• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

新疆库车西部古近系奥奇克盐底辟地质地貌特征及构造形成模式

杨梦莲, 李江海, 王洪浩, 陶崇智, 章雨

杨梦莲, 李江海, 王洪浩, 陶崇智, 章雨. 新疆库车西部古近系奥奇克盐底辟地质地貌特征及构造形成模式[J]. 中国地质, 2021, 48(1): 129-138. DOI: 10.12029/gc20210109
引用本文: 杨梦莲, 李江海, 王洪浩, 陶崇智, 章雨. 新疆库车西部古近系奥奇克盐底辟地质地貌特征及构造形成模式[J]. 中国地质, 2021, 48(1): 129-138. DOI: 10.12029/gc20210109
YANG Menglian, LI Jianghai, WANG Honghao, TAO Chongzhi, ZHANG Yu. Geological landform and structure formation model of the Paleogene Ochirbat salt diapir in the western Kuqa, Xinjiang[J]. GEOLOGY IN CHINA, 2021, 48(1): 129-138. DOI: 10.12029/gc20210109
Citation: YANG Menglian, LI Jianghai, WANG Honghao, TAO Chongzhi, ZHANG Yu. Geological landform and structure formation model of the Paleogene Ochirbat salt diapir in the western Kuqa, Xinjiang[J]. GEOLOGY IN CHINA, 2021, 48(1): 129-138. DOI: 10.12029/gc20210109

新疆库车西部古近系奥奇克盐底辟地质地貌特征及构造形成模式

基金项目: 

国家科技重大专项“南大西洋两岸盆地分析与油气资源评价” 2016ZX05033-001

详细信息
    作者简介:

    杨梦莲, 女, 1993年生, 硕士, 地质学专业, 主要从事石油地质方向研究; E-mail:11920488@qq.com

    通讯作者:

    李江海, 男, 1965年生, 教授, 主要从事地质学研究; E-mail:jhli@pku.edu.cn

  • 中图分类号: P542

Geological landform and structure formation model of the Paleogene Ochirbat salt diapir in the western Kuqa, Xinjiang

Funds: 

major National Research and Development project"Basin Analysis and Oil and Gas Resource Evaluation on Both Sides of the South Atlantic" 2016ZX05033-001

More Information
    Author Bio:

    YANG Menglian, female, born in 1993, Master, engaged in petroleum geology; E-mail:11920488@qq.com

    Corresponding author:

    LI Jianghai, male, born in 1965, professor, engaged in geological research; E-mail:jhli@pku.edu.cn

  • 摘要:

    库车前陆冲断带西部古近系奥奇克盐底辟是中国最典型的盐底辟构造,可作为盐构造研究的天然实验室。本文在前人研究的基础上,通过详细的野外填图,同时辅以遥感解译、地震解释和合成孔径雷达干涉测量(InSAR)技术,探讨了奥奇克盐底辟盐喀斯特地貌特征,并分析了其形成机制及流变模式。奥奇克盐底辟表面盐喀斯特构造发育,在风化面上可见大量的溶洞、溶蚀冲沟构造,在新鲜面上可见梳状溶痕、微型峰丛等构造样式,此外,溶蚀坍塌等机械侵蚀构造也是本区常见的盐喀斯特构造类型。奥奇克盐底辟在形成过程中受逆冲断层、盐上地层的剥蚀作用、差异负载作用及盐岩自身的浮力作用的控制,共经历了逆冲盐底辟、侵蚀盐底辟、主动盐底辟和被动盐底辟4个主要阶段。盐岩喷出地表后,在重力作用下由核部向四周流动形成盐冰川,季节性河流的存在限制了盐底辟向东侧、东北侧及北侧传播,导致盐底辟呈现单侧增生的流变模式。

    Abstract:

    As the Paleogene Ochirbat salt diapir in the western Kuqa foreland thrust belt is the most typical salt diapir structure in China, it can serves as a natural laboratory for the study of salt structure. Based on previous researches, the methods of field mapping, seismic interpretation, remote sensing images interpretation and InSAR (interferometric synthetic aperture radar) technique were used to analyse the salt karst landform characteristics, formation mechanism and rheological model of the Ochirbat salt diapir. The salt karst landforms are mainly developed on the surface of the salt diapir. Karst caves and gullies can be seen on the weathering surface of the diapir, while rillen karrens and miniature karst peak cluster can be seen on the fresh surface. Further more, collapse structures belonging to salt karst landforms can also be regularly seen in the diapir. The formation of the salt diapir was controlled by many factors, including the thrust fault, the erosion of the overburden, the differential loading and buoyancy, and the evolution process of the diapir can be divided into 4 main stages, including thrust piercement, erosion piercement, active piercement and passive piercement stages. It is summarized that after coming out from the underground, the salt flowed from the core to the periphery of the diapir under the gravity, forming salt glacier, and the seasonal river restricted the salt spreading to east, northeast and north directions, resulting in the asymmetric rheological model of the diapir.

  • 在资源枯竭、经济发展和环境保护的三重压力下,寻找并开发利用新型清洁能源是关系国计民生和社会可持续发展的紧迫任务。推动绿色发展,构建清洁、安全、高效的能源体系已成为时代的要求。地热资源作为清洁能源的重要组成部分被寄予厚望。

    天津市地热资源条件优越,地热开发利用水平一直处于全国前列。天津地热勘查研究工作开始于20世纪70年代,李四光同志主导的天津地热会战掀起了全国地热勘查研究的第一个春天,并发现了新近系和奥陶系两个热储。80年代以来,在市政府和原地矿部的支持以及联合国开发计划署的援助下,地热勘查开始向深部基岩热储发展,先后完成王兰庄、山岭子、塘沽地区三个地热田的勘查工作。自此之后,天津的地热研究与开发工作一直处于中国前列。先后发现地热田8个,已发现两大类6个热储,即孔隙型热储(新近系明化镇组、馆陶组热储和古近系东营组)和裂隙溶隙型热储(奥陶系、寒武系和蓟县系雾迷山组三、四段热储),3000 m以浅年可开采地热流体为7606×104 m3。其中,蓟县系雾迷山组三、四段热储是天津地热开发的主力储层。随着开发强度不断增大,部分地区开采潜力已达极限(天津地热勘查开发设计院, 2000Wang, 2008王继革等,2013)。

