Zircon U-Pb geochronology, geochemical characteristics and tectonic implications of Caledonian granites from the Xuanhe area, Southwestern Fujian Province
-
摘要:
龙岩宣和岩体是闽西南地区呈北东向弧形出露,最大的燕山期-加里东期复式岩体,但是有关该岩体的形成时代及成岩环境的认识仍存在分歧,进而制约了对闽西南地区构造环境的探讨。文章以出露于闽西南地区的宣和正长花岗岩为研究对象,在详细野外地质调查基础上,开展了岩石学、LA-ICP-MS锆石U-Pb地质年代学、岩石地球化学及Sr-Nd同位素测试等工作,在此基础上探讨了宣和岩体的岩石类型、岩浆来源和成岩构造环境。宣和岩体主要由含斑细粒、少斑中细粒、似斑状中粒、似斑状中粗粒及斑状细粒正长花岗岩等组成,4个样品的锆石LA-ICP-MS U-Pb年龄为(424.6±2.8)Ma、(426.7±2.6)Ma、(435.5±2.4)Ma及(447±3.6)Ma,表明其形成时代不是原来认为的印支期,而是加里东期。地球化学特征上,具高硅、高钾(K2O>Na2O),低TiO2、FeO、MgO的特征,A/CNK平均值1.23,属高钾钙碱性过铝质系列岩石;稀土元素含量高,稀土配分曲线右陡倾,轻重稀土分馏明显,Eu中等负异常;富集大离子亲石元素K、Rb、Pb、Nd及高场强元素Th、U,相对亏损Sr、Ba、Nb、Ce,显示高分异的S型花岗岩的特征。其Sr同位素初始比值介于0.71291~0.71399,εNd(t)值变化于-9.1~-13.4,对应的二阶段Nd模式年龄为1.91~2.27 Ga,推测宣和岩体是由与麻源群变质岩相当的地壳物质部分熔融形成的,为华南加里东期板内造山作用的产物。
Abstract:The NE-trending Xuanhe granitic mass is the largest Yanshanian-Caledonian complex rock mass in southwestern Fujian, which is exposed in southwestern Fujian Province in the arc form. However, there are still different opinions in the formation age of rock mass and its petrogenetic environment, which restricts the discussion of the tectonic environment of southwestern Fujian. Based on detailed field geological survey, the authors investigated the Xuanhe syenogranites, mainly on the basis of the LA-ICP-MS zircon U-Pb geochronology, petrochemistry and Sr-Nd isotope analysis, and discussed the rock types, magma source and tectonic environment. The Xuanhe granites are mainly composed of syenogranites in the forms of speckle fine grain, oligophyric medium-fine grain, porphyritic fine grain, porphyritic fine coarse grain and porphyritic fine grain. The LA-ICP-MS zircon U-Pb age of four samples from the granites are (424.6±2.8)Ma, (426.7±2.6)Ma, (435.5±2.4)Ma and (447±3.6)Ma respectively, indicating that the formation age of Xuanhe granite is Caledonian instead of Indosinian as previously held. The rocks belong to high-K calc alkaline peraluminous rock series, characterized geochemically by high Si, high K (K2O>Na2O), low TiO2, low FeO and low MgO, with average A/CNK value being 1.23. The rocks are S-type grantie, with the characteristics of high content of rare earth elements, obvious right steeply inclined REE fractionation curve, middle negative Eu anomaly, enrichment of large ion lithophile elements such as K, Rb, Pb and Nd and high field strength elements of Th, U and Ba, and relative depletion of Sr, Nb and Ce. The initial Sr isotope ratios are from 0.71291 to 0.71399, the values of εNd(t) vary from -9.1 to -13.4, and two stage Nd model ages correspond to 1.91-2.27 Ga. It is inferred that the granites were formed by partial melting of crustal material of Mayuan Group metamorphic rocks, being probably a product of intraplate Caledonian orogeny in South China.
-
1. 引言
砷(As)在自然界普遍存在,是国际癌症研究机构(IARC)列出的第Ⅰ类明确致癌物(WHO, 2011;Shahid et al., 2018)。饮用水砷浓度最敏感的毒性阈值尚未确定,世界卫生组织推荐的饮用水砷浓度限值为10 μg/L(WHO, 2011)。美国环境保护署(EPA)和国家研究委员会(NRC)指出,长期饮用浓度低至5 μg/L甚至3 μg/L的水可能会对人类健康造成慢性影响,引发癌症(Taheri et al., 2017)。饮用高砷地下水是人类遭受砷暴露风险的主要途径,全球有超过1亿人承受高砷地下水的暴露风险,其中中国有1900万(Duan et al., 2017; Li et al., 2017;Cao et al., 2018;Shahid et al., 2018)。
高砷地下水在全球分布广泛,南亚、东南亚是地下水砷污染的典型地区,已经开展过深入而广泛的地球化学研究,解析高砷地下水的形成演化过程,追溯砷的来源及其溶出释放机制(Tang et al., 1996;Wang et al., 1998;Deng et al., 2009; Xie et al., 2012;Li et al., 2013;Gan et al., 2014;Hu et al., 2015;Gupta et al., 2017;Zhang et al., 2017;Han et al., 2017;Li et al., 2018;Gillispie et al., 2019;Gao et al., 2020)。含砷矿物氧化溶解及还原活化是高砷地下水形成的主要机制(Gupta et al., 2017; Zhang et al., 2017; Shahid et al., 2018; Gillispie et al., 2019; Stopelli et al., 2020)。中国高砷地下水主要分布在大同盆地、江汉平原、河套盆地、银川盆地等内陆平原区;淮河流域是中国新发现的高砷地下水集中分布区,高砷地下水分布范围广,影响人口众多。根据2010年代开展的淮河流域地下水分析数据统计预测,淮河流域大部分地区的砷暴露风险概率大于0.4,统计发现流域内各村庄监测水井As浓度超过10 μg/L的比例达17%,最高检测值为620 μg/L(Li et al., 2017)。
高砷地下水的形成是在水岩相互作用过程中多因素共同作用的结果。淮河流域富砷地下水砷污染系原生成因,以前的研究工作主要集中在地下水As的水文地球化学分布、饮水型砷中毒地方病的地理分布等方面(Zhang et al., 2010;Chen et al., 2013; Li et al., 2017)。淮河流域高砷地下水的研究程度低,缺乏对高砷地下水的形成过程及其影响因素的深入解析,高砷地下水的形成演化机制不明。本次研究选择淮河平原代表性的高砷地下水小尺度流场,针对以往研究的薄弱环节,运用地下水水文地球化学分析方法,主要研究目标为:(1)分析典型高砷地下水的水文地球化学特征,评估其污染风险;(2)解析高砷地下水的形成演化过程;(3)追溯砷污染物的来源及溶出释放过程。开展高砷地下水的形成演化过程研究,为淮河流域高砷地下水的治理与公共健康风险控制提供科学依据。
2. 研究区概况
