• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

滇西北香格里拉铜厂沟斑岩型钼铜矿成矿热液蚀变与元素迁移富集规律

李守奎, 陈建航, 刘学龙, 张世涛, 李振焕

李守奎, 陈建航, 刘学龙, 张世涛, 李振焕. 滇西北香格里拉铜厂沟斑岩型钼铜矿成矿热液蚀变与元素迁移富集规律[J]. 中国地质, 2023, 50(6): 1745-1763. DOI: 10.12029/gc20201020001
引用本文: 李守奎, 陈建航, 刘学龙, 张世涛, 李振焕. 滇西北香格里拉铜厂沟斑岩型钼铜矿成矿热液蚀变与元素迁移富集规律[J]. 中国地质, 2023, 50(6): 1745-1763. DOI: 10.12029/gc20201020001
LI Shoukui, CHEN Jianhang, LIU Xuelong, ZHANG Shitao, LI Zhenhuan. The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan[J]. GEOLOGY IN CHINA, 2023, 50(6): 1745-1763. DOI: 10.12029/gc20201020001
Citation: LI Shoukui, CHEN Jianhang, LIU Xuelong, ZHANG Shitao, LI Zhenhuan. The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan[J]. GEOLOGY IN CHINA, 2023, 50(6): 1745-1763. DOI: 10.12029/gc20201020001

滇西北香格里拉铜厂沟斑岩型钼铜矿成矿热液蚀变与元素迁移富集规律

基金项目: 

云南黄金集团校企合作项目 KKF0202121292

国家自然科学基金项目 42362010

昆明理工大学“双一流”科技专项课题 202202AG050006-2

云南省高层次科技人才及创新团队选拔专项 202305AT350004-4

云南省三江成矿系统与评价顶尖团队培育项目 202305AS350015

详细信息
    作者简介:

    李守奎, 男, 1986年生, 博士, 高级工程师, 从事矿床学研究; E-mail: 289749859@qq.com

    通讯作者:

    刘学龙, 男, 1983年生, 教授, 从事云南三江地区的地质矿产研究工作; E-mail: xuelongliu@foxmail.com

  • 中图分类号: P595;P618.41;P618.65

The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan

Funds: 

Yunnan Gold Group School-Enterprise Cooperation Project KKF0202121292

National Natural Science Foundation of China 42362010

Kunming University of Science and Technology's 'Double First-Class' Science and Technology Special Project 202202AG050006-2

Yunnan Province High-level Scientific and Technological Talents and Innovation Team Selection Special Project 202305AT350004-4

Yunnan Sanjiang Metallogenic System and Evaluation Top Team Cultivation Project 202305AS350015

More Information
    Author Bio:

    LI Shoukui, male, born in 1986, doctor, senior engineer, engaged in reaserch on economic geology; E-mail: 289749859@qq.com

    Corresponding author:

    LIU Xuelong, male, born in 1983, professor, engaged in geological and mineral research in Sanjiang area of Yunnan Province; E-mail: xuelongliu@foxmail.com

  • 摘要:
    研究目的 

    云南省中甸地区燕山晚期是格咱岛弧最重要的斑岩型Mo多金属成矿时期,本文选择该区铜厂沟大型斑岩型钼铜矿Ⅳ号花岗闪长斑岩体作为研究对象,尝试揭示斑岩体在矿化蚀变过程中元素迁移规律和围岩蚀变与成矿的关系。

    研究方法 

    本文对Ⅳ号花岗闪长斑岩体原岩及不同蚀变带岩分别做了主量、微量及稀土元素分析,运用标准化Isocon方法对主量、微量及稀土元素进行了质量平衡及迁移量计算分析。

    研究结果 

    斑岩体矿化蚀变有钾硅酸盐化、绢英岩化、青磐岩化等,各个蚀变带中主要迁入SiO2、K2O、挥发分等主量元素,大量迁出Na2O;而Al2O3、TiO2、P2O5等主量元素和Zr、Nb、Hf、Th、Ta等高场强元素及稀土元素迁移活动性差,为惰性组分;Cu、Pb、Zn、Ag等成矿元素和Sb、As指示元素具有大量外迁的趋势,反映岩体外围具有找相关矿种的潜力;绢英岩化带与Mo成矿关系最为密切,其次为钾硅酸盐带;Mo与Cu二者具有不同的沉淀致矿机制,前者主要受“酸碱度转换障”控制,后者受“硅钙面”和“后生构造界面”控制;该斑岩体规模小,Mo背景值低,然其迁入量达3000%以上,约30%岩体为钼矿体,暗示深部岩浆房对成矿贡献巨大。

    结论 

    本次工作为铜厂沟矿床的成矿物质来源、成矿作用研究和找矿勘查提供了地质参考依据。

    创新点:利用标准化Isocon方法原理,总结和探讨了滇西北铜厂沟斑岩型钼铜矿床矿化蚀变带元素迁移规律及

    Abstract:

    This paper is the result of mineral exploration engineering.

    Objective 

    The late Yanshannian epoch was the most important period of multi-metal mineralization of porphyry Mo at the Geza island arc in Zhongdian area, Yunnan province. In this paper, we chose the No.Ⅳ granitic diorite porphyry body of Tongchanggou large-scale porphyry molybdenum-copper deposit in this area as the research object, attempting to reveal the elemental migration rule of porphyry body in the process of mineralized alteration and the relationship between the peripheral rock alteration and mineralization.

    Methods 

    In this paper, the major elements, trace elements and rare earth elements in the original rock and the rocks in different alteration zones of No.Ⅳ granodiorite porphyry are analyzed respectively. The mass balance and migration amount of these major elements, trace elements and rare earth elements are calculated and analyzed by using the normalized Isocon method.

    Results 

    The results show that K-silicate alteration, sericite-quartz alteration, and propylitization were involved in the process of the mineralization and alteration of the porphyry body, and SiO2, K2O and volatile matters are major elements migrating in the alteration zones while a large amount of Na2O migrated out; while major elements such as Al2O3, TiO2 and P2O5, and high field strength elements such as Zr, Nb, Hf, Th and Ta, and rare earth elements all present poor migration activity, belonging to inert components; mineralizing elements such as Cu, Pb, Zn and Ag, and indicator elements such as Sb and As show a trend to migrate out, reflecting the potential to find relevant types of ore around the rock body; the sericite-quartz zone is the most closely related to Mo mineralization, followed by K-silicate alteration; the deposition and mineralization mechanism of Mo is different from that of Cu, the former is mainly under the control of "converted barrier of pH", and the latter is under the control of "silicon-calcium surface" and "epigenetic structure interface"; this porphyry is small in scale, with a low background value of Mo but high migration amount of over 3000%, and around 30% of the rock body is molybdenum deposit, which implies the deep-seated magma chamber contributed tremendously to the mineralization.

    Conclusions 

    This work provides a geological reference for the source of oreforming materials, the study of mineralization and the prospecting and exploration of the Tongchanggou deposit.

  • 云南省香格里拉铜厂沟斑岩型钼铜矿床位于特提斯—喜马拉雅成矿域义敦岛弧带南段格咱岛弧与扬子板块北西缘结合部位,是该区燕山晚期Mo多金属矿床典型代表之一(李文昌等,2012Li et al., 2014余海军等,2015刘学龙和李文昌,2017)。近年来大量研究表明(李文昌等,2012Yu et al., 2014刘学龙等, 2014, 2016aLi et al.,20142017杨立强等,2015Yang et al.,2016刘学龙和李文昌,2017高雪和孟健寅,2017姚雪等,2017谈荣钰等,2018He et al.,2019Liu et al., 2019),该矿成矿地质体为燕山期花岗闪长斑岩,属高硅富碱的高钾钙碱性系列,为准铝质-弱过铝质花岗岩,具有高Sr/Y及La/Yb比值的埃达克类岩石地球化学特征,成岩及成矿时间约为85 Ma;该岩体在燕山期弧-陆碰撞晚期的伸张阶段或挤压向伸展的构造转换阶段,受地幔物质上涌和加厚地壳减压熔融作用而形成,是碰撞造山过程的产物;伴随岩体侵位发育了强烈的Mo多金属成矿作用,形成了赋存于斑岩体、矽卡岩及玄武岩中的Mo(Cu)斑岩型矿床(Sillitoe,2010)。然而,目前针对岩体矿化蚀变及其元素迁移过程的研究程度较低,Mo的主要沉淀阶段、成矿热液与岩体的关系等问题还不清楚。因此,笔者以矿区成矿花岗闪长斑岩体为研究对象,通过分析岩体的原岩和主要蚀变带的地质、地球化学特征,对不同蚀变带进行质量平衡计算,力图揭示元素迁移规律,探讨成矿过程中的物理化学变化,为示踪成矿物质来源、成矿作用研究、指导找矿勘查提供地质参考依据。

