by ion microprobe[J]. Reviews in Economic Geology, 7: 1-35.
Wu Cailai, Yang Jingsui, Yao Shangzhi, Zeng Lingsen, Chen Songyong, Li Haibin, Wooden J L, Mazadab F K. 2005. Characteristics of the granitoid complex and its zircon SHRIMP dating at south margin of the Bashikaogong basin, north Altun, NW China[J]. Acta Petrologica Sinica, 21(3): 846-858 (in Chinese with English abstract).
Wu Cailai, Yao Shangzhi, Zeng Lingsen, Yang Jingsui, Wooden J L, Chen Songyong, Mazadab F K. 2007. Characteristics of the granitoid complex and its zircon SHRIMP dating at the south margin of the Bashikaogong-Simi'erbulake, north Altun, NW China[J]. Science in China (Serial D), 37(1): 10-26 (in Chinese without English abstract).
Wu Jun, Lan Chaoli, Li Jiliang, Yu Liangjun. 2002. Geochemical evidence of MORB and OIB combination in Hongliugou ophiolite melanges, Altun fault belt[J]. Acta Petrologica et Mineralogica, 21(1): 24-30 (in Chinese with English abstract).
Wu Yu, Chen Zhengle, Chen Bailin, Wang Yong, Sun Yue, Meng Lingtong, He Jiangtao, Wang Bin. 2021. Early Palaeozoic syn-collisional granitic magmatism in the North Altun and its implication for accretionary orogenic processes[J]. Acta Petrologica Sinica, 37(5): 1321-1346 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.05.02
Xia Linxi, Xia Zhuchun, Xu Xueyi. 1998. Early Palaeozoic mid-ocean ridge-ocean island and back-arc basin volcanism in the north Qilian Mountains[J]. Acta Geologica Sinica, 72(4): 301-312(in Chinese with English abstract).
Xiang Zhenqun, Lu Songnian, Li Huaikun, Li Huimin, Song Biao, Zheng Jiankang. 2007. SHRIMP U-Pb zircon age of gabbro in Aoyougou in the western segment of the north Qilian Mountains, China and its geological implication[J]. Regional Geology of China, 26(12): 1686-1691 (in Chinese with English abstract).
Xiu Qunye, Yu Haifeng, Liu Yongshun, Lu Songnian, Mao Debao, Li Huimin, Li Quan. 2007. Geology and Zircon U-Pb age of pillow basalts at Qiashikansayi in northern Altun Tagh, NW China[J]. Acta Geologica Sininca, 81(6): 787-794 (in Chinese with English abstract).
Xu Zhiqin, Yang Jingsui, Zhang Jianxin, Jiang Mei, Li Haibin, Cui Junwen. 1999. A comparison between the tectonic units on the two sides of the Altun sinstral strike-slip fault and the mechanism of lithospheric shearing[J]. Acta Geologica Sininca, 73(3): 193-205(in Chinese with English abstract).
Yang Jingsui, Wu Cailai, Shi Rendeng. 2002. Sheeted dike swarm in Hongliugou, northwest of the Altun region: Evidence for seafloor spreading[J]. Regional Geology of China, 21(1): 69-74 (in Chinese with English abstract).
Yang Jingsui, Shi Rendeng, Wu Cailai, Su Dechen, Chen Songyong, Wang Xibin, Wooden J. 2008. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetam[J]. Acta Petrologica Sinica, 24(7): 1567-1584 (in Chinese with English abstract).
Yang Zijiang, Ma Huadong, Wang Zongxiu, Xiao Weifeng. 2012. SHRIMP U-Pb zircon Dating of gabbro from the Bingou ophiolite melange in the northern Altyn, and geological implication[J]. Acta Petrologica Sinica, 28(7): 2269-2276 (in Chinese with English abstract).
Yin A, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Q, Zhou X Q, Wang X F, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 114(10): 1257-1295. doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
Zhang Jianxin, Xu Zhiqin, Chen Wen, Xu Huifen. 1997. A tentative discussion on the ages of the subduction-accretionary complex/volcanic arcs in the middle sector of north Qilian Mountain[J]. Acta Petrologica et Mineralogica, 16(2): 111-118 (in Chinese with English abstract).
