Genesis analysis of slit−type carbonate gas reservoir in the Lower Silurian Shiniulan Formation in Wulingshan area
-
摘要:研究目的
中国黔北地区广泛分布有寒武系—奥陶系、志留系、石炭系—二叠系等多套海相烃源岩,在纵向上具备良好的生–储–盖组合,天然气资源潜力大,勘探开发前景广阔。为了更好地评价该区天然气资源,基于黔北武陵山地区安场向斜安页1井“四层楼式”复合天然气藏发现进行研究。
研究方法本文通过野外地质调查和室内研究相结合、地质追索与地球化学分析相结合、宏观观察与微观手段相结合的方法,并结合文献调研,分析了安场向斜石牛栏组天然气藏的成因。
研究结果石牛栏组为狭缝型碳酸盐岩气藏,下伏龙马溪组为其主要气源,区内多期构造运动为其成藏提供了动力。
结论本研究对于完善区内天然气资源评价具有积极意义,也有助于丰富和发展复杂构造带油气成藏理论。
创新点:通过多手段联合研究,明确了石牛栏组天然气为狭缝型碳酸盐岩气,主要来源于下伏龙马溪组烃源岩,建立了新的源储配置关系。
Abstract:This paper is the result of geological survey engineering.
ObjectiveMultiple sets of marine source rocks such as Cambrian–Ordovician, Silurian, Carboniferous–Permian, etc. are widely distributed in the northern Guizhou area of China, which have a good source−reservoir−caprock combination vertically and are of great natural gas resource potential and prospects for exploration and development. In order to better assess the natural gas resources in the area, on the basis of the discovery of the "four−story" composite natural gas reservoir in Anye 1 Well of the Anchang syncline in the Wulingshan area, northern Guizhou, this paper discusses the genesis of the Shiniulan Formation gas reservoir in the Anchang syncline.
MethodsField geological works and indoor studies, geological probes and geochemical analyses, macroscopic observations and microscopic techniques, as well as literature researches were carried out.
ResultsIt is considered to be a slit−type carbonate gas reservoir, the gas is mainly derived from the underlying Longmaxi Formation, and the multiple stage tectonic movements in the area provided the driving force for its accumulation.
ConclusionsThis research is significant for natural gas resources assessment of the region, and is also helpful for enriching and developing the theory of hydrocarbon accumulation in complex structural belts.
-
Keywords:
- Anye 1 Well /
- Shiniulan Formation /
- tight gas /
- storage condition /
- geological survey engineering
Highlights:Through a multi−method integrated study, it has been clarified that the natural gas in the Shiniulan Formation is fractured carbonate gas primarily derived from the underlying Longmaxi Formation source rock, establishing a new source−reservoir configuration relationship.
-
1. 研究目的(Objective)