淮河流域地处中国东部,流域西起桐柏山、伏牛山,东临黄海,南以大别山、江淮丘陵、通扬运河及如泰运河分界,北以黄河、泰山为界与黄河流域毗邻,地理坐标:111°55′~121°25′E,30°55′~36°36′N,面积为27万km2。该流域处于中国南北气候过渡带,属暖温带半湿润季风气候区,年平均气温11~16℃。其地质构造上位于华北板块、扬子板块、秦岭造山系3个构造单元的交接地带(Zhang et al., 2015) (图 1)。
研究区安徽省太和县位于淮河流域中部,以冲积平原地貌为主,海拔高程一般15~50 m,地势由西北向东南微倾。研究区分布最广的地下水类型为松散岩类孔隙水,水文地质分区划分为淮河中游淮北冲积平原区。自新近纪(23 Ma)以来,淮河流域形成了巨厚的新近系、第四系松散沉积物,为区域地下水的形成与分布提供了良好的水文地质条件。研究区地下水系统自上而下划分为浅层、中深层、深层含水系统(Li et al., 2018)。浅层地下水赋存于50 m以浅的全新统、上更新统地层,与大气降水、地表水关系密切,地下水埋深一般为2~4 m,均在极限蒸发深度以内,蒸发是浅层地下水的主要排泄途径。中深层地下水赋存于50~150 m的中、下更新统地层,深层地下水主要赋存于150~500 m的新近系(图 1)。由于中、深层地下水埋藏较深(埋深大于50 m),含水层之间有着黏性土层相隔,不能直接接受大气降水的补给,径流缓慢,人工开采是深层地下水的主要排泄途径。
3. 调查研究方法
太和县是淮河平原典型的高砷地下水分布区(图 1),本次研究选择太和县马集镇及相邻区的高砷地下水小尺度流场为天然实验场,采集测试地下水样品。本次研究采用精度为1 km×1 km(局部1 km×0.5 km)的近似网格法布设采样点。本次研究于2019年5、9月采集样品,共采集地下水样64件。采集的地下水样品,主要取自研究区井深不到50 m的浅井,水位埋深4~50 m,含水层为第四系砂层、细砂层、粉砂层。
地下水样品水化学分析了As、K+、Na+、Ca2+、Mg2+、Cl-、SO42-、HCO3-、F-、Br-、总碱度和总酸度。阳离子(Na+, K+, Ca2+, Mg2+)采用电感耦合等离子体发射光谱法(ICP-OES)测定,阴离子(HCO3-, SO42-, Cl-, F-, Br-)用离子色谱法测定,总碱度、总酸度采用酸滴定法测定,地下水As浓度测试采用荧光光谱仪(AFS-820,中国),As检出限为0.05 μg/L,精密度<1.0%。样品测试分析由中国地质调查局南京地质调查中心实验测试中心完成。研究区地下水化学分析结果见表 1。
表 1 淮河流域安徽太和县地下水化学测试分析(2019年6月、9月采样)Table 1. Chemical assay data of groundwater quality in Taihe County of Anhui Province in Huaihe River Basin (sampled in June and September 2019)根据热力学原理,水岩反应中矿物的溶解与沉淀由各种矿物在地下水中的饱和指数(SI) 决定,利用SI可以识别水质和水化学演化过程(Zhu et al., 2011;Han et al., 2014;Taheri et al., 2017)。SI的数学表达式为:
其中IAP是离子活性积,Ks是矿物的平衡常数。SI<0、SI = 0、SI>0分别为矿物处于溶解、平衡、沉淀阶段的热力学判据,通常认为0.5>SI>-0.5为近饱和状态。
地下水化学分析以SPSS 19.0为平台对数据进行描述统计、相关分析、回归分析,以Phreeqc 3.40为平台选择确定矿物相,计算矿物饱和指数,专题图以Coreldraw X4、AquaChem 3.70为平台制作。
4. 结果与分析
4.1 地下水质量评价
根据地下水化学测试分析结果,依据国家地下水质量标准GB/T 14848-2017分类标准(MLR,2017),地下水中As、Cu、Mo、Ba、Na+、Cl-、SO42-、HCO3-、CO32-、NO3-、NO2-、F-、COD、I、TDS、Mn、HBO2等的均值、标准差与质量分类见表 1。影响太和马集研究区松散岩类孔隙水水质的主要无机组分是砷、钡、钠、氯、氟、碘、锰、硝酸盐、硫酸盐、硼、溶解性总固体,其中砷、氟、锰、钠、硼是最主要影响因子,单项指标超过地下水质量Ⅲ类标准的样品比例均超过50%(表 1、表 2)。
表 2 安徽太和县地下水化学统计分析与评价Table 2. Statistics and evaluation of groundwater chemistry of Taihe Conty, Anhui Province in Huaihe River Basin依据世界卫生组织推荐的饮用水质量标准(WHO, 2011),影响研究区地下水水质的主要因素是As、F浓度。研究区浅层地下水砷浓度为(5.75±5.42) μg/L,呈现明显的空间变异性;超过世界卫生组织饮用水推荐准则值(10 μg/L)样品比例为23%,呈现高暴露风险。地下水氟浓度为(1.29±0.40) mg/L,超过推荐限值(1.5 mg/L)样品比例达31%。
4.2 地下水离子浓度与水化学类型
本次研究采集分析的地下水均为浅层孔隙水,含水岩组为全新统和上更新统含水岩组。根据水化学分析结果,研究区浅层地下水的总溶解固体(TDS)浓度为(719.29±310.20) mg/L,其中大部分样品为低盐度淡水(<1000 mg/L),26%在微咸水(1000~3000 mg/L)范围内。地下水的化学成分受主要离子(SO42-、Cl-、HCO3-、Na+、Ca2+、Mg2+)控制。阴离子成分以HCO3-为主,SO42-和Cl-次之,浓度分别为(617.93±220.25)、(83.73±73.09)、(54.03±58.81) mg/L。阳离子以Na+为优势离子,其次为Ca2+、Mg2+,浓度分别为(186.04±120.17)、(46.17±27.91)、(39.48±12.39) mg/L。
研究区测试样品总碱度(516±169) mg/L,总酸度(20.00±4.63) mg/L,地下水呈碱性。测试样品总碱度与HCO3-浓度极显著正相关,相关系数R=0.997(P≤0.01),故水样中总碱度表现为HCO3-碱度,总碱度大小总体上反映了HCO3-含量的大小。高砷地下水总碱度主要分布在400~700 mg/L(图 2),研究区碳酸盐岩矿物风化作用和离子交换反应升高了地下水的碱度。
优势离子决定了地下水的类型,按piper三线图统计,研究区水化学类型以HCO3-Na为主,其次为HCO3-Na·Mg、HCO3-Na·Ca,HCO3-Na·Ca·Mg型。高砷地下水的水化学类型主要为HCO3-Na型(图 3)
4.3 地下水演化过程
4.3.1 蒸发浓缩作用
Cl和Br也是地下水中普遍存在的溶质,由于Cl、Br在天然水中的保守行为和高溶解度,离子交换反应与矿物表面吸附等过程不能显著改变Cl和Br的浓度。岩盐(NaCl)矿物结构中不含较大的Br离子,其Cl/Br比值一般为104~105(摩尔比),岩盐溶解随着氯离子浓度的增加将产生Cl/Br比值的快速增加;相比之下,地下水的蒸发过程可以改变地下水中Cl和Br的绝对浓度,但不会改变地下水岩盐饱和之前的Cl/Br比值。因此应用Cl、Br及Cl/Br比值可以识别区分地下水的溶解、蒸发等演化过程(Cartwright et al., 2006;Deng et al., 2009;Xie et al., 2012;Xing et al., 2013;Han et al., 2014;Taheri et al., 2017)。
研究区测试样品的Cl-浓度范围0.70~210 mg /L,均值(54.03±58.81) mg/L,Br-浓度范围为10.7~324 μg/L,均值(104±87.9) μg/L。Cl-浓度与Br-浓度显著正相关,相关系数0.75(P≤0.01)。样品的Cl-、Br-浓度较低,Cl/Br(mol)均值为1097±1044,比值变化范围51.0~4603。样品中大部分的Cl/Br比值超过600,显示显著的空间变异性;As超标地下水(>10 μg/L)的Cl/Br比值范围544~3093,均值993。测试样品Cl/Br比值最高值超过4600,地下水Cl浓度不超过6 mmol /L,地下水溶解少量的岩盐是Cl/Br比值快速增大最可能的机制,较大的Cl/Br比值变化范围反映出各测试样品岩盐溶解量的不同。Cl/Br比与Cl浓度之间的关系(图 4)表明,蒸发作用、岩盐溶解作用是控制浅层地下水分布的主导过程,高砷地下水Cl/Br比值随Cl浓度的增加而相对不变,说明高砷地下水更大程度受到蒸发作用的影响。
4.3.2 岩石风化水解作用
Ca/Na、Mg/Na、HCO3/Na(mol)比值可以表示地下水矿化度的强弱,也可以得到地下水来源及水质演化的相关信息,在一定程度上为区域水文地球化学演化过程提供判断依据(Zhu et al., 2011; Liu et al., 2018)。从研究区地下水Mg /Na-Ca/Na、HCO3/Na-Ca/Na关系图(图 5)可知,随着Ca/Na比值的增大,地下水的Mg /Na、HCO3/Na比值逐渐增加。地下水主要阳离子浓度比值主要分布于蒸发盐矿物溶解与硅酸盐矿物风化作用之间,少部分分布于硅酸盐矿物风化作用与碳酸盐矿物溶解作用之间,表明研究区地下水受到蒸发盐溶解、硅酸盐风化、碳酸盐溶解等过程的共同影响。高砷地下水的离子比值主要分布于蒸发盐矿物溶解与硅酸盐矿物风化作用之间,显示高砷地下水更大程度受到蒸发盐溶解与硅酸盐矿物风化过程的影响。
4.3.3 离子交换吸附作用