    随着钻探技术的不断进步和清洁能源需求的持续增长,向地球深部进军,探测深部地热资源、开辟深部热储第二空间、增加可开采资源量,成为保障天津地区地热可持续开发的有效途径之一。为此,2017年以来,中国地质调查局在天津东丽湖地区部署了深部地热探测工作,并在主力储层下部探获雾迷山组二段高产能新储层。本文主要介绍天津东丽湖深部岩溶热储探测和高产能地热井参数研究取得的新成果、新进展。

    天津市地处Ⅰ级构造单元华北地台北缘,以宁河—宝坻断裂为界分为北部山区和南部平原区。其中,南部平原区属Ⅱ级构造单元华北断坳区,是中、新生代断陷、坳陷盆地。区内Ⅲ级构造单元包括一隆两坳即沧县隆起、冀中坳陷和黄骅坳陷。隆起和坳陷及其间分布的诸多Ⅳ级构造单元凸起、凹陷的延伸方向和较大断裂的走向均呈北北东(NNE)向,形成雁行式相间排列的构造格局(陈墨香, 1988)(图 1)。

    图  1  天津市构造单元划分图
    Figure  1.  The division map of structural units of Tianjin

    宝坻—宁河断裂以南为天津南部平原区,总面积8700 km2,地热资源条件优越。发育有王兰庄、山岭子、滨海、武清、潘庄—芦台、宁河—汉沽、万家码头和周良庄等8个地热田,年可开采地热流体7606×104 m3(图 2)。各地热田均位于华北断坳范围内,地面均为第四系松散沉积物覆盖,厚度可达数百米。其下是巨厚的新生界陆相碎屑岩沉积,是一套半胶结的砂岩和泥岩地层,沉积厚度在沧县隆起相对较薄,在冀中坳陷和黄骅坳陷沉积较厚,最大厚度可达近万米。在新生界的巨大不整合覆盖之下,主要是古生界和中上元古界的基底地层,在坳陷中还有局部中生界分布。区内地热资源主要赋存于两大类6个储层中:一类为孔隙型热储,包括新近系明化镇组、馆陶组和古近系东营组热储;一类为裂隙溶隙型热储,包括奥陶系、寒武系和蓟县系雾迷山组热储(张百鸣等, 2006; Wang, 2008)(图 3)。

    图  2  天津市地热田分布图
    Figure  2.  The distribution map of geothermal field of Tianjin
    图  3  天津市地热田主要热储及储盖结构
    Figure  3.  The vertical structure of geothermal reservoirs in Tianjin

    东丽湖地区位于天津市东部,隶属于天津市东丽区,位于Ⅳ级构造单元潘庄凸起上,发育有著名的山岭子地热田。依据研究区内地热井的钻探资料,揭露的地层从新到老为:新生界(第四系和新近系)、古生界(奥陶系和寒武系)、中新元古界(青白口系和蓟县系)(表 1)。区内已发现新近系明化镇组、新近系馆陶组、奥陶系和蓟县系雾迷山组三、四段4个热储。其中,雾迷山组三、四段为当前主力储层,沧县隆起上钻孔揭露顶板埋深为1752~2016 m,揭露厚度为480~1032 m,单井出水量为70~120 m3/h,最大可达204 m3/h,出水温度为88~102℃,孔隙度1%~5.8%,渗透率5.52×10-14 m2,水化学类型为Cl · HCO3·SO4-Na或Cl·SO4·HCO3-Na型,总矿化度为1670~2200 mg/L,总硬度为120~240 mg/L(以CaCO3计),pH值为7.3~8.4(林黎等, 2007; 王继革等, 2013)。从区域地质资料看(高昌,2003赵苏民等, 2006),区内雾迷山组厚度约3500 m,岩石组合为一套富镁碳酸盐岩,岩性主要为白云岩。燧石条带白云岩、硅质白云岩夹2~5层棕红、紫红色泥岩和页岩,可作为雾迷山组三、四段和一、二段的分界线。从岩性组合的相似性可以推测,雾迷山组一、二段可作为未来深部热储探测的重要方向,也是本次研究的重点。

    表  1  天津东丽湖地区综合地层简表
    Table  1.  The simplified table of geological strata in Donglihu area, Tianjin
    下载: 导出CSV 
    | 显示表格

    天津地热资源开发利用水平在全国居于较高地位,也是全国中低温地热直接利用规模最大的城市,是全国第一批“中国温泉之都”。自20世纪30年代以来,经过80多年的发展,天津地热资源开发利用从浅到深、从无序到有序、从粗放到精细,逐渐形成了规模化、产业化,在中国地热勘查开发利用史上具有举足轻重的作用。截至2017年,天津市共有地热开采井466眼,年开采总量为5181.08×104 m3,其中,蓟县系雾迷山组三、四段约占开采总量的54%。地热资源主要应用于供暖、洗浴、理疗、旅游、养殖等。其中,供暖是最主要的利用方式,占年总开采量的81.5%。建有地热供暖小区及公建项目496个,全市地热供暖总面积达3500×104 m2,占全市集中供暖面积的8%,是中国利用水热型地热资源供暖规模最大的城市。

    东丽湖地区现有地热井34眼。其中,新近系明化镇组4眼,新近系馆陶组2眼,奥陶系3眼,蓟县系雾迷山组三、四段25眼。年开采地热流体约395.44×104 m3,采用梯级、综合利用和群井联动回灌的开发模式,达到资源的优化配置和实时调控,地热利用率和回灌率达到95%以上,实现了资源的统一规划、统一开发和统一管理。地热资源广泛应用于供暖、温泉洗浴、养生理疗、康乐旅游、矿泉水开发等领域,建有东丽湖温泉旅游度假区,在发展温泉旅游产业,促进地区经济发展,保护生态环境方面取得了显著的成效。2008年12月25日和2011年12月30日,分别被中国矿业联合会和国土资源部命名为“中国温泉之乡”。