    义敦岛弧南段的格咱弧夹持于中咱地块和扬子地块之间(图 1),西界为乡城—格咱断裂,东以甘孜—理塘结合带为限(李文昌等,2011杨立强等,2015刘书生等,2018),区内地层由三叠纪复理石砂板岩夹碳酸盐岩沉积和晚三叠世钙碱性火山岩-次火山岩组成(Chang,1997侯增谦等,2003)。该区历经印支期洋壳俯冲、燕山期弧-陆碰撞、喜马拉雅期陆内走滑等3期构造作用(侯增谦等,2004),致使区内构造复杂,岩浆活动频繁,发育3期侵入岩-成矿作用,分别与上述3期构造活动相配套。印支期俯冲造山弧花岗岩-闪长玢岩成矿以斑岩-矽卡岩型铜矿为主,燕山期碰撞造山期花岗闪长(斑)岩-二长花岗(斑)岩则以钼、铜(钨)矿为主,喜马拉雅期正长(斑)岩-二长(斑)岩以金矿为主(Wang et al., 2011李文昌等,2011Yu et al., 2014Wang et al., 2014Zu et al., 2015刘学龙和李文昌,2017)。该区目前发现的绝大多数矿床与前两期岩浆活动有密切关系。

    图  1  云南中甸地区大地构造(a)及地质矿产分布图(b)(据刘学龙等,2016b刘学龙和李文昌,2017
    Ⅰ—扬子地块;Ⅱ—甘孜—理塘缝合带;Ⅲ—义敦地块;Ⅳ—中咱地块;Ⅴ—金沙江缝合带;Ⅵ—江达—维西火山弧;Ⅶ—昌都—兰坪陆块;Ⅷ—三达山—景洪火山弧;Ⅸ—澜沧江缝合带;Ⅹ—保山地块
    Figure  1.  Distribution map of tectonic (a) and geological mineral resources (b) in Zhongdian area, Yunnan (modified from Liu Xuelong et al., 2016b; Liu Xuelong and Li Wenchang, 2017)
    Ⅰ-Yangtze block; Ⅱ-Ganze-Litang suture; Ⅲ-Yidun block; Ⅳ-Zhongzan block; Ⅴ-Jingshajiang suture; Ⅵ-Jiangda-Weixi volcanic; Ⅶ-Changdu-Langping block; Ⅷ-Sandashan-Jinghong volcanic arc; Ⅸ-Langcangjiang suture; Ⅹ-Baoshan block

    铜厂沟矿区(图 2)出露地层为二叠系峨眉山组(Pe)玄武岩夹凝灰岩、中三叠统北衙组(T2b)碳酸盐岩建造及少量第四系(Q),总体走向近东西向,向北倾斜。矿区构造较复杂,为不完整的背斜构造,核部出露峨眉山组(Pe),两翼依次出露北衙组第一段(T2b1)灰岩夹泥灰岩及白云质灰岩、第二段(T2b2)白云质灰岩夹灰岩及泥灰岩。核部位置被近南北向的铜厂沟断裂(F1)切割,NW向、NE向及近EW向断层亦有发育。轴部附近发育花岗闪长斑岩(γδπ)和辉绿岩(βμ),其中花岗闪长斑岩(图 2图 3)是铜厂沟钼铜矿床的成矿地质体。

    图  2  铜厂沟钼铜矿床矿区地质图(a)及地质剖面简图(b、c)(据黄定柱,2017向坤,2019修改)
    1—第四系;2—北衙组二段;3—北衙组一段;4—峨眉山组玄武岩;5—辉绿岩;6—花岗闪长斑岩;7—断层及编号;8—地层界线;9—矿体(平面图);10—Mo矿体(剖面图);11—Cu矿体(剖面图);12—剖面位置
    Figure  2.  Geological map (a) and brief geological section map (b, c) of Tongchanggou Mo-Cu deposit (modified from Huang Dingzhu, 2017; Xiang Kun, 2019)
    1-Quaternary; 2-Member 2 in Beiya Formation; 3-Member 1 in Beiya Formation; 4-Besalt of Emeishan Formation; 5-Diabase; 6-Granodiorite porphyry; 7-Fault and number; 8-Geological boundary; 9-Orebody (plan); 10-Mo-orebody (profile); 11-Cu-orebody (profile); 12-Section position
    图  3  铜厂沟钼铜矿床花岗闪长斑岩及主要造岩矿物特征
    a—铜厂沟花岗闪长斑岩;b—花岗闪长斑岩显微特征;Bi—黑云母;Hb—角闪石;Kf—钾长石;Pl—斜长石
    Figure  3.  Characteristics of the granodiorite porphyry and main minerals in the Tongchanggou Mo-Cu deposit
    a-Tongchanggou granodiorite porphyry; b- Microscopic characteristics of granodiorite porphyry; Bi-Biotite; Hb-Hornblende; Kf-Potassium feldspar; Pl-Plagioclase

    矿区工业矿体主要有3种产出形式(图 2a):(1)产于花岗闪长斑岩体中的细脉-浸染状斑岩型Mo矿,仅有极少量Cu矿化;(2)产于岩体与围岩接触带及外围矽卡岩化灰岩、大理岩中矽卡岩型Mo、Cu矿;(3)产于构造破碎带、层间破碎带、玄武岩中的热液脉状Mo、Cu矿。

    矿体主要赋存于Ⅰ号和Ⅳ号花岗闪长斑岩及接触带附近围岩中,矿体形态与岩体相仿。以Ⅳ号岩体为例(图 2),矿体产于岩体及其接触带附近的玄武岩中,矿化岩体呈岩株状产出,总体向南西倾,倾角10°~60°,向北西侧伏,侧伏角40°~50°,工程控制长700 m,控制垂深647 m,探获矿石量7063×104 t,以钼为主,Mo矿石量占98%,平均品位0.13%,Cu矿石量占2%,平均品位0.34%;金属矿物以黄铁矿、辉钼矿为主,有少量黄铜矿、白钨矿、斑铜矿;非金属矿物为石英、钾长石、斜长石、黑云母、绢云母、石膏、萤石等;矿石结构为半自形粒状、交代残余结构,构造为细脉状、浸染状。

    笔者以Ⅳ号含矿花岗闪长斑岩为研究对象,该岩体具有斑岩型矿床普遍具有蚀变分带的典型特征,即岩体中心向外依次为钾硅酸盐化(KSi)→绢英岩化(SiSe)→青磐岩化(ChEp)。

    钾硅酸盐化(KSi):分布在岩体中心部位,以发育热液钾长石和黑云母、石英为特征,发育较多辉钼矿,未见黄铜矿。钾长石主要呈弥散状、细脉状和脉体晕3种形式产出,其中弥散状钾长石化表现为斑岩基质中长石类矿物钾长石化,致使整体呈(浅)肉红色(图 4a);钾长石脉体(图 4a)与石英、金属硫化物组成的脉体明显切穿围岩,围岩中见稀疏浸染状辉钼矿;脉体晕钾长石则常见于在石英+黄铁矿±辉钼矿脉体两侧(图 4b),晕宽2~20 mm不等。黑云母化蚀变略晚于钾长石化,呈弥散状和细脉状分布,其中弥散状黑云母是交代围岩中的斜长石、原生黑云母而形成,呈细小鳞片状;细脉状黑云母主要沿岩石微裂隙充填,有明显的变形。

    图  4  铜厂沟钼铜矿床含矿斑岩各蚀变带特征
    a-钾长石脉,岩石基质具弥散状钾化,并可见石英+辉钼矿+黄铁矿脉穿插钾长石脉体;b-沿辉钼矿化石英脉发育有钾长石晕;c-绢英岩化叠加于钾化花岗闪长斑岩,发育石英+辉钼矿+黄铁矿脉;d-硅化石英脉,在石英脉体的边缘可见金属硫化物的分布;e-绿泥石化花岗闪长斑岩;f-斑岩中发育的绿泥石脉,附近有金属矿物;Hb-角闪石;Bi-黑云母;Kf-钾长石;Pl-斜长石;Qz-石英;Mol-辉钼矿;Py-黄铁矿;Chl-绿泥石;Ser-绢云母
    Figure  4.  Characteristics of alteration zones of ore bearing porphyry in the Tongchanggou Mo-Cu deposit
    a-Potassium feldspar veins, the rock matrix has diffuse potassic, and quartz + molybdenite + pyrite vein interspersed with potash feldspar vein; b-Potash feldspar halo is developed along molybdenite fossil quartz vein; c-Quartz sericitization is superimposed on potassic granodiorite porphyry and quartz + molybdenite + pyrite vein; d-Silicified quartz vein, the distribution of metal sulfide can be seen at the edge of quartz vein; e-Chloritization granodiorite porphyry; f-Chlorite vein developed in porphyry with metal minerals nearby; Hb-Hornblende; Bi-Biotite; Kf-Potassium feldspar; Pl-Plagioclase; Qz-Quartz; Mol-Molybdenite; Py-Pyrite; Chl-Chlorite; Ser-Sericite