Na/Cl比值(mol)是表征地下水中Na+富集程度的一个水文地球化学参数,可以用来反映离子交换程度(Xing et al., 2013;Han et al., 2014;Yang et al., 2016;Taheri et al., 2017)。淮河流域属于干旱—半干旱地区,蒸发作用强烈,导致岩盐在沉积层累积,岩盐溶解是平原盆地区地下水中Na+和Cl-的主要来源之一。如果岩盐溶解为Na+与Cl-的主要来源,则Na/Cl(mol)-的比值应为1∶1,高于此比值的Na+则可能有其他来源。本次研究全区采集地下水样Na/Cl比值为9.63±57.4,绝大部分样品远大于1∶1,呈现显著的空间变异性,Na/Cl比值随Cl浓度的增加呈下降趋势;高砷地下水(10>As≥5 μg/L)、污染地下水(As≥10 μg/L)的Na/Cl比值分别为43.1±85.1、15.7±16.0,全部位于岩盐溶解线上方(图 6)。由此推断,研究区地下水的Na+并不仅仅来源于岩盐溶解,地下水总体上可能经历强烈的阳离子交换作用,而且高砷地下水的离子交换作用更为显著。
4.4 地下水离子来源与砷的活化
水岩相互作用控制着地下水中主要离子浓度及其赋存状态。本次研究利用PHREEQC 3.7计算矿物饱和指数,结果表明:近饱和矿物方解石(0.41)、文石(0.26)、菱镁矿(0.04) 的SI值接近0,处于准平衡状态;未饱和矿物岩盐(-6.52)、石膏(-1.99)、硬石膏(-2.23)、萤石(-1.02)的SI值小于-0.5,表明存在岩石溶解的趋势;白云石(0.70) 的SI大于0.5,存在化学沉淀的趋势(表 3)。地下水中Cl-、F-、SO42-部分源自岩盐、萤石及石膏、硬石膏矿物的溶解释出。
表 3 淮河流域安徽太和县地下水矿物饱和指数Table 3. Saturation indices of groundwater in Taihe County of Anhui Province, the Huaihe River Basin在自然环境pH、Eh条件下,砷元素主要以无机氧化态As(Ⅴ)和还原态As(Ⅲ)元素价态存在。沉积物(土壤)中含砷矿物通常以砷酸盐、亚砷酸盐和硫化物等矿物相存在,在还原条件下,砷黄铁矿是砷的稳定宿主,其伴生砷与地下水砷分布高度相关(Hu et al., 2015; Taheri et al., 2017; Duan et al., 2017; Zhang et al., 2017; Shahid et al., 2018; Gillispie et al., 2019)。地下水动态、氧化还原电位(Eh)、酸碱度(pH)的变化影响沉积物砷的吸附-解析过程,进而影响水体砷的浓度,高pH、低Eh还原条件促进沉积物中砷的解吸和溶解进入地下水而在溶液中积累(高存荣等, 2010; 王杰等, 2015; Duan et al., 2017; Taheri et al., 2017; Zhang et al., 2017; Gillispie et al., 2019)。
地下水中的SO42-可能源自石膏溶解与硫化物氧化,全区地下水SO42-/Ca2+ (mol) 比值为0.76,地下水的SO42-不仅仅源于石膏矿物的溶解,还有硫化物的氧化。测试样品中的As和SO42-浓度之间正相关(相关系数R=0.584)。分析样品中As<3 μg/L、3 μg/L≤As<5 μg/L、5 μg/L≤As<10 μg/L与As≥10 μg/L地下水的SO42-浓度均值分别为0.74、1.09、0.92与0.93 mmol/L,高砷地下水呈现相对高的硫酸盐浓度。
经X射线衍射物相分析,淮河流域浅层(0.2~1 m)沉积物主要矿物成分为石英、钾长石、方解石和黏土矿物,含量分别为47.1%、3.79%、8.27%和33.4%。部分样品中含有少量黄铁矿和菱铁矿,含量分别为2.5%和47.1%,未检测到赤铁矿,反映还原性地下水环境。据地下水化学数据与表层沉积物物相分析结果推测淮河流域沉积物中砷在还原条件下可能以含砷硫化物相存在,由于长期大量开采地下水,地下水流系统环境改变,破坏了含水层固液相动态交换的平衡,触发As从固相释放到地下水中。碳酸盐矿物的溶解通常会增加碱度(pH)值,在高pH条件下,含砷硫化物的氧化速率增加,地下水SO42-浓度增高,促进As向水体的释出。pH值的增大也促进As从金属氧化物(Fe、Mn)中解析从而增加水中As浓度(Duan et al., 2017; Taheri et al., 2017; Zhang et al., 2017; Gillispie et al., 2019)。因此推测含水层沉积物含砷矿物氧化溶解与还原活化是导致原生砷向地下水释出的主要过程。研究区地下水表现出的高矿化度和强烈蒸发作用可能与农业灌溉有较大关系,含水层中原生的矿物组分是造成高砷水的最主要原因。另外,高强度的深层地下水抽取灌溉也可能是导致的高砷水进入浅水含水层的原因之一。
5. 结论
高砷地下水的形成是多因素综合作用的结果,是一个复杂的水文地质过程。高砷地下水的形成是含砷矿物集聚、固相砷的溶解析出及富集砷的水文地质条件等在水岩相互作用过程中多因素综合作用的结果。本次研究选择流域内典型的高砷地下水小尺度流场为天然实验场,解析高砷地下水的形成演化过程,追溯砷的来源及其溶出释放机制。
(1) 研究区地下水砷含量为(5.75±5.42) μg/L,具有明显的空间变异性,超过世界卫生组织饮用水推荐准则值的测试样品比例为23%,呈现高暴露风险,饮用高砷地下水可能是威胁人类健康的主要途径。
(2) 根据水化学成分解析,研究区地下水经历蒸发作用、岩盐溶解、水岩相互作用等过程的共同影响。高砷地下水的化学类型主要为HCO3-Na型,高砷地下水更大程度受到蒸发作用、阳离子交换作用的影响。
(3) 研究区高砷地下水系原生成因,高砷地下水的As源自含水层沉积物原生砷的溶出释放。碱性环境下,含水层沉积物含砷矿物氧化溶解与还原活化可能是高砷地下水形成的主要机制。
-
图 1 宣和岩体区域纲要图(a)及研究区地质简图(b)
1—第四系;3—晚白垩世崇安组;4—晚白垩世沙县组;5—早白垩世晚期构造层;6—早白垩世坂头组;7—晚侏罗世构造层;8—晚三叠世—中侏罗世构造层;9—中侏罗世漳平组;10—早侏罗世梨山组;11—晚二叠世—中三叠世构造层;12—晚二叠世翠屏山组;13—晚石炭世—中二叠世构造层;14—中二叠世童子岩组;15—中二叠世文笔山组;16—晚泥盆世—早石炭世构造层;17—早石炭世梨山组;18—晚泥盆世桃子坑组;19—晚泥盆世天瓦岽组;20—晚新元古代—早古生代构造层;21—末寒武世东坑口组;22—早—晚寒武世林田组;23—晚震旦世黄连组;24—南华—晚震旦世南岩组;25—中新元古代构造层;26—古元古代构造层;27—晚白垩世晶洞花碱长花岗岩;28—早白垩世正长花岗岩;29—早白垩世二长花岗岩;30—晚侏罗世正长花岗岩;31—晚侏罗世少斑中细粒正长花岗岩;32—晚侏罗世二长花岗岩;33—中三叠世正长花岗岩;34—中三叠世二长花岗岩;35—志留纪正长花岗岩;36—志留纪斑状细粒正长花岗岩;37—志留纪似斑状中粗粒正长花岗岩;38—志留纪似斑状中粒正长花岗岩;39—志留纪少斑中细粒正长花岗岩;40—志留纪含斑细粒正长花岗岩;41—志留纪二长花岗岩;42—断层产状;43—层理产状;44—地质界线;45—平行不整合界线;46—角度不整合界线;47—断层;48—推覆断层;49—滑脱断层;50—正断层;51—逆断层;52—脉动界线;53—涌动界线;54—测年样位置;55—研究区;56—剖面位置
Figure 1. Geological map of Xuanhe granite mass (a) and sketch geological map of the study area (b)
1- Quaternary; 2- Late Cretaceous tectonic layer; 3- Late Cretaceous Chongan Formation; 4- Late Cretaceous Shaxian Formation; 5- Early Cretaceous tectonic layer; 6-Early Cretaceous Bantou Formation; 7-Late Jurassic tectonic layer; 8-Late Triassic-Middle Jurassic tectonic layer; 9- Middle Jurassic tectonic layer; 10-Early Jurassic Nishan Formation; 11-Late Permian-Middle Triassic tectonic layer; 12-Late Permian Cuipingshan Formation; 13- Late Carboniferous- Middle Permian structural layer; 14- Middle Permian Tongziyan Formation; 15- Middle Permian Wenbishan Formation; 16- Late Devonian- Early Carboniferous tectonic layer; 17- Early Carboniferous Lishan Formation; 18- Late Devonian Taozikeng Formation; 19-late Devonian Tianwadong Formation; 20-Late Neoproterozoic-Early Palaeozoic tectonic layer; 21-Late Cambrian Dongkengkou Formation; 22-Early-Late Cambrian lingtian Formation; 23-Late Sinian Huanglian Formation; 24-Nanhua Period-Late Sinian Nanyan Formation; 