• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩—浅成低温热液型铜多金属矿为例

欧阳渊, 刘洪, 李光明, 马东方, 张林奎, 黄瀚霄, 张景华, 张腾蛟, 柳潇, 赵银兵, 李富

欧阳渊, 刘洪, 李光明, 马东方, 张林奎, 黄瀚霄, 张景华, 张腾蛟, 柳潇, 赵银兵, 李富. 基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩—浅成低温热液型铜多金属矿为例[J]. 中国地质, 2023, 50(2): 303-330. DOI: 10.12029/gc20201026001
引用本文: 欧阳渊, 刘洪, 李光明, 马东方, 张林奎, 黄瀚霄, 张景华, 张腾蛟, 柳潇, 赵银兵, 李富. 基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩—浅成低温热液型铜多金属矿为例[J]. 中国地质, 2023, 50(2): 303-330. DOI: 10.12029/gc20201026001
OUYANG Yuan, LIU Hong, LI Guangming, MA Dongfang, ZHANG Linkui, HUANG Hanxiao, ZHANG Jinghua, ZHANG Tengjiao, LIU Xiao, ZHAO Yinbing, LI Fu. Mineral search prediction based on Random Forest algorithm——A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. GEOLOGY IN CHINA, 2023, 50(2): 303-330. DOI: 10.12029/gc20201026001
Citation: OUYANG Yuan, LIU Hong, LI Guangming, MA Dongfang, ZHANG Linkui, HUANG Hanxiao, ZHANG Jinghua, ZHANG Tengjiao, LIU Xiao, ZHAO Yinbing, LI Fu. Mineral search prediction based on Random Forest algorithm——A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. GEOLOGY IN CHINA, 2023, 50(2): 303-330. DOI: 10.12029/gc20201026001

基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩—浅成低温热液型铜多金属矿为例

基金项目: 

国家重点研发计划 2021YFC2901803

国家重点研发计划 2021YFC2901903

国家自然科学基金 91955208

国家自然科学基金 92055314

国家自然科学基金 42202105

国际地球科学计划 IGCP 741

中国地质调查项目 DD20221776

中国地质调查项目 DD20230093

中国地质调查项目 DD20220971

中国地质调查项目 DD2023247

中国地质调查项目 DD20220965

西南地质科技创新中心青藏高原国际大科学计划和刘宝珺院士基金 

详细信息
    作者简介:

    欧阳渊, 男, 1982年生, 博士, 高级工程师, 硕士生导师, 从事地球探测技术、生态地质学研究; E-mail: oyangyuan@mail.cgs.gov.cn

    通讯作者:

    马东方, 男, 1965年生, 正高级工程师, 从事青藏高原地质矿产研究; E-mail: mdongfang@foxmail.com

  • 中图分类号: P618.2

Mineral search prediction based on Random Forest algorithm——A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt

Funds: 

Supported by National Key R & D Program of China 2021YFC2901803

Supported by National Key R & D Program of China 2021YFC2901903

National Natural Science Foundation of China 91955208

National Natural Science Foundation of China 92055314

National Natural Science Foundation of China 42202105

International Geosciences Programme IGCP 741

China Geological Survey Project DD20221776

China Geological Survey Project DD20230093

China Geological Survey Project DD20220971

China Geological Survey Project DD2023247

China Geological Survey Project DD20220965

Qinghai-Tibet Plateau International Grand Science Program of Southwest Geological Science and Technology Innovation Center 

More Information
    Author Bio:

    OUYANG Yuan: Ouyang yuan, male, born in 1982, doctor, senior engineer, master supervisor, engaged in research on earth exploration technology and ecological geology; E-mail: oyangyuan@mail.cgs.gov.cn

    Corresponding author:

    MA Dongfang: Ma Dongfang, male, born in 1965, bachelor, professor senior engineer, engaged in geological and mineral research on the Qinghai Tibet Plateau; E-mail: mdongfang@foxmail.com

  • 摘要:
    研究目的 

    矿产资源定位预测的核心是矿产分布与控矿地质因素之间的非线性关系,大数据及机器学习技术在解决这类复杂非线性关系问题方面已经体现出巨大的优势。小比例尺地物化遥信息的预测数据集具有高维和极不平衡的特点,依靠传统的逻辑假设或统计分析很难适应。本文尝试将随机森林算法引入到小比例尺找矿预测领域来开展研究,探索大数据及机器学习技术在小比例尺找矿预测中的应用。

    研究方法 

    近年来,冈底斯成矿带西段新发现了鲁尔玛、拔拉扎、达若、红山和罗布真等多个斑岩型、浅成低温热液型铜金多金属矿床(点),证实冈底斯西段具有寻找斑岩型、浅成低温热液型铜金多金属矿的巨大潜力。本文以新发现的典型矿床为研究对象,在总结冈底斯成矿带西段斑岩铜矿成因模式的基础上,结合物化遥综合信息,构建地物化遥综合找矿模型,最后利用随机森林法开展研究区找矿预测。

    研究结果 

    本文结合典型矿床与区域地质、地球物理、地球化学及遥感综合信息,利用随机森林法在冈底斯成矿带西段开展斑岩型、浅成低温热液型铜金多金属矿的找矿预测,圈定出斑岩—浅成低温热液型铜多金属矿找矿远景区11个(包含Ⅰ级远景区2个,Ⅱ级远景区3个,Ⅲ级远景区6个),其中罗布真、打加错、达若、拔拉杂、尕尔穷和布东拉等远景区找矿潜力较大。

    结论 

    基于大数据机器学习的欠采样随机森林预测模型,有望适应综合地物化遥信息的预测数据高维和极不平衡特点,为成矿带尺度区域找矿预测提供方向。本次工作确定的远景区有望发现新的矿床(点),为冈底斯成矿带找矿勘查打开了新的视野。

    创新点:(1)总结了冈底斯西段斑岩—浅成低温热液型铜多金属成矿作用的时空分布特征及区域找矿信息;(2)探索了基于大数据机器学习的欠采样随机森林预测模在找矿预测的应用;(3)圈定出了冈底斯西段斑岩—浅成低温热液型铜多金属矿找矿远景区。

    Abstract:

    The paper is the result of geological survey engineering.

    Objective 

    The core problem of prospecting prediction is the nonlinear relationship between mineral distribution and mineral-controlling geological factors. Big data and machine learning technology have shown great advantages in solving such complex nonlinear relationship problems. The prediction dataset of small-scale geochemical remote information has the characteristics of high and extremely unbalanced, which is difficult to adapt by traditional logical assumptions or statistical analysis. Therefore, this paper attempts to introduce the random forest algorithm into the field of small-scale prospecting to explore the application of big data and machine learning technology in small-scale mineralization prediction.

    Methods 

    In recent years, several Porphyry-epithermal copper polymetallic deposits (such as Luerma, Bolazha, Daruo, Hongshan, and Luobuzhen, etc.) have been discovered in the western Gangdise mineralized belt, which proved that the western Gangdise belt has great prospecting potential for porphyry and epithermal Cu-Au polymetallic deposits. Combined with the comprehensive information of typical deposits, regional geology, geophysics, geochemistry, and remote sensing, this paper uses the random forest method to carry out the prospecting prediction of porphyry and epithermal Cu-Au polymetallic deposits in the western Gangdise belt.

    Results 

    This work has delineated 11 porphyry copper polymetallic prospect areas (including 2 levels Ⅰ prospect areas, 3 level Ⅱ prospect areas, and 6 level Ⅲ prospect areas), of which Luobuzhen, Dajiacuo, Daruo, Balaza, Gaerqiong, and Budongla have great prospecting potential and are expected to find new ore deposits or points.

    Conclusions 

    The under-sampling random forest prediction model based on big data machine learning is expected to adapt to the high-dimensional and extremely unbalanced characteristics of prediction data of comprehensive geophysical and geochemical remote information and provide direction for regional prospecting prediction at the scale of the metallogenic belt. The prospective area determined in this work is expected to find new deposits (points), which opens a new vision for ore prospecting and exploration in the Gangdise metallogenic belt.

  • 世界卫生组织及中国饮用水标准规定砷浓度不可超过10 μg/L(WHO, 2017)。长期饮用高砷地下水可导致慢性砷中毒及皮肤癌等疾病,全球有70多个国家,超过1.5亿人的饮用水安全受到高砷地下水的威胁(韩双宝等,2010郭华明等,2013Wang et al., 2020曹文庚等,2022; 张卓等,2023a)。沉积物中的固相砷是地下水中砷的主要来源。多数岩石中砷含量范围为0.5~2.5 μg/g(Mandal and Suzuki, 2002),松散沉积物中砷的含量范围通常为3~10 μg/g(Smedley and Kinniburgh, 2002; 何锦等,2020马雪梅等,2020),富含砷矿物的沉积物中砷含量可达170 μg/g(Cook et al., 1995)。研究含水层中砷的迁移转化,除了查明沉积物总固态砷的含量,还需分析砷在沉积物中的赋存形态(van Herreweghe et al., 2003朱丹尼等,2021Drahota et al., 2021)。沉积物中固相砷赋存形态的微小差别可能引起地下水砷浓度的显著差异(Meharg et al., 2006; 张卓等,2023b)。分步提取实验是获取沉积物中砷赋存状态信息的主要手段。在之前的研究中,已经在分步提取过程中研究了萃取剂溶液的最优选择性(Paul et al., 2009Eiche et al., 2010)。国外学者就河流三角洲沉积物中砷的赋存形态开展了大量研究。Eiche et al.(2008)研究表明,磷酸盐提取释放的强吸附砷是越南红河三角洲沉积物中砷的主要赋存形态。印度孟加拉三角洲平原的含水层中也发现了类似的结果(Neidhardt et al., 2014)。然而在内陆盆地,有关沉积物砷赋存形态的系统性研究相对缺乏。

    河套盆地是中国西北地区典型的内陆盆地,地下水As浓度高达857 μg/L,远超中国饮用水标准(Guo et al., 2008)。因此,本研究选取河套盆地,通过刻画岩性与地球化学特征和开展砷的分步提取与解吸附实验,对比分析低砷和高砷含水层中沉积物砷的赋存形态与吸附特征。研究结果将有助于查明内陆盆地高砷地下水的形成机理,为合理开发可饮用地下水提供科学依据。

    河套盆地地处阴山隆起与鄂尔多斯台地之间,西界和北界均为狼山山前断裂,南界为鄂尔多斯北缘断裂,东界为乌梁素海断裂。研究区位于河套盆地西北侧,地处狼山山脉与主排干渠之间,包括山前冲洪积扇区和南部平原区,地理坐标为40°55′31″N~41°08′15″N,106°46′30″E~107°03′28″E(图1)。受沉积条件制约,研究区含水层具有明显的分带性。山前冲洪积扇区含水层沉积物主要由中砂、细砂组成,黏土在其中所占比重小于5%;平原区含水层沉积物主要由细砂、粉砂、粉质黏土和偶有泥炭夹层的淤泥质黏土组成,粉土和不同种类的黏土是其中的主要组成部分。