    绢英岩化(SiSe):分布在钾硅酸盐化(KSi)与青磐岩化(ChEp)之间,以发育大量石英和绢云母、黄铁矿为特征,与Mo矿化最为密切。石英常与黄铁矿、辉钼矿和极少量黄铜矿共同组成脉体,呈网脉状、细脉状在围岩中分布(图 4cd),同时也表现为花岗闪长斑岩中石英变斑晶的形成及其基质的硅化及次生石英矿物大量发育(图 4d)。绢云母多以交代长石类矿物、暗色矿物的形式出现在围岩中(图 4c),其中长石类斑晶的绢云母化交代不完全时呈交代残余结构,交代完全时只保留斑晶的假像,当蚀变作用足够强时基质长石也发生绢云母化;黑云母的绢云母化早期常表现为黑云母发生褪色现象,当蚀变作用增强时,则被绢云母鳞片状集合体所取代。

    青磐岩化(ChEp):发育于花岗闪长斑岩的外带,主要为弥散状的绿泥石化(图 4ef)、绿帘石化及弱碳酸盐、石膏化,岩石呈绿色或具绿色调,蚀变形式主要以弥散状为主,表现为长石类、暗色矿物被绿泥石、绿帘石所交代,与Mo矿化关系最弱。

    由于斑岩型矿床成矿体系发展演化普遍具有多阶段性及热液蚀变、矿化的叠加的特征,主要蚀变矿化在空间上往往只有强度之别,不同蚀变带之间界面不是截然的,如普朗铜矿,以往研究(范玉华和李文昌,2006Li et al., 2011)认为其热液蚀变分带是同心环状的,即由内至外为钾化→绢英岩化→青磐岩化,最近研究(Yang and Cooke, 2019)表明并非那么明显,绢英岩化、青磐岩化几乎叠加了整个钾化带。铜厂沟钼铜矿绢英岩化、青磐岩化在钾化带也有不同程度的叠加(图 4e),本文所划分的蚀变分带只是一种叠加的强度分带。因此在采样时,样品所采位置均选取在各自蚀变带中蚀变强度高的部位,结合薄片鉴定结果对样品进行筛选,以保证所送全岩分析样品是典型的钾化带、绢英岩化带、青磐岩化带的岩石样品。

    本文研究的岩石样品主要采自香格拉铜厂沟钼铜矿床Ⅳ号岩体,取自钻孔Tzk-0149'、Tzk-0341、Tzk-0247岩心样,其中TCG8-42、TCG8-39、TCG8-02、TCG8-40-1岩性为未蚀变花岗闪长斑岩,TCG9-19-3、TCG9-35、TCG9-18-2、TCG8-34、TCG9-24为青磐岩化花岗闪长斑岩,TCG9-09、TCG9-66、TCG9-05、TCG9-03-1为绢英岩化花岗闪长斑岩,TCG8-19-1、TCG8-12-2、TCG9-04、TCG8-21、TCG9-50为钾硅酸盐化花岗闪长斑岩。

    全岩的主量和微量、稀土元素测试在澳实分析检测(广州)有限公司完成,岩石样品破碎后缩分出300 g,研磨至200目进行化学分析。常规岩石样品主量元素在PANalytical PW2424型X射线荧光光谱仪(XRF)上测试分析,分析精度优于5%;微量和稀土元素在Agilent 7900型电感耦合等离子体质谱(ICP-MS) 上测试分析,分析精度优于10%。检测环境为25℃室温和50%相对湿度。测试结果列于表 1

    表  1  铜厂沟钼铜矿床Ⅳ号斑岩体原岩及蚀变岩主量、微量、稀土元素分析结果
    Table  1.  Analysis results of major, trace and rare earth elements of protolith and altered rock of No.Ⅳ porphyry in Tongchanggou Mo-Cu deposit
    下载: 导出CSV 
    | 显示表格

    未蚀变花岗闪长斑岩显示(表 1表 2)具有高SiO2(66.26%~66.50%,均值66.33%)、Al2O3(14.78%~15.29%,均值15.00%)和总碱含量(Na2O+K2O为7.28%~7.62%,均值7.48%),烧失量低(LOI为1.02~2.28%,均值1.73%)。里特曼指数(σ)为2.23~2.45,平均为2.35(< 3.3);K2O/Na2O>1,为钾质岩;在SiO2-K2O图解(图 5a)上,样品均落在高钾钙碱性系列区域;铝饱和指数(A/CNK)介于0.95~0.99,平均值0.96,属于准铝质花岗岩(图 5b)。固结指数(SI)为8.15~13.45,表明岩浆酸性程度较高,分异指数(DI)为76.69~85.96,表明岩浆分异演化彻底。

    表  2  Ⅳ号斑岩体原岩及蚀变岩元素平均含量、标准化的成分值和投图数据及元素迁移结果
    Table  2.  Average element content, normalized composition value, mapping data and element migration results of protolith and altered rocks of No.Ⅳ porphyry
    下载: 导出CSV 
    | 显示表格
    图  5  铜厂沟钼铜矿床花岗闪长斑岩SiO2-K2O图解(a)和A/CNK-A/NK分类图解(b)
    Figure  5.  SiO2-K2O (a) and A/CNK-A/NK (b) diagrams of granodiorite porphyry in the Tongchanggou Mo-Cu deposit

    钾硅酸盐化带斑岩(表 1表 2)相对富K2O(均值4.50%)、SiO2(均值70.65%),相对贫TiO2(均值0.43%)、Al2O3(均值12.71%)、TFe2O3(均值2.10%)、MnO(均值0.02%)、MgO(均值0.97%)、CaO(均值2.49%)和Na2O(均值2.29%),具有较高的烧失量(LOI均值3.26%)。绢英岩化带斑岩相对富K2O(均值5.81%)、CaO(均值3.01%),相对贫TiO2(均值0.44%)、Al2O3(均值12.66%)、TFe2O3(均值2.88%)、MnO(均值0.03%)、MgO(均值1.22%)、Na2O(均值1.51%),具有较高的烧失量(LOI均值4.01%)。青磐岩化带斑岩相对富K2O(均值4.50%)、CaO(均值3.31%)、MgO(均值1.50%),相对贫TiO2(均值0.43%)、Al2O3(均值12.51%)、TFe2O3(均值2.89%)、MnO(均值0.05%)、Na2O(均值0.94%),具有高烧失量(LOI均值5.01%)。总之,相对未蚀变岩石而言,蚀变带岩石总体富K2O,具有高的烧失量,贫Na2O、TiO2、Al2O3、TFe2O3、MnO。

    未蚀变花岗闪长斑岩(表 1表 2)岩石稀土元素总量(ΣREE)较高,为251.77×10-6~266.06×10-6,平均为263.46×10-6,高于中国花岗岩的平均值(179.67×10-6)(迟清华和鄢明才,2007);轻、重稀土元素比值(LREE/HREE)为23.92~25.21,表明轻稀土元素较富集,重稀土元素相对亏损;LaN/YbN为41.92~47.99,岩石具较高的轻、重稀土元素分馏程度;δEu为0.92~1.01,均值为0.97,δCe为1.01~1.02,无明显的Eu异常和Ce异常;稀土元素配分模式图(图 6a)表现出相似的右倾变化趋势,反映出无明显铕异常和明显的轻重稀土分馏特征,暗示未发生斜长石的分离结晶或者源区缺乏斜长石。在微量元素组成上,具有高的Sr含量(860×10-6~948×10-6),低的Y含量(13.20×10-6~15.00×10-6)、Sr/Y比值高(60~72),属高Sr低Y型岩石;原始地幔标准化微量元素蛛网图(图 6b)上显示岩石具有相似的微量元素地球化学特征,曲线总体右陡倾,Rb、Ba、K、U、La、Pb、Sr等大离子亲石元素(LILE)相对富集,Ti、Nb、P、Ta等较不活泼的高场强元素(HFSE)相对亏损。

    图  6  铜厂沟钼铜矿床花岗闪长斑岩稀土元素球粒陨石标准化图(a,标准化值据Sun and Mcdonough, 1989)和微量元素蛛网图(b,标准化值据Taylor and Mclennan, 1985
    Figure  6.  Chondrite-normalized patterns of REE (a, normalization values after Sun and Mcdonough, 1989) and primitive mantle normalized patterns of trace elements (b, normalization values after Taylor and Mclennan, 1985) in granodiorite porphyry of the Tongchanggou Mo-Cu deposit

    钾硅酸盐化带斑岩(表 1表 2)相对富Rb、Mo、Sb、Ag,相对贫Zn、Sr、Zr、Hf、Ta、Th、U、REE。绢英岩化带斑岩相对富As、Rb、Mo、Ag、Sb、W,相对贫Th、Ta、REE。青磐岩化带斑岩相对富Cu、Zn、As、Rb、Mo、Ag、Sb、Pb、U,相对贫Ta、W、Th。总之,相对未蚀变岩石而言,蚀变带岩石总体富Sb、Mo、Ag等造矿元素和Rb造岩石元素,贫Ta;不同蚀变带的元素有一定变化,由钾硅酸盐化带向青磐岩化带Cu、Zn、As、Ag、Sb、Hf、U、Pb等元素含量有渐次变高的趋势,Mo、W、Rb、Sr、Ba等元素在绢英岩化带丰度最高。