25-Middle-Late Proterozoic tectonic layer; 26- Paleoproterozoic tectonic layer; 27-late Cretaceous miarolitic alkali feldspar syenite; 28-Early Cretaceous syenite; 29- Early Cretaceous monzogranite; 30- Late Jurassic syenite; 31- Late Jurassic oligophyric fine- grained syenite; 32- Late Jurassic Monzogranite; 33-Middle Triassic syenite; 34-Middle Triassic monzogranite; 35-Silurian syenite; 36-Silurian porphyritic fine-granied syenite; 37- Silurian like macular middle- coarse granied syenite; 38- Silurian like macular middle- granied syenite; 39- Silurian littel macular middle-fine grained syenite; 41-Silurian macular- bearing fine- granied syenite; 42-Fault attitude; 43-Bedding attitude; 44-Geological boundary; 45-Parallel unconformity boundary; 46 Angular unconformity boundary; 47- Fault; 48-Nappe fault; 49-Slip fault; 50- Normal fault; 51-Reverse fault; 52-Pulsation boundary; 53-Inrush boundary; 54-Dating sample position; 55- Study area; 56-Profile position
图 2 长汀县下坑—连城县小坑志留纪宣和岩体剖面图(图 1b中A−A’剖面)
1—花岗斑岩脉;2—闪长岩脉;3—石英砂砾岩;4—砂砾岩;5—正断层;6—逆冲断层;其他图例见图 1
Figure 2. Geological section of Silurian Xuanhe granite mass in Xiakeng of Changding County -Xiaokeng of Liancheng County (A−A'profile in Fig. 1b)
1−Granite-porphyry dyke; 2−Diorite dyke; 3−Quartzose glutenite; 4−Glutenite; 5−Normal fault; 6−Thrust fault (other legends as for Fig. 1)
图 3 宣和岩体野外露头及正交偏光显微照片
a、b—似斑状中粒正长花岗岩;c、d—似斑状中粗粒正长花岗岩;e—少斑中细粒正长花岗岩花岗岩;f—斑状细粒正长花岗岩
Figure 3. Microphotograph of Xuanhe granites mass (crossed nicols)
a, b−Oligophyric fine grained syenite; c, d−Porphyritoid medium grained syenite; e−Porphyritoid medium−coarse grained syenite; f−Porphyritic fine grained syenite
图 6 宣和岩体TAS图解(a)、QAP图解(b)、K2O−SiO2图解(c)及A/NK−A/CNK判别图解(d)
(a底图据Middlemost,1994;b底图据TUGS,1979;c底图中实线据Peccerillo and Taylor, 1976.;虚线据Middlemost, 1985)
Figure 6. TAS diagram (a), QAP diagram (b), K2O−SiO2 diagram (c) and A/NK−A/CNK diagram (d) of Xuanhe granite mass
(a base map after Middlemost, 1994; b base map after TUGS, 1979; c base map solid line after Peccerillo R, Taylor, 1976; data of dashed line after Middlemost, 1985)
图 7 宣和岩体稀土元素配分模式图(a)及微量元素蛛网图(b)
(球粒陨石标准化值和原始地幔标准化值据Sun and McDonough, 1989)
Figure 7. REE patterns and spidergrams of Xuanhe granite mass
(standardized value of chondrite and primitive mantle after Sun and McDonough, 1989)
图 8 宣和岩体Sr同位素的岩石源区识别图(a)及εNd(t)−t及基底变质岩Nd同位素演化区域图(b)
Ⅰ—东山岛—莆田忠门变质岩演化域;Ⅱ—龙海深奥变质演化域;Ⅲ—麻源群演化域
Figure 8. The Sr isotope diagram and εNd(t) −t diagram of Xuanhe granite mass(b)
Ⅰ−Evolution field of metamorphic rock from Dongshan Island-Putian Zhongmen; Ⅱ−Evolution field of metamorphic rock from Longhai Shenao; Ⅲ−Evolution field of Mayuan Group
图 10 宣和岩体构造环境判别图解
a—特曼−戈蒂里图解;b—R1−R2图解(据Batchelor and Bowdden, 1985);c—Nb−Y图解;d—Ta−Yb图解a图:A—非造山带火山岩,B—造山带火山岩,C—A、B区所派生的碱性、偏碱性火山岩;b图:①—地幔斜长花岗岩;②—破坏性活动板块边缘(板块碰撞前)花岗岩;③—板块碰撞后隆起期花岗岩;④—晚造山期花岗岩;⑤—非造山区A型花岗岩;⑥—同碰撞(S型)花岗岩;⑦—造山期后A型花岗岩;c图、d图:WPG—板内花岗岩;ORG—洋中脊花岗岩;VAG—火山岩弧花岗岩;SYN−COLG—同碰撞花岗岩
Figure 10. The discrimination diagram for tectonic setting of Xuanhe granite mass
a−Rittmann−Gottiry diagram; b−R1−R2 diagram (after Batchelor and Bowdden, 1985); c−Nb−Y diagram; d−Ta−Yb diagram Diagram a: A−Anorogenic volcanic rocks, B−Orogenic volcanic rocks, C− Alkaline and peralkaline rocks derived from series A and B; Diagram b: ①−Mantle plagiogranite; ②−Destructive plate boundary granite (pre-plate collision); ③−Post-plate collision uplift granite; ④−Late orogenic granite; ⑤−Anorogenic A−type granite; ⑥−S−type granite; ⑦−Post-orogenic granite; Diagram c and d: WPG−Intraplate granite; ORG−Mid-ocean ridge granite; VAG−Volcanic rocks-arc granite; SYN−COLG—Syn-collisional granite
表 1 宣和岩体锆石U−Pb同位素分析结果
Table 1 Zircon U−Pb isotope data of Xuanhe granite mass
表 2 宣和岩体主量元素含量(%)及特征值
Table 2 Major element compositions (%) of Xuanhe granite mass
表 3 宣和岩体稀土元素、微量元素含量(10-6)及特征值表
Table 3 Trace elements (10-6) and rare elements (10-6) compositions of Xuanhe granite mass
表 4 志留纪侵入岩Rb−Sr、Sm−Nd同位素组成分析
Table 4 Rb−Sr and Sm−Nd isotope data of Silurian intrusive rock
-
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4):43-55. http://www.sciencedirect.com/science/article/pii/0009254185900348
Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, (8):173-184.