    本次研究主要基于地质综合分析,采用地球物理探测、地热钻探、地球物理测井和热储试验相结合的方法开展探测研究。

    为满足深部储层探测需要,本次地球物理探测的主要目标确定为5 km以浅地层的结构探测,为地热钻探提供依据。由于探测深度大,且存在高压线、铁路等城市干扰源,本次地球物理探测采用了二维地震和时频电磁相结合的勘查方法,其中,时频电磁方法首次应用到地热勘查领域。时频电磁方法是通过大功率人工场源激发信号,测量研究区测线的电磁场分量,分析频率域信号的振幅和相位特征,来获得介质的地电参数(电阻率和极化率),把信号转换到时间域,建立高分辨的电法勘探的时间断面。较传统电磁方法,在应对强电磁干扰方面具有一定的优势(Dong et al., 2008; 周印明等, 2013, 2015)。

    本次工作部署时频电磁法完成测线4条,剖面24.4 km,点距200 m,物理点128个;二维地震完成剖面3条,8.25 km,测点254个(图 4)。

    图  4  二维地震与时频电磁法工作部署图
    Figure  4.  Location of seismic and time-frequency electromagnetic survey sections

    地球物理探测结果初步揭示了天津东丽湖地区雾迷山组二段的分布。从TFEM-1测线地质剖面解译图(图 5)可以看出,F1沧东断裂西侧,电阻率异常特征从上至下依次为“低—高—低—高—次高—高”,表层低阻和浅层高、低阻分别是第四系、新近系明化镇组与馆陶组地层响应特征,电阻率过渡连续,无明显的错断。第二套高阻层为寒武系(Є) 与青白口系(Qb)的反映,深部的次高阻为蓟县系雾迷山组4段(Jxw4)的反映,深部的高阻为蓟县系雾迷山组2、3段(Jxw2-3)的反映。蓟县系雾迷山组四段埋深2300~3000 m,下部发育雾迷山组二段和三段地层,埋深在3000 m以下。因缺乏雾迷山组二、三段电性参数,不易进一步细分。从二维地震DZ01剖面解释图(图 6)可以看出,区内4000 m以浅揭示的地层分别为第四系、新近系明化镇组、新近系馆陶组、寒武系、青白口系和蓟县系雾迷山组。新近系馆陶组底界以上主要标准反射界面清晰可辨,以下反射界面呈断续分布。推测第四系底界埋深341~363 m;新近系明化镇组底界埋深1123~1160 m,馆陶组底界埋深1347~1500 m;寒武系张夏组底界埋深1758~2033 m,馒头组底界埋深1786~2113 m,昌平组底界埋深1856~2164 m;青白口系底界埋深2196~2444 m;蓟县系雾迷山组四段底界埋深2802~3004 m,三段底界二段顶界埋深3552~3726 m。4000 m探测深度范围内未揭示蓟县系雾迷山组底界。

    图  5  TFEM 1测线时频电磁二维反演电阻率剖面图
    Figure  5.  Time-frequency electromagnetic method profile in the line TFEM 1
    图  6  二维地震剖面DZ01剖面图
    Figure  6.  The 2D seismic profile in the DZ01 section

    在天津东丽湖部署地热科学钻探CGSD-01井,目标层位为蓟县系雾迷山组二段。2017年11月20日开钻,2018年11月19日完钻。成井深度4051.68 m,3715 m进入雾迷山组二段储层,是当时天津最深的地热井。

    该井井身结构为三开直井。其中,护壁段(0~76 m)采用Ф660.4 mm冲击钻钻头施工,下入Ф508 mm×8.0 mm无缝套管,总长度为74.42 m。一开井段(76~1469.53 m)采用Ф444.5 mm牙轮钻头钻进,入Ф339.7 mm×J55钢级套管,长度1469.84 m。二开井段(1469.53~2262.75 m)采用Ф311.2 mm牙轮钻头钻进,下入Ф244.5 mm×10.03 mm N80钢级套管,长度866.60 m,与一开套管重叠68.12 m。三开井段(2262.75~4051.68 m)采用Ф215.9 mm牙轮钻头钻进,下入Ф177.8 mm×9.19 mm N80钢级套管,长度1939.96 m,其中实管长度为1747.23 m,花管长度为192.73 m,与二开套管重叠151.03 m。钻进过程中,开展了岩屑和岩心采集工作。1500 m以浅每5 m捞取岩屑一次,1500 m以深每2 m捞取岩屑一次,全井共计捞取岩屑样1873个。500~4051.68 m井段采取定深分段采取岩心,累计取心37回次,进尺161.25 m,长度140.78 m,采取率85%。

    钻井过程中,对地热井开展了综合地球物理测井工作,主要包括温度测井、压力测井、井径测井、井斜测井、视电阻率测井、双感应测井、自然电位测井、自然伽马测井、声波测井、伽马-伽马测井和流体流量测井11项。

    钻探完成后,为获取蓟县系雾迷山组二段新储层热储参数,对地热井开展了3个落程的稳定流降压抽水试验。其中,大落程试验历时62 h,涌水量130.2 m3/h,水温度稳定在100℃,稳定时间39.5 h;中落程试验历时24 h,涌水量94.5 m3/h,水温度稳定在100℃,稳定时间16.5 h;小落程试验历时16 h,涌水量43.9 m3/h,水温度稳定在98℃,稳定时间8 h(图 7)。

    图  7  稳定流降压抽水试验历时曲线
    Figure  7.  Duration curve of stable pumping test

    综合全井段地球物理测井、岩心与岩屑及区域地热地质等资料,CGSD-01井钻遇地层包括:第四系、新近系、寒武系、青白口系及蓟县系。钻遇主要储层5个,主要包括新近系明化镇组、馆陶组2个砂岩热储,寒武系昌平组灰岩热储,蓟县系雾迷山组三四段和一二段白云岩热储(表 2)。

    表  2  天津东丽湖CGSD-01井钻遇地层表
    Table  2.  Geological stratum of well CGSD-01 in the Tianjin
    下载: 导出CSV 
    | 显示表格

    本次研究在地热井中实现雾迷山组四、三、二段精细划分,自上而下叙述如下。

    雾迷山组四段(Jxw4):深度段为2258~2896 m,地层厚度638 m。上部岩性主要为浅灰色细晶白云岩夹灰黑色泥晶白云岩,偶见少量深灰色厚层角砾状白云岩、灰白色硅质白云岩等;下部岩性主要为浅灰色细晶白云岩与灰黑色泥晶白云岩、泥质白云岩交互;底部主要发育灰黑色白云质泥岩夹细晶白云岩、泥晶白云岩、硅质白云岩。受原始沉积及沉积后多期次构造与岩溶作用等影响,雾迷山组四段白云岩层系整体较破碎,钻井岩心中裂隙和溶蚀孔洞极其发育,为地热水提供了良好的储集空间。