    大部分地质过程是在开放环境中进行的,伴随着热液蚀变,原岩会有一定程度的总质量变化,因而直接对比岩石蚀变前后及不同蚀变带同一组分的含量是不能准确获得该组分迁移规律的(张可清和杨勇,2002郭顺等,2013)。为消除总质量变化带来的影响,本文应用质量平衡计算方法(Gresens,1967Maclean and Kranidiotis, 1987Maclean,1990)。

    Grant(1986)建立的Isocon图解法对两个样品或者原岩-某一类蚀变岩之间物质迁移计算非常适用,是目前研究体系开放过程中物质迁移质量平衡分析的首选方法(Grant,2005)。交代蚀变中的成分-体积关系方程为: CmA=(MO/ MA)(CmO+ΔCm),其中MO/MA= CmA/CiO。式中,O为原岩,A为蚀变岩,i为不活动组分,m为活动组分,MO、MA分别是原岩和蚀变岩的质量,CmO为样品O中组分m的质量,ΔCm是组分“m”的浓度变化。

    上述方程结果可以通过绘制分析数据以图形方式来表达,通过不活动元素定义了一条过原点的Isocon直线。在Isocon线上方的元素是在蚀变过程迁入的,下方的元素则是迁出的。

    然而,Isocon图解法并不适用于多个样品或者多个蚀变带的组分迁移分析(郭顺等,2013),Guo et al.(2009)在详细考察Grant(1986)Isocon图解的几何关系和平衡公式之后,建立了标准化Isocon图解法,该方法可以实现多样品在一个Isocon图解中进行质量平衡分析。其基本思路是在Grant(1986)建立的Isocon图解法的基础上,将所有交代样品与未交代样品所建立的多个Isocon直线调整成同一条标准化Isocon直线,然后用Isocon线调整的比例来调整对应的活动组分数据。该方法可以在各独立样品之间建立一个可直接对比的共同参照(郭顺等,2013),适用于热液交代反应形成的连续变化的蚀变围岩元素迁移研究。

    质量平衡计算的基本假设是岩石在蚀变过程中有一个或多个成分是不活动的(Gresens,1967),质量平衡计算结果的准确性是由所选不活动组分的合理性决定的。根据Grant(1986)建立的质量平衡Isocon图解法,不活动元素投影点拟合的通过原点的直线即是Isocon线,可知Isocon这一线性回归线上或其附近的元素可视为不活动元素。

    鉴于选择组分在所研究的地质体系中含量不能太低的原则(郭顺等,2013),本文在主量元素中确定不活动组分。本次研究,将4件未蚀变花岗闪长斑岩数据平均值代表原岩背景数据,5件青磐岩化花岗闪长斑岩、4件绢英岩化花岗闪长斑岩、5件钾硅酸盐化花岗闪长斑岩平均值分别代表青磐岩化带、绢英岩化带、钾硅酸盐化带原始数据。具体做法将原岩主量元素平均值作横坐标,分别以青磐岩化带、绢英岩化带、钾硅酸盐化带主量元素平均值为纵坐标,不同元素的含量作一定倍率处理后进行投影,绘制了铜厂沟原岩及各蚀变带的主量元素Isocon图解(图 7)。由图可见,各蚀变带的Al2O3、TiO2、P2O5均可拟合出一条直线,即为Isocon线,说明这些组分是不活动组分。考虑到TiO2、P2O5在岩石中含量远小于Al2O3含量,为防止相对偏差过大而影响计算结果的准确性,所以本研究选用Al2O3作为蚀变过程中的惰性组分。

    图  7  铜厂沟钼铜矿床Ⅳ号斑岩体各蚀变带Isocon图解
    a—青磐岩化斑岩相对花岗闪长斑岩的主量组分迁移Isocon图解;b—绢英岩化斑岩相对花岗闪长斑岩的主量组分迁移Isocon图解;c—钾硅酸盐化斑岩相对花岗闪长斑岩的主量组分迁移Isocon图解
    Figure  7.  Isocon diagram of each alteration zone of of No.Ⅳ porphyry in the Tongchanggou Mo-Cu deposit
    a-The isocon diagram of major elements migration of propylitization vs. granodiorite porphyry; b- The isocon diagram of major elements migration of sericite-quartz alteration vs. granodiorite porphyry; c-The isocon diagram of major elements migration of K-silicate alteration vs. granodiorite porphyry

    本文借鉴了Guo et al.(2009)的标准化Isocon图解法,将钾硅酸盐化带、绢英岩化带分别与未蚀变的花岗岩闪长斑岩的Isocon线按比例进行调整,使之与青磐岩化带和未蚀变的花岗岩闪长斑岩的Isocon线重合,从而得到一条标准化Isocon线,并按调整的比例相应调整对应的其他组分,最后可获得青磐岩化带、绢英岩化带、钾硅酸盐化带、原岩四者之间的物质转移信息图(表 2图 8)。

    图  8  铜厂沟钼铜矿床Ⅳ号斑岩体各蚀变带的元素迁移质量平衡计算
    a—Ⅳ岩体空间蚀变示意及样品代表性位置;b—各蚀变带主量元素迁移规律的标准化Isocon图解;c—各蚀变带微量元素迁移规律的标准化Isocon图解;d—各蚀变带稀土元素迁移规律的标准化Isocon图解;标准化因子和缩放比例见表 2
    Figure  8.  Mass balance calculation of element migration in each alteration zone of No.Ⅳ porphyry in the Tongchanggou Mo-Cu deposit
    a-No. Ⅳ rock mass spatial alteration schematic diagram and sample representative position; b-Normalized Isocon diagram of major element transfer rule of each alteration zone; c-Normalized Isocon diagram of trace element transfer rule of each alteration zone; d-Normalized Isocon diagram solution of rare earth element transfer rule of each alteration zone

    图 8可见,SiO2、K2O、挥发分等主量元素,Mo、Cu、Ag等成矿元素,Sb、As指示元素,Rb大离子亲石元素在各个蚀变带均为强烈迁入;Al2O3、TiO2、P2O5等主量元素,Zr、Nb、Hf、Th、Ta等高场强元素,以及稀土元素迁移不明显,可视为惰性元素。

    质量平衡定量计算的方法直接确定各类组分的迁移程度(郭顺等,2013),元素迁入/迁出的程度则由下式计算获得:ΔCm /CmO=MO/MA (CmA/CiO)-1,式中,ΔCm/CmO为活动组分m在原岩O相对于蚀变岩A转变过程中的质量迁移率,其他符号同6.1节。本研究选择Al2O3作为不活动组分,以原岩及各蚀变带样品的元素平均值作为原岩及各蚀变带的元素含量,计算了3个蚀变带各元素相对于原岩中的迁移量(表 2图 9图 10)。

    图  9  铜厂沟钼铜矿床蚀变花岗闪长斑岩常量元素质量迁移对比图
    Figure  9.  Comparative histogram showing migration of major elements in altered granodiorite porphyry in the Tongchanggou Mo-Cu deposit
    图  10  铜厂沟钼铜矿床蚀变花岗闪长斑岩微量、稀土元素质量迁移对比图
    Figure  10.  Comparative histogram showing migration of trace and rare earth elements in altered granodiorite porphyry in the Tongchanggou Mo-Cu deposit

    结果表明,多数主量元素和亲石、亲硫微量元素在围岩蚀变过程中发生较大规模的迁移,而高场强元素和稀土元素及少数主量元素迁移量则很低。

    主量元素是引起岩石质量变化的主因,主要由SiO2、K2O、TFe2O3、挥发分、MnO、MgO、CaO、Na2O等主量元素的迁移活动引起。其中SiO2均为强烈迁入,迁入量达19.9%~25.7%,在各蚀变带变化平稳。K2O迁入量达46.9%~90.4%,在绢英岩化带迁入量达到最大值。挥发分迁入特征最为明显,并有钾硅酸盐带→绢英岩化带→青磐岩化带递增的趋势,由122.8%→175.0%→247.7%,TFe2O3、MnO、MgO、CaO迁移量也随之由小变大;而Na2O与之相反,表现强烈迁出的趋势,由-29.8%→-53.8%→-70.7%。

    微量和稀土元素方面,Mo在各带内均为极强烈迁入,达3114.5%~9407.7%,主要在绢英岩化带富集,其次为钾硅酸盐化带。W成矿元素和Rb、Sr、Ba大离子亲石元素迁入量也在绢英岩化带达到最大值,其中W达266.6%,Rb、Sr、Ba为28.0%~117.9%。而Cu、Pb、Zn、Ag、As、Sb亲硫元素和U在青磐岩化带迁入量达到最大值,并表现出钾硅酸盐带→绢英岩化带→青磐岩化带骤增的趋势。Zr、Nb、Hf、Ta、Th等高场强元素和稀土元素则表现出活动性弱的特点,迁移量-19.5%~12.0%,其对质量变化影响甚小。