Charvet J, Shu Liangshu, Shi Yangshen, Guo Lingzhi, Faure M. 1996. The building of South China:Collision of Yangtzi and Cathaysia blocks, problems and tenative answers[J]. Journal of Asian Earth Sciences, 13(3/5):223-235. http://www.researchgate.net/publication/223248185_The_building_of_south_China_Collision_of_Yangzi_and_Cathaysia_blocks_problems_and_tentative_answers
Chen Chenghong, Hsieh PeiShan, Wang Kuolung, Yang Huaijen, Lin Wayne, Liang Yuhsuan, Lee Chiyu, Yang Hsiaochia. 2010. Zircon LA-ICPMS U-Pb ages and Hf isotopes of Huayu (Penghu Islands) volcanics in the Taiwan Strait and tectonic implication[J]. Journal of Asian Earth Sciences, 37(1):17-30. doi: 10.1016/j.jseaes.2009.07.003
Chen Chenghong, Lee Chiyu, Hsieh Peishan, Zeng Wen, Zhou Hanwen.2008. Approaching the age problem for some metamorphosed precambrian basement rocks and phanerozoic granitic bodies in the Wuyishan area:The application of EMP monazite Age Dating[J]. Geological Journal of China Universities, 14(1):1-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200801003.htm
Chen Jiangfeng, Guo Xinsheng, Tang Jiafu, Zhou Taixi. 1999. Nd isotopic model ages:Implications of the growth of the continental crust of southeastern China[J]. Journal of Nanjing University(Natural Sciences), 35(6):649-658(in Chinese with English abstract). http://www.researchgate.net/publication/284832044_Nd_isotopic_model_ages_implications_of_the_growth_of_the_continental_crust_of_Southeastern_China
Den Fangling. 1987. Isotopic geochronology of the southern Zhuguangshan granite batholith[J]. Geochimica, 16(2):141-153. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198702004.htm
Dong Xuefa, Yu Shengqiang, Tang Zengcai, Xiao Qinghui, Yuan Qiang, Chen Zhongda, Zhou Zongyao, Wu Xiaoyong. 2016. Geochemical characteristics of the intra-oceanic arc type metabasic-volcanics in Chencai accretion complex of Zhejiang Province and their geological significance[J]. Geology in China, 43(3):817-828(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201603009.htm
Guo Aimin, Chen Bihe, Chen Jianfeng, Zhou Chao, Si Chengshang, Zheng Zhengfu. 2017. Zircon SHRIMP U-Pb geochronology of granitoids from northern Zhuguangshan granitic composite batholith, Hunan Province[J]. Geology in China, 44(4):781-792(in Chinese with English abstract). http://www.researchgate.net/publication/323412354_Zircon_SHRIMP_U-Pb_geochronology_of_granitoids_from_northern_Zhuguangshan_granitic_composite_batholith_Hunan_Province
Guo Lingzhi, Shi Yangshen, Lu Huafu, Ma Ruishi, Dong Huogen, Yang Shufen.1989. The pre-Devonian tectonic patterns and evolution of South China[J]. Journal of Southeast Asian Earth Sciences, 3:87-93. doi: 10.1016/0743-9547(89)90012-3
Hildreth W, Halliday A N, Christiansen R L. 1991. Isotopic and Chemical Evidence Concerning the Genesis and Contamination of Basaltic and Rhyolitic Magma Beneath the Yellowstone Plateau Volcanic Field[J]. J. Petrology, 32(1):63-138. doi: 10.1093/petrology/32.1.63
Hu Yanhua, Gu Mingguang, Xu yan, Yu Shengqiang, Wang Jiaen, He Yue. 2011. The confirmation of the age of caledonian Chencai group in Zhuji area of Zhejiang Province and its geological significance[J]. Geological Bulletin of China, 30(11):1661-1670(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201111003.htm
Hu Yanhua, Qian Junfeng, Zhu Xianyao, Xu Yan, Li Jianfeng. 2012. The overview and origin analysis for the caledonian movement in the south China block[J]. Bulletin of Science and Technology, 28(11):42-48, 71(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJTB201211012.htm
Hua Renmin, Zhang Wenlan, Chen Peirong, Zhai Wei, LI Guanglai. 2013. Relationship between caledonian granitoids and large-scale mineralization in south China[J]. Geological Journal of China Universities, 19(1):1-11(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253564810.html
Huang Guicheng, Wang Xiongwu, Yang Shiyi, Chen Longqing, Ling Jingsheng. 2000. Zircon U-Pb age and their geologic implication of porphyroid in west of Guangdong Province[J]. Geology-geochemistry, 28(4):48-53(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZDQ200004008&dbcode=CJFD&year=2000&dflag=pdfdown
Jacques Charvet, Shu Liangshu, Michel Faure, Flavien Choulet, Wang Bo, Lu Huafu, Nicole Lee Breton. 2010. Structural development of the Lower Paleozoic belt of South China:Genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 39(4):309-330. doi: 10.1016/j.jseaes.2010.03.006
Jia Xiaohui, Wang Qiang, Tang Gongjian. 2009. A-type granites:research progress and implications[J]. Geotectonica et Metallogenia, 33(3):465-480(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK200903020.htm
Jiang Ting. 2014. Chronology and Geochemistry of Weipu, Hufang, Guiyantou and Gutian Plutons in the Southwestern Fujian Province[D]. Beijing: China University of Geosciences (Beijing), 16-44(in Chinese with English abstract).