    图  1  研究区位置(a)、地貌分区(b)、遥感影像(c)及水文地质剖面(d)
    Figure  1.  Location of study area (a), geomorphic map (b), remote sensing image (c) and hydrogeological profile (d)

    研究区浅层地下水受到大气降雨入渗补给、灌溉水补给和渠水的侧渗补给,深层地下水受到山前裂隙水的侧向补给和浅层地下水的垂向入渗。浅层地下水的排泄途径是蒸发作用、人工抽取、流入排干沟和垂向入渗到深层地下水,深层地下水的排泄路径是农业开采。原来研究区地下水流向大体是由西北向东南,但过度开采导致地下水流向逐渐转变为山前冲洪积扇由北向南、平原区由南向北的流动方向。地下水水化学类型受地势地貌、气候条件影响明显,具有显著的差异性。浅层地下水受强烈蒸发运移影响,水化学类型有HCO3−(Cl)−Na、Cl−HCO3−Na·Mg和Cl−SO4(HCO3)−Na·Mg型。深层地下水由山前冲洪积扇的Cl−HCO3−Ca·Mg型转变为平原区的Cl−Na型。高砷地下水主要分布在平原区(Zhang et al., 2020)。

    本研究从钻孔K02和K01中分别取出25和26个沉积物样品(图1)。其中,K2钻孔位于山前冲洪积扇区,坐标为41°01′07.37″N、106°57′41.41″E,钻孔深度约为80 m;K1钻孔位于平原区,位置坐标为41°00′13.73″N、106°58′16.85″E,钻孔深度约为81 m。获取的沉积物去掉外层沉积物后,马上用锡箔纸包裹,密封在装有纯N2(> 99.999%)的无菌塑料袋中,尽可能减少与O2的接触,并在−20℃的条件下保存。带回到实验室后,样品分装为两份,一份储存于−20℃的冰箱中,另一份进行冷冻干燥。

    在色度分析和含水率测试之前,−20 ℃条件下保存的样品放入厌氧箱解冻。色度分析采用光谱色度计(CM-700d,Konica Minolta),测试之前对光谱色度计进行白板校正和零点校正。测试过程中保证切面平整,并在切口表面铺上一层高净度聚乙烯薄膜,每个样品测试3次。测试结束后计算出530 nm和520 nm的光谱反射差(R530-520),该差值能够指示沉积物的氧化还原环境(Horneman et al., 2004)。含水率测试采用通用的烘干法,用铝盒准确称取烘干前的原状土样质量,放入105℃恒温干燥箱中烘干后放入干燥器冷却,准确称量烘干后的土样质量,通过计算得出含水率。

    沉积物电导率和pH的测量采用Bélanger and VanRees(2007)的方法。冷冻干燥后的沉积物与去离子水以1∶5的比例置于PE离心管中,25℃状态下以150 rpm转速震荡1 h。震荡完毕后,将离心管置于离心机中以5000 rpm转速离心20 min并取上清液用0.22 μm纤维滤膜过滤。所得部分滤液通过电导率仪(DDS-307A, SHKY)进行电导率的检测,所得电导率值可以反映出沉积物的可溶性组分含量。沉积物样品与超纯水以1∶2.5比例充分混合后,摇匀,静置1 h使用pH检测仪(HI 8424,HANNA)对其进行pH测定。

    沉积物样品中的主量和微量元素的测定采用手持便携式XRF仪(XL3t800, Thermo Niton)进行测定,测试元素主要包括Ca、Sr、As、Fe和Mn。测试之前将样品冷冻干燥,并研磨至200目,取适量于专用测量杯中,压实后放置在手持XRF仪光源处,每个样品测试3次。2个标准物质(GBW07303,GBW07305)用于确保数据的准确性,测试偏差均小于20%,其中As元素的测试偏差均小于5%。

    为查明沉积物中砷的赋存状态,本研究开展了分步提取实验(Sequential extraction procedure,SEP)。分步提取方法参照Eiche et al.(2008, 2010)的研究,该提取方法也是基于Keon et al.(2001)和Wenzel et al.(2001)等研究的改进(表1)。每个新鲜沉积物样称取0.5 g,放入离心管中,加入适量的提取剂。由于分步提取后提取液盐度较高,需稀释测试,这就要求测试仪器需要较低的检出限和较高的分析精度。ICP−MS的分析精度为±3.0%,检出限为0.01 μg/L,能够满足测试要求。其中分步提取第六步(F6)的提取液中含有高浓度的HF,会损坏仪器影响测试精度。因此,F6的提取液在测试之前,需要在电热板加热进行赶酸处理。

    表  1  分步提取实验具体步骤
    Table  1.  Sequential extraction procedure
    步骤 目标物 提取剂 条件
    F1 弱吸附态砷 0.05 mol/L (NH4)2SO4 25 mL,25℃,4 h,重复一次,水洗一次
    F2 强吸附态砷 0.5 mol/L NaH2PO4 40 mL,25℃,16 h及24 h各一次,每个时间段重复一次,水洗一次
    F3 与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷 1 mol/L HCl 40 mL,25℃,1 h,重复一次,水洗一次
    F4 与无定形态铁氧化物或氢氧化物共存的砷 0.2 mol/L NH4H2C2O3 40 mL,25℃,2 h,pH=3,黑暗条件下,重复一次,水洗一次
    F5 与结晶态铁氧化物或氢氧化物
    共存的砷
    0.5 mol/L NaC6H8O7
    1 mol/L NaHCO3,Na2S2O4XH2O
    35 mL NaC6H8O7+2.5 mL NaHCO3(加热至85℃),加0.5 g Na2S2O4XH2O,15 min在85℃,重复一次,水洗一次
    F6 与硅酸盐有关的砷 10 mol/L HF,H3BO3 40 mL,25℃,1 h、24 h、16 h后各加5 g硼酸,每个时间段重复一次,热水洗一次
    F7 含砷硫化物,与硫化物和有机质
    共沉淀的砷
    16 mol/L HNO3,30% H2O2 先加入10 mL HNO3,反应过后加入多次30%过氧化氢,加热,冷却后稀释到100 mL,离心、过滤、测试
    下载: 导出CSV 
    | 显示表格

    本研究从钻孔K02和K01各选取一个典型沉积物进行pH和反离子效应对砷的解吸附影响的批实验。该实验主要包括三部分内容:解吸附动力学实验、pH对解吸附影响的实验、反离子效应(Na/Ca0.5(M/M))对砷解吸附影响的实验。

    (1)解吸附动力学实验

    为查明砷解吸附达到平衡的时间,本研究开展了解吸附动力学实验。分别称取0.6 g新鲜沉积物放入厌氧瓶中,然后加入24 mL、125 mmol/L NaCl和1.5 mmol/L CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。混合溶液离子强度约为130 mmol/L,Na/Ca0.5比值约为102,pH值为7.6。为保证沉积物颗粒与溶液均匀混合,超声15 min后放入150 r/min的恒温振荡箱中。取样间隔为1 h、3 h、5 h、7 h、10 h、14 h、20 h、28 h、36 h、48 h和60 h。取样之前保证溶液混合均匀,每次取样量为2 mL,用0.22 μm过滤器过滤到2 mL离心管中,放入4℃冰箱中保存,一周之内完成测试工作。

    (2)pH对解吸附影响的实验

    控制Na/Ca0.5(M/M)比值约为102和离子强度约为130 mmol/L,探究不同pH值对沉积物中砷解吸附的影响。将Na/Ca0.5比值为102的NaCl和CaCl2的混合溶液分装为5份,并将溶液pH值分别调到5.4、6.7、7.6、8.6和9.6。在5个厌氧瓶中,分别称取0.6g新鲜沉积物,并加入24 mL不同pH值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。

    (3)反离子效应对砷解吸附影响的实验

    控制离子强度为(130±5)mmol/L,通过改变NaCl和CaCl2的浓度来改变Na/Ca0.5比值(表2)。在7个厌氧瓶中,分别称取0.6 g新鲜沉积物,并分别加入24 mL不同Na/Ca0.5比值梯度的NaCl和CaCl2的混合溶液,用橡胶塞封闭,整个过程在厌氧箱中操作,设置3个平行样。所有加入沉积物和混合溶液的厌氧瓶,超声15 min后放入150 r/min的恒温振荡箱中。60 h后取样,用0.22 μm过滤器过滤到离心管中,放入4℃冰箱中保存,一周之内完成测试工作。

    表  2  离子强度为(130±5)mmol/L条件下,不同浓度NaCl和CaCl2混合液的Na/Ca0.5(M/M)比值
    Table  2.  Na/Ca0.5(M/M) ratio of the mixed solution of different concentrations of NaCl and CaCl2 under the condition of ionic strength of about (130±5) mmol/L
    NaCl/(mmol/L)CaCl2/(mmol/L)Na/Ca0.5
    2430.3
    5420.7
    10401.6
    30355.0
    602313
    110742
    1251.5102
    下载: 导出CSV 
    | 显示表格

    研究区的山前冲洪积扇区钻孔K02和平原区钻孔K01沉积物的岩性特征如图2所示。钻孔K02沉积物的组成是从粗砂到黏土,而钻孔K01主要从中砂到黏土。对于钻孔K02,14 m以上的沉积物主要由砂质黏土和粉质黏土组成,14~42 m主要以砂质含水层为主。在42~44 m存在约2 m厚的黏土层,42 m以下主要以砂质含水层为主同时伴有砂质黏土互层(图2a)。与钻孔K02不同,位于平原区的钻孔K01沉积物颗粒整体较细且含有大量的黏土互层。其中,8 m以上主要以黏土为主,8~40 m则主要以砂质含水层为主并且常常伴有砂质黏土互层,40~42 m出现黏土层,42 m以下为颗粒较细的细砂含水层,这个研究结果与Shen et al.(2018)一致。总体来看,研究区近表层沉积物主要以粉质黏土为主,地表以下10~40 m是砂质含水层,地表以下40 m处存在1~2 m厚的相对连续的黏土层将40 m以上和约42 m以下的含水层隔开。

    图  2  钻孔K02(a)和钻孔K01(b)的沉积物岩性、含水率以及电导率随深度的变化
    Figure  2.  Plots of sediment lithology, moisture content, and electrical conductivity along depth in boreholes K02 (a) and K01(b)

    沉积物的色度特征能够指示沉积物的氧化还原环境和铁氧化物的还原程度(Horneman et al., 2004)。钻孔K02和K01沉积物色度随深度的变化均是由浅黄色变为深灰色,说明深部含水层处于一个相对还原的环境当中,铁氧化物的还原程度也较强。而从整体来看,两个钻孔的色度特征有较大差异,相对于钻孔K02,钻孔K01的沉积物色度更深,这可能是因为平原沉积物颗粒较细,含水层处于更封闭的还原环境,铁锰氧化物的还原程度更强(van Geen et al., 2013)。