近年来,新疆阿尔金西段萤石找矿取得的重大突破。萤石矿主要分布于卡尔恰尔—阔什区域性大断裂(阿中断裂)以南的晚奥陶世碱长花岗岩侵入体内及其外接触带附近的富钙质岩系中,圈定了卡尔恰尔—小白河沟、盖吉克—亚干布阳、布拉克北—皮亚孜达坂、托盖里克东南—阿其克南4条沿北东向断裂分布的萤石矿带,整个远景区CaF2资源量已达3500万t以上。中国地质调查局西安矿产资源调查中心于2021—2023年对阿尔金西段小白河沟—克鲁求干道班一带开展了矿产调查评价,在小白河沟地区新发现热液充填型萤石矿产地1处,估算萤石的潜在资源达大型规模,对于拓展阿尔金地区萤石矿床具有借鉴意义。
2. 研究方法(Methods)
在对小白河沟地区以往地物化遥成果资料综合研究基础上,结合本次遥感蚀变异常提取和构造解译圈定了重点工作区,通过开展1∶10000地质草测、1∶10000岩石地球化学剖面测量、1∶500地质剖面测量、槽探及钻探等工作,在小白河沟共圈定萤石矿体21条,实现了找矿突破。通过典型矿床对比,总结了区内萤石矿成矿规律,初步建立了找矿模式,分析了区域萤石成矿潜力及找矿前景。
3. 研究结果(Results)
研究区出露地层基底主要为古元古界阿尔金岩群a岩组和b岩组,二者呈构造面理接触关系。阿尔金岩群a岩组为萤石主要赋矿地层,该岩组出露的岩石类型主要为黑云斜长片麻岩、黑云二长片麻岩、斜长变粒岩、石英岩、大理岩,局部夹有角闪斜长片麻岩(图1b)。区内断裂较为发育,期次较多,主要呈北北东向、北东向、南东东向,南东东向断裂主要与区内的萤石矿化关系密切。地层中岩脉极为发育,在接触带可见岩石具萤石化、钾长石化、碳酸盐化、绿帘石化、硅化等围岩蚀变。
在小白河沟共圈定萤石矿体21条(图1c),长100~1130 m,厚度0.7~4.68 m,矿体沿走向延续性较好,沿倾向呈透镜体状,断续产出,斜切岩体和变质岩,有“膨大缩小”变化,部分呈“透镜体”、“扁豆体”断续分布,主矿体旁侧发育少数分枝。矿体品位23.2%~82.4%,平均品位32.2%,钻孔深部验证效果良好。矿石主要以块状、纹层状为主,主要矿物为萤石,局部发育方解石、带云母和少量石英。萤石以紫色、紫黑色为主,少量呈白色或绿色,具粗晶结构、自形—半自形及他形粒状结构。矿石工业类型主要是CaF2型、CaF2–CaCO3型。围岩蚀变以碳酸盐化、带云母化、钾化、黄铁矿化、绿帘石化、角闪石化等为主。初步估算CaF2资源量117.42万t,具大型萤石矿床远景。
4. 结论(Conclusions)
(1)小白河沟萤石矿是阿尔金西段萤石找矿新发现,这一发现拓展了区内萤石矿向西延伸的空间,同时本次工作区内多数矿体走向和深部延伸均未封边,仍具有较大找矿潜力。
(2)本工作发现了品位较富的大型萤石矿,拓宽了区域找矿思路,具有重要借鉴意义,同时为阿尔金瓦石峡南—卡尔恰尔萤石锂大型资源基地建设提供了有力支撑。
5. 基金项目(Fund support)
本文为中国地质调查局项目(DD20190143、DD20211551、DD20243309)、陕西省自然科学基础研究计划项目(2023−JC−YB−241)、中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230011)联合资助的成果。
-
图 1 安场向斜地质简图(据Gu et al., 2013修改)
Figure 1. Geological map of the Anchang syncline (modified from Gu et al., 2013)
图 5 部分石牛栏组样品的扫描电镜分析图像
a—局部放大的溶蚀孔隙(SNL-02);b—磷灰石溶蚀孔隙(SNL-05);c—钠长石溶蚀孔隙(SNL-01);d—黄铁矿晶间孔隙以及丰富的微裂缝网络(SNL-02);e—局部放大的微裂缝网络(SNL-02)
Figure 5. SEM images of Shiniulan Formation samples
a–Locally enlarged dissolution pores (SNL-02); b–Apatite dissolution pores (SNL-05); c–Albite dissolution pores (SNL-01); d–Pyrite intercrystalline pores and abundant micro−crack network (SNL-02); e–Ppartially enlarged micro-crack network (SNL-02)
表 1 样品清单
Table 1 Sample list
样品号 地点 层位 岩性 TDY-001 贵州省遵义市
土地垭口公路旁下志留统
石牛栏组灰岩 TDY-002 粉砂质泥灰岩 TDY-003 粉砂质灰岩 TDY-004 粉砂质泥灰岩 TDY-005 钙质粉砂岩 TDY-006 砂质泥灰岩 TDY-007 砂质灰岩 TDY-008 粉砂质泥灰岩 TDY-009 粉砂质泥灰岩 TDY-010 含粉砂质泥灰岩 TDY-011 灰黑色微晶灰岩 TDY-012 砂质灰岩 TDY-013 砂质灰岩 TDY-014 泥晶灰岩 TDY-015 泥晶灰岩 TDY-016 砂质灰岩 TDY-017 泥晶灰岩 TDY-018 粉砂质灰岩 TDY-019 粉砂质泥灰岩 TDY-020 亮晶灰岩 TDY-021 灰岩 TDY-022 瘤灰岩 TDY-023 灰岩 TDY-024 泥灰岩 TDY-025 泥晶灰岩 TDY-026 泥晶灰岩 TDY-027 瘤灰岩 TDY-028 生屑灰岩 TDY-029 生屑灰岩 TDY-030 生屑灰岩 TDY-031 泥晶灰岩 TDY-032 灰岩 TDY-033 泥页岩 SNL-01 安页1井
(2119.64 m)下志留统石