Li Wenjie, Liang Jincheng, Feng Zuohai, Zhang Guilin, Cjem Maohong, Yuan Aiping. 2006. Judging for characterstics of geochemical and structural environment of several caledonian granitoids in northeast Guangxi[J]. Mineral Resources and Geology, 20(4):353-360(in Chinese with English abstract). http://www.researchgate.net/publication/309663062_Judging_for_characterstics_of_geochemical_and_structural_environment_of_several_caledonian_granitoids_in_northeast_Guangxi
Li Xianhua, Li Wuxian, Li Zhengxiang, Lo Chinghua, Wang Jian, Ye Meifan, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1/2):117-128. http://www.sciencedirect.com/science/article/pii/S0301926809001405
Li Xiaofeng, Feng Zuohai, Li Rongsen, Tang Zhuanhong, Qu Wenjun, Li Junzhao. 2009. Silurian Mo mineral ization at Baishiding molybdenum deposit in northern Guangxi:Constraints from zircon SHRIMP U-Pb and molybdenite Re-Os ages[J]. Mineral Deposits, 28(4):403-412(in Chinese with English abstract). http://www.cqvip.com/QK/93610X/20094/31520239.html
Li Zhen. 2011. Petrogenesis of Palaeozoic-Mesozoic Granitoids and Related Rocks in Fujian: Implications For Tectono-Magmatic Evolution and Crust-Mantle Interaction[D]. Nanjing: Nanjing University, 89-111.
Ling Hongfei, Shen Weizhou, Huang Xiaolong. 1999. Nd and Sr isotopic compositions of granitiods of Fujian and their significance[J]. Acta Petrologica Sinica, 15(2):255-262(in Chinese with English abstract). http://www.oalib.com/paper/1471288
Liu Rui, Zhou Hanwen, Zhong Zengqiu, Zeng Wen, Xiang Hua, Jin Song, Lu Xinqian, Li Chunzhong. 2008. Petrogenesis of the caledonian migmatites and related granites in northwestern Fujian Province, south China:Syn-deformational crustal anatexis[J]. Acta Petrologica Sinica, 24(6):1205-1222(in Chinese with English abstract). http://www.oalib.com/paper/1472614
Lou Fasheng, Shen Weizhou, Wang Dezi, Shu Liangshu, Wu Fujiang, Zhang Fangrong, Yu Jinhai. 2005. Zircon U-Pb isotopic chronology of the Wugongshan dome comopund granite in Jiangxi Province[J]. Acta Geologica Sinica, 79(5):636-644(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200505008.htm
Maniar P D, Piccoli P M. 1985. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5):635-643. http://www.tandfonline.com/servlet/linkout?suffix=CIT0047&dbid=16&doi=10.1080%2F00206814.2017.1375438&key=10.1130%2F0016-7606(1989)101<0635%3ATDOG>2.3.CO%3B2
Mao Jianren, Zeng Qingtao, Li Zilong, Hu Qing, Zhao Xilin, Ye Haimin. 2008. Precise dating and geological significance of the Caledonian Shangyou pluton in south Jiangxi Province[J]. Acta Geologica Sinica, 82(2):399-409. http://d.wanfangdata.com.cn/Periodical/dzxb-e200802019
Middlemost E A K. 1985. Magmas and Magmatic Rocks[M]. London:Longman.1-266
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4):956-983. doi: 10.1093/petrology/25.4.956
Peccerillo R, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral. Petrol., 58(1):63-81. doi: 10.1007/BF00384745
Peng Songbai, Jin Zhenmin, Liu Yunhua, Fu Jianming, He Longqing, Cai Minghai, Wang Yanbin. 2006. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic garnitoids in Yunkai orogenic belt, western Guangdong Province, China[J]. 2006. Earth Science-Journal of China University of Geosciences, 31(1):110-120(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1002070506600010
Qiu Jiansheng, Xiao E, Hu Jian, Xu Xisheng, Jiang Shaoyong, Li Zhen. 2008. Petrogenesis of highly fractionated Ⅰ-type graintes in the coastal area of northeastern Fujian Porvince:Constraints from zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes[J]. Acta Geologica Sinica, 24(11):2468-2484(in Chinese with English abstract). http://www.oalib.com/paper/1473393
Qiu Yuanxi, Ma Wenpu, Fan Xiaolin, Zhang Yuchang, Deng Jiarui, Xia Lianghui, Zhang Xuliang. 1996. Tectonic nature and tectonic evolution of the "Xuefeng Oldland" in the caledonian stage[J]. Regional Geology of China, 15(2):150-160(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD602.007.htm
Qiu Yuanxi, Zhang Yichang, Ma Wenpu. 1998. Tectonics and geological evolution of Xuefeng intra-continental orogene South China[J]. Geological Journal of China Universities, 4(4):73-84(in Chinese with English abstract). http://www.researchgate.net/publication/313234162_Tectonics_and_geological_evolution_of_Xuefeng_intra-continental_orogene_south_ChinaJ
Setsuya Nakada, Masaki Takahashi. 1979. Regional variationin chemistry of the Miocene intermediate to felsic magmas in the Outer Zone and the Setouchi Province of Southwest Japan[J]. The Geological Society of Japan, 85(9):571-582. doi: 10.5575/geosoc.85.571
Shen Weizhou, Ling Hongfei, Li Wuxian, Huang Xiaolong, Wang Dezi. 1999. Study on the Nd-Sr isotopic compositions of granitoids in SE China[J]. Geological Journal of China Universities, 5(1):22-32(in Chinese with English abstract).
Shen Weizhou, Zhang Fangrong, Shu Liangshu, Wang Lijuan, Xiang Lei. 2008. Formaiton age, geochemical characterisitcs of the Ninggang granite body in Jiangxi Povince and its tectonic signiflcance[J]. Acta Geologica Sinica, 24(10):2244-2254(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810006.htm
Shu Liangshu, Lu Huafu, Jia Dong, Charvet Jacques, Faure Michel. 1999. Study of the 40Ar/39Ar isotopic age for the early paleozoic tectonothermal event in the Wuyishan region, south China.[J]. Journal of Nanjing University (Natural Sciences), 35(6):668-674(in Chinese with English abstract). http://www.researchgate.net/publication/285350202_Study_of_the_40Ar39Ar_isotopic_age_for_the_early_Paleozoic_tectonothermal_event_in_the_Wuyishan_region_S
Shu Liangshu, Yu Jinhai, Jia Dong, Wang Bo, Shen Weizhou, Zhang Yueqiao. 2008. Early paleozoic orogenic belt in the eastern segment of south China[J]. Geological Bulletin of China, 27(10):1581-1593(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0024493707001508
Shu Liangshu. 2006. Predevonian tectonic evolution of south China:from cathaysian block to caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 12(4):418-431(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173364
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processe[J]. Geological Society Special Publication, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Sun Tao. 2006. A new map showing the distribution of granites in south China and its explanatory notes[J]. Geological Bulletin of China, 25(3):332-335(in Chinese with English abstract). http://www.researchgate.net/publication/279697311_A_new_map_showing_the_distribution_of_granites_in_South_China_and_its_explanatory_notes