    沉积物含水率主要受其岩性控制。两个钻孔表层5 m以上沉积物尽管颗粒较细,含水率仍然较低,主要由于其处于非饱和带。而在饱和带,沉积物含水率随深度的变化主要受岩性影响,沉积物岩性颗粒越细,含水率越高。两个钻孔沉积物电导率在近地表较高(图2),主要是因为研究区为干旱半干旱气候,蒸发蒸腾作用较强,使得近地表沉积物含有大量的可溶盐(Yuan et al., 2017)。沿深度随沉积物岩性的变化而波动,沉积物岩性越细,电导率越大,这是由于颗粒较细的黏土颗粒表面有大量可交换的离子。此外,由于钻孔K01位于平原区,沉积物颗粒整体较细且地下水水位埋深较浅蒸发作用强,导致其沉积物电导率(均值为395 μS/cm)大于钻孔K02(均值为308 μS/cm)。

    研究区沉积物中0~10 m、40~45 m和75~80 m含水层位的Ca和Sr的含量明显高于其他含水层(图3)。微量元素As、Fe和Mn也有相似的分布特征。沉积物的岩性特征表明,10 m以上的沉积物主要以黏土和粉质黏土为主,40~45 m是不连续的黏土层,而75~80 m也是颗粒较细的黏土层。对比钻孔的黏土层和砂层沉积物的地球化学特征发现,K02钻孔黏土层沉积物Ca含量中值为53.6 mg/g,而砂层沉积物Ca含量中值为33.0 mg/g;K01钻孔中两者中值分别为48.3 mg/g和31.6 mg/g。黏土层和砂层沉积物中微量元素的含量差异更为明显,K02钻孔黏土层沉积物As含量中值为17.6 μg/g,而砂层沉积物As含量中值为8.6 μg/g;K01钻孔中两者中值分别为20.1 μg/g和7.9 μg/g。这主要是因为砂层沉积物中富含石英,含Ca和Sr矿物的含量低于黏土层(李晓峰,2018)。其次是因为黏土层表面吸附能力强,能够吸附As、Fe和Mn等微量元素(崔邢涛等,2015)。

    图  3  沉积物中Ca、Sr、As、Fe和Mn含量沿垂向的分布规律
    Figure  3.  Vertical distributions of Ca, Sr, As, Fe and Mn in sediments

    两个钻孔沉积物的地球化学特征也有一定的差异。普遍表现为钻孔K02的Ca、Sr、As、Fe和Mn含量大于钻孔K01,且在深层沉积物中表现更为明显(图3)。钻孔K02沉积物中Ca的含量范围为12.2~86.9 mg/g,平均值为37.9 mg/g,钻孔K01沉积物中Ca的含量范围为9.6~68.7 mg/g,平均值为35.7 mg/g。K02钻孔沉积物中As的浓度范围为4.6~33.1 μg/g,平均值13.1 μg/g;K01钻孔沉积物中As的浓度范围为5.3~34.0 μg/g,平均值12.9 μg/g,表明冲洪积扇边缘地区沉积物总As的含量略大于平原区。两个钻孔沉积物中Fe和Mn含量的差异更为明显,钻孔K02沉积物中Fe的含量比K01高13.7%,其Mn的含量比K01高14.1%。这主要是由于钻孔K01位于平原区,沉积物经历了更强的风化作用,且积物颗粒整体较细,地下水流速慢,水岩作用强烈,有利于沉积物中化学组分向地下水中释放(张文凯等,2020)。此外,平原区含水层较为封闭,沉积物的色度特征也表明含水层长期处于较为还原的环境中,变价微量元素被还原为较低价态,易于向地下水中迁移。因此,钻孔K02和K01沉积物地球化学的微小差异主要受沉积环境和水动力条件控制。

    山前冲洪积扇的含水层的沉积物岩性主要以中砂、细砂和黏土为主,平原区含水层的沉积物则以细砂、粉砂和黏土为主。因此,本研究从钻孔K02和K01各选取3个不同岩性的代表性沉积物用于分步提取实验(SEP)(表3)。实验过程选用GBW07303和GBW07305作为标准样品检验回收率,结果表明:对于GBW07303不同状态As的提取实验的回收率分别为81%,GBW07305不同状态As的提取实验的回收率分别为88%。分步提取实验获取的7种形态砷的总和与XRF测得的总固相砷的相对偏差均小于10%。

    表  3  用于分步提取的沉积物信息
    Table  3.  Sediment information for SEP
    编号 岩性 采样深度/m
    K02−M 中砂 38.35
    K02−F 细砂 62.25
    K02−C 黏土 41.95
    K01−F 细砂 55.15
    K01−S 粉砂 30.95
    K01−C 黏土 37.85
    下载: 导出CSV 
    | 显示表格

    分步提取结果表明,K02钻孔中砂、细砂和黏土沉积物固相砷主要以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷(F4)为主,占比分别为33%、40%和43%(图4a、b、c)。其次是结晶态铁氧化物或氢氧化物结合态(F5)和强吸附态砷(F2)。砂层沉积物中与无定形态铁氧化物或氢氧化物结合的固相砷(F3)占比大于与硅酸盐结合的砷(F6),前者占比均大于10%,后者均小于5%,而黏土沉积物中两者的占比分别为7%和12%。最容易释放到地下水中的弱吸附态砷(F1)和最顽固的与硫化物和有机质共沉淀的固相砷(F7)占比较小,均低于5%。钻孔K01细砂沉积物的固相砷以F4为主(35%),其次分别是F2(32%)和F6(16%)(图4d)。粉砂和黏土沉积物则以F2为主(分别为43%和40%),其次以F4为主(分别为12%和18%);两个沉积物中F3所占的比例均超过10%(图4e、f)。细砂、粉砂和黏土沉积物中F1和F7均小于5%。

    图  4  K02−M(a)、K02−F(b)、K02−C(c)、K01−F(d)、K01−S(e)和K01−C(f)沉积物中As的赋存形态以及不同形态所占的比例
    Figure  4.  Occurrence forms of As and the proportion of different forms in sediments of K02−M(a), K02−F(b), K02−C(c), K01−F(d), K01−S(e) and K01−C(f)

    对比山前冲洪积扇的钻孔K02和平原区的钻孔K01发现,前者沉积物中固相砷主要以F4为主,后者则主要以F2为主。钻孔K02黏土沉积物中F4达到11.3 μg/g,明显高于K01的4.6 μg/g。而钻孔K02黏土沉积物中F2仅有5.8 μg/g,低于钻孔K01的10.3 μg/g(图4c、f)。钻孔K01砂层沉积物中的F2也明显大于K02。此外,平原区沉积物的F3含量也大于山前冲洪积扇沉积物。这说明平原区沉积物经历更强的风化侵蚀作用后,固相砷活性增强,向更具迁移性的吸附态和完全无定形铁氧化物或氢氧化物结合态转化。大量研究表明吸附态的砷迁移性较强,通过竞争解吸附或者弱碱条件下的解吸附,更容易释放到地下水中,而无定形态铁氧化物或氢氧化物结合态砷相对稳定,需要通过还原性溶解才能释放到地下水中(Smedley and Kinniburgh, 2002)。这也解释了为何平原区地下水砷浓度普遍高于山前冲洪扇的地下水(李晓峰,2018; Zhang et al., 2020)。除了含水层沉积物本身物源的影响,含水层所处的环境和地下水的化学特征也会影响砷的解吸附。

    以往的研究表明,研究区地下水pH和Na/Ca0.5(M/M)与砷浓度均有较好的正相关关系(Zhang et al., 2020),因此,本研究选取钻孔K02和K01的沉积物(表3),分别探讨了pH和Na/Ca0.5(M/M)对砷解吸附的影响。动力学实验结果表明,在pH为7.6、离子强度为130 mmol/L和Na/Ca0.5比值为102的条件下,砷解吸附能够48 h时基本达到平衡(图5a)。为确定砷解吸附达到平衡,实验设定反应时间为60 h。

    图  5  砷解吸附的累积值随时间的变化(a)、不同pH条件下砷解吸附量(b)及不同Na/Ca0.5比值条件下砷解吸附量(c)
    Figure  5.  Variation of the accumulation of arsenic desorption with time (a), the amount of arsenic desorption under different pH conditions (b), the amount of arsenic desorption under different Na/Ca0.5 ratioconditions(c)

    实验设定离子强度为130 mmol/L,Na/Ca0.5比值为102。pH条件分别设定为5.4、6.7、7.6、8.6和9.6。当pH为5.4时,K02−F和K01−F沉积物释放的砷占总吸附砷的比值分别为0.54和0.44;当pH升高至6.7时,砷释放量所占总吸附砷比值分别降为0.32和0.30(图5b),这可能是因为较低的pH可能使铁氧化物发生少量溶解导致砷的释放。pH从6.7上升至8.6的过程中,沉积物砷的释放量并没有明显增加,仅上升0.03左右。而pH由8.6上升至9.6,沉积物砷的释放量显著增加,释放量上升0.15。这是由于随着pH升高沉积物颗粒表面带负电荷,与含砷阴离子形成静电斥力导致吸附态的砷发生解吸附,进入水溶液中(Masue et al., 2007)。

    许多学者认为,沉积物颗粒表面存在扩散双电子层(Dzombak and Morel, 1990; 刘新敏,2014),相比于以Na+为主的地下水系统,以Ca2+为主的地下水系统能够导致带负电的沉积物颗粒表面与带负电的含砷弱阴离子之间的斥力减小,有利于砷的吸附,这种现象被称为反离子效应(Masue et al., 2007; Fakhreddine et al., 2015)。当水中离子强度一定时,带有两个正电荷Ca2+被单电荷Na+替换时,即Na/Ca0.5比值增加时,这种反离子效应就会减弱,促进吸附态的砷释放到地下水中。

    实验过程中保持pH和离子强度不变,通过调节溶液中Na+和Ca2+浓度改变Na/Ca0.5比值。结果表明,砷解吸附的量随Na/Ca0.5比值的增加而增加(图5c)。当Na/Ca0.5比值为0.3时,K02−F和K01−F沉积物砷的解吸附量占总吸附态砷的比值分别为0.12和0.11。而当Na/Ca0.5比值增加到102时,K02−F沉积物砷的解吸附量占总吸附态砷的比值能够达到0.37,在K01−F沉积物中这一比值为0.47。

    河套盆地是中国的塞上粮仓,对水资源的需求较大。研究区地势较高,引黄河入河套盆地并难以满足居民的农业和生活需求,因此,居民普遍开采地下水用于农业灌溉和日常生活,这虽然解决水量的问题,却忽视了原生劣质地下水的危害。根据国家《生活饮用水卫生标准》(GB 5749—2022)和《地下水质量标准》(GB/T14848—2017),砷浓度大于10 μg/L的地下水为高砷地下水,摄入后对人体有害。以往的研究发现高砷地下水主要集中在平原区,浓度高达857 μg/L(Guo et al., 2008)。本研究发现,山前冲洪积扇区的含水层沉积物固相砷相对稳定,而平原区的含水层沉积物固相砷迁移性相对较强,且平原区沉积物吸附态砷在弱碱性和高Na/Ca0.5摩尔比值条件下,容易向地下水迁移,导致砷的富集。因此,当地居民种植农作物时避免使用碱性复合肥,从而减少碱性水的向下补给。此外,生活污水中Na+较高,建议适当处理后排放。用于日常生活的地下水,建议采用混凝沉淀或吸附法降砷。