    元素呈不同形式和含量赋存于矿物中,矿物组合的不同则形成不同的蚀变带,矿物组合的变化则会改变元素的含量,而物化条件是影响元素迁移富集的外在因素(姚凤良和孙丰月,2006)。一般而言,主、微量元素在各矿物中的赋存情况为:Na、Ca、Sr主要赋存在斜长石中,Fe、Mg赋存在角闪石和黑云母中,K、Ba、Rb赋存于钾长石、黑云母、绢云母、水白云母中,Zr、Hf分布在锆石内,Th、U分布在榍石、锆石、褐帘石内,Ta、REE分布在榍石内,Ti分布于金红石、钛铁矿、绿泥石内,Mn常进入菱锰矿、黑云母、角闪石、绿泥石中,Ba主要出现在重晶石、黑云母、正长石中,F、Cl赋存在磷灰石、萤石、黑云母中。成矿元素Cu、Mo、Pb、Zn、Ag、As、Fe等常以独立金属矿物或者金属矿物中类质同象的形式存在(叶天竺等,2017)。本文按Ⅳ号花岗闪长斑岩的钾硅酸盐化、绢英岩化、青磐岩化3个蚀变类型分别探讨元素的迁移特征(图 8图 9图 10)。

    钾硅酸盐化蚀变为铜厂沟钼铜矿早期蚀变类型,以次生钾长石、次生黑云母和大量石英为特征,此类钾化不仅表现为基质中斜长石矿物的钾长石化、角闪石矿物的黑云母化,还表现为钾长石及黑云母脉体及蚀变晕的形式。本带强烈迁入SiO2、K2O、挥发分、Rb、Sb、Mo、Cu、Ag、As,强烈迁出Na2O、MnO、TFe2O3、Sr,而Zn中等迁出。

    K2O、SiO2、Rb的富集与弥散状钾硅酸盐化、石英-钾长石脉、次生黑云母相关;MgO、TFe2O3、MnO、Na2O、Sr等在斜长石、角闪石的钾化交代过程中被带出,释放的CaSO4(硬石膏)和SiO2(石英)则进入脉体,这与钾化脉中常见零星浸染状石膏现象相符,因而CaO未能表现出贫化特点;Mo成矿元素明显富集,迁入量达6330.2%,与其矿化相一致;Cu、Ag虽然有明显迁入,迁入量分别为26.3%和207.0%,但相对它们本身很低的背景值而言,是不足以成矿,因而钾硅酸盐化斑岩岩心中几乎未见黄铜矿,Cu、Ag基本化学分析结果也未达工业指标。

    绢英岩化蚀变以绢云母化和强硅化为特征,并有辉钼矿、黄铁矿、黄铜矿等金属矿物。本蚀变带强烈迁入SiO2、K2O、挥发分、CaO、Rb、Sr、Ba、Mo、W、Cu、Pb、Ag、As、Sb、U,强烈迁出Na2O、MnO。该带发生的矿物蚀变为绢云母化、硅化和少量绿泥石化。

    绢云母主要通过长石类矿物蚀变形成,即:

    绿泥石主要由黑云母蚀变而形成的,即:

    上述反应发生时,伴随着大量石英和黄铁矿的沉淀。

    在绢英岩化阶段,Na2O强烈迁出,K2O、挥发分大量迁入绢云母中,SiO2主要形成硅化,Fe就地沉淀形成黄铁矿;与Fe类质同象存在于暗色矿物中的Mn,随着暗色矿物的蚀变而强烈迁出;化学性质活泼和活动性强的Rb、Sr、Ba大离子亲石元素表现为强烈迁入,积极参与了围岩蚀变过程。Mo成矿元素在本带中最为富集,迁入量达9407.7%,与其矿化相一致;W在此带也表现为强烈富集,迁入量为266.6%;Cu、Pb、Ag、As、Sb等亲铜元素也较为富集,虽迁入量可观,但背景值基数过低,在岩体中未能致矿。

    青磐岩化蚀变主要为长石类矿物的绿泥石、绿帘石化,消耗MgO、TFe2O3、CaO和挥发分,释放SiO2和Na2O,而SiO2进入脉体而形成硅化,Na2O则带出;因此,持续强烈迁入的主要元素有SiO2、K2O、挥发分、MgO、CaO,而Rb、Ba、U也有明显带入,亏损Na2O。Cu、Pb、Zn、Ag、As、Sb等亲铜元素均在该带内达到最大值,虽未能达到成矿程度,但表现出了这些元素持续外迁的趋势,如铜矿主要赋存于岩体接触带及外围。

    (1)主量元素方面,K2O、SiO2、挥发分在斑岩体热液蚀变过程中均为带入组分,表明引起斑岩体矿化蚀变的热液富含上述组分;Na2O则淋滤迁出,其迁出量由内带向外带有明显递增趋势。K2O、SiO2、挥发分在各蚀变带中积极参与Na2O替代的矿物蚀变反应,尤其是钾硅酸盐化和绢云母化围岩蚀变过程的水-岩反应会产生各种钾硅酸盐及含钾硅酸盐,以其作为化学驱动力,发生一系列的连锁反应,促使其他组分不断发生较大程度的带入或迁出,从而不断改变热液的物化性质和组成成分。

    随着挥发分大量的迁入和消耗,不断形成更多的含水矿物,加之蚀变带的不均匀性,势必会造成局部体积膨胀和内压的增大,加之出溶的挥发分不断聚集,迫使围岩发生破裂而释放压力,形成大量裂隙构造,作为含矿热液运移的通道。随压力的释放及温度逐渐降低导致成矿金属元素溶解度的骤降(Herzarkhani et al., 1999),改变了含矿热液的物理化学条件,有利于金属矿物发生沉淀。

    (2)成矿元素方面,Mo在绢英岩化带迁入量(沉淀量)最大,与Mo主要赋存在绢英岩化带这一野外实际现象是一致的,说明绢英岩化阶段是Mo沉淀致矿的主要阶段。Rempel et al.(2008)通过实验认为,与绢云母化相关Mo矿化的成矿流体中钼迁移主要形式为氯氧化物(MoO2Cl2,MoO2(OH)Cl)。根据硬软酸碱理论(HSAB),Mo6+是离子势较高的硬酸,具有高的电负性,因而需要硬配体如Cl-等进行运移金属,而Cl-是流体相中最主要的阴离子之一,卤化物配体与金属阳离子可形成稳定的络合物(Vigneresse,2006)。卤素的存在可以增强流体的硬度,对硬度高的金属离子更具吸引能力,而流体中硫却则可以降低Mo6+电负性和硬度(Vigneresse, 2009, 2012Vigneresse et al.,2011)。当Mo流体体系物理化学平衡被破坏时,流体硬度变低,则会导致钼的络合物发生分解,硫不断加入可以使钼离子由硬度高的+6价硬酸变为硬度较低的+4价软酸,并与软碱S2-结合形成MoS2沉淀(“硬亲硬,软亲软”原理),通常发生下列沉淀反应:

    根前人资料(Montoya and Hemley, 1975陈毓川等,1996田光礼等,2019),绢云母形成时流体的pH值为2~4。然而,绢云母化过程中大量消耗H+,促使上述化学反应向右进行,使携矿溶液向弱碱性方向发展(欧阳宗圻等,1990),增大了热液中pH值,形成“酸碱度转换障”。该障有利于Mo的络合物的破坏,从而导致Mo沉淀形成矿体(叶天竺等,2014)。

    另外,成矿金属元素Mo在各蚀变带均表现为极强烈迁入,Ⅳ号岩体Mo金属量达9.1万t,平均品位0.13%,30%岩体为矿体。但本岩体体积小,而且Mo背景值仅32.02×10-6,是难以独立形成近中型储量规模的钼矿。前人研究成果表明,成矿物质主要来自燕山期岩浆岩(刘学龙等, 2013, 2016a)。因此,岩浆热液中成矿金属元素不仅来自Ⅳ号侵入体,更多的应该是直接来源于矿区深部的岩浆房。

    Cu表现出急剧向外富集的趋势,目前经探矿工程揭露,仅有极少量的Cu赋存在岩体内,绝大部分Cu矿体位于岩体外围大理岩中矽卡岩以及玄武岩中,形成矽卡岩型、热液脉型Cu矿,说明它与岩体中的Mo有不同的成矿方式,受“硅钙面”和节理、裂隙等“后生构造界面”控制。

    Pb、Zn、Ag等金属元素有向外迁移富集的趋势,暗示岩体外围有找相关矿种的潜力,As、Sb等元素与之有相同的迁移趋势,可作找中低温热液成矿金属的指示元素(王磊等,2020)。

    (1)铜厂沟矿区的岩体矿化蚀变带可分为钾硅酸盐化、绢英岩化带和青磐岩化带。野外地质特征和质量平衡计算结果,显示绢英岩化带与Mo成矿关系更加密切,其次为钾硅酸盐化带。