    雾迷山组三段(Jxw3):深度段为2896~3715 m,地层厚度819 m。上部岩性主要为深灰色细晶白云岩与灰黑色泥晶白云岩、泥质白云岩、白云质泥岩交互。电测曲线上,雾迷山组三段上部的GR值较雾迷山组四段底部低为特征,测井解释的泥质含量值也表现出类似特征;雾迷山组三段测井资料解释的孔隙度和渗透率值,下部整体较上部好(图 8);下部岩性主要发育浅灰—灰黑色细晶白云岩夹灰黑色泥晶—泥质白云岩、灰质泥晶白云岩及白云质泥岩;底部以发育一套紫红色泥质白云岩夹浅灰色细晶白云岩为典型特征,厚度约73 m,裂隙不发育,具有隔水—弱透水性质,作为与下伏雾迷山组二段的分界。

    图  8  CGSD-01井蓟县系雾迷山组柱状图
    Figure  8.  Comprehensive strata log diagram of well CGSD-01 in Wumishan Formation, Jixian Group

    雾迷山组二段(Jxw2)深度段为3715~4051 m,地层厚度336 m,未钻穿。与上覆雾迷山组三段相比,雾迷山组二段的岩性及电测特征存在明显的差别(图 8)。岩性特征上,雾迷山组二段上部主要发育浅灰色细晶白云岩夹浅灰色粉晶白云岩、灰黑色泥质白云岩,之上为雾迷山组三段底部紫红色泥质白云岩作为两者明显分界;雾迷山组二段下部主要为浅灰色粉晶白云岩与灰黑色泥质白云岩交互。电测曲线上,雾迷山组二段上部的GR值、自然电位值(SP)较雾迷山组三段底部低为特征,测井解释的泥质含量值也体现出类似特征;雾迷山组二段上部的深侧向、浅侧向电阻率较雾迷山组三段底部高为特征。雾迷山组二段内部,自下而上,GR值、自然电位值(SP)、深侧向电阻率、浅侧向电阻率及测井解释的泥质含量呈逐渐变小趋势;声波时差呈逐渐变大趋势,测井资料解释的孔隙度和渗透率呈逐渐变大趋势,指示雾迷山组二段上部的热储层较下部更为发育。

    2018年11月19日对CGSD-01井开展了稳态测温。从测温曲线(图 9)可以看出,CGSD-01井底温度105℃。井温总体呈凸型曲线特征,体现了储盖层热传导机制为总体传导型、层间对流型。总体地温梯度2.4℃/100 m。其中,0~400 m第四纪地层地温梯度最高,可达8℃/100 m;400~2300 m新近系与寒武系盖层地温梯度次之,为2.4℃/100 m;2300~3500 m雾迷山组三、四段主力储层受对流作用影响,地温梯度最小,为0.83℃/100 m;3500 m以下雾迷山组二段储层地温梯度为1.7℃/100 m,对流作用较主力储层稍弱。

    图  9  CGSD-01井测温数据
    Figure  9.  Temperature log of well CGSD-01

    岩石热物性分析表明,雾迷山组二段岩石热导率在4.33~7.96 W/(m · K)(10个样品,表 3),平均值5.66 W/(m·K),略高于雾迷山组三四段平均值4.37 W/(m·K)。

    表  3  CGSD-01井雾迷山组二段热储热导率测试值
    Table  3.  Thermal conductivity test results of Wumishan Formation section 2 in well CGSD-01
    下载: 导出CSV 
    | 显示表格

    热储参数计算主要依据降压抽水试验计算。由于地热水密度与温度具有相关性,造成观测水位不能真实地反映地热井实际水位的变化,这种现象称之为“井筒效应”。资料整理过程中,以储层中部温度102.6℃作为储层温度对试验观测数据进行校准。校正后,做出的动水位埋深曲线如图 10

    图  10  校正至热储温度降压抽水试验历时曲线
    Figure  10.  Corrected duration curve of stable pumping test with reservoir temperature

    采用Dupuit公式与W.Sihart公式对试验数据进行分析计算CGSD-01井的热储参数。本次抽水试验目标热储层为蓟县系雾迷山组二段,厚度336.68 m(未穿透),根据测井数据显示,裂隙厚度为123.1 m。根据降压抽水试验数据及相关校正,地热井基本参数见表 4。计算结果见表 5。依据降压抽水试验计算结果,取三个落程试验平均值可以得出,CGSD-01井单位涌水量1.53 m3/h · m,渗透系数0.40 m/d,导水系数48.69 m2/d。

    表  4  CGSD-01井热储参数计算基本参数
    Table  4.  Reservoir parameters of well CGSD-01
    下载: 导出CSV 
    | 显示表格
    表  5  CGSD-01井地热热储参数计算结果
    Table  5.  Interpretation results of pumping test for well CGSD-01
    下载: 导出CSV 
    | 显示表格

    抽水试验过程中,采集样品对雾迷山组二段地热水进行了水化学、同位素和气体成分分析。

    水化学分析表明,雾迷山组二段地热水水化学类型为Cl · SO4 · HCO3-Na型,矿化度1770.0 mg/L,总硬度124.6 mg/L(以CaCO3计),pH值7.63。

    结垢性和腐蚀性表明,地热水不生成碳酸钙垢,不生成硫酸钙垢,不生成硅酸盐垢,对管道及利用设施具有中等腐蚀性。

    气体组分测试表明,溶解气体中以氮气和甲烷为主,分别占气体组分含量的66%和27%,还有少量乙烷、丙烷、异丁烷和异戊烷,指示储层处于还原环境。

    同位素分析表明,地热水δD为-72‰~-72.7‰,δ18O为9.3‰~-9.5‰,δ13C为-3‰~-3.6‰,87Sr/86Sr为0.7113~0.7114。综合水化学和同位素特征,初步推断雾迷山组二段地热水来源于大气降水,主要发生混合、阳离子交替吸附、碳酸盐岩溶解、硫酸盐还原等作用,且未达到平衡。