Zhang Jianxin, Meng Fancong. 2006. The eclogite bearing lawsonite: The evidence of cold oceanic crust subduction[J]. Chinese Science Bulletin, 51(14): 1683-1688 (in Chinese). doi: 10.1360/csb2006-51-14-1683
Zhang Jianxin, Meng Fancong, Yu Shengyao, Chen Wen, Chen Songyong. 2007. 39Ar-40Ar geochronology of high-pressure/low-temperature blueschist and eclogite in the north Altyn Tagh and their tectonic implications[J]. Geology in China, 34(4): 558-564(in Chinese with English abstract).
Zhang Jianxin, Meng Fancong, Yu Shengyao. 2010. Two contrasting HP/LT and UHP metamorphic belts constraint on Early Paleozoic orogeny in Qilian-Altun orogen[J]. Acta Petrologic Sinica, 26(7): 1967-1992 (in Chinese with English abstract).
Zhang Jianxin, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lin Yihui, Mao Xiaohong. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-north Qaidam orogenic system[J]. Acta Petrologic Sinica, 31(12): 3531-3554 (in Chinese with English abstract).
Zhang J X, Meng F C, Yang J S. 2005. A new HP/LT metamorphic terrene in the northern Altyn Tagh, west China[J]. International Geology Review, 47(4): 371-386. doi: 10.2747/0020-6814.47.4.371
Zhang Zhicheng, Guo Zhaojie, Song Biao. 2009. SHRIMP zircon dating of gabbro from the melange in the northern Altyn Tagh and its geological implication[J]. Acta Petrologica Sinca, 25(3): 568-576 (in Chinese with English abstract).
Zheng Kun, Wu Cailai, Wu Di, Gao Dong, Chen Hongjie, Xu Nan. 2019. Petrogenesis of Kazisayi monzogranite from north Altyn and its tectonic implications[J]. Acta Geologica Sinica, 93(10): 2531-2541 (in Chinese with English abstract).
车自成, 刘良, 刘洪福, 罗金海. 1995. 阿尔金山地区高级变质泥质岩石的发现及其产出环境[J]. 科学通报, 40(11): 1298-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199514014.htm 车自成, 刘良, 罗金海. 2002. 中国及其邻区区域大地构造学[M]. 北京: 科学出版社, 207-369. 陈柏林, 崔玲玲, 白彦飞, 王世新, 陈正乐, 李学智, 祁万修, 刘荣. 2010. 阿尔金断裂走滑位移的新认识——来自阿尔金山东段地质找矿进展的启示[J]. 岩石学报, 26(11): 3387-3396. 陈柏林, 李丽, 祁万修, 陈正乐, 王永, 郝瑞祥, 李松彬, 周永贵, 蒋荣宝, 韩凤彬, 崔玲玲, 赵树铭. 2016a. 阿尔金山喀腊大湾铁矿田地质特征与形成时代[J]. 矿床地质, 35(2): 315-334. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201602007.htm 陈柏林, 李松彬, 蒋荣宝, 陈正乐, 韩凤彬, 崔玲玲, 李丽, 赵树铭, 祁万修, 杨屹, 王世新, 王永, 周永贵, 郝瑞祥. 2016b. 阿尔金喀腊大湾地区中酸性火山岩SHRIMP年龄及其构造环境[J]. 地质学报, 90(4): 708-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604008.htm 陈正乐, 万景林, 王小凤, 陈宣华, 潘锦华. 2002. 阿尔金断裂8 Ma左右的快速走滑及其地质意义[J]. 地球学报, 23(4): 295-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200204001.htm 崔军文, 唐哲民, 邓晋福, 岳永君, 孟令顺, 余钦范. 1999. 阿尔金断裂系[M]. 北京: 地质出版社, 1-249. 崔玲玲, 陈柏林, 扬农, 陈正乐, 丁文军. 2010. 阿尔金山东段喀腊大湾中基性火山岩岩石地球化学特征及成因探讨[J]. 地质力学学报, 16(1): 96-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201001013.htm 董顺利, 李忠, 高剑, 朱炼. 2013. 阿尔金-祁连-昆仑造山带早古生代构造格架及结晶岩年代学研究进展[J]. 地质论评, 59(4): 731-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201304016.htm 盖永升, 刘良, 康磊, 杨文强, 廖小莹, 王亚伟. 2015. 北阿尔金蛇绿混杂岩带中斜长花岗岩的成因及其地质意义[J]. 岩石学报, 31(9): 2549-2565. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201509007.htm 高栋, 吴才来, 郜源红, 吴迪, 郑坤, 徐楠, 陈红杰. 2022. 南阿尔金玉苏普阿勒克塔格花岗岩体成因及其对区域早古生代构造演化的启示[J]. 