    (2)斑岩矿床形成过程中,钾硅酸岩化带以迁入SiO2、K2O、挥发分和Mo,迁出Na2O、MnO、TFe2O3为特征,伴随着石英-钾长石脉体及辉钼矿的生成;绢英岩化带以K2O、Mo、W的迁入最大化为特点,并大量迁入SiO2、CaO、挥发分等主量元素和Rb、Sr、Ba等大离子亲石元素,迁出Na2O、MnO,伴随着大量黄铁矿和辉钼矿的沉淀;相比其他两个蚀变带,青磐岩化带以MgO迁入为特点,挥发分、Cu、Pb、Zn、Ag、As、Sb迁入量最高,而Mo迁入量最低,更加亏损Na2O。

    (3)在热液蚀变过程,Al2O3、TiO2、P2O5等主量元素和Zr、Nb、Hf、Th、Ta等高场强元素及稀土元素迁移活动性差,基本保持惰性。

    (4)Ⅳ号岩体约30%岩体为钼矿体,Mo金属量近10万t,而岩体Mo背景值不足33×10-6,Mo迁入量达3000%以上,暗示岩浆热液中Mo可能更多来源于深部岩浆房。

    (5)Mo与Cu二者有不同的沉淀机制,赋存于岩体中的Mo主要受到“酸碱度转换障”影响,导致钼的氯络合物遭受破坏而致矿,赋存岩体接触带及外围的Cu受“硅钙面”和“后生构造界面”控制而成矿。

  • 图  1   云南中甸地区大地构造(a)及地质矿产分布图(b)(据刘学龙等,2016b刘学龙和李文昌,2017

    Ⅰ—扬子地块;Ⅱ—甘孜—理塘缝合带;Ⅲ—义敦地块;Ⅳ—中咱地块;Ⅴ—金沙江缝合带;Ⅵ—江达—维西火山弧;Ⅶ—昌都—兰坪陆块;Ⅷ—三达山—景洪火山弧;Ⅸ—澜沧江缝合带;Ⅹ—保山地块

    Figure  1.   Distribution map of tectonic (a) and geological mineral resources (b) in Zhongdian area, Yunnan (modified from Liu Xuelong et al., 2016b; Liu Xuelong and Li Wenchang, 2017)

    Ⅰ-Yangtze block; Ⅱ-Ganze-Litang suture; Ⅲ-Yidun block; Ⅳ-Zhongzan block; Ⅴ-Jingshajiang suture; Ⅵ-Jiangda-Weixi volcanic; Ⅶ-Changdu-Langping block; Ⅷ-Sandashan-Jinghong volcanic arc; Ⅸ-Langcangjiang suture; Ⅹ-Baoshan block

    图  2   铜厂沟钼铜矿床矿区地质图(a)及地质剖面简图(b、c)(据黄定柱,2017向坤,2019修改)

    1—第四系;2—北衙组二段;3—北衙组一段;4—峨眉山组玄武岩;5—辉绿岩;6—花岗闪长斑岩;7—断层及编号;8—地层界线;9—矿体(平面图);10—Mo矿体(剖面图);11—Cu矿体(剖面图);12—剖面位置

    Figure  2.   Geological map (a) and brief geological section map (b, c) of Tongchanggou Mo-Cu deposit (modified from Huang Dingzhu, 2017; Xiang Kun, 2019)

    1-Quaternary; 2-Member 2 in Beiya Formation; 3-Member 1 in Beiya Formation; 4-Besalt of Emeishan Formation; 5-Diabase; 6-Granodiorite porphyry; 7-Fault and number; 8-Geological boundary; 9-Orebody (plan); 10-Mo-orebody (profile); 11-Cu-orebody (profile); 12-Section position

    图  3   铜厂沟钼铜矿床花岗闪长斑岩及主要造岩矿物特征

    a—铜厂沟花岗闪长斑岩;b—花岗闪长斑岩显微特征;Bi—黑云母;Hb—角闪石;Kf—钾长石;Pl—斜长石

    Figure  3.   Characteristics of the granodiorite porphyry and main minerals in the Tongchanggou Mo-Cu deposit

    a-Tongchanggou granodiorite porphyry; b- Microscopic characteristics of granodiorite porphyry; Bi-Biotite; Hb-Hornblende; Kf-Potassium feldspar; Pl-Plagioclase

    图  4   铜厂沟钼铜矿床含矿斑岩各蚀变带特征

    a-钾长石脉,岩石基质具弥散状钾化,并可见石英+辉钼矿+黄铁矿脉穿插钾长石脉体;b-沿辉钼矿化石英脉发育有钾长石晕;c-绢英岩化叠加于钾化花岗闪长斑岩,发育石英+辉钼矿+黄铁矿脉;d-硅化石英脉,在石英脉体的边缘可见金属硫化物的分布;e-绿泥石化花岗闪长斑岩;f-斑岩中发育的绿泥石脉,附近有金属矿物;Hb-角闪石;Bi-黑云母;Kf-钾长石;Pl-斜长石;Qz-石英;Mol-辉钼矿;Py-黄铁矿;Chl-绿泥石;Ser-绢云母

    Figure  4.   Characteristics of alteration zones of ore bearing porphyry in the Tongchanggou Mo-Cu deposit

    a-Potassium feldspar veins, the rock matrix has diffuse potassic, and quartz + molybdenite + pyrite vein interspersed with potash feldspar vein; b-Potash feldspar halo is developed along molybdenite fossil quartz vein; c-Quartz sericitization is superimposed on potassic granodiorite porphyry and quartz + molybdenite + pyrite vein; d-Silicified quartz vein, the distribution of metal sulfide can be seen at the edge of quartz vein; e-Chloritization granodiorite porphyry; f-Chlorite vein developed in porphyry with metal minerals nearby; Hb-Hornblende; Bi-Biotite; Kf-Potassium feldspar; Pl-Plagioclase; Qz-Quartz; Mol-Molybdenite; Py-Pyrite; Chl-Chlorite; Ser-Sericite

    图  5   铜厂沟钼铜矿床花岗闪长斑岩SiO2-K2O图解(a)和A/CNK-A/NK分类图解(b)

    Figure  5.   SiO2-K2O (a) and A/CNK-A/NK (b) diagrams of granodiorite porphyry in the Tongchanggou Mo-Cu deposit

    图  6   铜厂沟钼铜矿床花岗闪长斑岩稀土元素球粒陨石标准化图(a,标准化值据Sun and Mcdonough, 1989)和微量元素蛛网图(b,标准化值据Taylor and Mclennan, 1985

    Figure  6.   Chondrite-normalized patterns of REE (a, normalization values after Sun and Mcdonough, 1989) and primitive mantle normalized patterns of trace elements (b, normalization values after Taylor and Mclennan, 1985) in granodiorite porphyry of the Tongchanggou Mo-Cu deposit

    图  7   铜厂沟钼铜矿床Ⅳ号斑岩体各蚀变带Isocon图解

    a—青磐岩化斑岩相对花岗闪长斑岩的主量组分迁移Isocon图解;b—绢英岩化斑岩相对花岗闪长斑岩的主量组分迁移Isocon图解;c—钾硅酸盐化斑岩相对花岗闪长斑岩的主量组分迁移Isocon图解

    Figure  7.   Isocon diagram of each alteration zone of of No.Ⅳ porphyry in the Tongchanggou Mo-Cu deposit

    a-The isocon diagram of major elements migration of propylitization vs. granodiorite porphyry; b- The isocon diagram of major elements migration of sericite-quartz alteration vs. granodiorite porphyry; c-The isocon diagram of major elements migration of K-silicate alteration vs. granodiorite porphyry

    图  8   铜厂沟钼铜矿床Ⅳ号斑岩体各蚀变带的元素迁移质量平衡计算

    a—Ⅳ岩体空间蚀变示意及样品代表性位置;b—各蚀变带主量元素迁移规律的标准化Isocon图解;c—各蚀变带微量元素迁移规律的标准化Isocon图解;d—各蚀变带稀土元素迁移规律的标准化Isocon图解;标准化因子和缩放比例见表 2

    Figure  8.   Mass balance calculation of element migration in each alteration zone of No.Ⅳ porphyry in the Tongchanggou Mo-Cu deposit

    a-No. Ⅳ rock mass spatial alteration schematic diagram and sample representative position; b-Normalized Isocon diagram of major element transfer rule of each alteration zone; c-Normalized Isocon diagram of trace element transfer rule of each alteration zone; d-Normalized Isocon diagram solution of rare earth element transfer rule of each alteration zone

    图  9   铜厂沟钼铜矿床蚀变花岗闪长斑岩常量元素质量迁移对比图

    Figure  9.   Comparative histogram showing migration of major elements in altered granodiorite porphyry in the Tongchanggou Mo-Cu deposit

    图  10   铜厂沟钼铜矿床蚀变花岗闪长斑岩微量、稀土元素质量迁移对比图

    Figure  10.   Comparative histogram showing migration of trace and rare earth elements in altered granodiorite porphyry in the Tongchanggou Mo-Cu deposit

    表  1   铜厂沟钼铜矿床Ⅳ号斑岩体原岩及蚀变岩主量、微量、稀土元素分析结果

    Table  1   Analysis results of major, trace and rare earth elements of protolith and altered rock of No.Ⅳ porphyry in Tongchanggou Mo-Cu deposit

    下载: 导出CSV

    表  2   Ⅳ号斑岩体原岩及蚀变岩元素平均含量、标准化的成分值和投图数据及元素迁移结果

    Table  2   Average element content, normalized composition value, mapping data and element migration results of protolith and altered rocks of No.Ⅳ porphyry

    下载: 导出CSV
  • Chang C F. 1997. Geology and Tectonics of Qinghai-Xizang Plateau Solid Earth Sciences Research in China[M]. Beijing: Science Press: 1-153.