    从区域地质背景和地层沉积序列看,雾迷山二段热储在潘庄凸起区全区均有分布,分布面积约604 km2,依据CGSD-01地热参数井信息,对潘庄凸起雾迷山组二段热储热量进行保守估算。年可开采热资源量按照100 a富水段可回收热量的0.01% 进行保守估算,其热量每年折合标煤250万t,初步估计可满足供暖面积6114×104 m2

    为了提高地热资源利用率,本文建议推广地热利用集约节约新技术,采用地热梯级利用联合水源热泵、地板辐射采暖、群井联动、地热与燃气或太阳能等多能源结合技术,降低尾水排放温度,实现地热资源利用最大化。

    (1) 综合全井段地球物理测井、岩心与岩屑及区域地热地质等资料,CGSD-01井钻遇主要储层5个,主要包括新近系明化镇组、馆陶组2个砂岩热储,寒武系昌平组灰岩热储,蓟县系雾迷山组三四段和一二段白云岩热储。

    (2) 雾迷山组二段上部单位涌水量1.53 m3/h · m,渗透系数0.40 m/d,导水系数48.69 m2/d,岩石热导率5.66 W/(m · K),地热水类型为Cl · SO4 · HCO3-Na型,矿化度1.7 g/L,热储参数与潘庄凸起三、四段热储相近。

    (3) CGSD-01井降压抽水试验结果表明,蓟县系雾迷山组二段单井最大涌水量可达130 m3/h,出水温度100 ℃,单井可满足约30万m2建筑物供暖需求;初步估计潘庄凸起雾迷山组二段热储热量可满足供暖面积6114×104 m2

    (4) 从区域地层沉积规律看,天津地区深部雾迷山组一段、杨庄组、高于庄组,厚度大、岩溶发育,与雾迷山组四、三、二段性质相似,均具有成为高产能新储层的可能性,加强深部地热探测研究意义重大。

  • 图  1   库车前陆冲断带西部地表盐构造分布图

    Figure  1.   Distribution of surface salt structures in western Kuqa foreland thrust belt

    图  2   奥奇克盐底辟变形样式图

    a—奥奇克盐底辟野外地质填图(据王会萍,2011修改);b—奥奇克盐底辟三维遥感解译图;c—过奥奇克盐底辟南北向地震剖面解释图(剖面位置见图 1);1—中新统康村组砾岩、含砾砂岩、砂岩、粉砂岩;2—中新统吉迪克组砂岩、粉砂岩;3—渐新统阿瓦特组含岩泥岩、泥质、膏盐;4—渐新统阿瓦特组表面析出的盐岩;5—岩底辟表面冲沟;6—干河道

    Figure  2.   Deformation pattern of the Ochirbat salt diapir

    a-Field mapping of the Ochirbat Salt Diapir (modified from Wang Huiping, 2011); b-3D remote sensing interpretation image of the Ochirbat Salt Diapir; c-Interpretation of a N-S direction seismic profile across the Ochirbat Salt Diapir (the position of the seismic profile is shown in Fig 1). 1-Miocene Kangcun Formation conglometrate, gravel-bearing sandstone, sandstone and siltstone; 2-Miocene Jidique Formation sandstone and siltstone; 3- Oligocene Awat Formation salt- bearing mudstone and gypsum salt; 4- Oligocene Awat Formation salt rock on the surface; 5-Surfacegully of salt diapir; 6-Dry channel

    图  3   奥奇克盐底辟野外相关照片

    a—奥奇克盐底辟整体形态照片(据李丽, 2008修改);b—奥奇克盐底辟东南缘野外照片,展示了盐底辟和东部围岩的界线,盐上地层可见明显的向斜构造;c—奥奇克盐底辟南部盐上地层变形特征,可见冲断构造和背斜构造;d—奥奇克盐底辟东南缘野外照片,展示了盐底辟和南部围岩的界线;e—奥奇克盐底辟东缘野外照片,河流限制了盐底辟的边界,盐上地层掀斜构造明显;f—奥奇克盐底辟东部盐上吉迪克组和康村组地层界线;g—奥奇克盐底辟东北缘边界,地形较陡峭,新鲜的盐岩大量出露地表;h—奥奇克盐底辟东缘盐岩流动构造,盐岩表面冲沟发育;i—奥奇克盐底辟表面的微型峰丛构造;j—奥奇克盐底辟表面的梳状溶痕构造;k—奥奇克盐底辟正在发生的溶蚀坍塌构造.图b、d、e、f、g、h、i、j、k的位置可见图 2a

    Figure  3.   Photos of the Ochirbat salt diapir in the field

    a-Panorama of the Ochirbat Salt Diapir(modified from the reference Li, 2008); b-Field photo of the southeastern edge of the Ochirbat Salt Diapir, showing the boundary between the diapir and the eastern surrounding rocks.Syncline structure can seen in the surrounding rocks. c Deformation characteristics of the overburden of salt to the south of the diapir. Thrust fault and anticline structure can be seen in this photo. d Field photo of the southeastern edge of the Ochirbat Salt Diapir, showing the boundary between the diapir and the southern surrounding rocks. e Field photo of the eastern edge of the Ochirbat Salt Diapir. The river limits the boundary of the diapir and tilting structure can be seen in the overburden. f Boundary of the Jidike Formation and Kangcun Formation of the overburden on the eastern edge of the diapir. g Field photo showing the northeastern edge of the diapir. The topography is relative steep and fresh salt can be seen in the surface.h Flowing structure in the eastern edge of the Ochirbat Salt Diapir, and gullies can be seen on the weathering surface of the diapir. i rillenkarren structure on the fresh surface of the diapir. k collapse structure which is happening in the Ochirbat Salt Diapir. The position of the photoes b, d, e, f, g, h, I, j, k can be seen in Fig 2a

    图  4   奥奇克盐底辟流变模式图

    a—InSAR图像与盐底辟流变剖面对应关系模型(据Aftabi et al., 2010修改);b—奥奇克盐底辟2003年6月—2010年10月间平均垂向变化;c—奥奇克盐底辟流变剖面(剖面位置可见图 4b