Wang Dezi. 2004. The study of granitic rocks in south China:looking back and forward[J]. Geological Journal of China Universities, 10(3):305-314. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200403000.htm
Wang Jianghai, Sun Dazhong, Chang Xiangyang, Deng Shangxian, Zhang Hu, Zhou Hanwen. 1998. U-Pb dating of the Napeng granite at the NW margin of the Yukai block, Guangdong, south China[J]. Acta Mineralogica Sinica, 18(2):130-134(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199802002.htm
Wang Jianguo, Yu Shengqiang, Hu Yanhua, Zhao Xudong, Wu Ming, Gu Mingguang. 2014. The discovery, petrology and geochronology of the retrograde eclogite in Jiangshan-Shaoxing suture zone[J]. Geology in China, 41(4):1356-1363(in Chinese with English abstract). http://www.cqvip.com/QK/90050X/201404/662182497.html
Wang Xueqiu, Xie Xuejing, Zhang Benren, Zhang Qin, CHI Qinghua, Hou Qingye, Xu Shanfa, Nie Lanshi, Zhang Bimin. 2010. China geochemical probe:Making "Geochemical Earth"[J]. Acta Geologica Sinica, 84(6):854-864(in Chinese with English abstract). http://www.researchgate.net/publication/279592245_China_geochemical_probe_making_geochemical_earth
Wang Yixian, Zhao Zhenhua, Bao Zhiiwei, Li Xianhua. 1997. Geochemistry of granitoids from Zhejiang Province and crustal evolution——I. phanerozoic granitoids[J]. Geochimica, 26(5):1-16(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10003717772
Wang Yuejun, Fan Weiming, Zhao Guochun, Ji Shaocheng, Peng Touping. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block[J]. Gondwana Research, 12(4):404-416. doi: 10.1016/j.gr.2006.10.003
Whalen J B, Currie K L, Chappell B W. 1987. A-Type granites-geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Mineral. Petrol., 95(4):407-419. doi: 10.1007/BF00402202
Wu Fujiang, Zhang Fangrong. 2003. Features and genesis of Caledonian granites in the Wugongshan in the eastern segment of the northern margin of south China plate[J]. Geology in China, 30(2):166-173(in Chinese with English abstract). http://www.researchgate.net/publication/281122718_Features_and_genesis_of_Caledonian_granites_in_the_Wugong_in_the_eastern_segment_of_the_northern_margin_of_South_China
Xie Mingming, Feng Guosheng, Liu Yihui. 2000. Geologic features and mechanism of emplacement of Fufang granite in Guangchang[J]. Jiangxi Geology, 14(1):21-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXDZ200001005.htm
Xie Zhendong, Yang Yongge. 2000. Isotopic age of zircon in Anxi pluton of Xinfeng, Jiangxi, and ITS geological implications[J]. Jiangxi Geology, 14(3):172-176(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_jiangxi-geology_thesis/0201252686605.html
Xiong Shengqing, Yang Hai, Ding Yanyun, Li Zhankui. 2018. Subdivision of tectonic units in China based on aeromagnetic data[J]. Geology in China, 45(4):658-680(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252100755.html
Xu Deru, Chen Guanghao, Xia Bin, Li Pengchun, He Zhuanli. 2006. The caledonian adakite-like granodiorites in Banshanpu area, eastern Hunan Province, south China:petrogenesis and geological significance[J]. Geological Journal of China Universities, 12(4):507-521(in Chinese with English abstract). http://www.researchgate.net/publication/306220798_The_Caledonian_adakite-like_granodiorites_in_Banshanpu_area_eastern_Hunan_Province_South_China_Petrogenesis_and_geological_significance_J?ev=auth_pub
Xu Xianbing, Zhang Yueqiao, Shu Liangshu, Jia Dong, Wang Ruirui, Xu Huaizhi. 2009. Zircon LA-ICPMS U-Pb dating of the Weipu granitic pluton in southwest Fujian and the Changpu migmatite in South Jiangxi:constrains to the Timing of caledonian movement in Wuyi mountains[J]. Geological Review, 55(2):277-285(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200902017.htm
Yang Dongsheng, Li Xianhua, Li Wuxian, Liang Xinquan, Long Wenguo, Xiong Xiaolin. 2010. U-Pb and 40Ar-39Ar geochronology of the Baiyunshan gneiss(centralGuangdong, south China):Constraints on the timing of early Palaeozoicand Mesozoic tectonothermal events in the Wuyun(Wuyi-Yunkai) Orogen[J]. Geological Magazine, 147(4):481-496. doi: 10.1017/S0016756809990811
Yu Xinqi, Wu Ganguo, Zhao Xixi, Zhang Da, Di Yongjun, Qiu Junting, Dai Yanpei, Li Chunlin. 2012. New geochronological data from the Paleozoic and Mesozoic nappe structures, igneous rocks, and molybdenite in the North Wuyi area, Southeast China[J]. Gondwana Research, 22(2):519-533. doi: 10.1016/j.gr.2011.11.013
Yuan Honglin, Gao Shan, Liu Xiaoming, Li Huiming, Detlef Gunther, Wu Fuyuan. 2004. Accurate U-Pb age and trace elment deteminations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards Geoanlytical Res., 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
Yuan zhengxin, Zhong Guofang, Xie Yunbao, Yu Jinneng. 1997. A new recognition on spacio-temporal characteristics of the caledonian orogeny happened in south China[J]. Geology and Mineral Resources of South China, 13(4):19-25(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC199704002.htm
Zeng Yong, Yang Minggui. 1999. Central Jiangxi ckllision melange zone[J]. Regional Geology of China, 18(1):17-23(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252295563.html
Zhang Aimei, Wang Yuejun, Fan Weiming, Zhang Feifei, Zhang Yuzhi. 2010. LA-ICPMS zircon U-Pb geochronology and Hf isotopic compositions of caledonian granites from the Qingliu area, southwest Fujian[J]. Geotectonica et Metallogenia, 34(3):408-418(in Chinese with English abstract). http://www.researchgate.net/publication/284481362_LA-ICPMS_zircon_U-Pb_geochronology_and_Hf_isotopic_compositions_of_Caledonian_granites_from_the_Qingliu_area_Southwest_Fujian
Zhang Fangrong, Shu Liangshu, Wang Dezi, Yu Jinhai, Shen Weizhou. 2009. Discussions on the tectonic setting of caledonian granitoids in the eastern segment of south China[J]. Earth Science Frontiers, 16(1):248-260(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901034.htm
Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite:what is the essence?[J]. Acta Petrologica et Mineralogica, 31(4):621-626. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201204015.htm
Zhou Jian, Xu Shanfa, Chi Qinghua, Chen Enke, Zhang Bimin, Wang Wei. 2012. Geochemical characteristics of the mesozoic volcanic belt in southeast coast of China[J]. Earth Science Frontiers, 19(3):93-100(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201203011.htm