牛栏组泥灰岩 SNL-02 安页1井
(2122.07 m)泥灰岩 SNL-03 安页1井
(2130.35 m)泥灰岩 SNL-04 安页1井
(2131.32 m)泥灰岩 SNL-05 安页1井
(2150.15 m)泥灰岩 QJC-01 贵州省遵义市
安场镇前进村下志留统
龙马溪组黑色页岩 QJC-02 黑色页岩 QJC-03 黑色页岩 QJC-04 碳质页岩 QJC-05 黑色页岩 QJC-06 黑色页岩 QJC-07 黑色页岩 QJC-08 黑色页岩 QJC-09 黑色页岩 QJC-10 黑色页岩 QJC-11 黑色页岩 QJC-12 黑色页岩 QJC-13 黑色页岩 QJC-14 黑色页岩 QJC-15 黑色页岩 表 2 矿物分析(XRD)数据
Table 2 Mineral analyzed data by XRD
样品号 方解石/% 石英/% 伊利石/% 长石/% 高岭石/% SNL-01 48.1 14.8 18.7 11.8 6.5 SNL-05 19.4 28.5 24.8 18.1 9.2 TDY-08 16.6 30.8 18.8 26.2 7.6 TDY-11 45.9 21.2 11.2 17.2 4.5 TDY-31 52.7 14.1 15.5 13 4.6 表 3 碳酸盐岩烃源岩划分的TOC标准(据秦建中等, 2004)
Table 3 TOC standards of carbonate source rock classification (after Qin Jianzhong et al., 2004)
指标 有机质类型 烃源岩类别 很好烃源岩 好烃源岩 中等烃源岩 差烃源岩 非烃源岩 TOC I
II1
II2>0.55%
0.9%
1.6%0.3%~0.55%
0.5%~0.9%
0.8%~1.6%0.2%~0.3%
0.25%~0.5%
0.4%~0.8%0.1%~0.2%
0.15%~0.25%
0.25%~0.4%<0.1%
<0.15%
<0.25%表 4 海相泥质烃源岩有机质丰度评价标准(据Peters, 1986)
Table 4 TOC standards of classification of marine mudstone source rock (after Peters, 1986)
评价参数 烃源岩级别 非 差 中等 好 很好 TOC <0.5% 0.5%~1.0% 1.0%~2.0% 2.0%~5.0% >5.0% 表 5 龙马溪组页岩的镜状体反射率(RoM)与镜质体反射率(Ro)
Table 5 RoM and Ro of the Wufeng–Longmaxi Formation
样品编号 RoM/% Ro/% QJC-01 1.804 1.641 QJC-02 1.302 1.394 QJC-03 2.148 1.919 QJC-04 1.978 1.782 QJC-05 2.122 1.877 QJC-06 2.006 1.805 QJC-07 2.128 1.903 QJC-08 2.079 1.863 QJC-09 2.761 2.416 QJC-11 1.927 1.741 QJC-12 2.023 1.819 QJC-13 1.94 1.751 QJC-14 2.023 1.818 QJC-15 2.05 1.841 表 6 孔隙度、渗透率测试结果
Table 6 Test results of porosity and permeability
样品号 层位 样品来源 孔隙度/% 渗透率/mD TDY-03 石牛栏组 露头 0.401 0.0000762 TDY-08 石牛栏组 露头 0.255 0.0000727 SNL-04 石牛栏组 岩心 0.125 0.0018683 QJC-03 五峰组—龙马溪组 露头 5.477 0.0001488 QJC-07 五峰组—龙马溪组 露头 5.496 0.0001456 QJC-13 五峰组—龙马溪组 露头 3.299 0.0001867 QJC-08 五峰组—龙马溪组 露头 8.016 0.0001117 表 7 样品的氮气吸附法孔隙结构参数
Table 7 Pore structure parameters by nitrogen adsorption method
样品编号 比表面积/(m2/g) 孔容/(mm3/g) 平均孔径/nm SNL-04 7.770 9.201 4.736 TDY-03 9.078 1.246 5.489 -
[1] Berner U, Faber E. 1988. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes[J]. Organic Geochemistry, 13(1/3): 67−72.
[2] Chen Qian, Yan Xiangbin, Zhang Jinchuan, Li Wanjun, Guo Yuanling, Hong Taiyuan, Wang Ruyue, Pan Ting. 2019. The transformation effect of weathering on shale pores: Taking the Lower Cambrian Niutitang Formation in northern Hunan as an example[J]. Natural Gas Industry, 39(10): 32−41 (in Chinese with English abstract).