    Figure  4.   Rheological model of the Ochirbat salt diapir

    a-Model of the corresponding relationship between the InSAR images and rheological profiles of diapirs(modified from Aftabi et al., 2010). bAverage vertical change of the Ochirbat Salt Diapir from 2003.6 to 2010.10. c-Rheological profile of the Ochirbat Salt Diapir (the position of the profile can be seen in Fig 4b)

  • Aftabi P, Roustaie M, Alsop G I, Talbot C J. 2010. InSAR mapping and modelling of an active Iranian salt extrusion[J]. Journal of the Geological Society, 167(1):155-170. doi: 10.1144/0016-76492008-165

    Baikpour S, Zulauf G, Dehghani M, Bahroudi A. 2010. InSAR maps and time series observations of surface displacements of rock salt extruded near Garmsar, northern Iran[J]. Journal of the Geological Society, 167(1):171-181. doi: 10.1144/0016-76492009-058

    Barnhart W D, Lohman R B. 2012. Regional trends in active diapirism revealed by mountain range-scale InSAR time series[J]. Geophysical Research Letters, 39(8):89-106. doi: 10.1029/2012GL051255

    Bruthans J, Asadi N, Filippi M, Vilhelm Z, Zare M. 2007. A study of erosion rates on salt diapir surfaces in the Zagros Mountains, SE Iran[J]. Environmental Geology, 53(5):1079-1089. doi: 10.1007/s00254-007-0734-6

    Chen Shuping, Tang Liangjie, Jia Chengzhao, Pi Xuejun, Xie Huiwen. 2004. Salt tectonics in the western Kuqa depression and its relation to oil and gas distribution[J]. Acta Petrolei Sinica, 25(1):30-34, 39(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/20949519

    Cheng Xiaodao, Li Jianghai, Cheng Haiyan, Deng gang. 2013. Typical surface salt structure and deformation characteristics in western Kuqa depression, Tarim basin[J]. Xinjiang Petroleum Geology, 34(2):189-192(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJSD201302016.htm

    Colón C, Webb A A G, Lasserre C, Doin M P, Baudoin P F. 2016. The variety of subaerial active salt deformations in the Kuqa foldthrust belt (China) constrained by InSAR[J]. Earth & Planetary Science Letters, 450:83-95. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b9a224c13a403f0184d59620d0874bd4

    Davison I, Alsop I, Blundell D. 1996. Salt tectonics:Some aspects of deformation mechanics[J]. Geological Society London Special Publications, 100(1):1-10. doi: 10.1144/GSL.SP.1996.100.01.01

    Frumkin A. 1994. Hydrology and denudation rates of halite karst[J]. Journal of Hydrology, 162(1-2):171-189. doi: 10.1016/0022-1694(94)90010-8

    Frumkin A. 1994. Morphology and development of salt caves[J]. National Speleological Society Bulletin, 56:82-95. http://www.researchgate.net/publication/266160224_Morphology_and_development_of_salt_caves

    Frumkin A. 1996. Structure of northern Mount Sedom salt diapir(Israel) from cave evidence and surface morphology[J]. Israel Journal of Earth Sciences, 45(2):73-80. http://www.researchgate.net/publication/266209704_Structure_of_northern_Mount_Sedom_salt_diapir_Israel_from_cave_evidence_and_surface_morphology

    Frumkin A. 1998. Salt cave cross-sections and their paleoenvironmental implications[J]. Geomorphology, 23(2/4):183-191. http://www.sciencedirect.com/science/article/pii/S0169555X98000026

    Huang Shaoying, Wang Yueran, Wei Hongxing. 2009. Characteristics of salt structures and its evolution in Kuqa depression, Tarim basin[J]. Geotectonica Et Metallogenia, 33(1):117-123(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200901016&dbcode=CJFD&year=2009&dflag=pdfdown

    Jackson M P A, Vendeville B C. 1994. Regional extension as a geologic trigger for diapirism[J]. Geological Society of America Bulletin, 106(1):57-73. doi: 10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2

    Jiří Bruthans, Filippi M, Zare M, Churackova Zdenka, Asadi N, Fuchs M, Adamovic Jiri. 2010. Evolution of salt diapir and karst morphology during the last glacial cycle:Effects of sea-level oscillation, diapir and regional uplift, and erosion (Persian Gulf, Iran)[J]. Geomorphology, 121(3):291-304. http://smartsearch.nstl.gov.cn/paper_detail.html?id=60c613c62f0dc5e57b8e9a778b06fd87

    Johnson K S. 1997. Evaporite karst in the United States[J]. Carbonates & Evaporites, 12(1):2-14.

    Li J, Webb A A G, Mao X, Eckhoff I, Colon C, Zhang K, Wang H, Li A, He D. 2014. Active surface salt structures of the western Kuqa fold-thrust belt, northwestern China[J]. Geosphere, 10(6):1219-1234. doi: 10.1130/GES01021.1

    Li Li. 2008. Research and development conception of salt dome geological relics in Wensu area, Xinjiang[D]. Chang'an University(in Chinese with English abstract).

    Li Yanyou, Qi Jiafu. 2012. Salt-related contractional structure and its main controlling factors of Kelasu structural zone in Kuqa depression:Insights from Physical and numerical experiments[J]. Chinese Journal of Geology, 47(3):607-617(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S187770581201137X

    Lucha P, Cardona F, Gutiérrez F, Guerrero J. 2008. Natural and human-induced dissolution and subsidence processes in the salt outcrop of the Cardona Diapir (NE Spain)[J]. Environmental Geology, 53(5):1023-1035. doi: 10.1007/s00254-007-0729-3

    Neng Yuan, Qi Jiafu, Xie Huiwen, Li Yong, Lei Ganglin, Wu Chao. 2012. Structural characteristics of northern margin of Kuqa depression, Tarim basin[J]. Geological Bulletin of China, 31(9):1510-1519(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201209014.htm

    Qi Jiafu, Lei Ganglin, Li Minggang, Gu Yongxing. 2009. Analysis of structure model and formation mechanism of Kelasu structure zone, Kuqa depression[J]. Geotectonica Et Metallogenia, 33(1):49-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200901008.htm

    Qi Jiafu, Li Yong, Wu Chao, Yang Shujiang. 2013. The interpretation models and discussion on the contractive structure deformation of Kuqa depression, Tarim basin[J]. Geology in China, 40(1):106-120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201301009.htm