Zhou Xinmin. 2003. My thinking about granite geneses of south China[J]. Geological Journal of China Universities, 9(4):556-565. http://ci.nii.ac.jp/naid/10030173373
Zhu Qingbo, Huang Wencheng, Meng Qingxiu, Zhang Chuanlin. 2015. Caledonian tectonic event of cathaysia block:Constraints on zircon U-Pb geochronology and Lu-Hf isotope for two kinds of granite[J]. Geology in China, 42(6):1715-1739(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201506005.htm
曾勇, 杨明桂. 1999.赣中碰撞混杂岩带[J].中国区域地质, 18(1):17-23. doi: 10.3969/j.issn.1671-2552.1999.01.003 陈江峰, 郭新生, 汤加富, 周泰禧. 1999.中国东南地壳增长与Nd同位素模式年龄[J].南京大学学报(自然科学版), 35(6):649-658. doi: 10.3321/j.issn:0469-5097.1999.06.001 陈正宏, 李寄嵎, 谢佩珊, 曾雯, 周汉文. 2008.利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄[J].高校地质学报, 14(1):1-15. doi: 10.3969/j.issn.1006-7493.2008.01.001 邓访陵. 1987.诸广山花岗岩复式岩基南部的同位素地质年代学[J].地球化学杂志, 16(2):141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198702004.htm 董学发, 余盛强, 唐增才, 肖庆辉, 袁强, 陈忠大, 周宗尧, 吴小勇.2016.浙江"陈蔡增生杂岩"中洋内弧型变基性火山岩的地球化学特征及其地质意义[J].中国地质.43(3):817-828. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20160309&flag=1 郭爱民, 陈必河, 陈剑锋, 周超, 司程山, 郑正福. 2017.南岭诸广山北体复式花岗岩锆石SHRIMP U-Pb定年及多期岩浆活动[J].中国地质, 44(4):781-792. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20170410&flag=1 胡艳华, 顾明光, 徐岩, 余盛强, 王加恩, 贺跃. 2011.浙江诸暨地区陈蔡群加里东期变质年龄的确认及其地质意义[J].地质通报, 30(11):1661-1670. doi: 10.3969/j.issn.1671-2552.2011.11.002 胡艳华, 钱俊锋, 禇先尧, 徐岩, 顾明光, 李建峰. 2012.华南加里东运动研究综述及其性质初探[J].科技通报, 28(11):42-48, 71. doi: 10.3969/j.issn.1001-7119.2012.11.011 华仁民, 张文兰, 陈培荣, 翟伟, 李光来. 2013.初论华南加里东花岗岩与大规模成矿作用的关系[J].高校地质学报, 19(1):1-11. doi: 10.3969/j.issn.1006-7493.2013.01.003 黄圭成, 汪雄武, 扬世义, 陈龙清, 凌井生. 2000.粤西残斑岩的锆石U-Pb年龄及其地质意义[J].地球与环境, 28(4):48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200004008.htm 贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 33(3):465-480. doi: 10.3969/j.issn.1001-1552.2009.03.017 蒋婷. 2014.闽西南地区玮埔、胡坊、桂岩头和古田岩体花岗岩年代学和地球化学[D].北京: 中国地质大学(北京), 16-44. 李文杰, 梁金城, 冯佐海, 张桂林, 陈懋弘, 袁爱平. 2006.桂东北地区几个加里东期花岗岩体的地球化学特征及其构造环境判别[J].矿产与地质, 20(4):353-360. doi: 10.3969/j.issn.1001-5663.2006.04.005 李晓峰, 冯佐海, 李容森, 唐专红, 屈文俊, 李军朝. 2009.华南志留纪钼的矿化:白石顶钼矿锆石SHRIMP U-Pb年龄和辉钼矿Re-Os年龄证据[J].矿床地质, 28(4):403-412. doi: 10.3969/j.issn.0258-7106.2009.04.003 李真. 2011.福建古生代-中生代花岗岩及相关岩石成因研究: 对构造-岩浆演化与壳幔相互作用的启示[D].南京: 南京大学, 89-111. 凌洪飞, 沈渭洲, 黄小龙. 1999.福建省花岗岩类Nd-Sr同位素特征及其意义[J].岩石学报, 15(2):255-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.011.htm 刘锐, 张利, 周汉文, 钟增球, 曾雯, 向华, 靳松, 吕新前, 李春忠. 2008.闽西北加里东期混合岩及花岗岩的成因:同变形地壳深熔作用[J].岩石学报, 24(6):1205-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806006.htm 楼法生, 沈渭洲, 王德滋, 舒良树, 吴富江, 张芳荣等. 2005.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究[J].地质学报, 79(5):636-644. doi: 10.3321/j.issn:0001-5717.2005.05.008 彭松柏, 金振民, 刘云华, 付建明, 何龙清, 蔡明海等. 2006.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J].地球科学——中国地质大学学报, 31(1):110-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200601015.htm 丘元禧, 马文璞. 1996."雪峰古陆"加里东期的构造性质和构造演化[J].中国区域地质, 15(2):150-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD602.007.htm 丘元禧, 张渝昌, 马文璞. 1998.雪峰山陆内造山带的构造特征与演化[J].高校地质学报, 4(4):73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX804.007.htm 邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 24(11):2468-2484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200811003.htm 沈渭洲, 凌洪飞, 李武显, 黄小龙, 王德滋. 1999.中国东南部花岗岩类Nd-Sr同位素研究[J].高校地质学报, 5(1):22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX901.003.htm 沈渭洲, 张芳荣, 舒良树, 王丽娟, 向磊. 2008.江西宁冈岩体的形成时代、地球化学特征及其构造意义[J].岩石学报, 24(10):2244-2254. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810006.htm 舒良树, 卢华复, 贾东, 夏菲, 福赫. 1999.华南武夷山早古生代构造事件的40Ar/39Ar同位素年龄研究[J].南京大学学报(自然科学版), 35(6):668-674. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906002.htm 舒良树, 于津海, 贾东, 王博, 沈渭洲, 张岳桥. 2008.华南东段早古生代造山带研究[J].地质通报, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 舒良树. 2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报, 12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002 孙涛. 2006.新编华南花岗岩分布图及其说明书[J].地质通报, 25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 汪建国, 余盛强, 胡艳华, 赵旭东, 吴鸣, 顾明光. 2014.江山一绍兴结合带榴闪岩的发现及岩石学、年代学特征[J].中国地质, 41(4):1356-1363. doi: 10.3969/j.issn.1000-3657.2014.04.025 王德滋. 2004.华南花岗岩研究的回顾与展望[J].高校地质学报, 10(3):305-314. doi: 10.3969/j.issn.1006-7493.2004.03.001 王江海, 孙大中, 常向阳, 邓尚贤, 张湖, 周汉文. 1998.云开地块西北缘那蓬岩体的锆石U-Pb年龄[J].矿物学报, 18(2):130-134. doi: 10.3321/j.issn:1000-4734.1998.02.003 王学求, 谢学锦, 张本仁, 张勤, 迟清华, 侯青叶, 徐善法, 聂兰仕, 张必敏. 2010.地壳全元素探测——构建"化学地球"[J].地质学报, 84(6):854-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201006011.htm 王一先, 赵振华, 包志伟, 李献华. 1997.浙江花岗岩类地球化学与地壳演化——Ⅰ.显生宙花岗岩类[J].地球化学杂志, 26(5):1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199705000.htm 吴富江, 张芳荣. 2003.华南板块北缘东段武功山加里东期花岗岩特征及成因探讨[J].中国地质, 30(2):166-173. doi: 10.3969/j.issn.1000-3657.2003.02.009 谢明明, 冯国胜, 刘益辉. 2000.广昌付坊花岗岩地质特征及侵位机制[J].江西地质, 14(1):21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ200001005.htm 谢振东, 杨永革. 2000.江西信丰安西岩体同位素年龄及其地质意义[J].江西地质, 14(3):172-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JXDZ200003002.htm 熊盛青, 杨海, 丁燕云, 李占奎. 2018.中国航磁大地构造单元划分[J].中国地质, 45(4):658-680. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180402&flag=1 徐先兵, 张岳桥, 舒良树, 贾东, 王瑞瑞, 许怀智. 2009.闽西南玮埔岩体和赣南菖蒲混合岩锆石LA-ICPMS U-Pb年代学:对武夷山加里东运动时代的制约[J].地质论评, 55(2):277-285. doi: 10.3321/j.issn:0371-5736.2009.02.013 许德如, 陈广浩, 夏斌, 李鹏春, 贺转利. 2006.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报, 12(4):507-521. doi: 10.3969/j.issn.1006-7493.2006.04.012 袁正新, 钟国芳, 谢岩豹, 余纪能. 1997.华南地区加里东期造山运动时空分布的新认识[J].华南地质与矿产, 13(4):19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC199704002.htm 张爱梅, 王岳军, 范蔚茗, 张菲菲, 张玉芝. 2010.闽西南清流地区加里东期花岗岩锆石U-Pb年代学及Hf同位素组成研究[J].大地构造与成矿学, 34(3):408-418. doi: 10.3969/j.issn.1001-1552.2010.03.013 张芳荣, 舒良树, 王德滋, 于津海, 沈渭洲. 2009.华南东段加里东期花岗岩类形成构造背景探讨[J].地学前缘, 16(1):248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J].岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 周建, 徐善法, 迟清华, 陈恩科, 张必敏, 王玮. 2012.东南沿海中生代火山岩带地球化学特征[J].地学前缘, 19(3):93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203011.htm 周新民. 2003.对华南花岗岩研究的若干思考[J].高校地质学报, 9(4):556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009 朱清波, 黄文成, 孟庆秀, 张传林. 2015.华夏地块加里东期构造事件:两类花岗岩的锆石U-Pb年代学和Lu-Hf同位素制约[J].中国地质, 42(6):1715-1739. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150605&flag=1