[3] Chung H M, Gormly J R, Squires R M. 1988. Origin of gaseous hydrocarbons in subsurface environments: theoretical considerations of carbon isotope distribution[J]. Chemical Geology, 71(1/3): 97−104.
[4] Ge Mingna, Pang Fei, Bao Shujing. 2019. Microscopic view of Wufeng Formation–Longmaxi Formation shale in Zunyi, Guizhou Province and its control on gas–bearing properties–Taking Anye 1 as an example[J]. Petroleum Experimental Geology, 41(1): 23−30 (in Chinese with English abstract).
[5] Ge Mingna, Ren Shoumai, Guo Tianxu, Wang Shengjian, Zhou Zhi. 2020. Identification method and application of "high–quality interval" of Lower Paleozoic marine shale gas in southern China[J]. Rock and Mineral Testing, 39(3): 350−361 (in Chinese with English abstract).
[6] Gu J, Huang Z L, Fan H P, Jin Z G, Yan Z F, Zhang J W. 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province, China[J]. Journal of Geochemical Exploration, 130(1): 44−59.
[7] Guo R, Zhang J, Zhao P, Tang X, Liu Z. 2019. Accumulation conditions and an analysis of the origins of natural gas in the Lower Silurian Shiniulan Formation from Well Anye 1, northern Guizhou Province[J]. Energies, 12(21): 4087. doi: 10.3390/en12214087
[8] Guo Yinghai, Li Zhuangfu, Li Dahua, Zhang Tianmo, Wang Zecheng, Yu Jifeng, Xi Yantao. 2004. Early Silurian lithofacies palaeogeography in Sichuan area[J]. Journal of Palaeogeography, 6(1): 20−29 (in Chinese with English abstract).
[9] Han Hui, Zhong Ningning, Jiao Shujing, Ma Yong, Wang Qi, Huang Xiaoyan, Zhu Shunling, Yao Lipeng. 2013. Scanning electron microscope observation of shale pores[J]. Chinese Journal of Chinese Electron Microscopy Society, 32(4): 325−330 (in Chinese with English abstract).
[10] Hong Haitao, Tian Xingwang, Sun Yiting, Ma Kui, Li Geng, Wang Yunlong, Yang Dailin, Peng Hanlin, Luo Bing, Zhou Gang, Xue Jiuhuo, Ye Mao, Shan Shujiao. 2020. Enrichment law of marine carbonate natural gas in Sichuan Basin[J]. Geology in China, 47(1): 99−110 (in Chinese with English abstract).
[11] Jiao Shujing, Han Hui, Weng Qingping, Yang Feng, Jiang Daqiang, Cui Lishan. 2012. Scanning electron microscope analysis method of shale pore structure[J]. Chinese Journal of Chinese Electron Microscopy Society, 31(5): 432−436 (in Chinese with English abstract).
[12] Li Shuangjian, Zhou Yan, Xiao Kaihua, Wo Yujin, Wang Xinwei, Liu Quanyou. 2009. Characteristics of Silurian paleo–reservoir in Xishuihoutan, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 30(6): 849−855 (in Chinese with English abstract).
[13] Li Zhiming, Xu Ershe, Qin Jianzhong, Zheng Lunju, Bao Yunjie. 2010. Several problems in the evaluation of source rocks[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 25(6): 8−12,27,108 (in Chinese with English abstract).
[14] Liu Ruobing, Tian Jingchun, Huang Yong, Wei Zhihong, Wan Xianli. 2007. Reservoir characteristics of the Sinian Dengying Formation dolomite and Silurian Shiniulan Formation limestone reservoirs in southeastern Sichuan[J]. Journal of Chengdu University of Technology (Natural Science Edition), 34(3): 245−250 (in Chinese with English abstract).
[15] Liu Zufa, Xiao Xianming, Fu Jiamo, Liu Dehan, Shen Jiagui. 1999. The use of marine vitrinite reflectance as an indicator of Early Paleozoic source rock maturity[J]. Geochemistry, 28(6): 280−288 (in Chinese with English abstract).
[16] Ma Wenxin, Liu Shugen, Huang Wenming, Zhang Changjun, Xu Guosheng, Yuan Haifeng. 2012. Characteristics of Silurian paleo–reservoirs in the southeastern margin of the Sichuan Basin and their significance for oil and gas exploration[J]. Oil and Gas Geology, 33(3): 432−441 (in Chinese with English abstract).