中国地质, 49(5): 1636-1655. http://geochina.cgs.gov.cn/geochina/article/abstract/20220518?st=search 高永宝, 赵辛敏, 王博, 张江伟, 金谋顺, 杨生飞, 燕洲泉, 滕家欣, 赵慧博, 朝银银. 2023. 阿尔金西段卡尔恰尔-库木塔什超大型萤石矿带矿床地质、控矿花岗岩特征及找矿远景[J]. 中国地质, 50(3): 704-729. http://geochina.cgs.gov.cn/geochina/article/abstract/20230304?st=search 郭召杰, 张志诚, 王建君. 1998. 阿尔金山边缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义[J]. 科学通报, 43(18): 1981-1984. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199818017.htm 韩凤彬, 陈柏林, 崔玲玲, 王世新, 陈正乐, 蒋荣宝, 李丽, 祁万修. 2012. 阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义[J]. 岩石学报, 28(7): 2277-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207028.htm 郝瑞祥, 陈柏林, 陈正乐, 王永, 李松彬, 韩凤彬, 周永贵. 2013. 新疆阿尔金山喀腊大湾地区玄武岩的地球化学特征及其地质意义[J]. 地球学报, 34(3): 307-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201303009.htm 刘锦宏, 刘良, 盖永升, 康磊, 杨文强, 廖小莹, 杨敏. 2017. 北阿尔金白尖山地区花岗闪长岩锆石U-Pb定年、Hf同位素组成及其地质意义[J]. 地质学报, 91(5): 1022-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201705005.htm 刘良, 车自成, 王焰, 罗金海, 王建其, 高章签. 1998. 阿尔金芒崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据[J]. 科学通报, 43(8): 880-883. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199808022.htm 刘良, 车自成, 王焰, 罗金海, 陈丹玲. 1999. 阿尔金高压变质带的特征及其构造意义[J]. 岩石学报, 15(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB901.005.htm 刘良, 陈丹玲, 王超, 张成立. 2009. 阿尔金、柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义[J]. 西北大学学报, 39(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200903017.htm 刘永顺, 于海峰, 辛后田, 陆松年, 修群业, 李铨. 2009. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 28(10): 1430-1438. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200910011.htm 孟繁聪, 张建新, 于胜尧, 陈松永. 2010. 北阿尔金红柳泉早古生代枕状玄武岩及其大地构造意义[J]. 地质学报, 84(7): 981-990. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007005.htm 孟令通, 陈柏林, 罗迪柯, 王永, 孙岳, 吴玉, 张昊, 王铜. 2015. 北阿尔金喀腊大湾地区4337高地北花岗闪长岩SHRIMP U-Pb定年及其构造意义[J]. 吉林大学学报(地球科学版), 45(6): 1757-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201506016.htm 孟令通, 陈柏林, 王永, 孙岳, 吴玉, 张文高, 何江涛. 2016. 北阿尔金早古生代构造体制转换的时限: 来自花岗岩的证据[J]. 大地构造与成矿学, 40(2): 295-307. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602010.htm 彭银彪, 于胜尧, 张建新, 李三忠, 孙德有. 2018. 北阿尔金地区早古生代洋壳俯冲时限: 来自斜长花岗岩和花岗闪长岩的证据[J]. 中国地质, 45(2): 334-350. http://geochina.cgs.gov.cn/geochina/article/abstract/20180209?st=search 戚学祥, 李海兵, 吴才来, 杨经绥, 张建新, 孟繁聪, 史仁灯, 陈松永. 2005. 北阿尔金恰什坎萨依花岗闪长岩的SHRIMP U-Pb锆石定年及其地质意义[J]. 科学通报, 50(6): 571-576. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20050600B.htm 史仁灯, 杨经绥, 吴才来, Wooden J. 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 78(5): 649-657. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200405008.htm 宋彪, 张栓宏, 王彦斌, 赵越. 2006. 锆石SHRIMP年龄测定数据处理时系统偏差的避免[J]. 岩矿测试, 25(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200601002.htm 宋述光, 张立飞, Niu Yaoling, 宋彪, 张贵宾, 王乾杰. 2004. 北祁连山榴辉岩锆石SHRIMP定年及其构造意义[J]. 科学通报, 49(6): 592-595. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200406017.htm 王立社, 李智明, 仇银江, 杨鹏飞, 姜寒冰, 段星星, 詹小弟. 2015. 阿尔金环形山榴辉岩地球化学及地质意义[J]. 新疆地质, 33(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201502002.htm 王永, 吴玉, 陈柏林, 陈正乐, 王斌, 石永红, 谭人文, 高允, 申景辉. 2010. 