    Rosen P A, Hensley S, Joughin I R, Li F K, Madsen S N, Rodriguez E, Goldstein R M. 2000. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 88(3):333-382. doi: 10.1109/5.838084

    Sesiano J. 2006. Evolution actuelle des phénomènes karstiques dans la Cordillera de la Sal (Atacama, Nord Chili)[J]. Karstologia, 47:49-54. http://dialnet.unirioja.es/servlet/articulo?codigo=2125521

    Talbot C J, Pohjola V. 2009. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers[J]. Earth-Science Reviews, 97(1/4):155-183. http://www.sciencedirect.com/science/article/pii/S0012825209001469

    Tang Liangjie, Yu Yixin, Yang Wenjing, Peng Gengxin, Lei Ganglin, Jin Wenzheng. 2006. Internal deformation features of detachment layers in the front of the Kuqa foreland fold-thrust belt[J]. Geology in China, 33(5):944-951(in Chinese with English abstract). http://www.researchgate.net/publication/285351201_Internal_deformation_features_of_detachment_layers_in_the_front_of_the_Kuqa_foreland_fold-thrust_belt

    Tang Liangjie, Yu Yixin, Yang Wenjing, Peng Gengxin, Lei Ganglin, Ma Yujie. 2007. Paleo-uplifts and salt structures and their influence on hydrocarbon accumulations in the Kuqa depression[J]. Acta Geologica Sinica, 81(2):145-150(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200702001.htm

    Tang Pengcheng, Wang Xin, Xie Huiwen, Lei Ganglin, Huang Shaoying. 2010. The Quele area of the Kuqa depression, Tarim basin, NW China:Cenozoic salt structures, evolution and controlling factors[J]. Acta Geologica Sinica, 84(12):1735-1745(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201012003.htm

    Wang Honghao, Li Jianghai, Li Weibo, Huang Shaoying, Neng Yuan. 2016. Deformation behavior of underground salt rock in Kuqa Kelasu tectonic zone[J]. Special Oil & Gas Reservoirs, 23(4):20-24(in Chinese with English abstract). http://www.cqvip.com/QK/98573X/201604/669728007.html

    Wang Huiping. 2011. Ochirbat salt diapiric structure and hydrocarbon accumulation in the canyon of Xinjiang Wensu county[J]. Journal of Xi'an University of Science & Technology, 31(1):59-63(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XKXB201101014.htm

    Wang Xin, Tang Pengcheng, Xie Huiwen, Lei Ganglin, Huang Shaoying. 2009. Cenozoic salt structures and evolution in the western Kuqa depression, Tarim basin, China[J]. Geotectonica et Metallogenia, 33(1):57-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200901009.htm

    Wang Zhaoming, Wang Tingdong, Xiao Zhongyao, Xu Zhiming, Li Mei, Lin Feng. 2002. Migration and accumulation of natural gas in Kela-2 gas field[J]. The Chinese Science Bulletin, z1:103-108(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/kxtb-e2002Z1015

    Warren J K. 2006. Evaporites:sediments, resources and hydrocarbons[M]. Springer Science & Business Media.

    Weinberger R, Waldmann N, Frumkin A, Gardosh M, Wdowinski S. 2006. Quaternary rise of the sedom diapir, Dead Sea basin[J]. Special Paper of the Geological Society of America, 401:33-51. http://www.researchgate.net/publication/229392715_Quaternary_rise_of_the_Sedom_Diapir_Dead_Sea_Basin

    Wu Guanghui, Wang Zhaoming, Liu Yukui, Zhang Baoshou. 2004. Kinematics characteristics of the Kuqa depression in the Tarim basin[J]. Geological Review, 50(5):476-483(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200405005.htm

    Wu Zhenyun, Yin Hongwei, Wang Xin, Xu Shijin. 2015. The structural features and formation mechanism of exposed salt diapirs in the front of fold-thrust belt, western Kuqa depression[J]. Journal of Nanjing University, (3):612-625(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ201503018.htm

    Yin Hongwei, Wang Zhe, Wang Xin, Wu Zhenyun. 2011. Characteristics and mechanics of Cenozoic salt-related structures in Kuqa foreland Basins:Insights from physical modeling and discussion[J]. Geological Journal of China Universities, 17(2):308-317(in Chinese with English abstract). http://www.researchgate.net/publication/288265154_Characteristics_and_mechanics_of_Cenozoic_salt-related_structures_in_Kuqa_foreland_basins_Insights_from_physical_modeling_and_discussion

    Yu Yixin, Tang Liangjie, Li Jingchang, Yang Wenjing, Jin Wenzheng, Peng Gengxin, Lei Ganglin, Wan Guimei. 2006. Influence of basement f aults on the development of salt structures in the kuga foreland fold-and-Thrust belt in the Northern Tarim basin[J]. Acta Geologica Sinica, 80(3):330-336(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200603003.htm

    Zebker H A, Goldstein R M. 1986. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research Solid Earth, 91(B5):4993-4999. doi: 10.1029/JB091iB05p04993

    Zhao Mengjun, Lu Xuesong, Zhuo Qingong, Li Yong, Song Yan, Lei Ganglin, Wang Yuan. 2015. Characteristics and distribution law of hydrocarbon accumulation in Kuqa foreland basin[J]. Acta Petrolei Sinica, 36(4):395-404(in Chinese with English abstract). http://www.researchgate.net/publication/282275987_Characteristics_and_distribution_law_of_hydrocarbon_accumulation_in_Kuqa_foreland_basin

    Zhao Mengjun, Wang Zhaoming, Zhang Shuichang, Wang Qinghua, Song Yan, Liu Shaobo, Qin Shengfei. 2005. Accumulation and features of natural gas in the Kuqa foreland basin[J]. Acta Geologica Sinica. 79(3):414-422(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2005.tb00907.x