[17] Niu Qiang, Zhang Huanxu, Zhu Di, Xu Zhiyao, Yang Yunfeng, Ding Anxu, Gao Hequn, Zhang Lisheng. 2020. Carbon isotope characteristics of shale gas logging in Wufeng Formation and Longmaxi Formation in southeastern Sichuan and their geological significance[J]. Natural Gas Geoscience, 31(9): 1294−1305 (in Chinese with English abstract).
[18] Peters K E. 1986. Guideline of evaluating petroleum source rock using programmed pyrolysis[J]. American Association of Petroleum Geologists Bulletin, 70(3): 318−329.
[19] Qin Jianzhong, Liu Baoquan, Guo Jianying, Liu Jingwang, Yu Guoying, Guo Shuzhi. 2004. Evaluation criteria for carbonate source rocks[J]. Petroleum Geology & Experiment, 26(3): 281−286 (in Chinese with English abstract).
[20] Sun Wenfeng, Li Wei, Dong Zhiyu, Yan Tie, Li Yue, Li Shichang. 2017. New exploration of shale pore structure characterization methods[J]. Lithologic Reservoirs, 29(2): 125−130 (in Chinese with English abstract).
[21] Wang Jianhui. 2008. Research on Sedimentary Facies and Reservoir Characteristics of Shiniulan Formation in Southeastern Sichuan[D]. Chengdu: Chengdu University of Technology, 1–80 (in Chinese with English abstract).
[22] Wang Jujie. 2016. Comparative Study of Shale Gas Geological Conditions in Typical Sections of Longmaxi Formation and Niutitang Formation in Southern China[D]. Beijing: China University of Geosciences (Beijing), 1–68 (in Chinese with English abstract).
[23] Wang Qin, Qian Menhui, Jiang Qigui, Yang Yunfeng, Tengger. 2017. Research on the hydrocarbon generation ability of graptolite in marine source rocks in southern China[J]. Rock and Mineral Testing, 36(3): 258−264 (in Chinese with English abstract).
[24] Xu Yong, Lu Chengfu, Chen Guojun, Zhong Jiaai, Yang Wei, Xue Lianhua. 2015. Fractal characteristics of shale pores in Longmaxi Formation in Southeast Sichuan[J]. Lithologic Reservoirs, 27(4): 32−39 (in Chinese with English abstract).
[25] Zhai Gangyi, Bao Shujing, Pang Fei, Ren Shoumai, Chen Ke, Wang Yufang, Zhou Zhi, Wang Shengjian. 2017. Research on the "four–story" shale oil and gas accumulation model of the Anchang syncline in Zunyi area, Guizhou[J]. Geology in China, 44(1): 1−12 (in Chinese with English abstract).
[26] Zhou Dazhi, Li Guorong, Luo Peng, Zhang Demin, Tang Hongwei. 2009. Research on the rock formation of the Silurian Shiniulan in southeastern Sichuan[J]. Natural Gas Technology, 3(6): 7−11 (in Chinese with English abstract).
[27] Zhou Hao, Wang Ganlu, Xia Peng, Si Haiying, Wang Shuai, Luo Teng. 2018. Reservoir characteristics of the Lower Silurian Shiniulan Formation in the second block of Fenggang, North Guizhou[J]. Contributions to Geological Prospecting, 33(4): 611−616 (in Chinese with English abstract).