    Chen Yuchuan, Ye Qingtong, Feng Jing. 1996. Metallogenic Conditions and Prediction of the Ashele Cu-Zn Metallogenic Belt[M]. Beijing: Geological Publishing House, 120(in Chinese).

    Chi Qinghua, Yan Mingcai. 2007. Handbook of Geochemical Element Abundance Data[M]. Beijing: Geological Publishing House, 3(in Chinese).

    Fan Yuhua, Li Wengchang. 2006. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J]. Geology in China, 33(2): 352-362 (in Chinesewith English abstract).

    Gao Xue, Meng Jianyin. 2017. The source of ore-forming fluids and materials in the Tongchanggou Mo-Cu deposit, northwestern Yunnan, China: Constrains from skarn mineralogy and stable isotopes[J]. Acta Petrologica Sinica, 33(7): 2161 -2174(in Chinese with English abstract).

    Grant J A. 1986. The isocon diagram: A simple solution to gresens equation for metasomatic alteration[J]. Economic Geology, 81(8): 1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    Grant J A. 2005. Isocon analysis: A brief review of the method and applications[J]. Physics and Chemistry of the Earth, 30(17-18): 997-1004. doi: 10.1016/j.pce.2004.11.003

    Gresens R L. 1967. Composition-volume relationships of metasomatism[J]. Chemical Geology, 2: 47-65. doi: 10.1016/0009-2541(67)90004-6

    Guo S, Ye K, Chen Y, Liu J B. 2009. A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram[J]. Economic Geology, 104(6): 881-886. doi: 10.2113/gsecongeo.104.6.881

    Guo Shun, Ye Kai, Chen Yi, Liu Jingbo, Zhang Lingmin. 2013. Introduction of mass-balance calculation method for component transfer during the opening of a geological system[J]. Acta Petrologica Sinica, 29(5): 1486-1498(in Chinese with English abstract).

    He J, Wang B D, Wang L Q, Wang Q Y, Yan G C. 2019. Geochemistry and geochronology of the Late Cretaceous Tongchanggou Mo-Cu deposit, Yidun Terrane, SE Tibet; implications for post-collisional metallogenesis[J]. Journal of Asian Earth Sciences, 172: 308-327. doi: 10.1016/j.jseaes.2018.09.015

    Hezarkhani A, Williams-Jones A E, Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 34(8): 770-783. doi: 10.1007/s001260050237

    Hou Zengqian, Yang Yueqing, Qu Xiaoming, Huang Dianhao, Lü Qingtian, Wang Haiping, Yu Jinjie, Tang Shaohua. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang Region, China[J]. Acta Geologica Sinica, 78(1): 109-120(in Chinese with English abstract).

    Hou Zengqian, Yang Yueqing, Wang Haiping. 2003. Collision Orogeny and Metallogenic System of Yidun Island Arc in Sanjiang[M]. Beijing: Geological Publishing House, 1-345(in Chinese).

    Huang Dingzhu. 2017. Exploration Report of Tongchanggou Mo-Cu Deposit in Shangri La, Yunnan Province [R]. Kunming: Yunnan Geological Survey Institute, 23-37(in Chinese).

    Li W C, Yin G H, Yu H J, Liu X L. 2014. The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China[J]. Acta Geologica Sinica, 88(6): 1742-1756. doi: 10.1111/1755-6724.12341

    Li W C, Yu H J, Gao X, Liu X L, Wang J H. 2017. Review of Mesozoic multiple magmatism and porphyry Cu-Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau [J]. Ore Geology Reviews, 90: 795-812. doi: 10.1016/j.oregeorev.2017.03.009

    Li W C, Zeng P S, Hou Z Q, White N C. 2011. The pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 106(1): 79-92. doi: 10.2113/econgeo.106.1.79

    Li Wenchang, Yu Haijun, Yin Guanghou, Cao Xiaomin, Huang Dingzhu, Dong Tao. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetal lic deposit in northwest Yunnan and its metal logenic environment[J]. Mineral Deposits, 31(2): 282-292(in Chinese with English abstract).

    Li Wenchang, Yin Guanghou, Yu Haijun, Lu Yingxiang, Liu Xuelong. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J]. Acta Petrologica Sinica, 27(9): 2541-2552(in Chinese with English abstract).

    Liu Shusheng, Yang Yongfei, Guo Linnan, Nie Fei, Peng Zhiming, Pan Guitang. 2018. Tectonic characteristics and metallogeny in Southeast Asia[J]. Geology in China, 45(5): 863-889(in Chinese with English abstract).

    Liu X L, Chen J H, Li W C, Zhang N, Yang F C. 2019. Late Cretaceous magmatism and porphyry Mo-Cu polymetallic mineralization in the Tongchanggou Intrusion, Geza Arc, Southwestern China[J]. Arabian Journal of Geosciences, 90: 795-812.

    Liu Xuelong, Li Wenchang, Zhang Na, Yang Fucheng, Kang Jian, Zhang Biao. 2016a. Characteristics of sulfur and lead isotopes and tracing of mineral sources in the Tongchanggou porphyry Mo(Cu) deposit at the southern edge of Geza arc belt, Yunnan[J]. Geology in China, 43(1): 209-220(in Chinese with English abstract).

    Liu Xuelong, Li Wenchang, Zhang Na, Lai Anqi, Li Zhe, Yang FuCheng. 2016b. Metallogenic system of the Yanshanian porphyry Mo polymetallic deposit in the Xiangcheng-Lijiang suture zone, western margin of Yangtze block, SW China[J]. Acta Petrologica Sinica, 32(8): 2281-2302(in Chinese with English abstract).

    Liu Xuelong, Li Wenchang, Zhang Na. 2014. Sulfur and lead isotope tracing of Tongchanggou Cu-Mo deposit in the southern margin of Geza island arc, Yunnan Province [J]. Mineral Deposits, 33(S1): 25-26 (in Chinese).

    Liu Xuelong, Li Wenchang. 2017. Xiangcheng-Luoji Molybdenum Polymetallic Deposit and Metallogenic System in the Western Margin of Yangtze Block[M]. Kunming: Yunnan Science and Technology Press: 1-162(in Chinese).

    Maclean W H, Kranidiotis P. 1987. Immobile elements as monitors of mass-transfer in hydrothermal alteration-Phelps dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 82(4): 951-962. doi: 10.2113/gsecongeo.82.4.951

    Maclean W H. 1990. Mass change calculations in altered rock series[J]. Mineralium Deposita, 25: 44 -49. doi: 10.1007/BF03326382

    Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alterations[J]. Economic Geology, 70(3): 577-583. doi: 10.2113/gsecongeo.70.3.577

    Ouyang Zongyin, Li Hui, Liu Hanzhong. 1990. Geochemical Anomaly Model of Typical Nonferrous Metal Deposits[M]. Beijing: Science Press: 1-178(in Chinese).

    Rempel K U, Williams-Jones A E, Migdisov A A. 2008. The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350℃ and pressures up to 160 bars[J]. Geochimica et Cosmochimica Acta, 72(13): 3074-3083. doi: 10.1016/j.gca.2008.04.015

    Sillhoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. [C]// Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42(1): 313-345

    Tan Rongyu, Chen Jianlin, Xu Jifeng, Huang Wenlong, Tang Wanli. 2018. Petrogenesis of the ca. 80 Ma felsic-intermediate magmatism in the Zhongdian arc terrane and western Yangtze block: Implications for post-collisional metallogenesis[J]. Acta Petrologica Sinica, 34(5): 1413-1426(in Chinese with English abstract).

    Taylor S R, Mclennan S. 1985. The Continental Crust: It's Composition and Evolution[M]. Oxford: Blackwall Scientific Publications, 54(2): 209-230.

    Tian Guangli, Chen Shouyu, Dong Kai1, Zhao Jiangnan, Qin Wei, Chen Junlin. 2019. Elements migration and mass change calculations in alteration zones of Zheyaoshan VMS deposit, Baiyinchang, Gansu Province[J]. Mineral Deposits, 38(1): 80-100(in Chinese with English abstract).

    Vigneresse J L. 2006. Element mobility in melts during successive intrusions of crustal-derived magmas and Sn-W mineralization[J]. Resource Geology, 56(3): 293-314. doi: 10.1111/j.1751-3928.2006.tb00285.x

    Vigneresse J L, Duley S, Chattaraj P K. 2011. Describing the chemical character of a magma[J]. Chemical Geology, 287(1/2): 102-113.