    山前冲洪积扇区含水层处于相对氧化的环境中,其沉积物以细砂和中粗砂为主,而平原区含水层处于封闭的还原环境中,沉积物以粉细砂为主。两者沉积物总固相砷含量相差不大,但固相砷的赋存形态差别较大。山前冲洪积扇区含水层沉积物固相砷以与可挥发硫化物、碳酸盐、锰氧化物和完全无定形态的铁氧化物或氢氧化物共存的砷为主(33%~43%),平原区含水层沉积物固相砷则以强吸附态砷为主(32%~43%),后者沉积物的中固相砷迁移性更强,容易通过解吸附释放到地下水中。此外,当pH值由6.1上升到9.6时,山前和平原区沉积物解吸附砷占总吸附砷的比值分别上升0.16和0.22。同时,Na/Ca0.5摩尔比值的增加,会导致反离子效应减弱,比值由0.3增加到102时,山前沉积物和平原区解吸附砷占总吸附砷的比值分别上升0.26和0.36。可见含水层中pH的升高和Na/Ca0.5摩尔比值的增加,都会促使沉积物中的砷发生解吸附,导致地下水中砷的富集。因此,当地居民应减少碱性以及富含Na+的生产生活用水的排放,同时平原区用于日常生活的地下水,建议当地居民采用混凝沉淀或吸附法降砷。

    致谢: 感谢中国地质调查局成都地质调查中心王永华教授级高级工程师、张建龙教授级高级工程师、焦彦杰教授级高级工程师、张伟正高级工程师、李华正高级工程师、张志副研究员、梁维副研究员、曹华文副研究员、陈敏华高级工程师、李应栩副研究员和黄勇工程师,中国地质调查局应用地质调查中心黄勇研究员,成都理工大学杨武年教授、李佑国教授、何政伟教授,中国地质大学(武汉)刘文浩副教授、高顺宝副教授,中国地质大学(北京)张振杰副教授,以及多年来参加中国地质调查局青藏高原地质大调查项目的众多科技人员对本论文数据的支持和论文撰写的指导。
  • 图  1   冈底斯成矿带地质简图(a据刘洪等, 2019a, b, 2020a; b据刘洪等, 2019c, 2020b

    GS—甘孜—松潘地块; JSS—金沙江缝合带; QT—羌塘地块;BNS—班公湖—怒江缝合带;LS—拉萨地块;YZS—印度河—雅鲁藏布江缝合带;HM—喜马拉雅地块;ABT—昂龙岗日—班戈—腾冲岩浆弧带;SSZ—狮泉河—纳木错蛇绿混杂岩带;CS—措勤—申扎岩浆弧带;LC—隆格尔—措麦断裂带;LG—隆格尔—工布江达复合岛弧带;LMF—洛巴堆—米拉山断裂带;LGX—拉达克—南冈底斯岩浆弧带

    Figure  1.   Mineral geological map of the Gangdise metallogenic belt (a, modified from Liu Hong et al., 2019a, b, 2020a; b, modified from Liu Hong et al., 2019c, 2020b)

    GS-Ganzi-Songpan block; JSS-Jinshajiang suture zone; QT-Qiangtang block; BNS-Bangong-Nujiang suture zone; LS-Lhasa block; YZS-Indus-Yarlung Zangbo suture zone; HM-Himalayan Block; ABT-Anglonggangri-Bange Tengchong-magmatic arc zone; SSZ-Shiquanhe-Namtso suture zone; CS-Coqên-Xainza magmatic arc zone; LC-Lunggar-Comai fracture zone; LG-Lunggar-Gongbo'gyamda composite island arc zone; LMF-Lobadui-Milashan fracture zone; LGX-Ladakh-South Gangdise magmatic arc zone

    图  2   随机森林模型示意图

    Figure  2.   Schematic diagram of random forest model

    图  3   受试者工作特征曲线(ROC)示意图

    Figure  3.   Schematic diagram of receiver operating characteristic curve(ROC)

    图  4   冈底斯成矿带西段地质矿产图(据黄瀚霄等,2019修改)

    1—新近纪花岗岩类;2—古近纪花岗岩类;3—白垩纪花岗岩类;4—侏罗纪花岗岩类;5—三叠纪花岗岩类;6—林子宗群火山岩;7—蛇绿岩;8—铜矿床(点);9—铜金矿床(点);10—铜钼矿床(点);11—金矿床(点);12—银金矿床(点);13—铁矿;14—铅锌矿床(点);15—构造边界;16—湖泊;17—研究区范围;构造单元代码同图 1

    Figure  4.   Mineral geological map of the western Gangdise metallogenic belt (modified from Huang Hanxiao et al., 2019)

    1-Neogene granitoids; 2-Paleogene granitoids; 3-Cretaceous granitoids; 4-Jurassic granitoids; 5-Triassic granitoids; 6-Linzizong Group volcanic rocks; 7-Ophiolites; 8-Copper deposit (point); 9-Copper gold deposit (point); 10-Copper molybdenum deposit (point); 11-Gold deposit (point); 12-Silver gold deposit (point); 13-Iron deposit; 14-Lead zinc deposit (point); 15-Structural boundary; 16-Lake; 17-Scope of study area; The geotectonic elements code is the same as Fig. 1

    图  5   冈底斯成矿带西段地质构造与成矿演化(据黄瀚霄等, 2019修改)

    Figure  5.   Summary of the geotectonic and metallogenic evolution of the western Gangdise metallogenic belt (modified from Huang Hanxiao et al., 2019)

    图  6   冈底斯成矿带西段卫星重力等值图(据加州大学公开数据编制)

    (矿产图例同图 4;构造单元代码同图 1

    Figure  6.   The satellite gravity isogram map of the western Gangdise metallogenic belt(after the University of California public data)

    (The mineral legend is the same as Fig. 4; The geotectonic elements code is the same as Fig. 1)

    图  7   冈底斯成矿带西段卫星重力小波分析细节图(据加州大学公开数据编制)

    (a、b、c、d说明见正文;矿产图例同图 4

    Figure  7.   The detail maps of satellite gravity wavelet analysis of the western Gangdise metallogenic (after the University of California public data)

    (The description of Fig. 7 a, b, c, d is seen in the tex; The mineral legend is the same as Fig. 4)

    图  8   冈底斯成矿带西段航磁△T化极异常图(据中国自然资源航空物探遥感中心公开数据编制)

    (矿产图例同图 4;构造单元代码同图 1

    Figure  8.   The aeromagnetic △T pole isogram map of the western Gangdise metallogenic belt (after the AGRS public data)

    (The mineral legend is the same as Fig. 4; The geotectonic elements code is the same as Fig. 1)

    图  9   冈底斯成矿带西段航磁△T化极小波分析细节图(据中国自然资源航空物探遥感中心公开数据编制)

    (a、b、c、d说明见正文;矿产图例同图 4

    Figure  9.   The detail maps of aeromagnetic △T pole wavelet analysis of the western Gangdise metallogenic belt (after the AGRS public data)

    (The description of Fig. 9 a, b, c, d seen in the text; The mineral legend is the same as Fig. 4)

    图  10   冈底斯成矿带西段航磁△T化极磁异常推断岩体分布图

    (矿产图例同图 4;构造单元代码同图 1

    Figure  10.   The distribution map of inferred rock mass based on △T pole abnormal in the western Gangdise metallogenic belt

    (The mineral legend is the same as Fig. 4; The geotectonic elements code is the same as Fig. 1)

    图  11   冈底斯成矿带西段地球化学元素聚类分析图

    Figure  11.   Cluster analysis chart of geochemical elements in the western Gangdise metallogenic belt

    图  12   冈底斯成矿带西段旋转后因子载荷图

    Figure  12.   Component plot in rotated space of geochemical elements in the western Gangdise metallogenic belt

    图  13   冈底斯成矿带西段地球化学图(a, b)与因子得分等值线图(c, d)

    (矿产图例同图 4

    Figure  13.   Geochemical maps (a, b) and factor score isogram maps (c, d) in the western Gangdise metallogenic belt

    (The mineral legend is the same as Fig. 4)

    图  14   冈底斯成矿带西段地球化学分区图

    (矿产图例同图 4;构造单元代码同图 1

    Figure  14.   Geochemical subdivisions map in the western Gangdise metallogenic belt

    (The mineral legend is the same as Fig. 4; The geotectonic elements code is the same as Fig. 1)

    图  15   冈底斯成矿带西段遥感找矿信息图

    (a、b、c、d说明见正文;矿产图例同图 4

    Figure  15.   Remote sensing prospecting information maps in the western Gangdise metallogenic belt

    (The description of Fig. 15 a, b, c, d is seen in the text; The mineral legend is the same as Fig. 4)

    图  16   冈底斯成矿带西段遥感综合找矿信息图

    (构造单元代码同图 1;矿产图例同图 4

    Figure  16.   Remote sensing comprehensive prospecting information map in the western Gangdise metallogenic belt

    (The geotectonic elements code is the same as Fig. 1; The mineral legend is the same as Fig. 4)

    图  17   冈底斯成矿带西段数据集成矿单元数量(a)和训练子集成矿单元数量(b)对比

    Figure  17.   The comparison of the ore units amountin data set uni (a) and the ore units amount in training subset unit (b) in the western Gangdise metallogenic belt

    图  18   冈底斯成矿带西段预测数据集在不同模型下的ROC曲线

    Figure  18.   ROC curves of the data set under different models in the western Gangdise metallogenic belt

    图  19   冈底斯成矿带西段后验概率等值图

    (矿产图例同图 4;构造单元代码同图 1

    Figure  19.   The isogram map of posterior probability in the western Gangdise metallogenic belt

    (The mineral legend is the same as Fig. 4; The geotectonic code is the same as Fig. 1)

    图  20   冈底斯成矿带西段矿集区单元格与已知矿点后验概率对图

    Figure  20.   The comparison of posterior probabilities for unit gridsto known ore spots in the western Gangdise metallogenic belt

    图  21   冈底斯西段与斑岩系统有关的铜多金属矿找矿预测图

    (矿产图例同图 4;构造单元代码同图 1

    Figure  21.   The prospecting prediction map for the copper polymetallic deposits related to porphyry system in the western Gangdise metallogenic belt

    (The mineral legend is the same as Fig. 4; The geotectonic elements code is the same as Fig. 1)

    表  1   找矿预测分类结果混淆矩阵

    Table  1   Confusion matrix of classification results of prospecting prediction

    下载: 导出CSV

    表  2   冈底斯西段地球化学元素相关系数矩阵

    Table  2   The correlation coefficient matrix of geochemical elements in the western Gangdise metallgenic belt

    下载: 导出CSV

    表  3   冈底斯成矿带西段找矿预测基础变量

    Table  3   Basic variables for prospecting prediction in the western Gangdise metallogenic belt

    下载: 导出CSV

    表  4   冈底斯成矿带西段预测模型结果评估表

    Table  4   Evaluation table of prediction model results in the western Gangdise metallogenic belt

    下载: 导出CSV

    表  5   冈底斯西段与斑岩系统有关的铜多金属矿找矿远景区特征表

    Table  5   Characteristics of prospecting areas for the copper polymetallic deposits related to porphyry system in the western Gangdise metallogenic belt

    下载: 导出CSV
  • Andreoletti G, Lanata C M, Trupin L, Paranjpe I, Jain T S, Nititham J, Taylor K E, Combes A J, Maliskova L, Ye C J, Katz P, Dal E M, Yazdany J, Criswell L A, Sirota M. 2021. Transcriptomic analysis of immune cells in a multi-ethnic cohort of systemic lupus erythematosus patients identifies ethnicity-and disease-specific expression signatures[J]. Communications Biology, 488: 4838.