[28] 陈前, 闫相宾, 张金川, 李婉君, 郭元岭, 洪太元, 王濡岳, 潘艇. 2019. 风化作用对页岩孔隙的改造作用—以湘北地区下寒武统牛蹄塘组为例[J]. 天然气工业, 39(10): 32−41. doi: 10.3787/j.issn.1000-0976.2019.10.004 [29] 葛明娜, 庞飞, 包书景. 2019. 贵州遵义五峰组—龙马溪组页岩微观及其对含气性控制—以安页1井为例[J]. 石油实验地质, 41(1): 23−30. doi: 10.11781/sysydz201901023 [30] 葛明娜, 任收麦, 郭天旭, 王胜建, 周志. 2020. 中国南方下古生界海相页岩气“优质层段”识别方法与应用[J]. 岩矿测试, 39(3): 350−361. [31] 郭英海, 李壮福, 李大华, 张天模, 汪泽成, 余继峰, 奚砚涛. 2004. 四川地区早志留世岩相古地理[J]. 古地理学报, 6(1): 20−29. doi: 10.3969/j.issn.1671-1505.2004.01.003 [32] 韩辉, 钟宁宁, 焦淑静, 马勇, 王琪, 黄小艳, 朱顺玲, 姚立鹏. 2013. 泥页岩孔隙的扫描电子显微镜观察[J]. 电子显微学报, 32(4): 325−330. doi: 10.3969/j.1000-6281.2013.04.009 [33] 洪海涛, 田兴旺, 孙奕婷, 马奎, 李庚, 王云龙, 杨岱林, 彭瀚霖, 罗冰, 周刚, 薛玖火, 叶茂, 山述娇. 2020. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质, 47(1): 99−110. doi: 10.12029/gc20200108 [34] 焦淑静, 韩辉, 翁庆萍, 杨峰, 姜大强, 崔立山. 2012. 页岩孔隙结构扫描电镜分析方法研究[J]. 电子显微学报, 31(5): 432−436. [35] 李双建, 周雁, 肖开华, 沃玉进, 汪新伟, 刘全有. 2009. 四川盆地东南缘习水吼滩志留系古油藏特征[J]. 石油学报, 30(6): 849−855. doi: 10.3321/j.issn:0253-2697.2009.06.009 [36] 李志明, 徐二社, 秦建中, 郑伦举, 鲍云杰. 2010. 烃源岩评价中的若干问题[J]. 西安石油大学学报(自然科学版), 25(6): 8−12,27,108. [37] 刘若冰, 田景春, 黄勇, 魏志宏, 万贤莉. 2007. 川东南震旦系灯影组白云岩与志留系石牛栏组灰岩储层特征[J]. 成都理工大学学报(自然科学版), 34(3): 245−250. [38] 刘祖发, 肖贤明, 傅家谟, 刘德汉, 申家贵. 1999. 海相镜质体反射率用作早古生代烃源岩成熟度指标研究[J]. 地球化学, 28(6): 580−588. doi: 10.3321/j.issn:0379-1726.1999.06.008 [39] 马文辛, 刘树根, 黄文明, 张长俊, 徐国盛, 袁海锋. 2012. 四川盆地东南缘志留系古油藏特征及其油气勘探意义[J]. 石油与天然气地质, 33(3): 432−441. doi: 10.11743/ogg20120313 [40] 牛强, 张焕旭, 朱地, 徐志尧, 仰云峰, 丁安徐, 高和群, 张立生. 2020. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 31(9): 1294−1305. [41] 秦建中, 刘宝泉, 国建英, 刘井旺, 于国营, 郭树芝. 2004. 关于碳酸盐烃源岩的评价标准[J]. 石油实验地质, 26(3): 281−286. doi: 10.3969/j.issn.1001-6112.2004.03.012 [42] 孙文峰, 李玮, 董智煜, 闫铁, 李悦, 李世昌. 2017. 页岩孔隙结构表征方法新探索[J]. 岩性油气藏, 29(2): 125−130. doi: 10.3969/j.issn.1673-8926.2017.02.015 [43] 汪建辉. 2008. 川东南地区石牛栏组沉积相及储层特征研究[D]. 成都: 成都理工大学, 1–80. [44] 王聚杰. 2016. 中国南方龙马溪组与牛蹄塘组典型剖面页岩气地质条件对比研究[D]. 北京: 中国地质大学(北京), 1–68. [45] 王勤, 钱门辉, 蒋启贵, 仰云峰, 腾格尔. 2017. 中国南方海相烃源岩中笔石生烃能力研究[J]. 岩矿测试, 36(3): 258−264. [46] 徐勇, 吕成福, 陈国俊, 仲佳爱, 杨巍, 薛莲花. 2015. 川东南龙马溪组页岩孔隙分形特征[J]. 岩性油气藏, 27(4): 32−39. doi: 10.3969/j.issn.1673-8926.2015.04.005 [47] 翟刚毅, 包书景, 庞飞, 任收麦, 陈科, 王玉芳, 周志, 王胜建. 2017. 贵州遵义地区安场向斜“四层楼”页岩油气成藏模式研究[J]. 中国地质, 44(1): 1−12. doi: 10.12029/gc20170101 [48] 周大志, 李国蓉, 罗鹏, 张德民, 汤鸿伟. 2009. 川东南志留系石牛栏组成岩作用研究[J]. 天然气技术, 3(6): 7−11. [49] 周豪, 王甘露, 夏鹏, 司海瀛, 王帅, 罗腾. 2018. 黔北凤冈二区块下志留统石牛栏组储层特征研究[J]. 地质找矿论丛, 33(4): 611−616. doi: 10.6053/j.issn.1001-1412.2018.04.015