    Vigneresse J L. 2009. Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with applications to ore generation[J]. Chemical Geology, 263(1/4): 69-81.

    Vigneresse J L. 2012. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation[J]. Lithos, 153: 154-164. doi: 10.1016/j.lithos.2012.03.014

    Wang B Q, Zhou M F, Li J W, Yan D P. 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization[J]. Lithos, 127(1/2): 24-38.

    Wang Lei, Hu Zhaoguo, Li Xiangmin, Yan Haizhong, Yang Chao. 2020. Geochemical characteristics of stream sediments and prediction of mining prospects in the Wulandaban—Zhazigou area, Danghe South Mountain, Gansu Province [J]. Geology in China, 47(2): 516-527 (in Chinese with English abstract).

    Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo Cu (W) mineralizationin the southern Yidun arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95. doi: 10.1016/j.oregeorev.2014.01.006

    Xiang Kun. 2019. Laba Porphyry-Skarn Cu-Mo Deposit in Northwestern Yunnan: Alteration Mineralization Characteristics and Metallogenic Model[D]. Kunming: Kunming University of Science and Technology, 1-131(in Chinese with English abstract).

    Yang L Q, Deng J, Gao X, He W Y, Meng J Y, Santosh M, Yu H J, Yang Z, Wang D. 2016. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit: Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau [J]. Ore Geology Reviews, 81(Pt. 2): 1015-1032.

    Yang Liqiang, Gao Xue, He Wenyan. 2015. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China[J]. Acta Petrologica Sinica, 31(11): 3155-3170(in Chinese with English abstract).

    Yang Z M, Cooke D R. 2019. Porphyry Copper Deposits in China[M]. Chang Z S, Goldfarb R (eds. ). Mineral Deposits of China. Untied States: Society of Economic Geologists Special Publication, 133-187.

    Yao Fengliang, Sun Fengyue. 2006. Ore Deposit Geology[M]. Beijing: Geological Publishing House, 132-153 (in Chinese).

    Yao Xue, Li Wenchang, Liu Xuelong, Zhang Na, Yang Fucheng, Yan Tinglong, Wang Shuaishuai, Luo Ying. 2017. Geochemistry and zircon U- Pb age of the Tongchanggou porphyry Cu-Mo deposit on the southern margin of Geza arc, northwest Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 36(10): 1800-1813(in Chinese with English abstract).

    Ye Tianzhu, Lü Zhicheng, Pang Zhenshan. 2014. Prospecting Prediction Theory and Method in Exploration Area (General) [M]. Beijing: Geological Publishing House, 1-375(in Chinese).

    Ye Tianzhu, Wei Changshan, Wang Yuwang, Zhu Xinyou, Pang Zhenshan. 2017. Theory and Method of Ore Prospecting Prediction in Exploration Area[M]. Beijing: Geological Publishing House, 1-592(in Chinese).

    Yu H J, Li W C, Yin G H, Lu Y X, Cao X M, Huang D Z, Dong T, Zhang Y M. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication[J]. Acta Geologica Sinica, 88(4): 1183-1194. doi: 10.1111/1755-6724.12282

    Yu Haijun, Li Wenchang, Yin Guanghou, Wang Jianhua, Jiang Wentao, Wu Song, Tang Zhong. 2015. Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan[J]. Acta Petrologica Sinica, 31(11): 3217-3233(in Chinese with English abstract).

    Zhang Keqing, Yang Yong. 2002. Introduction of the method for mass balance calculation in altered rocks[J]. Geological Science and Technology Information, (3): 104-107(in Chinese with English abstract).

    Zu B, Xue C J, Zhao Y, Qu W J, Li C, Symons D T A, Du A D. 2015. Late cretaceous metallogeny in the Zhongdian area: Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J]. Ore Geology Reviews, 64: 1-12. doi: 10.1016/j.oregeorev.2014.06.009

    陈毓川, 叶庆同, 冯京. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测[M]. 北京: 地质出版社: 120.
    迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 3.
    范玉华, 李文昌. 2006. 云南普朗斑岩铜矿床地质特征[J]. 中国地质, 33(2): 352-362. http://geochina.cgs.gov.cn/cn/article/id/20060214
    高雪, 孟健寅. 2017. 滇西北铜厂沟Mo-Cu矿床成矿流体和成矿物质来源: 矽卡岩矿物学与稳定同位素证据[J]. 岩石学报, 33(7): 2161-2174.
    郭顺, 叶凯, 陈意, 刘景波, 张灵敏. 2013. 开放地质体系中物质迁移质量平衡计算方法介绍[J]. 岩石学报, 29(5): 1486-1498.
    侯增谦, 杨岳清, 王海平. 2003. 三江义敦岛弧碰撞造山过程与成矿系统[M]. 北京: 地质出版社: 1-345.
    侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报, 78(1): 109-120.
    黄定柱. 2017. 云南省香格里拉市铜厂沟钼铜矿勘探报告[R]. 昆明: 云南省地质调查院, 23-37.
    李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用[J]. 岩石学报, 27(9): 2541-2552.
    李文昌, 余海军, 尹光侯, 曹晓民, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J]. 矿床地质, 31(2): 282-292.
    刘书生, 杨永飞, 郭林楠, 聂飞, 彭智敏, 潘桂堂. 2018. 东南亚大地构造特征与成矿作用[J]. 中国地质, 45(5): 863-889. doi: 10.12029/gc20180501
    刘学龙, 李文昌, 张娜. 2014. 云南格咱岛弧南缘铜厂沟铜钼矿床硫铅同位素示踪研究[J]. 矿床地质, 33(S1): 25-26.
    刘学龙, 李文昌, 张娜, 杨富成, 康健, 张彪. 2016a. 云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J]. 中国地质, 43(1): 209-220. http://geochina.cgs.gov.cn/cn/article/id/20160115
    刘学龙, 李文昌, 张娜, 赖安琦, 李喆, 杨富成. 2016b. 扬子西缘乡城-丽江结合带燕山期斑岩Mo多金属矿床成矿系统[J]. 岩石学报, 32(8): 2281-2302.
    刘学龙, 李文昌. 2017. 扬子西缘结合带乡城-洛吉钼多金属矿床及成矿系统[M]. 昆明: 云南科技出版社: 1-162.
    欧阳宗圻, 李惠, 刘汉忠. 1990. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社: 1-178.
    谈荣钰, 陈建林, 许继峰, 黄文龙, 唐婉丽. 2018. 跨越中甸弧到扬子地块西缘的~80Ma中酸性火成岩成因及其对碰撞后成矿的意义[J]. 岩石学报, 34(5): 1413-1426.
    田光礼, 陈守余, 董凯, 赵江南, 覃伟, 陈俊霖. 2019. 甘肃白银厂折腰山VMS矿床蚀变带元素迁移及定量计算[J]. 矿床地质, 38(1): 80-100.
    王磊, 胡兆国, 李向民, 闫海忠, 杨超. 2020. 甘肃省党河南山乌兰达坂沟—扎子沟地区水系沉积物地球化学特征及找矿远景预测[J]. 中国地质, 47(2): 516-527. doi: 10.12029/gc20200217
    向坤. 2019. 滇西北拉巴斑岩-矽卡岩型铜钼矿床: 蚀变-矿化特征及成矿模式[D]. 昆明: 昆明理工大学: 1-131.
    杨立强, 高雪, 和文言. 2015. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 31(11): 3155-3170.
    姚凤良, 孙丰月. 2006. 矿床学教程[M]. 北京: 地质出版社, 132-153.
    姚雪, 李文昌, 刘学龙, 张娜, 杨富成, 彦廷龙, 王帅帅, 罗应. 2017. 滇西北格咱岛弧带南缘铜厂沟斑岩铜钼矿床花岗闪长斑岩地球化学特征、锆石U-Pb年龄及其地质意义[J]. 地质通报, 36(10): 1800-1813.
    叶天竺, 吕志成, 庞振山. 2014. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 1-375.
    叶天竺, 韦昌山, 王玉往, 祝新友, 庞振山. 2017. 勘查区找矿预测理论与方法(分论)[M]. 北京: 地质出版社, 1-592.
    余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J]. 岩石学报, 31(11): 3217-3233.
    张可清, 杨勇. 2002. 蚀变岩质量平衡计算方法介绍[J]. 地质科技情报, (3): 104-107.
  • 期刊类型引用(2)

    1. 黄啸宇,汤立伟,詹勇,张起佳,黄维坤. 福建省尤溪县卓坑钼矿床元素迁移特征及矿床成因. 地质找矿论丛. 2024(03): 326-333 . 百度学术
    2. 莫雷,冷成彪,邢新龙,李凯旋,陈喜连,余海军,王艳军,陈加杰. 滇西北普上含矿斑岩体的岩石地球化学及蚀变特征研究. 岩石矿物学杂志. 2024(06): 1339-1360 . 百度学术

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  2181
  • HTML全文浏览量:  1001
  • PDF下载量:  340
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2021-01-11
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2023-12-24

目录

/

返回文章
返回
x 关闭 永久关闭