    Asadi S, Roshan S E, Kattan M W. 2021. Random forest swarm optimization-based for heart diseases diagnosis[J]. Journal of biomedical informatics, 115(24): 103690.

    Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Biancale R, Gabalda G, Reinquin F, Sarrailh M. 2012. World Gravity Map[M]. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNES-IRD, Paris.

    Cai Huihui, Zhu Wei, Li Muxuan, Liu Yuanyuan, Li Longbin, Liu Chang. 2019. Prediction method of tungsten-molybdenum prospecting target area based on deep learning[J]. Journal of Geo-Information Science, 21(6): 928-936.

    Chen Jin, Mao Xiancheng, Liu Zhankun Deng Hao. 2020. Three-dimensional metallogenic prediction based on random forest classification algorithm for the Dayingezhuang gold deposit[J]. Geotectonica et Metallogenia, 44(2): 231-241 (in Chinese with English abstract).

    Chen Xin, Zheng Youye, Gao Sunbao, Wu Song, Jiang Xiaojia, Jiang Junsheng, Cai Pengjie, Lin Cheng'gui. 2020. Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny[J]. Gondwana Research, 85: 103-123. doi: 10.1016/j.gr.2020.04.006

    Cheng Qiuming. 2007. Singularity-generalized self-similarity-fractal spectrum (3S) models[J]. Earth Science——Journal of China University of Geosciences, 14(5): 1-10 (in Chinese with English abstract).

    Cutler D R, Jr Edwards T C E., Beard K H, Hess K T. 2007. Random forests for classification in ecology[J]. Ecology, 88(11): 2783-2792. doi: 10.1890/07-0539.1

    Dai Jingjing, Qu Xiaoming, Xin Hongbo, 2010. Extraction of alteration mineral information using ASTER remote sensing data in Duolong area, Tibet, China[J]. Geological Bulletin of China, 9(5): 752-759 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.05.016

    El B H, Rahouti M., El B M. 2021. Identification of SARS-CoV-2 origin: using Ngrams, Principal Component Analysis and Random Forest Algorithm[J]. Informatics in Medicine Unlocked, 24: 100577. doi: 10.1016/j.imu.2021.100577

    Fang Kuangnan, Wu Jianbin, Zhu Jianping, Xie Bangchang. 2011. A review of technologies on random forests[J]. Statistics & Information Forum, 26(3): 32-38 (in Chinese With English abstract).

    Fouedjio F. 2020. Exact conditioning of regression random forest for spatial prediction[J]. Artificial Intelligence in Geosciences, 1: 11-23. doi: 10.1016/j.aiig.2021.01.001

    Gao Shunbao. 2015. Copper-iron Polymetal Metallogenic Regularity and Election of Targeet Areas in the Western of Gangdis Metallogenic Belt, Tibet[D]. Wuhan: China University of Geosciences (Wuhan), 1-110 (in Chinese with English abstract).

    Geng Quanru, Li Wengchang, Wang Li, Zeng Xiangting, Peng Zhimin, Zhang Xiangfeng, Zhang Zhang, Cong Feng, Guan Junlei. 2021. Paleozoic tectonic framework and evolution of the central and western Tethys[J]. Sedimentary Geology and Tethyan Geology, 41(2): 297-315 (in Chinese with English abstract)

    Han Shanchu, Jiang Yao, Pan Jiayong, Wan Hong, Huang Tianyu. 2021. Isotopic geochemical characteristics of Yuejingou copper deposit in Gangdise metallogenic belt, Tibet[J]. Journal of East China Institute of Technology (Natural Science Edition), 44(5): 423-432.

    Hardeep S R, Naresh K, Prabha G. 2022. Machine learning-based modeling to predict inhibitors of acetylcholinesterase[J]. Molecular Diversity, 26(1): 331-340. doi: 10.1007/s11030-021-10223-5

    Hou Zengqian, Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue[J]. Ore Geology Reviews, 36: 2-24. doi: 10.1016/j.oregeorev.2009.05.001

    Huang Faming, Ye Zhou, Yao Chi, Li Yuanyao, Yin Kunlong, Huang Jinsong, Jiang Qinghui. 2020. Uncertainties of landslide susceptibility prediction: Different attribute interval divisions of environmental factors and different data based models[J]. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).

    Huang Hanxiao, Li Guangming, Liu Hong, Zhang Hongming, Zhang Linkui, Yu Huai, Jiao Yanjie, Liang Wei. 2018. An low sulfide epithermal gold-silver polymetallic deposit newly discovered in the western section of the Gangdise metallogenic belt[J]. Geology in China, 45(3): 628-629 (in Chinese with English abstract).

    Huang Hanxiao, Li Guangming, Liu Hong, Zhang Linkui, Cao Huawen, Zhou Qing, Wang Xinxin, Yan Guoqiang. 2019. Zircon U-Pb, molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits, Tibet, China: Implications for the oligocene-miocene porphyry-epithermal metallogenic system[J]. Minerals, 9(8): 476-491. doi: 10.3390/min9080476

    Huang Hanxiao, Zhang Linkui, Liu Hong, Li Guangming, Huang Yong, Lan Shuangshuang, Lü Menghong. 2019. Major types, mineralization and potential prospecting areas in western section of the Gangdise metallogenic belt, Tibet[J]. Earth Science, 44(6): 1876-1887 (in Chinese With English abstract).

    Huang Yong, Li Guangming, Ding Jun, Dai Jie, Yan Guoqiang, Dong Suiliang, Huang Hanxiao. 2017. Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan plateau, SW China[J]. Acta Geologica Sinica (English edition), 91(1): 109-134. doi: 10.1111/1755-6724.13066

    Huang Yong, Ren Minghua, Liang Wei, Li Guangming, Heilbronn K., Dai Zuowen, Wang Yiyun, Zhang Li. 2020. Origin of the oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet[J]. China Geology, 3: 369-384.

    Huang Yonggao, Han Fei, LI Yingxu, Jia Xiaochuan, Yang Xuejun, Li Guangming, Yang Qingsong. 2020. The discovery of Early Jurassic volcanism in the Nanmulin Basin, Tibet: Constraints from zircon U-Pb age[J]. Geology in China, 47(4): 1266-1267(in Chinese with English abstract).

    Lang Xinghai, Guo Wenbo, Wang Xuhui, Deng Yulin, Yang Zongyao, Xie Fuwei, Li Zhuang, Zhang Zhong, Jiang Kai. 2019. Petrogenesis and tectonic implications of the ore-bearing porphyries in the Xiongcun district: Constraints from the geochronology and geochemistry[J]. Acta Petrologica Sinica, 35(7): 2105-2123 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.10

    Lang Xinhai, Deng Yulin, Wang Xuhui, Tang Juxing, Xie Fuwei, Yang Zongyao, Yin Qing, Jiang Kai. 2020. Reduced fluids in porphyry copper-gold systems reflect the occurrence of the wall-rock thermogenic process: An example from the No. 1 deposit in the Xiongcun district, Tibet, China[J]. Ore Geology Reviews, 118: 103-212.

    Langroodi A K, Vahdatikhaki F, Doree A. 2021. Activity recognition of construction equipment using fractional random forest[J]. Automation in Construction, 122: 103465. doi: 10.1016/j.autcon.2020.103465

    Leo B. 2001. Random forests[J]. Mach Learn, 45(1): 5-32. doi: 10.1023/A:1010933404324

    Li Cangbai, Xiao Keyan, Li Nan, Song Xianglong, Zhang Shuai, Wang Kai, Chu Wenkai, Cao R. 2020. Comparative study of support vector machine, random forest and artificial neural Network machine learning algorithms ingeochemical anomaly information extraction[J]. Acta Geoscientia Sinica, 41(2): 309-319.

    Li Guangming, Pan Guitang, Wang Gaoming, Huang Zhiming, Gao Dafa. 2004. Evaluation and prospecting value of mineral resources in Gangdise metallogenic belt, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 22-27 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2004.01.004

    Li Guangming, Zhang Linkui, Zhang Zhi, Xiao Xiangbiao, Liang Wei, Hou Chunqiu. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau[J]. Sedimentary Geology and Tethyan Geology, 41(2): 351-360.

    Li Jinghui. 2008. Metallogenic systems and regularity of porphyry-type molybdenum deposit in Dabieshan mountain[J]. Journal of East China Institute of Technology (Natural Science Edition), 31(1): 25-30.

    Lin Jinxiang, Qin Kezhang, Lin Guangming, Lin Jindeng, Xiao Bo, Jiang Huazhai, Han Fengjie, Huang Shufeng, Chen Lei, Zhao Junxing. 2001. Zircon U-Pb geochronology and garnet composition of the Qiangdui Cu-Mo deposit in the eastern section of Gangdese and their significances[J]. Geology and Prospecting, 47(1): 11-19 (in Chinese with English abstract).

    Liu Hong, Huang Hanxiao, Li Guangming, Li Wenchang, Li Youguo, Ma Dongfang, Huang Yong, Zhou Qing, and Fu Jiangang. 2022a. Petrogenesis of the Early Cretaceous Xiabie Co I-type granite in southern Qiangtang, Tibet (Xizang), China: Evidences from whole-rock geochemistry, Rb-Sr, Sm-Nd, and Pb isotopes, and LA-ICP-MS zircon U-Pb ages and Lu-Hf isotopes[J]. Acta Geologica Sinica (English edition), 96(3): 919-937. doi: 10.1111/1755-6724.14777

    Liu Hong, Huang Hanxiao, Li Guangming, Li Wenchang, Zhang Linkui, Lan Shuangshuang, Lü Menghong, Song Wenjie. 2022b. Subduction-related Late Triassic Luerma porphyry copper deposit, western Gangdese, Tibet, China: Evidence from geology, geochemistry, and geochronology[J]. Ore Geology Reviews, 154: 105253. doi: 10.1016/j.oregeorev.2022.105253.