北阿尔金地区超基性岩地球化学特征及其成矿潜力分析[J]. 中国地质, 47(4): 1220-1240. http://geochina.cgs.gov.cn/geochina/article/abstract/20200420?st=search 吴才来, 杨经绥, 姚尚志, 曾令森, 陈松永, 李海兵, 戚学祥, Wooden J L, Mazadab F K. 2005. 北阿尔金巴什考供盆地南缘花岗杂岩特征及锆石SHRIMP定年[J]. 岩石学报, 21(3): 846-858. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503025.htm 吴才来, 姚尚志, 曾令森, 杨经绥, Wooden J L, 陈松永, Mazadab F K. 2007. 北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年[J]. 中国科学(D辑), 37(1): 10-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701001.htm 吴峻, 兰朝利, 李继亮, 俞良军. 2002. 阿尔金红柳沟蛇绿混杂岩中MORB与OIB组合的地球化学证据[J]. 岩石矿物学杂志, 21(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200201003.htm 吴玉, 陈正乐, 陈柏林, 王永, 孙岳, 孟令通, 何江涛, 王斌, 2021. 北阿尔金早古生代同碰撞花岗质岩浆记录及其对增生造山过程的启示[J]. 岩石学报, 37(5): 1321-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202105002.htm 夏林圻, 夏祖春, 徐学义. 1998. 北祁连山早古生代洋脊及洋岛和弧后盆地火山作用[J]. 地质学报, 72(4): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199804001.htm 相振群, 陆松年, 李怀坤, 李惠民, 宋彪, 郑健康. 2007. 北祁连熬油沟辉长岩的锆石SHRIMP U-Pb年龄及地质意义[J]. 地质通报, 26(12): 1686-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200712023.htm 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区地质志[M]. 北京: 地质出版社, 1-941. 修群业, 于海峰, 刘永顺, 陆松年, 毛德宝, 李惠民, 李铨. 2007. 阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄[J]. 地质学报, 81(6): 787-794. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200706005.htm 许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 73(3): 193-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199903000.htm 杨经绥, 吴才来, 史仁灯. 2002. 阿尔金山红柳沟席状岩墙群: 海底扩张的重要证据[J]. 地质通报, 21(1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200202003.htm 杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, WOODEN Joseph. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J]. 岩石学报, 24(7): 1567-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807014.htm 杨子江, 马华东, 王宗秀, 肖伟峰. 2012. 阿尔金山北缘冰沟蛇绿混杂岩中辉长岩的锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 28(7): 2269-2276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207027.htm 张建新, 徐志琴, 陈文, 徐惠芬. 1997. 北祁连中段俯冲-增生杂岩/火山弧的时代探讨[J]. 岩石矿物学杂志, 16(2): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW702.001.htm 张建新, 孟繁聪. 2006. 北祁连和北阿尔金含硬柱石榴辉岩: 冷洋壳俯冲作用的证据[J]. 科学通报, 51(14): 1683-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200614010.htm 张建新, 孟繁聪, 于胜尧, 陈文, 陈松永. 2007. 北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义[J]. 中国地质, 34(4): 558-564. http://geochina.cgs.gov.cn/geochina/article/abstract/20070402?st=search 张建新, 孟繁聪, 于胜尧. 2010. 两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约[J]. 岩石学报, 26(7): 1967-1992. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007003.htm 张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 31(12): 3531-3554. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512003.htm 张志诚, 郭召杰, 宋彪. 2009. 阿尔金山北缘蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 25(3): 568-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903010.htm 郑坤, 吴才来, 吴迪, 高栋, 陈红杰, 徐楠. 2019. 北阿尔金喀孜萨依二长花岗岩成因及其构造意义[J]. 地质学报, 93(10): 2531-2541. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201910010.htm