    陈书平, 汤良杰, 贾承造, 皮学军, 谢会文. 2004.库车坳陷西段盐构造及其与油气的关系[J].石油学报, 25(1):30-34, 39. doi: 10.3321/j.issn:0253-2697.2004.01.006
    程小岛, 李江海, 程海艳, 邓罡. 2013.库车坳陷西部地表典型盐构造样式及变形特征[J].新疆石油地质, 34(2):189-192. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201302016.htm
    黄少英, 王月然, 魏红兴. 2009.塔里木盆地库车坳陷盐构造特征及形成演化[J].大地构造与成矿学, 33(1):117-123. doi: 10.3969/j.issn.1001-1552.2009.01.015
    李丽. 2008.新疆温宿地区的盐丘地质遗迹研究及开发构想[D].长安大学.
    李艳友, 漆家福. 2012.库车坳陷克拉苏构造带分层收缩构造变形及其主控因素[J].地质科学, 47(3):607-617 doi: 10.3969/j.issn.0563-5020.2012.03.003
    能源, 漆家福, 谢会文, 李勇, 雷刚林, 吴超. 2012.塔里木盆地库车坳陷北部边缘构造特征[J].地质通报, 31(9):1510-1519. doi: 10.3969/j.issn.1671-2552.2012.09.014
    漆家福, 雷刚林, 李明刚, 谷永兴. 2009.库车坳陷克拉苏构造带的结构模型及其形成机制[J].大地构造与成矿学, 33(1):49-56. doi: 10.3969/j.issn.1001-1552.2009.01.007
    漆家福, 李勇, 吴超, 杨书江. 2013.塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J].中国地质, 40(1):106-120. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20130107&flag=1
    汤良杰, 余一欣, 杨文静, 彭更新, 雷刚林, 金文正. 2006.库车前陆褶皱冲断带前缘滑脱层内部变形特征[J].中国地质, 33(5):944-951. doi: 10.3969/j.issn.1000-3657.2006.05.002
    汤良杰, 余一欣, 杨文静, 彭更新, 雷刚林, 马玉杰. 2007.库车坳陷古隆起与盐构造特征及控油气作用[J].地质学报, 81(2):145-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702001.htm
    唐鹏程, 汪新, 谢会文, 雷刚林, 黄少英. 2010.库车坳陷却勒地区新生代盐构造特征, 演化及变形控制因素[J].地质学报, 84(12):1735-1745. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012003.htm
    汪新, 唐鹏程, 谢会文, 雷刚林, 黄少英. 2009.库车坳陷西段新生代盐构造特征及演化[J].大地构造与成矿学, 33(1):57-65. doi: 10.3969/j.issn.1001-1552.2009.01.008
    王洪浩, 李江海, 李维波, 黄少英, 能源. 2016.库车克拉苏构造带地下盐岩变形特征分析[J].特种油气藏, 23(4):20-24. doi: 10.3969/j.issn.1006-6535.2016.04.004
    王会萍. 2011.新疆温宿峡谷盐底辟构造与油气聚集[J].西安科技大学学报, 31(1):59-63. doi: 10.3969/j.issn.1672-9315.2011.01.012
    王招明, 王廷栋, 肖中尧, 徐志明, 李梅, 林峰. 2002.克拉2气田天然气的运移和聚集[J].科学通报, z1:103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1015.htm
    邬光辉, 王招明, 刘玉魁, 张宝收. 2004.塔里木盆地库车坳陷盐构造运动学特征[J].地质论评, 50(5):476-483. doi: 10.3321/j.issn:0371-5736.2004.05.005
    吴珍云, 尹宏伟, 汪新, 徐士进. 2015.库车坳陷西段褶皱-冲断带前缘盐底辟构造特征及形成机制[J].南京大学学报(自然科学), (3):612-625. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503018.htm
    尹宏伟, 王哲, 汪新, 吴珍云. 2011.库车前陆盆地新生代盐构造特征及形成机制:物理模拟和讨论[J].高校地质学报, 17(2):308-317. doi: 10.3969/j.issn.1006-7493.2011.02.016
    余一欣, 汤良杰, 李京昌, 杨文静, 金文正, 彭更新, 雷刚林, 万桂梅. 2006.库车前陆褶皱-冲断带基底断裂对盐构造形成的影响[J].地质学报, 80(3):330-336. doi: 10.3321/j.issn:0001-5717.2006.03.003
    赵孟军, 鲁雪松, 卓勤功, 李勇, 宋岩, 雷刚林, 王媛. 2015.库车前陆盆地油气成藏特征与分布规律[J].石油学报, 36(4):395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201504001.htm
    赵孟军, 王招明, 张水昌, 王清华, 宋岩, 柳少波, 秦胜飞. 2005.库车前陆盆地天然气成藏过程及聚集特征[J].地质学报, 79(3):414-422. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200503023.htm
  • 期刊类型引用(7)

    1. 何沛欣. 广东省粤中断裂型碳酸盐岩地热水的水文地球化学研究——以马星-隔陂地热系统为例. 广东化工. 2024(05): 67-71 . 百度学术
    2. 王君照,李胜涛,岳冬冬,张秋霞,李菊红,崔俊艳,杨骊. 基于GIS与GOCAD的天津双窑凸起构造区热储三维地质建模. 科学技术与工程. 2023(14): 5887-5902 . 百度学术
    3. 程正璞,雷鸣,李戍,连晟,魏强. 天津东丽湖深部岩溶热储时频电磁法探测及有利区预测. 华北地质. 2023(02): 1-8 . 百度学术
    4. 岳冬冬,贾小丰,张秋霞,冯昭龙,李胜涛. 天津山岭子地热田蓟县系雾迷山组热储流体同位素特征及其指示意义. 华北地质. 2023(02): 45-50 . 百度学术
    5. 刘杰,宋美钰,胥博文,阮传侠,石峰. 天津市馆陶组地热流体可采量计算方法及适宜性分区研究. 中国地质. 2023(06): 1655-1666 . 本站查看
    6. 杨吉龙,汪大明,牛文超,相振群,刘洋,赵泽霖,程先钰. 天津地热资源开发利用前景及存在问题. 华北地质. 2022(03): 1-6 . 百度学术
    7. 王婷灏,汪新伟,毛翔,罗璐,高楠安,刘慧盈,吴陈冰洁. 沧县隆起北部地区地热资源特征及开发潜力. 中国地质. 2022(06): 1747-1764 . 本站查看

    其他类型引用(2)

图(4)
计量
  • 文章访问数:  2875
  • HTML全文浏览量:  894
  • PDF下载量:  4777
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2018-09-13
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-02-24

目录

/

返回文章
返回
x 关闭 永久关闭