    Liu Hong, Huang Hanxiao, Li Guangming, Xiao Wanfang, Zhang Zhilin, Liu Bo, Ma Dongfang, Dong Lei, Ma Dong. 2015. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet[J]. Geology in China, 42(4): 1126-1136 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.04.026

    Liu Hong, Huang Hanxiao, Ouyangyuan, Zhang Jinghua, Zhang Tengjiao, Li Fu, Xiao Qiliang, Zeng Jian, Hou Qian, Wen Dengkui, Duan Shengyi. 2020a. Soil's geologic investigation in Daliangshan, Xichang, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 40(1): 91-105 (in Chinese with English abstract).

    Liu Hong, Huang Hanxiao, Zhang Linkui, Li Guangming, Lü Menghong, Yan Guoqiang, Huang Yong, Lan Shuangshuang, Xie Hui. 2019b. Origin and evolution of ore-forming fluids in Luerma porphyry copper deposit from the western Gangdise[J]. Earth Science, 44(6): 1935-1956 (in Chinese With English abstract).

    Liu Hong, Huang Hanxiao, Li Guangming, Zhang Linkui, Ouyang Yuan, Xiang Anping., Huang Yong, Lü Menghong, Lan Shuangshuang. 2021a. Luerma, a newly discovered Late Triassic porphyry copper-gold ore spot in the western Gangdise metallogenic belt, Tibet[J]. Sedimentary Geology and Tethyan Geology, 40(6): 569-581 (in Chinese with English abstract).

    Liu Hong, Li Guangming, Huang Hanxiao, Zhang Linkui, Lü Menghong, Lan Shuangshuang, Xiehui. 2019a. The discovery of the Late Triassic porphyry type Cu deposit from Gangdise metallogenic belt, Tibet[J]. Geology in China, 46(5): 1238-1240 (in Chinese with English abstract).

    Liu Hong, Li Guangming, Li Wenchang, Huang Hanxiao, Li, Youguo, Ouyang, Yuan, Zhang, Xiangfei, Zhou Qing. 2022. Petrogenesis and tectonic setting of the Late Early Cretaceous Kong Co A-type granite in the northern margin of Central Lhasa subterrane, Tibet[J]. Acta Petrologica Sinica, 38 (1): 230-252 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.01.15

    Liu Hong, Li Guangming, Li Wenchang, Zhang Jinghua, Huang Hanxiao, Li Youguo, Zhang Zhilin, Zhang Tengjiao. 2021b. Epithermal mineralization at the Budongla gold deposit, in Zhongba, Tibet: Evidences from Fluid Inclusions and H-O Isotopes[J]. Mineral Deposits, 40(2): 311-328 (in Chinese With English abstract).

    Liu Hong, Li Guangming, Zhang Zhilin, Huang Hanxiao, Xiao Wanfeng. 2014b. Geochemical analysis of rock debris in Muru Area, Gerze County, Tibet[J]. Metal Mine, 43(11): 105-108 (in Chinese with English abstract).

    Liu Hong, Li Youguo, Li Wenchang, Li Guangming, Ma Dongfang, Ouyang Yuan, Huang Hanxiao, Zhang Zhilin, Li Tong, Wu Junyi, 2022c. Petrogenesis of the late Cretaceous Budongla Mg-rich monzodiorite pluton in the central Lhasa subterrane, Tibet, China: Wholerock geochemistry, zircon U-Pb dating, and zircon Lu-Hf isotopes[J]. Frontiers in Earth Science, 10: 927695. doi: 10.3389/feart.2022.927695

    Liu Hong, Lü Xinbiao, Li Chuncheng, Liu Ge, Shang Shichao, Wang Lin, Zhang Wei, Mao Rongwei. 2013. Metallogenic conditions and ore-searching prospect at depth of the Jincheng gold ore deposit in Luoshan county, Henan province[J]. Geology and Prospecting, 49(2): 265-273 (in Chinese with English abstract).

    Liu Hong, Lü Xinbiao, Yuan Qian, Ke Changshu, Zhu Qiaoqiao, Liu Xiao, Wang Yuqi, Zhang Shanming. 2014a. A study on geology and prospecting potential of Louziwan district of gaoliangdian Fe-Cu deposit, Xinyang area, Henan province, China[J]. Acta Mineralogica Sinica, 34(3): 337-342 (in Chinese with English abstract).

    Liu Hong, Xia Xiangbiao, Huang Hanxiao, Zhang Linkui, Lan Shuangshuang, Lü Menghong, Ai Jinbiao, Xie Hui. 2019c. Geochemical statistics analysis of stream sediment and prospecting potential of Xuexiumaer area in western Gangdese metallogenic belt, Tibet[J]. Journal of Guilin University of Technology, 39(5): 847-855 (in Chinese with English abstract).

    Liu Hong, Zhang Hui, Li Guangming, Huang Hanxiao, Xiao Wanfeng, You Qin, Ma Dongfang, Zhang Hai, Zhang Hong. 2016. Petrogenesis of the Early Cretaceous Qingcaoshan strongly peraluminous S-type granitic pluton, southern Qiangtang, northern Tibet: Constraints from whole-rock geochemistry and zircon U-Pb geochronology[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 848-860 (in Chinese with English abstract).

    Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangmin, Yu Huai, Huang Yong, Liang Wei, Yan Guoqiang, Zhang Hongming, Chen Xiaoping. 2020c. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdise: fluid inclusion and H-O isotope evidence[J]. Earth Science Frontiers, 27(4): 49-65 (in Chinese with English abstract).

    Liu Hong, Zhang Linkui, Huang Hanxiao, Li Guangming, Ouyang Yuan, Lü Menghong, Liu Han, Lan Shuangshuang, Yan Guoqiang, 2019d. Petrogenesis of Late Triassic Luerma monzodiorite in western Gangdise, Tibet, China[J]. Earth Science, 44(7): 2339-2352 (in Chinese with English abstract).

    Liu Weidong, Tang Zhipeng, Xiao Yan, Han Mengyao, Jiang Wanbei. 2019. Identifying the key factors influencing Chinese carbon intensity using machine learning, the random forest algorithm, and evolutionary analysis[J]. Acta Geographica Sinica, 74(12): 2592-2603 (in Chinese with English abstract). doi: 10.11821/dlxb201912012

    Luciano A C D S, Picoli M C A, Duft D G, Rocha J V, Leal M R. L V, Le M G. 2021. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm[J]. Computers and Electronics in Agriculture, 184: 106063. doi: 10.1016/j.compag.2021.106063

    Makungwe M, Chabala L M, Chishala B H, Lark R M. 2021. Performance of linear mixed models and random forests for spatial prediction of soil pH[J]. Geoderma, 379(4): 115079.

    Mao J W, Pirajno F, Lehmann B, Lehman B, Luo M C, Berzina A. 2014. Distribution of porphyry deposits in the eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 79(2): 576-584.

    Milanović S, Marković N, Pamučar D, Gigović L, Kostić P, Milanović S D. 2020. Forest fire probability mapping in eastern Serbia: Logistic Regression versus random forest method[J]. Forests, 12(1): 1-15. doi: 10.3390/f12010001

    Mo Xuanxue, Niu Yaolin, Dong Guochen, Zhao Zhidan, Hou Zengqian, Zhou Su, Ke Shan. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 250(1): 49-67.

    Mpanya D, Celik T, Klug E, Ntsinjana H. 2021. Predicting mortality and hospitalization in heart failure using machine learning: A systematic literature review[J]. IJC Heart & Vasculature, 34: 100773.

    Naeini E Z, Prindle K. 2018. Machine learning and learning from machines[J]. The Leading Edge, 37(12): 886-893. doi: 10.1190/tle37120886.1

    Ni Pei, Chui Zhe, Pan Junyi. 2020. An integrated investigation of ore-forming fluid evolution in porphyry and epithermal deposits and their implication on exploration[J]. Earth Science Frontiers, 27(2): 60-78 (in Chinese with English abstract).

    Ouyang Yuan, Liu Hong, Huang Hanxiao, Li Guangming, Yang Wunian, Xiao Wanfeng, Zhang Zhilin, Ma Chengyi, Ma Buying. 2016. Study on geochemical multivariate statistics analysis and prospecting potential of Shangxu-Daze area in the northern Tibet[J]. Acta Mineralogica Sinica, 36(4): 586-594 (in Chinese with English abstract).

    Ouyang Yuan, Yang Wunian, Huang, Huanxiao, Liu Hong, Zhang Jianlong, Zhang Jjinhua. 2017. Metallogenic dynamics background of Ga'erqiong Cu-Au deposit in Tibet, China[J]. Earth Sciences Research Journal, 21(2): 51-65.

    Ouyang Yuan. 2020. Metallogenic Regularity and Metallogenic Prediction of Porphyry Copper Deposits in the Western of Gangdise Metallogenic Belt, Tibet[D]. Chengdu: Chengdu University of Technology, 1-110 (in Chinese with English abstract).

    Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract).

    Pan Guitang, Wang Liquan, Li Rongshe, Li Rongshe, Yuan Shihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet plateau[J]. Journal of Asian Earth Sciences, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    Pan Guitang, Wang Liquan, Geng Quanru, Yin Fuguang, Wang Baodi, Wang Dongbing, Peng Zhimin, Ren Fei. 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: A discussion on geology and evolution of the Tethys Ocean[J]. Sedimentary Geology and Tethyan Geology, 40(3): 1-19 (in Chinese with English abstract)

    Pan Guitang, Wang Liquan, Li Xingzhen, Wang Jiemin, Xu Qiang. 2001. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau[J]. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2001.03.001

    Panagiotis G. Asteris, Mohammadreza Koopialipoor, Danial J. Armaghani, Evgenios A. Kotsonis, Paulo B. Lourenço. 2021. Prediction of cement-based mortars compressive strength using machine learning techniques[J]. Neural Computing and Applications, 33: 13089-13121. doi: 10.1007/s00521-021-06004-8

    Prasad A M, Iverson L R, Liaw A. 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction[J]. Ecosystems, 9(2): 181-199. doi: 10.1007/s10021-005-0054-1

    Qin Yaozu, Wu Weicheng, Xie Lifeng, Ou Penghui, Huang Xiaolan. 2021. Applicayion of machine learning based mineral prospectivity mapping in the Yuexi antimony orefield, Hunan Province[J]. Journal of East China University of Technology (Natual Science), 44(1): 28-40 (in Chinese with English abstract).

    Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105: 3-41. doi: 10.2113/gsecongeo.105.1.3

    Song S H. 2021. Random forest approach in modeling the flow stress of 304 stainless steel during deformation at 700℃-900℃[J]. Materials, 14(7): 1812. doi: 10.3390/ma14071812

    Song Shufang, He Ruysng. 2021. Importance measure index system based on random forest[J]. Journal of National University of Defense Technology, 43(2): 25-32(in Chinese with English abstract).

    Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin, Fan Shufang. 2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science, 29(7): 795-809 (in Chinese with English abstract).

    Tang Juxing, Duo Ji, Liu Hongfei, Lang Xinghai, Zhang Jinshu, Zheng Wenbao, Ying Lijuan. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt[J]. Acta Geoscientia Sinica, 33(4): 393-410 (in Chinese with English abstract). doi: 10.3975/cagsb.2012.04.02

    Tang Juxing, Yang Huanhuan, Song Yang, Wang Liqiang, Liu Zhibo, Li Baolong, Lin Bin, Peng Bo, Wang Genhou, Zeng Qinggao, Wang Qin, Chen Wei, Wang Nan, Li Zhijun, Li Yubin, Li Yanbo, Li Haifeng, Lei Chuanyang. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau[J]. China Geology, 4: 1-16.

    Tang Juxing, Zhang Li, Li Zhijun, Chen Jianping, Huang Wei, Wang Qian. 2006. Porphyry copper deposit controlled by structural nose trap: Yulong porphyry copper deposit in eastern Tibet[J]. Mineral Deposits, 25(6): 652-662. doi: 10.3969/j.issn.0258-7106.2006.06.002

    Tang Yuan, Liu Yuping, Wang Peng, Tang Wenqing, Qin Yadong, Gong Xiaodong, Wang Dongbing, Wang Baodi. 2021. A new understanding of Demala Group complex in Chayu area, southeastern Qinghai-Tibet Plateau: Evidence from zircon U-Pb and mica 40Ar/39Ar dating[J]. China Geology, 4: 77-94.

    Wan C H, Lee L H, Rajkumar R, Isa D. 2012. A hybrid text classification approach with low dependency on parameter by integrating K-nearest neighbor and support vector machine[J]. Expert Systems with Applications, 39(15): 11880-11888. doi: 10.1016/j.eswa.2012.02.068

    Wang Liquan, Wang Baodi, Li Guangming, Wang Dongbing, Peng Zhimin. 2021. Major progresses of geological survey and research in East Tethys: An overview[J]. Sedimentary Geology and Tethyan Geology, 41(2): 283-296 (in Chinese with English abstract).

    Wu Huoxing, Fu Bin, Gao Ren, Fan Tao, Zha Zhiqiang, Tong Jizhong, Chen Tiandi. 2020. Characteristics analysis and prospecting potential prediction of newly discovered ore bodies in the Jiujiang Chengmenshan copper deposit[J]. Journal of East China Institute of Technology (Natural Science Edition), 43(2): 115-120.

    Xiang Jie, Chen Jianping, Xiao Keyan, Li Shi, Zhang Zhiping, Zhang Ye. 2019. 3D metallogenic prediction based on machine learning: A case study of the Lala copper deposit in Sichuan Province[J]. Geological Bulletin of China, 38(12): 2010-2021. doi: 10.12097/j.issn.1671-2552.2019.12.009

    Xiao Keyan, Lou Debo, Sun Li, Li Jingchao, Ye Tianzhu. 2013. Some progresses of mineral prediction theory and method in important mineral resource potential assessment of China[J]. Journal of Jilin University (Earth Science Edition), 43(3): 1053-1082.

    Xu Zhiqin, Dilek Y, Cao Hui, Yang Jingsui, Robinson Paul, Ma Changqian, Li Huaqi, Jolivet Marc, Roger Franoise, Chen Xijie. 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320-337. doi: 10.1016/j.jseaes.2015.01.021

    Xu Zhiqin, Yang Jinsui, Li Wenchang, Li Huaqi, Cai Zhihui, Yan Zhen, Ma Changqian. 2013. Paleo-tethys system and accretionary orogen in the Tibet plateau[J]. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract).

    Yang Jinsui, Xu Zhiqing, Li Tianfu, Li Huaqi, Li Zhaoli, Ren Yufeng, Xu Xiangzheng, Chen Songyong. 2007. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the paleo-tethys ocean basin?[J]. Geological Bulletin of China, 26(10): 1277-1287 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.10.006

    Yang Zhiming, Hou Zengqian, Chang Zhaoshan, Li Qiuyun, Liu Yunfei, Qu Huanchun, Sun Maoyu, Xu Bo. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones[J]. Lithos, 245(3): 243-257.

    Ye Tianzhu. 2013. Theoretical framework of methodology of deposit modeling and integrated geological information for mineral resource potential assessment[J]. Journal of Jilin University (Earth Science Edition), 43(4): 1053-1072.

    Zadeh M H, Tangestani M H, Roldan F V, Yusta I. 2014. Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran[J]. Ore Geology Reviews, 62(6): 191-198.

    Zeng Yuanchuan, Chen Jianlin, Xu Jifeng, Lei Ming, Xiong Qiuwei. 2017. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry[J]. Gondwana Research, 41: 51-64. doi: 10.1016/j.gr.2015.06.011

    Zhang Shihong, Xiao Keyan. 2020. Random forest-based mineralization prediction of the Lala-type cu deposit in the Huili area, Sichuan Province[J]. Geology and Exploration, 56(2): 239-252 (in Chinese with English abstract).

    Zhang Shizhen, Qin Yadong, Li Yong, Li Fengqi, Gong Xiaodong. 2021. U-Pb dating for detrital zircons from the Jiejunazhuo Formation in Xuru Co area and its geological significances[J]. Sedimentary Geology and Tethyan Geology, 41(1): 24-32.

    Zhang Ye, Li Mingchao, Han Shuai, Ren Qiubing, Zhu Yueqin. 2020. Machine learning methods application in gold mineralization prediction based on gold unit data[J]. Geotectonica et Metallogenia, 44(2): 183-191.

    Zhang Yujun, Zeng Chaoming, Chan Hui. 2003. The Methods for Extraction of alteration anomalies from the ETM+(TM) data and their application: Method selection and technological flow chart[J]. Remote Sensing for Land & Resources, 2: 44-50 (in Chinese with English abstract).

    Zhang Zhenjie, Cheng Qiuming, Yang Jie, Wu Guopeng, Ge Yunzhao. 2021. Machine learning for mineral prospectivity: A case study of iron polymetallic mineral prospectivity in Southwestern Fujian[J]. Earth Science Frontiers 28(3): 281-215 (in Chinese with English abstract).

    Zhao Jinxiang, Qin Kezhang, Li Guangming, Li Jinxiang, Xiao Bo, Chen Lei, Yang Yueheng, Li Chao, Liu Yongsheng. 2014. Collision-related genesis of the sharang porphyry molybdenum deposit, tibet: Evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes[J]. Ore Geology Reviews, 56: 312-326. doi: 10.1016/j.oregeorev.2013.06.005

    Zhao Pengda. 2007. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers, 14(5): 1-10 (in Chinese With English Abstract). doi: 10.3321/j.issn:1005-2321.2007.05.001

    Zhao Xiliang, Gong Chen, He Jun, Peng Jianhua, Huang Shaochun, Yang Zhilong. 2013. Discovery of porphyry copper deposit and its significance of Dajiacuo in Cuoqin county, Tibet[J]. Journal of East China Institute of Technology (Natural Science Edition), 36(6): 13-20 (in Chinese with English abstract)

    Zheng Youye, Sun Xiang, Gao Sunbao, Gao Shunbao, Wu Song, Xu Jing, Jiang Junsheng, Chen Xin, Zhao Zhongying, Liu Yan. 2015. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt[J]. Journal of Asian Earth Sciences, 103: 23-39. doi: 10.1016/j.jseaes.2014.11.036

    Zhou Qing, Jiang Yaohui, Zhao Peng, Liao Shiyong, Jin Guodong, Liu Zheng, Jia Ruya. 2012. SHRIMP U-Pb dating on hydrothermal zircons: Evidence for an Early Cretaceous epithermal event in the Middle Jurassic Dexing porphyry copper deposit, southeast China[J]. Economic Geology, 107: 1507-1514. doi: 10.2113/econgeo.107.7.1507

    Zhu Dicheng, Pan Guitang, Chung Shenlin, Liao Zhongli, Li Guangming. 2008. SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba fromation, southern Gangdese, south Tibet[J]. International Geology Review, 50(5): 442-471. doi: 10.2747/0020-6814.50.5.442

    Zhu Yusheng, Xiao Keyan, Ma Yubo, Ding Jianhua. 2013. Review and status of mineralization belt study in China[J]. Journal of Geology, 37(3): 349-357. doi: 10.3969/j.issn.1674-3636.2013.03.349

    蔡惠慧, 朱伟, 李孜轩, 刘园园, 李龙斌, 刘畅. 2019. 基于深度学习的钨钼找矿靶区预测方法研究[J]. 地球信息科学学报, 21(6): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201906014.htm
    陈进, 毛先成, 刘占坤. 邓浩. 2020. 基于随机森林算法的大尹格庄金矿床三维成矿预测. 大地构造与成矿学[J]. 44(2): 231-241. doi: 10.16539/j.ddgzyckx.2020.02.007
    成秋明. 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学, 31(3): 337-348. doi: 10.3321/j.issn:1000-2383.2006.03.009
    代晶晶, 曲晓明, 辛洪波. 2010. 基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J]. 地质通报, 9(5): 752-759. doi: 10.3969/j.issn.1671-2552.2010.05.016
    方匡南, 吴见彬, 朱建平, 谢邦昌. 2011. 随机森林方法研究综述[J]. 统计与信息论坛, 26(3): 32-38. doi: 10.3969/j.issn.1007-3116.2011.03.006
    高顺宝. 2015. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向[D]. 武汉: 中国地质大学(武汉), 1-120.
    耿全如, 李文昌, 王立全, 曾祥婷, 彭智敏, 张向飞, 张璋, 丛峰, 关俊雷. 2021. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质, 41(2): 297-315. doi: 10.19826/j.cnki.1009-3850.2021.02012
    韩善楚, 姜垚, 潘家永, 万弘, 黄天宇. 2021. 西藏冈底斯成矿带跃进沟铜矿床同位素地球化学特征研究[J]. 东华理工大学学报(自然科学版), 44(5): 423-432. doi: 10.3969/j.issn.1674-3504.2021.05.003
    黄发明, 叶舟, 姚池, 李远耀, 殷坤龙, 黄劲松, 姜清辉. 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响[J]. 地球科学, 45(12): 4535-4549. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012017.htm
    黄瀚霄, 李光明, 刘洪, 张洪铭, 张林奎, 余槐, 焦彦杰, 陈小平, 梁维. 2020. 冈底斯西段罗布真浅成低温热液型银金矿的成矿流体演化: 来自流体包裹体、H-O同位素的证据[J]. 地学前缘, 27(4): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004005.htm
    黄瀚霄, 李光明, 刘洪, 张洪铭, 张林奎, 余槐, 焦彦杰, 梁维. 2018. 冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床——罗布真金银多金属矿床[J]. 中国地质, 45(3): 628-629. http://geochina.cgs.gov.cn/geochina/article/abstract/20180315?st=search
    黄瀚霄, 张林奎, 刘洪, 李光明, 黄勇, 兰双双, 吕梦鸿. 2019. 西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向[J]. 地球科学, 44(6): 1876-1887. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906010.htm
    黄永高, 韩飞, 李应栩, 贾小川, 杨学俊, 李光明, 杨青松. 2020. 西藏南木林盆地发现早侏罗世火山作用——来自锆石U-Pb年龄的证据[J]. 中国地质, 47(4): 1266-1267. http://geochina.cgs.gov.cn/geochina/article/abstract/20200425?st=search
    郎兴海, 郭文铂, 王旭辉, 邓煜霖, 杨宗耀, 谢富伟, 李壮, 张忠, 姜楷. 2019. 西藏雄村矿集区含矿斑岩成因及构造意义: 来自年代学及地球化学的约束[J]. 岩石学报, 35(7): 2105-2123.
    李苍柏, 肖克炎, 李楠, 宋相龙, 张帅, 王凯, 楚文楷, 曹瑞. 2020. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 41(2): 309-319.
    李光明, 潘桂棠, 王高明, 黄志英, 高大发. 2004. 西藏冈底斯成矿带矿产资源远景评价与展望[J]. 成都理工大学学报(自然科学版), 31(1): 22-27. doi: 10.3969/j.issn.1671-9727.2004.01.004
    李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351-360. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102019.htm
    李金祥, 秦克章, 李光明, 林金灯, 肖波, 江化寨, 韩逢杰, 黄树峰, 陈雷, 赵俊兴. 2001. 冈底斯东段羌堆铜钼矿床年代学、矽卡岩石榴石成分及其意义[J]. 地质与勘探, 47(1): 11-19.
    李靖辉. 2008. 大别山(北麓)斑岩型钼矿床成矿系列及成矿规律[J]. 东华理工大学学报(自然科学版), 31(1): 25-30. doi: 10.3969/j.issn.1674-3504.2008.01.005
    刘洪, 黄瀚霄, 李光明, 肖万峰, 张智林, 刘波, 马东方, 董磊, 马东. 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质, 42(4): 1126-1136. doi: 10.3969/j.issn.1000-3657.2015.04.026
    刘洪, 黄瀚霄, 欧阳渊, 张景华, 张腾蛟, 李富, 肖启亮, 曾建, 侯谦, 文登奎, 段声义. 2020a. 基于地质建造的土壤地质调查及应用前景分析-以大凉山区西昌市为例[J]. 沉积与特提斯地质, 40(1): 91-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202001011.htm
    刘洪, 黄瀚霄, 张林奎, 李光明, 欧阳渊, 黄勇, 吕梦鸿, 兰双双. 2021a. 冈底斯西段打加错地区鲁尔玛晚三叠世斑岩型铜(金)矿点的地质特征及发现意义[J]. 沉积与特提斯地质, 41(6): 569-581.
    刘洪, 李光明, 黄瀚霄, 张林奎, 吕梦鸿, 兰双双, 解惠. 2019a. 西藏冈底斯成矿带发现晚三叠世斑岩型铜矿[J]. 中国地质, 46(5): 1238-1240. http://geochina.cgs.gov.cn/geochina/article/abstract/20190524?st=search
    刘洪, 李光明, 李文昌, 黄瀚霄, 李佑国, 欧阳渊, 张向飞, 周清. 2022. 西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究[J]. 岩石学报, 38(1): 230-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202201015.htm
    刘洪, 李光明, 李文昌, 张景华, 李佑国, 张智林, 黄瀚霄, 欧阳渊, 张腾蛟. 2021b. 西藏仲巴县布东拉金矿床的浅成低温热液成矿作用: 来自流体包裹体和H-O同位素的证据[J]. 矿床地质, 40(2): 311-328.
    刘洪, 李光明, 张智林, 黄瀚霄, 肖万峰. 2014b. 西藏改则县木如地区岩屑地球化学分析[J]. 金属矿山, 43(11): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201411025.htm
    刘洪, 吕新彪, 李春诚, 刘阁, 尚世超, 王林, 张伟, 毛荣威. 2013. 河南罗山金城金矿床成矿条件与深部找矿前景分析[J]. 地质与勘探, 49(2): 265-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302011.htm
    刘洪, 吕新彪, 袁迁, 柯长书, 朱乔乔, 柳潇, 王玉奇, 张善明. 2014a. 河南信阳高梁店铁铜矿床娄子湾矿段地质特征与找矿方向[J]. 矿物学报, 34(3): 337-342.
    刘洪, 夏祥标, 黄瀚霄, 张林奎, 兰双双, 吕梦鸿, 艾金彪, 解惠. 2019b. 西藏冈底斯成矿带西段学修玛尔幅水系沉积物地球化学统计分析与找矿前景[J]. 桂林理工大学学报(自然科学版), 39(4): 847-855.
    刘洪, 张晖, 李光明, 黄瀚霄, 肖万峰, 游钦, 马东方, 张海. 2016. 藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因: 地球化学和LA-ICP-MS锆石U-Pb年代学的约束[J]. 北京大学学报(自然科学版), 52(5): 848-860.
    刘洪, 张林奎, 黄瀚霄李光明, 余槐, 黄勇, 梁维, 闫国强, 张洪铭, 陈小平. 2020b. 冈底斯西段罗布真浅成低温热液型银金矿的成矿流体演化: 来自流体包裹体、H-O同位素的证据[J]. 地学前缘, 27(4): 50-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004005.htm
    刘洪, 张林奎, 黄瀚霄, 李光明, 吕梦鸿, 闫国强, 黄勇, 兰双双, 解惠. 2019c. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J]. 地球科学, 44(6): 1935-1956. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906014.htm
    刘洪, 张林奎, 黄瀚霄, 李光明, 欧阳渊, 吕梦鸿, 刘函, 兰双双, 闫国强. 2019d. 西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因[J]. 地球科学, 44(7): 2339-2352.
    刘卫东, 唐志鹏, 夏炎, 韩梦瑶, 姜宛贝. 2019. 中国碳强度关键影响因子的机器学习识别及其演进[J]. 地理学报, 74(12): 2592-2603. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201912013.htm
    倪培, 迟哲, 潘君屹. 2020. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例[J]. 地学前缘, 27(2): 60-78.
    欧阳渊, 刘洪, 黄瀚霄, 李光明, 杨武年, 肖万峰, 张智林, 马成义, 马步英. 2016. 藏北商旭-达则地区水系沉积物地球化学多元统计分析与找矿方向[J]. 矿物学报, 36(4): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604019.htm
    欧阳渊. 2020. 西藏冈底斯成矿带西段斑岩型铜矿成矿规律与成矿预测研究[D]. 成都: 成都理工大学, 1-110.
    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533.
    潘桂棠, 王立全, 耿全如, 尹福光, 王保弟, 王冬兵, 彭智敏, 任飞. 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19.
    潘桂棠, 王立全, 李兴振, 王洁民, 徐强. 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 21(3): 1-26.
    秦耀祖, 吴伟成, 谢丽凤, 欧鹏辉, 黄小岚. 2021. 基于机器学习的找矿预测模型在湖南岳溪锑矿田的应用[J]. 东华理工大学学报(自然科学版), 44(1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101004.htm
    宋述芳, 何入洋. 2021. 基于随机森林的重要性测度指标体系[J]. 国防科技大学学报, 43(2): 25-32.
    宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 2014. 西藏班公湖-怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 29(7): 795-809. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201407006.htm
    唐菊兴, 多吉, 刘鸿飞, 郎兴海张金树郑文宝应立娟. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393-410.
    唐菊兴, 张丽, 李志军, 陈建平, 黄炜, 王强. 2006. 西藏玉龙铜矿床——鼻状构造圈闭控制的特大型矿床[J]. 矿床地质, 25(6): 652-662. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606001.htm
    王立全, 王保弟, 李光明, 王冬兵, 彭智敏. 2021. 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 41(2): 283-296. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102014.htm
    吴火星, 付斌, 高任, 樊涛, 查志强, 童继中, 陈天迪. 2020. 九江城门山铜矿新发现矿体特征分析及找矿潜力预测[J]. 东华理工大学学报(自然科学版), 43(2): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202002003.htm
    向杰, 陈建平, 肖克炎, 李诗, 张志平, 张烨. 2019. 基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例[J]. 地质通报, 38(12): 2010-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201912010.htm
    肖克炎, 娄德波, 孙莉, 李景朝, 叶天竺. 2013. 全国重要矿产资源潜力评价一些基本预测理论方法的进展[J]. 吉林大学学报(地球科学版), 43(4): 1073-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201304003.htm
    许志琴, 杨经绥, 李文昌, 李化启, 蔡志慧. 闫臻, 马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847-1860.
    杨经绥, 许志琴, 李天福, 李化启, 李兆丽, 任玉峰, 徐向珍, 陈松永. 2007. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留?[J] 地质通报, 26(10): 1277-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200710008.htm
    叶天竺. 2013. 矿床模型综合地质信息预测技术方法理论框架[J]. 吉林大学学报(地球科学版), 43(4): 1053-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201304002.htm
    张士红, 肖克炎. 2020. 基于随机森林的四川省会理地区"拉拉式"铜矿成矿预测[J]. 地质与勘探, 56(2): 239-252.
    张士贞, 秦雅东, 李勇, 李奋其, 巩小栋. 2021. 西藏许如错地区洁居纳卓组碎屑锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 41(1): 24-32.
    张野, 李明超, 韩帅, 任秋兵, 朱月琴. 2020. 基于金矿规格单元数据的机器学习方法在成矿建模分析中的应用[J]. 大地构造与成矿学, 44(2): 183-191.
    张玉君, 曾朝铭, 陈薇. 2003. ETM+(TM)蚀变遥感异常提取方法研究与应用-方法选择和技术流程[J]. 国土资源遥感, 2: 44-50.
    张振杰, 成秋明, 杨玠, 武国朋, 葛云钊. 2021. 机器学习与成矿预测: 以闽西南铁多金属矿预测为例[J]. 地学前缘, 28(3): 281-215.
    赵鹏大. 2007. 成矿定量预测与深部找矿[J]. 地学前缘, 14(5): 1-10.
    赵希良, 龚臣, 何俊, 彭建华, 黄韶春, 杨志龙. 2013. 西藏措勤县打加错地区斑岩型铜矿点发现及其意义[J]. 东华理工大学学报(自然科学版), 36(6): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ2013S2003.htm
    朱裕生, 肖克炎, 马玉波, 丁建华. 2013. 中国成矿区带划分的历史与现状[J]. 地质学刊, 37(3): 349-357. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201303002.htm
图(21)  /  表(5)
计量
  • 文章访问数:  2846
  • HTML全文浏览量:  937
  • PDF下载量:  1390
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-25
  • 修回日期:  2022-01-15
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2023-04-24

目录

/

返回文章
返回
x 关闭 永久关闭